]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
add an asterror message for ast_entfield_new with a wrong type
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     const ast_expression *outtype;
487
488     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
489
490     if (field->expression.vtype != TYPE_FIELD) {
491         asterror(ctx, "ast_entfield_new with expression not of type field");
492         mem_d(self);
493         return NULL;
494     }
495
496     outtype = field->expression.next;
497     if (!outtype) {
498         mem_d(self);
499         /* Error: field has no type... */
500         return NULL;
501     }
502
503     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
504
505     self->entity = entity;
506     self->field  = field;
507
508     if (!ast_type_adopt(self, outtype)) {
509         ast_entfield_delete(self);
510         return NULL;
511     }
512
513     return self;
514 }
515
516 void ast_entfield_delete(ast_entfield *self)
517 {
518     ast_unref(self->entity);
519     ast_unref(self->field);
520     ast_expression_delete((ast_expression*)self);
521     mem_d(self);
522 }
523
524 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
525 {
526     ast_instantiate(ast_member, ctx, ast_member_delete);
527     if (field >= 3) {
528         mem_d(self);
529         return NULL;
530     }
531
532     if (owner->expression.vtype != TYPE_VECTOR &&
533         owner->expression.vtype != TYPE_FIELD) {
534         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
535         mem_d(self);
536         return NULL;
537     }
538
539     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
540     self->expression.node.keep = true; /* keep */
541
542     if (owner->expression.vtype == TYPE_VECTOR) {
543         self->expression.vtype = TYPE_FLOAT;
544         self->expression.next  = NULL;
545     } else {
546         self->expression.vtype = TYPE_FIELD;
547         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
548     }
549
550     self->owner = owner;
551     self->field = field;
552
553     return self;
554 }
555
556 void ast_member_delete(ast_member *self)
557 {
558     /* The owner is always an ast_value, which has .keep=true,
559      * also: ast_members are usually deleted after the owner, thus
560      * this will cause invalid access
561     ast_unref(self->owner);
562      * once we allow (expression).x to access a vector-member, we need
563      * to change this: preferably by creating an alternate ast node for this
564      * purpose that is not garbage-collected.
565     */
566     ast_expression_delete((ast_expression*)self);
567     mem_d(self);
568 }
569
570 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
571 {
572     const ast_expression *outtype;
573     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
574
575     outtype = array->expression.next;
576     if (!outtype) {
577         mem_d(self);
578         /* Error: field has no type... */
579         return NULL;
580     }
581
582     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
583
584     self->array = array;
585     self->index = index;
586
587     if (!ast_type_adopt(self, outtype)) {
588         ast_array_index_delete(self);
589         return NULL;
590     }
591
592     return self;
593 }
594
595 void ast_array_index_delete(ast_array_index *self)
596 {
597     ast_unref(self->array);
598     ast_unref(self->index);
599     ast_expression_delete((ast_expression*)self);
600     mem_d(self);
601 }
602
603 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
604 {
605     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
606     if (!ontrue && !onfalse) {
607         /* because it is invalid */
608         mem_d(self);
609         return NULL;
610     }
611     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
612
613     self->cond     = cond;
614     self->on_true  = ontrue;
615     self->on_false = onfalse;
616
617     return self;
618 }
619
620 void ast_ifthen_delete(ast_ifthen *self)
621 {
622     ast_unref(self->cond);
623     if (self->on_true)
624         ast_unref(self->on_true);
625     if (self->on_false)
626         ast_unref(self->on_false);
627     ast_expression_delete((ast_expression*)self);
628     mem_d(self);
629 }
630
631 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
632 {
633     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
634     /* This time NEITHER must be NULL */
635     if (!ontrue || !onfalse) {
636         mem_d(self);
637         return NULL;
638     }
639     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
640
641     self->cond     = cond;
642     self->on_true  = ontrue;
643     self->on_false = onfalse;
644     self->phi_out  = NULL;
645
646     return self;
647 }
648
649 void ast_ternary_delete(ast_ternary *self)
650 {
651     ast_unref(self->cond);
652     ast_unref(self->on_true);
653     ast_unref(self->on_false);
654     ast_expression_delete((ast_expression*)self);
655     mem_d(self);
656 }
657
658 ast_loop* ast_loop_new(lex_ctx ctx,
659                        ast_expression *initexpr,
660                        ast_expression *precond,
661                        ast_expression *postcond,
662                        ast_expression *increment,
663                        ast_expression *body)
664 {
665     ast_instantiate(ast_loop, ctx, ast_loop_delete);
666     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
667
668     self->initexpr  = initexpr;
669     self->precond   = precond;
670     self->postcond  = postcond;
671     self->increment = increment;
672     self->body      = body;
673
674     return self;
675 }
676
677 void ast_loop_delete(ast_loop *self)
678 {
679     if (self->initexpr)
680         ast_unref(self->initexpr);
681     if (self->precond)
682         ast_unref(self->precond);
683     if (self->postcond)
684         ast_unref(self->postcond);
685     if (self->increment)
686         ast_unref(self->increment);
687     if (self->body)
688         ast_unref(self->body);
689     ast_expression_delete((ast_expression*)self);
690     mem_d(self);
691 }
692
693 ast_call* ast_call_new(lex_ctx ctx,
694                        ast_expression *funcexpr)
695 {
696     ast_instantiate(ast_call, ctx, ast_call_delete);
697     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
698
699     MEM_VECTOR_INIT(self, params);
700
701     self->func = funcexpr;
702
703     self->expression.vtype = funcexpr->expression.next->expression.vtype;
704     if (funcexpr->expression.next->expression.next)
705         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
706
707     return self;
708 }
709 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
710
711 void ast_call_delete(ast_call *self)
712 {
713     size_t i;
714     for (i = 0; i < self->params_count; ++i)
715         ast_unref(self->params[i]);
716     MEM_VECTOR_CLEAR(self, params);
717
718     if (self->func)
719         ast_unref(self->func);
720
721     ast_expression_delete((ast_expression*)self);
722     mem_d(self);
723 }
724
725 bool ast_call_check_types(ast_call *self)
726 {
727     size_t i;
728     bool   retval = true;
729     const  ast_expression *func = self->func;
730     size_t count = self->params_count;
731     if (count > func->expression.params_count)
732         count = func->expression.params_count;
733
734     for (i = 0; i < count; ++i) {
735         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
736             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
737                      (unsigned int)(i+1));
738             /* we don't immediately return */
739             retval = false;
740         }
741     }
742     return retval;
743 }
744
745 ast_store* ast_store_new(lex_ctx ctx, int op,
746                          ast_expression *dest, ast_expression *source)
747 {
748     ast_instantiate(ast_store, ctx, ast_store_delete);
749     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
750
751     self->op = op;
752     self->dest = dest;
753     self->source = source;
754
755     self->expression.vtype = dest->expression.vtype;
756     if (dest->expression.next) {
757         self->expression.next = ast_type_copy(ctx, dest);
758         if (!self->expression.next) {
759             ast_delete(self);
760             return NULL;
761         }
762     }
763     else
764         self->expression.next = NULL;
765
766     return self;
767 }
768
769 void ast_store_delete(ast_store *self)
770 {
771     ast_unref(self->dest);
772     ast_unref(self->source);
773     ast_expression_delete((ast_expression*)self);
774     mem_d(self);
775 }
776
777 ast_block* ast_block_new(lex_ctx ctx)
778 {
779     ast_instantiate(ast_block, ctx, ast_block_delete);
780     ast_expression_init((ast_expression*)self,
781                         (ast_expression_codegen*)&ast_block_codegen);
782
783     MEM_VECTOR_INIT(self, locals);
784     MEM_VECTOR_INIT(self, exprs);
785     MEM_VECTOR_INIT(self, collect);
786
787     return self;
788 }
789 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
790 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
791 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
792
793 bool ast_block_collect(ast_block *self, ast_expression *expr)
794 {
795     if (!ast_block_collect_add(self, expr))
796         return false;
797     expr->expression.node.keep = true;
798     return true;
799 }
800
801 void ast_block_delete(ast_block *self)
802 {
803     size_t i;
804     for (i = 0; i < self->exprs_count; ++i)
805         ast_unref(self->exprs[i]);
806     MEM_VECTOR_CLEAR(self, exprs);
807     for (i = 0; i < self->locals_count; ++i)
808         ast_delete(self->locals[i]);
809     MEM_VECTOR_CLEAR(self, locals);
810     for (i = 0; i < self->collect_count; ++i)
811         ast_delete(self->collect[i]);
812     MEM_VECTOR_CLEAR(self, collect);
813     ast_expression_delete((ast_expression*)self);
814     mem_d(self);
815 }
816
817 bool ast_block_set_type(ast_block *self, ast_expression *from)
818 {
819     if (self->expression.next)
820         ast_delete(self->expression.next);
821     self->expression.vtype = from->expression.vtype;
822     if (from->expression.next) {
823         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
824         if (!self->expression.next)
825             return false;
826     }
827     else
828         self->expression.next = NULL;
829     return true;
830 }
831
832 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
833 {
834     ast_instantiate(ast_function, ctx, ast_function_delete);
835
836     if (!vtype ||
837         vtype->isconst ||
838         vtype->expression.vtype != TYPE_FUNCTION)
839     {
840         mem_d(self);
841         return NULL;
842     }
843
844     self->vtype = vtype;
845     self->name = name ? util_strdup(name) : NULL;
846     MEM_VECTOR_INIT(self, blocks);
847
848     self->labelcount = 0;
849     self->builtin = 0;
850
851     self->ir_func = NULL;
852     self->curblock = NULL;
853
854     self->breakblock    = NULL;
855     self->continueblock = NULL;
856
857     vtype->isconst = true;
858     vtype->constval.vfunc = self;
859
860     return self;
861 }
862
863 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
864
865 void ast_function_delete(ast_function *self)
866 {
867     size_t i;
868     if (self->name)
869         mem_d((void*)self->name);
870     if (self->vtype) {
871         /* ast_value_delete(self->vtype); */
872         self->vtype->isconst = false;
873         self->vtype->constval.vfunc = NULL;
874         /* We use unref - if it was stored in a global table it is supposed
875          * to be deleted from *there*
876          */
877         ast_unref(self->vtype);
878     }
879     for (i = 0; i < self->blocks_count; ++i)
880         ast_delete(self->blocks[i]);
881     MEM_VECTOR_CLEAR(self, blocks);
882     mem_d(self);
883 }
884
885 const char* ast_function_label(ast_function *self, const char *prefix)
886 {
887     size_t id;
888     size_t len;
889     char  *from;
890
891     if (!opts_dump)
892         return NULL;
893
894     id  = (self->labelcount++);
895     len = strlen(prefix);
896
897     from = self->labelbuf + sizeof(self->labelbuf)-1;
898     *from-- = 0;
899     do {
900         unsigned int digit = id % 10;
901         *from = digit + '0';
902         id /= 10;
903     } while (id);
904     memcpy(from - len, prefix, len);
905     return from - len;
906 }
907
908 /*********************************************************************/
909 /* AST codegen part
910  * by convention you must never pass NULL to the 'ir_value **out'
911  * parameter. If you really don't care about the output, pass a dummy.
912  * But I can't imagine a pituation where the output is truly unnecessary.
913  */
914
915 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
916 {
917     /* NOTE: This is the codegen for a variable used in an expression.
918      * It is not the codegen to generate the value. For this purpose,
919      * ast_local_codegen and ast_global_codegen are to be used before this
920      * is executed. ast_function_codegen should take care of its locals,
921      * and the ast-user should take care of ast_global_codegen to be used
922      * on all the globals.
923      */
924     if (!self->ir_v) {
925         char typename[1024];
926         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
927         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
928         return false;
929     }
930     *out = self->ir_v;
931     return true;
932 }
933
934 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
935 {
936     ir_value *v = NULL;
937
938     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
939     {
940         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
941         if (!func)
942             return false;
943         func->context = ast_ctx(self);
944         func->value->context = ast_ctx(self);
945
946         self->constval.vfunc->ir_func = func;
947         self->ir_v = func->value;
948         /* The function is filled later on ast_function_codegen... */
949         return true;
950     }
951
952     if (isfield && self->expression.vtype == TYPE_FIELD) {
953         ast_expression *fieldtype = self->expression.next;
954
955         if (self->isconst) {
956             asterror(ast_ctx(self), "TODO: constant field pointers with value");
957             goto error;
958         }
959
960         if (fieldtype->expression.vtype == TYPE_ARRAY) {
961             size_t ai;
962             char   *name;
963             size_t  namelen;
964
965             ast_expression_common *elemtype;
966             int                    vtype;
967             ast_value             *array = (ast_value*)fieldtype;
968
969             if (!ast_istype(fieldtype, ast_value)) {
970                 asterror(ast_ctx(self), "internal error: ast_value required");
971                 return false;
972             }
973
974             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
975             if (!array->expression.count || array->expression.count > opts_max_array_size)
976                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
977
978             elemtype = &array->expression.next->expression;
979             vtype = elemtype->vtype;
980
981             v = ir_builder_create_field(ir, self->name, vtype);
982             if (!v) {
983                 asterror(ast_ctx(self), "ir_builder_create_global failed");
984                 return false;
985             }
986             if (vtype == TYPE_FIELD)
987                 v->fieldtype = elemtype->next->expression.vtype;
988             v->context = ast_ctx(self);
989             array->ir_v = self->ir_v = v;
990
991             namelen = strlen(self->name);
992             name    = (char*)mem_a(namelen + 16);
993             strcpy(name, self->name);
994
995             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
996             array->ir_values[0] = v;
997             for (ai = 1; ai < array->expression.count; ++ai) {
998                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
999                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1000                 if (!array->ir_values[ai]) {
1001                     mem_d(name);
1002                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1003                     return false;
1004                 }
1005                 if (vtype == TYPE_FIELD)
1006                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1007                 array->ir_values[ai]->context = ast_ctx(self);
1008             }
1009             mem_d(name);
1010         }
1011         else
1012         {
1013             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1014             if (!v)
1015                 return false;
1016             v->context = ast_ctx(self);
1017             self->ir_v = v;
1018         }
1019         return true;
1020     }
1021
1022     if (self->expression.vtype == TYPE_ARRAY) {
1023         size_t ai;
1024         char   *name;
1025         size_t  namelen;
1026
1027         ast_expression_common *elemtype = &self->expression.next->expression;
1028         int vtype = elemtype->vtype;
1029
1030         /* same as with field arrays */
1031         if (!self->expression.count || self->expression.count > opts_max_array_size)
1032             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1033
1034         v = ir_builder_create_global(ir, self->name, vtype);
1035         if (!v) {
1036             asterror(ast_ctx(self), "ir_builder_create_global failed");
1037             return false;
1038         }
1039         if (vtype == TYPE_FIELD)
1040             v->fieldtype = elemtype->next->expression.vtype;
1041         v->context = ast_ctx(self);
1042
1043         namelen = strlen(self->name);
1044         name    = (char*)mem_a(namelen + 16);
1045         strcpy(name, self->name);
1046
1047         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1048         self->ir_values[0] = v;
1049         for (ai = 1; ai < self->expression.count; ++ai) {
1050             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1051             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1052             if (!self->ir_values[ai]) {
1053                 mem_d(name);
1054                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1055                 return false;
1056             }
1057             if (vtype == TYPE_FIELD)
1058                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1059             self->ir_values[ai]->context = ast_ctx(self);
1060         }
1061         mem_d(name);
1062     }
1063     else
1064     {
1065         /* Arrays don't do this since there's no "array" value which spans across the
1066          * whole thing.
1067          */
1068         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1069         if (!v) {
1070             asterror(ast_ctx(self), "ir_builder_create_global failed");
1071             return false;
1072         }
1073         if (self->expression.vtype == TYPE_FIELD)
1074             v->fieldtype = self->expression.next->expression.vtype;
1075         v->context = ast_ctx(self);
1076     }
1077
1078     if (self->isconst) {
1079         switch (self->expression.vtype)
1080         {
1081             case TYPE_FLOAT:
1082                 if (!ir_value_set_float(v, self->constval.vfloat))
1083                     goto error;
1084                 break;
1085             case TYPE_VECTOR:
1086                 if (!ir_value_set_vector(v, self->constval.vvec))
1087                     goto error;
1088                 break;
1089             case TYPE_STRING:
1090                 if (!ir_value_set_string(v, self->constval.vstring))
1091                     goto error;
1092                 break;
1093             case TYPE_ARRAY:
1094                 asterror(ast_ctx(self), "TODO: global constant array");
1095                 break;
1096             case TYPE_FUNCTION:
1097                 asterror(ast_ctx(self), "global of type function not properly generated");
1098                 goto error;
1099                 /* Cannot generate an IR value for a function,
1100                  * need a pointer pointing to a function rather.
1101                  */
1102             default:
1103                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1104                 break;
1105         }
1106     }
1107
1108     /* link us to the ir_value */
1109     self->ir_v = v;
1110     return true;
1111
1112 error: /* clean up */
1113     ir_value_delete(v);
1114     return false;
1115 }
1116
1117 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1118 {
1119     ir_value *v = NULL;
1120     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1121     {
1122         /* Do we allow local functions? I think not...
1123          * this is NOT a function pointer atm.
1124          */
1125         return false;
1126     }
1127
1128     if (self->expression.vtype == TYPE_ARRAY) {
1129         size_t ai;
1130         char   *name;
1131         size_t  namelen;
1132
1133         ast_expression_common *elemtype = &self->expression.next->expression;
1134         int vtype = elemtype->vtype;
1135
1136         if (param) {
1137             asterror(ast_ctx(self), "array-parameters are not supported");
1138             return false;
1139         }
1140
1141         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1142         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1143             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1144         }
1145
1146         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1147         if (!self->ir_values) {
1148             asterror(ast_ctx(self), "failed to allocate array values");
1149             return false;
1150         }
1151
1152         v = ir_function_create_local(func, self->name, vtype, param);
1153         if (!v) {
1154             asterror(ast_ctx(self), "ir_function_create_local failed");
1155             return false;
1156         }
1157         if (vtype == TYPE_FIELD)
1158             v->fieldtype = elemtype->next->expression.vtype;
1159         v->context = ast_ctx(self);
1160
1161         namelen = strlen(self->name);
1162         name    = (char*)mem_a(namelen + 16);
1163         strcpy(name, self->name);
1164
1165         self->ir_values[0] = v;
1166         for (ai = 1; ai < self->expression.count; ++ai) {
1167             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1168             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1169             if (!self->ir_values[ai]) {
1170                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1171                 return false;
1172             }
1173             if (vtype == TYPE_FIELD)
1174                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1175             self->ir_values[ai]->context = ast_ctx(self);
1176         }
1177     }
1178     else
1179     {
1180         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1181         if (!v)
1182             return false;
1183         if (self->expression.vtype == TYPE_FIELD)
1184             v->fieldtype = self->expression.next->expression.vtype;
1185         v->context = ast_ctx(self);
1186     }
1187
1188     /* A constant local... hmmm...
1189      * I suppose the IR will have to deal with this
1190      */
1191     if (self->isconst) {
1192         switch (self->expression.vtype)
1193         {
1194             case TYPE_FLOAT:
1195                 if (!ir_value_set_float(v, self->constval.vfloat))
1196                     goto error;
1197                 break;
1198             case TYPE_VECTOR:
1199                 if (!ir_value_set_vector(v, self->constval.vvec))
1200                     goto error;
1201                 break;
1202             case TYPE_STRING:
1203                 if (!ir_value_set_string(v, self->constval.vstring))
1204                     goto error;
1205                 break;
1206             default:
1207                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1208                 break;
1209         }
1210     }
1211
1212     /* link us to the ir_value */
1213     self->ir_v = v;
1214
1215     if (self->setter) {
1216         if (!ast_global_codegen(self->setter, func->owner, false) ||
1217             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1218             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1219             return false;
1220     }
1221     if (self->getter) {
1222         if (!ast_global_codegen(self->getter, func->owner, false) ||
1223             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1224             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1225             return false;
1226     }
1227     return true;
1228
1229 error: /* clean up */
1230     ir_value_delete(v);
1231     return false;
1232 }
1233
1234 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1235 {
1236     ir_function *irf;
1237     ir_value    *dummy;
1238     ast_expression_common *ec;
1239     size_t    i;
1240
1241     irf = self->ir_func;
1242     if (!irf) {
1243         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1244         return false;
1245     }
1246
1247     /* fill the parameter list */
1248     ec = &self->vtype->expression;
1249     for (i = 0; i < ec->params_count; ++i)
1250     {
1251         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1252             return false;
1253         if (!self->builtin) {
1254             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1255                 return false;
1256         }
1257     }
1258
1259     if (self->builtin) {
1260         irf->builtin = self->builtin;
1261         return true;
1262     }
1263
1264     if (!self->blocks_count) {
1265         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1266         return false;
1267     }
1268
1269     self->curblock = ir_function_create_block(irf, "entry");
1270     if (!self->curblock) {
1271         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1272         return false;
1273     }
1274
1275     for (i = 0; i < self->blocks_count; ++i) {
1276         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1277         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1278             return false;
1279     }
1280
1281     /* TODO: check return types */
1282     if (!self->curblock->is_return)
1283     {
1284         return ir_block_create_return(self->curblock, NULL);
1285         /* From now on the parser has to handle this situation */
1286 #if 0
1287         if (!self->vtype->expression.next ||
1288             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1289         {
1290             return ir_block_create_return(self->curblock, NULL);
1291         }
1292         else
1293         {
1294             /* error("missing return"); */
1295             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1296             return false;
1297         }
1298 #endif
1299     }
1300     return true;
1301 }
1302
1303 /* Note, you will not see ast_block_codegen generate ir_blocks.
1304  * To the AST and the IR, blocks are 2 different things.
1305  * In the AST it represents a block of code, usually enclosed in
1306  * curly braces {...}.
1307  * While in the IR it represents a block in terms of control-flow.
1308  */
1309 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1310 {
1311     size_t i;
1312
1313     /* We don't use this
1314      * Note: an ast-representation using the comma-operator
1315      * of the form: (a, b, c) = x should not assign to c...
1316      */
1317     if (lvalue) {
1318         asterror(ast_ctx(self), "not an l-value (code-block)");
1319         return false;
1320     }
1321
1322     if (self->expression.outr) {
1323         *out = self->expression.outr;
1324         return true;
1325     }
1326
1327     /* output is NULL at first, we'll have each expression
1328      * assign to out output, thus, a comma-operator represention
1329      * using an ast_block will return the last generated value,
1330      * so: (b, c) + a  executed both b and c, and returns c,
1331      * which is then added to a.
1332      */
1333     *out = NULL;
1334
1335     /* generate locals */
1336     for (i = 0; i < self->locals_count; ++i)
1337     {
1338         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1339             if (opts_debug)
1340                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1341             return false;
1342         }
1343     }
1344
1345     for (i = 0; i < self->exprs_count; ++i)
1346     {
1347         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1348         if (!(*gen)(self->exprs[i], func, false, out))
1349             return false;
1350     }
1351
1352     self->expression.outr = *out;
1353
1354     return true;
1355 }
1356
1357 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1358 {
1359     ast_expression_codegen *cgen;
1360     ir_value *left, *right;
1361
1362     ast_value       *arr;
1363     ast_value       *idx;
1364     ast_array_index *ai = NULL;
1365
1366     if (lvalue && self->expression.outl) {
1367         *out = self->expression.outl;
1368         return true;
1369     }
1370
1371     if (!lvalue && self->expression.outr) {
1372         *out = self->expression.outr;
1373         return true;
1374     }
1375
1376     if (ast_istype(self->dest, ast_array_index))
1377     {
1378
1379         ai = (ast_array_index*)self->dest;
1380         idx = (ast_value*)ai->index;
1381
1382         if (ast_istype(ai->index, ast_value) && idx->isconst)
1383             ai = NULL;
1384     }
1385
1386     if (ai) {
1387         /* we need to call the setter */
1388         ir_value  *iridx, *funval;
1389         ir_instr  *call;
1390
1391         if (lvalue) {
1392             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1393             return false;
1394         }
1395
1396         arr = (ast_value*)ai->array;
1397         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1398             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1399             return false;
1400         }
1401
1402         cgen = idx->expression.codegen;
1403         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1404             return false;
1405
1406         cgen = arr->setter->expression.codegen;
1407         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1408             return false;
1409
1410         cgen = self->source->expression.codegen;
1411         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1412             return false;
1413
1414         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1415         if (!call)
1416             return false;
1417         if (!ir_call_param(call, iridx))
1418             return false;
1419         if (!ir_call_param(call, right))
1420             return false;
1421         self->expression.outr = right;
1422     }
1423     else
1424     {
1425         /* regular code */
1426
1427         cgen = self->dest->expression.codegen;
1428         /* lvalue! */
1429         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1430             return false;
1431         self->expression.outl = left;
1432
1433         cgen = self->source->expression.codegen;
1434         /* rvalue! */
1435         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1436             return false;
1437
1438         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1439             return false;
1440         self->expression.outr = right;
1441     }
1442
1443     /* Theoretically, an assinment returns its left side as an
1444      * lvalue, if we don't need an lvalue though, we return
1445      * the right side as an rvalue, otherwise we have to
1446      * somehow know whether or not we need to dereference the pointer
1447      * on the left side - that is: OP_LOAD if it was an address.
1448      * Also: in original QC we cannot OP_LOADP *anyway*.
1449      */
1450     *out = (lvalue ? left : right);
1451
1452     return true;
1453 }
1454
1455 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1456 {
1457     ast_expression_codegen *cgen;
1458     ir_value *left, *right;
1459
1460     /* A binary operation cannot yield an l-value */
1461     if (lvalue) {
1462         asterror(ast_ctx(self), "not an l-value (binop)");
1463         return false;
1464     }
1465
1466     if (self->expression.outr) {
1467         *out = self->expression.outr;
1468         return true;
1469     }
1470
1471     cgen = self->left->expression.codegen;
1472     /* lvalue! */
1473     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1474         return false;
1475
1476     cgen = self->right->expression.codegen;
1477     /* rvalue! */
1478     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1479         return false;
1480
1481     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1482                                  self->op, left, right);
1483     if (!*out)
1484         return false;
1485     self->expression.outr = *out;
1486
1487     return true;
1488 }
1489
1490 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1491 {
1492     ast_expression_codegen *cgen;
1493     ir_value *leftl, *leftr, *right, *bin;
1494
1495     if (lvalue && self->expression.outl) {
1496         *out = self->expression.outl;
1497         return true;
1498     }
1499
1500     if (!lvalue && self->expression.outr) {
1501         *out = self->expression.outr;
1502         return true;
1503     }
1504
1505     /* for a binstore we need both an lvalue and an rvalue for the left side */
1506     /* rvalue of destination! */
1507     cgen = self->dest->expression.codegen;
1508     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1509         return false;
1510
1511     /* source as rvalue only */
1512     cgen = self->source->expression.codegen;
1513     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1514         return false;
1515
1516     /* now the binary */
1517     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1518                                 self->opbin, leftr, right);
1519     self->expression.outr = bin;
1520
1521     /* now store them */
1522     cgen = self->dest->expression.codegen;
1523     /* lvalue of destination */
1524     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1525         return false;
1526     self->expression.outl = leftl;
1527
1528     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1529         return false;
1530     self->expression.outr = bin;
1531
1532     /* Theoretically, an assinment returns its left side as an
1533      * lvalue, if we don't need an lvalue though, we return
1534      * the right side as an rvalue, otherwise we have to
1535      * somehow know whether or not we need to dereference the pointer
1536      * on the left side - that is: OP_LOAD if it was an address.
1537      * Also: in original QC we cannot OP_LOADP *anyway*.
1538      */
1539     *out = (lvalue ? leftl : bin);
1540
1541     return true;
1542 }
1543
1544 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1545 {
1546     ast_expression_codegen *cgen;
1547     ir_value *operand;
1548
1549     /* An unary operation cannot yield an l-value */
1550     if (lvalue) {
1551         asterror(ast_ctx(self), "not an l-value (binop)");
1552         return false;
1553     }
1554
1555     if (self->expression.outr) {
1556         *out = self->expression.outr;
1557         return true;
1558     }
1559
1560     cgen = self->operand->expression.codegen;
1561     /* lvalue! */
1562     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1563         return false;
1564
1565     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1566                                  self->op, operand);
1567     if (!*out)
1568         return false;
1569     self->expression.outr = *out;
1570
1571     return true;
1572 }
1573
1574 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1575 {
1576     ast_expression_codegen *cgen;
1577     ir_value *operand;
1578
1579     /* In the context of a return operation, we don't actually return
1580      * anything...
1581      */
1582     if (lvalue) {
1583         asterror(ast_ctx(self), "return-expression is not an l-value");
1584         return false;
1585     }
1586
1587     if (self->expression.outr) {
1588         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1589         return false;
1590     }
1591     self->expression.outr = (ir_value*)1;
1592
1593     if (self->operand) {
1594         cgen = self->operand->expression.codegen;
1595         /* lvalue! */
1596         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1597             return false;
1598
1599         if (!ir_block_create_return(func->curblock, operand))
1600             return false;
1601     } else {
1602         if (!ir_block_create_return(func->curblock, NULL))
1603             return false;
1604     }
1605
1606     return true;
1607 }
1608
1609 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1610 {
1611     ast_expression_codegen *cgen;
1612     ir_value *ent, *field;
1613
1614     /* This function needs to take the 'lvalue' flag into account!
1615      * As lvalue we provide a field-pointer, as rvalue we provide the
1616      * value in a temp.
1617      */
1618
1619     if (lvalue && self->expression.outl) {
1620         *out = self->expression.outl;
1621         return true;
1622     }
1623
1624     if (!lvalue && self->expression.outr) {
1625         *out = self->expression.outr;
1626         return true;
1627     }
1628
1629     cgen = self->entity->expression.codegen;
1630     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1631         return false;
1632
1633     cgen = self->field->expression.codegen;
1634     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1635         return false;
1636
1637     if (lvalue) {
1638         /* address! */
1639         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1640                                             ent, field);
1641     } else {
1642         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1643                                              ent, field, self->expression.vtype);
1644     }
1645     if (!*out) {
1646         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1647                  (lvalue ? "ADDRESS" : "FIELD"),
1648                  type_name[self->expression.vtype]);
1649         return false;
1650     }
1651
1652     if (lvalue)
1653         self->expression.outl = *out;
1654     else
1655         self->expression.outr = *out;
1656
1657     /* Hm that should be it... */
1658     return true;
1659 }
1660
1661 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1662 {
1663     ast_expression_codegen *cgen;
1664     ir_value *vec;
1665
1666     /* in QC this is always an lvalue */
1667     (void)lvalue;
1668     if (self->expression.outl) {
1669         *out = self->expression.outl;
1670         return true;
1671     }
1672
1673     cgen = self->owner->expression.codegen;
1674     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1675         return false;
1676
1677     if (vec->vtype != TYPE_VECTOR &&
1678         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1679     {
1680         return false;
1681     }
1682
1683     *out = ir_value_vector_member(vec, self->field);
1684     self->expression.outl = *out;
1685
1686     return (*out != NULL);
1687 }
1688
1689 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1690 {
1691     ast_value *arr;
1692     ast_value *idx;
1693
1694     if (!lvalue && self->expression.outr) {
1695         *out = self->expression.outr;
1696     }
1697     if (lvalue && self->expression.outl) {
1698         *out = self->expression.outl;
1699     }
1700
1701     if (!ast_istype(self->array, ast_value)) {
1702         asterror(ast_ctx(self), "array indexing this way is not supported");
1703         /* note this would actually be pointer indexing because the left side is
1704          * not an actual array but (hopefully) an indexable expression.
1705          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1706          * support this path will be filled.
1707          */
1708         return false;
1709     }
1710
1711     arr = (ast_value*)self->array;
1712     idx = (ast_value*)self->index;
1713
1714     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1715         /* Time to use accessor functions */
1716         ast_expression_codegen *cgen;
1717         ir_value               *iridx, *funval;
1718         ir_instr               *call;
1719
1720         if (lvalue) {
1721             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1722             return false;
1723         }
1724
1725         if (!arr->getter) {
1726             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1727             return false;
1728         }
1729
1730         cgen = self->index->expression.codegen;
1731         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1732             return false;
1733
1734         cgen = arr->getter->expression.codegen;
1735         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1736             return false;
1737
1738         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1739         if (!call)
1740             return false;
1741         if (!ir_call_param(call, iridx))
1742             return false;
1743
1744         *out = ir_call_value(call);
1745         self->expression.outr = *out;
1746         return true;
1747     }
1748
1749     if (idx->expression.vtype == TYPE_FLOAT)
1750         *out = arr->ir_values[(int)idx->constval.vfloat];
1751     else if (idx->expression.vtype == TYPE_INTEGER)
1752         *out = arr->ir_values[idx->constval.vint];
1753     else {
1754         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1755         return false;
1756     }
1757     return true;
1758 }
1759
1760 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1761 {
1762     ast_expression_codegen *cgen;
1763
1764     ir_value *condval;
1765     ir_value *dummy;
1766
1767     ir_block *cond = func->curblock;
1768     ir_block *ontrue;
1769     ir_block *onfalse;
1770     ir_block *ontrue_endblock = NULL;
1771     ir_block *onfalse_endblock = NULL;
1772     ir_block *merge;
1773
1774     /* We don't output any value, thus also don't care about r/lvalue */
1775     (void)out;
1776     (void)lvalue;
1777
1778     if (self->expression.outr) {
1779         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1780         return false;
1781     }
1782     self->expression.outr = (ir_value*)1;
1783
1784     /* generate the condition */
1785     func->curblock = cond;
1786     cgen = self->cond->expression.codegen;
1787     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1788         return false;
1789
1790     /* on-true path */
1791
1792     if (self->on_true) {
1793         /* create on-true block */
1794         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1795         if (!ontrue)
1796             return false;
1797
1798         /* enter the block */
1799         func->curblock = ontrue;
1800
1801         /* generate */
1802         cgen = self->on_true->expression.codegen;
1803         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1804             return false;
1805
1806         /* we now need to work from the current endpoint */
1807         ontrue_endblock = func->curblock;
1808     } else
1809         ontrue = NULL;
1810
1811     /* on-false path */
1812     if (self->on_false) {
1813         /* create on-false block */
1814         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1815         if (!onfalse)
1816             return false;
1817
1818         /* enter the block */
1819         func->curblock = onfalse;
1820
1821         /* generate */
1822         cgen = self->on_false->expression.codegen;
1823         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1824             return false;
1825
1826         /* we now need to work from the current endpoint */
1827         onfalse_endblock = func->curblock;
1828     } else
1829         onfalse = NULL;
1830
1831     /* Merge block were they all merge in to */
1832     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1833     if (!merge)
1834         return false;
1835
1836     /* add jumps ot the merge block */
1837     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1838         return false;
1839     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1840         return false;
1841
1842     /* we create the if here, that way all blocks are ordered :)
1843      */
1844     if (!ir_block_create_if(cond, condval,
1845                             (ontrue  ? ontrue  : merge),
1846                             (onfalse ? onfalse : merge)))
1847     {
1848         return false;
1849     }
1850
1851     /* Now enter the merge block */
1852     func->curblock = merge;
1853
1854     return true;
1855 }
1856
1857 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1858 {
1859     ast_expression_codegen *cgen;
1860
1861     ir_value *condval;
1862     ir_value *trueval, *falseval;
1863     ir_instr *phi;
1864
1865     ir_block *cond = func->curblock;
1866     ir_block *ontrue;
1867     ir_block *onfalse;
1868     ir_block *merge;
1869
1870     /* Ternary can never create an lvalue... */
1871     if (lvalue)
1872         return false;
1873
1874     /* In theory it shouldn't be possible to pass through a node twice, but
1875      * in case we add any kind of optimization pass for the AST itself, it
1876      * may still happen, thus we remember a created ir_value and simply return one
1877      * if it already exists.
1878      */
1879     if (self->phi_out) {
1880         *out = self->phi_out;
1881         return true;
1882     }
1883
1884     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1885
1886     /* generate the condition */
1887     func->curblock = cond;
1888     cgen = self->cond->expression.codegen;
1889     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1890         return false;
1891
1892     /* create on-true block */
1893     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1894     if (!ontrue)
1895         return false;
1896     else
1897     {
1898         /* enter the block */
1899         func->curblock = ontrue;
1900
1901         /* generate */
1902         cgen = self->on_true->expression.codegen;
1903         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1904             return false;
1905     }
1906
1907     /* create on-false block */
1908     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1909     if (!onfalse)
1910         return false;
1911     else
1912     {
1913         /* enter the block */
1914         func->curblock = onfalse;
1915
1916         /* generate */
1917         cgen = self->on_false->expression.codegen;
1918         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1919             return false;
1920     }
1921
1922     /* create merge block */
1923     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1924     if (!merge)
1925         return false;
1926     /* jump to merge block */
1927     if (!ir_block_create_jump(ontrue, merge))
1928         return false;
1929     if (!ir_block_create_jump(onfalse, merge))
1930         return false;
1931
1932     /* create if instruction */
1933     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1934         return false;
1935
1936     /* Now enter the merge block */
1937     func->curblock = merge;
1938
1939     /* Here, now, we need a PHI node
1940      * but first some sanity checking...
1941      */
1942     if (trueval->vtype != falseval->vtype) {
1943         /* error("ternary with different types on the two sides"); */
1944         return false;
1945     }
1946
1947     /* create PHI */
1948     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1949     if (!phi ||
1950         !ir_phi_add(phi, ontrue,  trueval) ||
1951         !ir_phi_add(phi, onfalse, falseval))
1952     {
1953         return false;
1954     }
1955
1956     self->phi_out = ir_phi_value(phi);
1957     *out = self->phi_out;
1958
1959     return true;
1960 }
1961
1962 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1963 {
1964     ast_expression_codegen *cgen;
1965
1966     ir_value *dummy      = NULL;
1967     ir_value *precond    = NULL;
1968     ir_value *postcond   = NULL;
1969
1970     /* Since we insert some jumps "late" so we have blocks
1971      * ordered "nicely", we need to keep track of the actual end-blocks
1972      * of expressions to add the jumps to.
1973      */
1974     ir_block *bbody      = NULL, *end_bbody      = NULL;
1975     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1976     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1977     ir_block *bincrement = NULL, *end_bincrement = NULL;
1978     ir_block *bout       = NULL, *bin            = NULL;
1979
1980     /* let's at least move the outgoing block to the end */
1981     size_t    bout_id;
1982
1983     /* 'break' and 'continue' need to be able to find the right blocks */
1984     ir_block *bcontinue     = NULL;
1985     ir_block *bbreak        = NULL;
1986
1987     ir_block *old_bcontinue = NULL;
1988     ir_block *old_bbreak    = NULL;
1989
1990     ir_block *tmpblock      = NULL;
1991
1992     (void)lvalue;
1993     (void)out;
1994
1995     if (self->expression.outr) {
1996         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1997         return false;
1998     }
1999     self->expression.outr = (ir_value*)1;
2000
2001     /* NOTE:
2002      * Should we ever need some kind of block ordering, better make this function
2003      * move blocks around than write a block ordering algorithm later... after all
2004      * the ast and ir should work together, not against each other.
2005      */
2006
2007     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2008      * anyway if for example it contains a ternary.
2009      */
2010     if (self->initexpr)
2011     {
2012         cgen = self->initexpr->expression.codegen;
2013         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2014             return false;
2015     }
2016
2017     /* Store the block from which we enter this chaos */
2018     bin = func->curblock;
2019
2020     /* The pre-loop condition needs its own block since we
2021      * need to be able to jump to the start of that expression.
2022      */
2023     if (self->precond)
2024     {
2025         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2026         if (!bprecond)
2027             return false;
2028
2029         /* the pre-loop-condition the least important place to 'continue' at */
2030         bcontinue = bprecond;
2031
2032         /* enter */
2033         func->curblock = bprecond;
2034
2035         /* generate */
2036         cgen = self->precond->expression.codegen;
2037         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2038             return false;
2039
2040         end_bprecond = func->curblock;
2041     } else {
2042         bprecond = end_bprecond = NULL;
2043     }
2044
2045     /* Now the next blocks won't be ordered nicely, but we need to
2046      * generate them this early for 'break' and 'continue'.
2047      */
2048     if (self->increment) {
2049         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2050         if (!bincrement)
2051             return false;
2052         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2053     } else {
2054         bincrement = end_bincrement = NULL;
2055     }
2056
2057     if (self->postcond) {
2058         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2059         if (!bpostcond)
2060             return false;
2061         bcontinue = bpostcond; /* postcond comes before the increment */
2062     } else {
2063         bpostcond = end_bpostcond = NULL;
2064     }
2065
2066     bout_id = func->ir_func->blocks_count;
2067     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2068     if (!bout)
2069         return false;
2070     bbreak = bout;
2071
2072     /* The loop body... */
2073     if (self->body)
2074     {
2075         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2076         if (!bbody)
2077             return false;
2078
2079         /* enter */
2080         func->curblock = bbody;
2081
2082         old_bbreak          = func->breakblock;
2083         old_bcontinue       = func->continueblock;
2084         func->breakblock    = bbreak;
2085         func->continueblock = bcontinue;
2086
2087         /* generate */
2088         cgen = self->body->expression.codegen;
2089         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2090             return false;
2091
2092         end_bbody = func->curblock;
2093         func->breakblock    = old_bbreak;
2094         func->continueblock = old_bcontinue;
2095     }
2096
2097     /* post-loop-condition */
2098     if (self->postcond)
2099     {
2100         /* enter */
2101         func->curblock = bpostcond;
2102
2103         /* generate */
2104         cgen = self->postcond->expression.codegen;
2105         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2106             return false;
2107
2108         end_bpostcond = func->curblock;
2109     }
2110
2111     /* The incrementor */
2112     if (self->increment)
2113     {
2114         /* enter */
2115         func->curblock = bincrement;
2116
2117         /* generate */
2118         cgen = self->increment->expression.codegen;
2119         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2120             return false;
2121
2122         end_bincrement = func->curblock;
2123     }
2124
2125     /* In any case now, we continue from the outgoing block */
2126     func->curblock = bout;
2127
2128     /* Now all blocks are in place */
2129     /* From 'bin' we jump to whatever comes first */
2130     if      (bprecond)   tmpblock = bprecond;
2131     else if (bbody)      tmpblock = bbody;
2132     else if (bpostcond)  tmpblock = bpostcond;
2133     else                 tmpblock = bout;
2134     if (!ir_block_create_jump(bin, tmpblock))
2135         return false;
2136
2137     /* From precond */
2138     if (bprecond)
2139     {
2140         ir_block *ontrue, *onfalse;
2141         if      (bbody)      ontrue = bbody;
2142         else if (bincrement) ontrue = bincrement;
2143         else if (bpostcond)  ontrue = bpostcond;
2144         else                 ontrue = bprecond;
2145         onfalse = bout;
2146         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2147             return false;
2148     }
2149
2150     /* from body */
2151     if (bbody)
2152     {
2153         if      (bincrement) tmpblock = bincrement;
2154         else if (bpostcond)  tmpblock = bpostcond;
2155         else if (bprecond)   tmpblock = bprecond;
2156         else                 tmpblock = bout;
2157         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2158             return false;
2159     }
2160
2161     /* from increment */
2162     if (bincrement)
2163     {
2164         if      (bpostcond)  tmpblock = bpostcond;
2165         else if (bprecond)   tmpblock = bprecond;
2166         else if (bbody)      tmpblock = bbody;
2167         else                 tmpblock = bout;
2168         if (!ir_block_create_jump(end_bincrement, tmpblock))
2169             return false;
2170     }
2171
2172     /* from postcond */
2173     if (bpostcond)
2174     {
2175         ir_block *ontrue, *onfalse;
2176         if      (bprecond)   ontrue = bprecond;
2177         else if (bbody)      ontrue = bbody;
2178         else if (bincrement) ontrue = bincrement;
2179         else                 ontrue = bpostcond;
2180         onfalse = bout;
2181         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2182             return false;
2183     }
2184
2185     /* Move 'bout' to the end */
2186     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2187         !ir_function_blocks_add(func->ir_func, bout))
2188     {
2189         ir_block_delete(bout);
2190         return false;
2191     }
2192
2193     return true;
2194 }
2195
2196 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2197 {
2198     ast_expression_codegen *cgen;
2199     ir_value_vector         params;
2200     ir_instr               *callinstr;
2201     size_t i;
2202
2203     ir_value *funval = NULL;
2204
2205     /* return values are never lvalues */
2206     if (lvalue) {
2207         asterror(ast_ctx(self), "not an l-value (function call)");
2208         return false;
2209     }
2210
2211     if (self->expression.outr) {
2212         *out = self->expression.outr;
2213         return true;
2214     }
2215
2216     cgen = self->func->expression.codegen;
2217     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2218         return false;
2219     if (!funval)
2220         return false;
2221
2222     MEM_VECTOR_INIT(&params, v);
2223
2224     /* parameters */
2225     for (i = 0; i < self->params_count; ++i)
2226     {
2227         ir_value *param;
2228         ast_expression *expr = self->params[i];
2229
2230         cgen = expr->expression.codegen;
2231         if (!(*cgen)(expr, func, false, &param))
2232             goto error;
2233         if (!param)
2234             goto error;
2235         if (!ir_value_vector_v_add(&params, param))
2236             goto error;
2237     }
2238
2239     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2240     if (!callinstr)
2241         goto error;
2242
2243     for (i = 0; i < params.v_count; ++i) {
2244         if (!ir_call_param(callinstr, params.v[i]))
2245             goto error;
2246     }
2247
2248     *out = ir_call_value(callinstr);
2249     self->expression.outr = *out;
2250
2251     MEM_VECTOR_CLEAR(&params, v);
2252     return true;
2253 error:
2254     MEM_VECTOR_CLEAR(&params, v);
2255     return false;
2256 }