]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Storing ir_v for functions
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     if (self->on_true)
242         ast_unref(self->on_true);
243     if (self->on_false)
244         ast_unref(self->on_false);
245     ast_expression_delete((ast_expression*)self);
246     mem_d(self);
247 }
248
249 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
250 {
251     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
252     /* This time NEITHER must be NULL */
253     if (!ontrue || !onfalse) {
254         mem_d(self);
255         return NULL;
256     }
257     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
258
259     self->cond     = cond;
260     self->on_true  = ontrue;
261     self->on_false = onfalse;
262     self->phi_out  = NULL;
263
264     return self;
265 }
266
267 void ast_ternary_delete(ast_ternary *self)
268 {
269     ast_unref(self->cond);
270     ast_unref(self->on_true);
271     ast_unref(self->on_false);
272     ast_expression_delete((ast_expression*)self);
273     mem_d(self);
274 }
275
276 ast_loop* ast_loop_new(lex_ctx ctx,
277                        ast_expression *initexpr,
278                        ast_expression *precond,
279                        ast_expression *postcond,
280                        ast_expression *increment,
281                        ast_expression *body)
282 {
283     ast_instantiate(ast_loop, ctx, ast_loop_delete);
284     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
285
286     self->initexpr  = initexpr;
287     self->precond   = precond;
288     self->postcond  = postcond;
289     self->increment = increment;
290     self->body      = body;
291
292     return self;
293 }
294
295 void ast_loop_delete(ast_loop *self)
296 {
297     if (self->initexpr)
298         ast_unref(self->initexpr);
299     if (self->precond)
300         ast_unref(self->precond);
301     if (self->postcond)
302         ast_unref(self->postcond);
303     if (self->increment)
304         ast_unref(self->increment);
305     if (self->body)
306         ast_unref(self->body);
307     ast_expression_delete((ast_expression*)self);
308     mem_d(self);
309 }
310
311 ast_call* ast_call_new(lex_ctx ctx,
312                        ast_expression *funcexpr)
313 {
314     ast_instantiate(ast_call, ctx, ast_call_delete);
315     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
316
317     MEM_VECTOR_INIT(self, params);
318
319     self->func = funcexpr;
320
321     return self;
322 }
323 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
324
325 void ast_call_delete(ast_call *self)
326 {
327     size_t i;
328     for (i = 0; i < self->params_count; ++i)
329         ast_unref(self->params[i]);
330     MEM_VECTOR_CLEAR(self, params);
331
332     if (self->func)
333         ast_unref(self->func);
334
335     ast_expression_delete((ast_expression*)self);
336     mem_d(self);
337 }
338
339 ast_store* ast_store_new(lex_ctx ctx, int op,
340                          ast_value *dest, ast_expression *source)
341 {
342     ast_instantiate(ast_store, ctx, ast_store_delete);
343     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
344
345     self->op = op;
346     self->dest = dest;
347     self->source = source;
348
349     return self;
350 }
351
352 void ast_store_delete(ast_store *self)
353 {
354     ast_unref(self->dest);
355     ast_unref(self->source);
356     ast_expression_delete((ast_expression*)self);
357     mem_d(self);
358 }
359
360 ast_block* ast_block_new(lex_ctx ctx)
361 {
362     ast_instantiate(ast_block, ctx, ast_block_delete);
363     ast_expression_init((ast_expression*)self,
364                         (ast_expression_codegen*)&ast_block_codegen);
365
366     MEM_VECTOR_INIT(self, locals);
367     MEM_VECTOR_INIT(self, exprs);
368
369     return self;
370 }
371 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
372 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
373
374 void ast_block_delete(ast_block *self)
375 {
376     size_t i;
377     for (i = 0; i < self->exprs_count; ++i)
378         ast_unref(self->exprs[i]);
379     MEM_VECTOR_CLEAR(self, exprs);
380     for (i = 0; i < self->locals_count; ++i)
381         ast_delete(self->locals[i]);
382     MEM_VECTOR_CLEAR(self, locals);
383     ast_expression_delete((ast_expression*)self);
384     mem_d(self);
385 }
386
387 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
388 {
389     ast_instantiate(ast_function, ctx, ast_function_delete);
390
391     if (!vtype ||
392         vtype->isconst ||
393         vtype->expression.vtype != TYPE_FUNCTION)
394     {
395         mem_d(self);
396         return NULL;
397     }
398
399     self->vtype = vtype;
400     self->name = name ? util_strdup(name) : NULL;
401     MEM_VECTOR_INIT(self, blocks);
402     MEM_VECTOR_INIT(self, params);
403
404     self->labelcount = 0;
405     self->builtin = 0;
406
407     self->ir_func = NULL;
408     self->curblock = NULL;
409
410     self->breakblock    = NULL;
411     self->continueblock = NULL;
412
413     vtype->isconst = true;
414     vtype->constval.vfunc = self;
415
416     return self;
417 }
418
419 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
420 MEM_VEC_FUNCTIONS(ast_function, ast_value*, params)
421
422 void ast_function_delete(ast_function *self)
423 {
424     size_t i;
425     if (self->name)
426         mem_d((void*)self->name);
427     if (self->vtype) {
428         /* ast_value_delete(self->vtype); */
429         self->vtype->isconst = false;
430         self->vtype->constval.vfunc = NULL;
431         /* We use unref - if it was stored in a global table it is supposed
432          * to be deleted from *there*
433          */
434         ast_unref(self->vtype);
435     }
436     for (i = 0; i < self->blocks_count; ++i)
437         ast_delete(self->blocks[i]);
438     MEM_VECTOR_CLEAR(self, blocks);
439     for (i = 0; i < self->params_count; ++i)
440         ast_delete(self->params[i]);
441     MEM_VECTOR_CLEAR(self, params);
442     mem_d(self);
443 }
444
445 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
446 {
447     unsigned int base = 10;
448 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
449 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
450     if (size < 1)
451         return;
452     checknul();
453     if (!num)
454         addch('0');
455     else {
456         while (num)
457         {
458             int digit = num % base;
459             num /= base;
460             addch('0' + digit);
461         }
462     }
463
464     *buf = 0;
465 #undef addch
466 #undef checknul
467 }
468
469 const char* ast_function_label(ast_function *self, const char *prefix)
470 {
471     size_t id = (self->labelcount++);
472     size_t len = strlen(prefix);
473     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
474     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
475     return self->labelbuf;
476 }
477
478 /*********************************************************************/
479 /* AST codegen part
480  * by convention you must never pass NULL to the 'ir_value **out'
481  * parameter. If you really don't care about the output, pass a dummy.
482  * But I can't imagine a pituation where the output is truly unnecessary.
483  */
484
485 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
486 {
487     /* NOTE: This is the codegen for a variable used in an expression.
488      * It is not the codegen to generate the value. For this purpose,
489      * ast_local_codegen and ast_global_codegen are to be used before this
490      * is executed. ast_function_codegen should take care of its locals,
491      * and the ast-user should take care of ast_global_codegen to be used
492      * on all the globals.
493      */
494     if (!self->ir_v) {
495         printf("ast_value used before generated (%s)\n", self->name);
496         return false;
497     }
498     *out = self->ir_v;
499     return true;
500 }
501
502 bool ast_global_codegen(ast_value *self, ir_builder *ir)
503 {
504     ir_value *v = NULL;
505     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
506     {
507         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
508         if (!func)
509             return false;
510
511         self->constval.vfunc->ir_func = func;
512         self->ir_v = func->value;
513         /* The function is filled later on ast_function_codegen... */
514         return true;
515     }
516
517     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
518     if (!v)
519         return false;
520
521     if (self->isconst) {
522         switch (self->expression.vtype)
523         {
524             case TYPE_FLOAT:
525                 if (!ir_value_set_float(v, self->constval.vfloat))
526                     goto error;
527                 break;
528             case TYPE_VECTOR:
529                 if (!ir_value_set_vector(v, self->constval.vvec))
530                     goto error;
531                 break;
532             case TYPE_STRING:
533                 if (!ir_value_set_string(v, self->constval.vstring))
534                     goto error;
535                 break;
536             case TYPE_FUNCTION:
537                 printf("global of type function not properly generated\n");
538                 goto error;
539                 /* Cannot generate an IR value for a function,
540                  * need a pointer pointing to a function rather.
541                  */
542             default:
543                 printf("TODO: global constant type %i\n", self->expression.vtype);
544                 break;
545         }
546     }
547
548     /* link us to the ir_value */
549     self->ir_v = v;
550     return true;
551
552 error: /* clean up */
553     ir_value_delete(v);
554     return false;
555 }
556
557 bool ast_local_codegen(ast_value *self, ir_function *func)
558 {
559     ir_value *v = NULL;
560     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
561     {
562         /* Do we allow local functions? I think not...
563          * this is NOT a function pointer atm.
564          */
565         return false;
566     }
567
568     v = ir_function_create_local(func, self->name, self->expression.vtype);
569     if (!v)
570         return false;
571
572     /* A constant local... hmmm...
573      * I suppose the IR will have to deal with this
574      */
575     if (self->isconst) {
576         switch (self->expression.vtype)
577         {
578             case TYPE_FLOAT:
579                 if (!ir_value_set_float(v, self->constval.vfloat))
580                     goto error;
581                 break;
582             case TYPE_VECTOR:
583                 if (!ir_value_set_vector(v, self->constval.vvec))
584                     goto error;
585                 break;
586             case TYPE_STRING:
587                 if (!ir_value_set_string(v, self->constval.vstring))
588                     goto error;
589                 break;
590             default:
591                 printf("TODO: global constant type %i\n", self->expression.vtype);
592                 break;
593         }
594     }
595
596     /* link us to the ir_value */
597     self->ir_v = v;
598     return true;
599
600 error: /* clean up */
601     ir_value_delete(v);
602     return false;
603 }
604
605 bool ast_function_codegen(ast_function *self, ir_builder *ir)
606 {
607     ir_function *irf;
608     ir_value    *dummy;
609     size_t    i;
610
611     irf = self->ir_func;
612     if (!irf) {
613         printf("ast_function's related ast_value was not generated yet\n");
614         return false;
615     }
616
617     for (i = 0; i < self->params_count; ++i)
618     {
619         if (!ir_function_params_add(irf, self->params[i]->expression.vtype))
620             return false;
621     }
622
623     if (self->builtin) {
624         irf->builtin = self->builtin;
625         return true;
626     }
627
628     self->curblock = ir_function_create_block(irf, "entry");
629     if (!self->curblock)
630         return false;
631
632     for (i = 0; i < self->blocks_count; ++i) {
633         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
634         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
635             return false;
636     }
637
638     /* TODO: check return types */
639     if (!self->curblock->is_return)
640     {
641         if (!self->vtype->expression.next ||
642             self->vtype->expression.next->expression.vtype == TYPE_VOID)
643             return ir_block_create_return(self->curblock, NULL);
644         else
645         {
646             /* error("missing return"); */
647             return false;
648         }
649     }
650     return true;
651 }
652
653 /* Note, you will not see ast_block_codegen generate ir_blocks.
654  * To the AST and the IR, blocks are 2 different things.
655  * In the AST it represents a block of code, usually enclosed in
656  * curly braces {...}.
657  * While in the IR it represents a block in terms of control-flow.
658  */
659 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
660 {
661     size_t i;
662
663     /* We don't use this
664      * Note: an ast-representation using the comma-operator
665      * of the form: (a, b, c) = x should not assign to c...
666      */
667     (void)lvalue;
668
669     /* output is NULL at first, we'll have each expression
670      * assign to out output, thus, a comma-operator represention
671      * using an ast_block will return the last generated value,
672      * so: (b, c) + a  executed both b and c, and returns c,
673      * which is then added to a.
674      */
675     *out = NULL;
676
677     /* generate locals */
678     for (i = 0; i < self->locals_count; ++i)
679     {
680         if (!ast_local_codegen(self->locals[i], func->ir_func))
681             return false;
682     }
683
684     for (i = 0; i < self->exprs_count; ++i)
685     {
686         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
687         if (!(*gen)(self->exprs[i], func, false, out))
688             return false;
689     }
690
691     return true;
692 }
693
694 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
695 {
696     ast_expression_codegen *cgen;
697     ir_value *left, *right;
698
699     cgen = self->dest->expression.codegen;
700     /* lvalue! */
701     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
702         return false;
703
704     cgen = self->source->expression.codegen;
705     /* rvalue! */
706     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
707         return false;
708
709     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
710         return false;
711
712     /* Theoretically, an assinment returns its left side as an
713      * lvalue, if we don't need an lvalue though, we return
714      * the right side as an rvalue, otherwise we have to
715      * somehow know whether or not we need to dereference the pointer
716      * on the left side - that is: OP_LOAD if it was an address.
717      * Also: in original QC we cannot OP_LOADP *anyway*.
718      */
719     *out = (lvalue ? left : right);
720
721     return true;
722 }
723
724 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
725 {
726     ast_expression_codegen *cgen;
727     ir_value *left, *right;
728
729     /* In the context of a binary operation, we can disregard
730      * the lvalue flag.
731      */
732      (void)lvalue;
733
734     cgen = self->left->expression.codegen;
735     /* lvalue! */
736     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
737         return false;
738
739     cgen = self->right->expression.codegen;
740     /* rvalue! */
741     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
742         return false;
743
744     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
745                                  self->op, left, right);
746     if (!*out)
747         return false;
748
749     return true;
750 }
751
752 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
753 {
754     ast_expression_codegen *cgen;
755     ir_value *ent, *field;
756
757     /* This function needs to take the 'lvalue' flag into account!
758      * As lvalue we provide a field-pointer, as rvalue we provide the
759      * value in a temp.
760      */
761
762     cgen = self->entity->expression.codegen;
763     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
764         return false;
765
766     cgen = self->field->expression.codegen;
767     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
768         return false;
769
770     if (lvalue) {
771         /* address! */
772         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
773                                             ent, field);
774     } else {
775         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
776                                              ent, field, self->expression.vtype);
777     }
778     if (!*out)
779         return false;
780
781     /* Hm that should be it... */
782     return true;
783 }
784
785 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
786 {
787     ast_expression_codegen *cgen;
788
789     ir_value *condval;
790     ir_value *dummy;
791
792     ir_block *cond = func->curblock;
793     ir_block *ontrue;
794     ir_block *onfalse;
795     ir_block *merge;
796
797     /* We don't output any value, thus also don't care about r/lvalue */
798     (void)out;
799     (void)lvalue;
800
801     /* generate the condition */
802     func->curblock = cond;
803     cgen = self->cond->expression.codegen;
804     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
805         return false;
806
807     /* on-true path */
808
809     if (self->on_true) {
810         /* create on-true block */
811         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
812         if (!ontrue)
813             return false;
814
815         /* enter the block */
816         func->curblock = ontrue;
817
818         /* generate */
819         cgen = self->on_true->expression.codegen;
820         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
821             return false;
822     } else
823         ontrue = NULL;
824
825     /* on-false path */
826     if (self->on_false) {
827         /* create on-false block */
828         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
829         if (!onfalse)
830             return false;
831
832         /* enter the block */
833         func->curblock = onfalse;
834
835         /* generate */
836         cgen = self->on_false->expression.codegen;
837         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
838             return false;
839     } else
840         onfalse = NULL;
841
842     /* Merge block were they all merge in to */
843     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
844     if (!merge)
845         return false;
846
847     /* add jumps ot the merge block */
848     if (ontrue && !ir_block_create_jump(ontrue, merge))
849         return false;
850     if (onfalse && !ir_block_create_jump(onfalse, merge))
851         return false;
852
853     /* we create the if here, that way all blocks are ordered :)
854      */
855     if (!ir_block_create_if(cond, condval,
856                             (ontrue  ? ontrue  : merge),
857                             (onfalse ? onfalse : merge)))
858     {
859         return false;
860     }
861
862     /* Now enter the merge block */
863     func->curblock = merge;
864
865     return true;
866 }
867
868 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
869 {
870     ast_expression_codegen *cgen;
871
872     ir_value *condval;
873     ir_value *trueval, *falseval;
874     ir_instr *phi;
875
876     ir_block *cond = func->curblock;
877     ir_block *ontrue;
878     ir_block *onfalse;
879     ir_block *merge;
880
881     /* In theory it shouldn't be possible to pass through a node twice, but
882      * in case we add any kind of optimization pass for the AST itself, it
883      * may still happen, thus we remember a created ir_value and simply return one
884      * if it already exists.
885      */
886     if (self->phi_out) {
887         *out = self->phi_out;
888         return true;
889     }
890
891     /* Ternary can never create an lvalue... */
892     if (lvalue)
893         return false;
894
895     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
896
897     /* generate the condition */
898     func->curblock = cond;
899     cgen = self->cond->expression.codegen;
900     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
901         return false;
902
903     /* create on-true block */
904     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
905     if (!ontrue)
906         return false;
907     else
908     {
909         /* enter the block */
910         func->curblock = ontrue;
911
912         /* generate */
913         cgen = self->on_true->expression.codegen;
914         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
915             return false;
916     }
917
918     /* create on-false block */
919     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
920     if (!onfalse)
921         return false;
922     else
923     {
924         /* enter the block */
925         func->curblock = onfalse;
926
927         /* generate */
928         cgen = self->on_false->expression.codegen;
929         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
930             return false;
931     }
932
933     /* create merge block */
934     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
935     if (!merge)
936         return false;
937     /* jump to merge block */
938     if (!ir_block_create_jump(ontrue, merge))
939         return false;
940     if (!ir_block_create_jump(onfalse, merge))
941         return false;
942
943     /* create if instruction */
944     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
945         return false;
946
947     /* Now enter the merge block */
948     func->curblock = merge;
949
950     /* Here, now, we need a PHI node
951      * but first some sanity checking...
952      */
953     if (trueval->vtype != falseval->vtype) {
954         /* error("ternary with different types on the two sides"); */
955         return false;
956     }
957
958     /* create PHI */
959     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
960     if (!phi ||
961         !ir_phi_add(phi, ontrue,  trueval) ||
962         !ir_phi_add(phi, onfalse, falseval))
963     {
964         return false;
965     }
966
967     self->phi_out = ir_phi_value(phi);
968     *out = self->phi_out;
969
970     return true;
971 }
972
973 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
974 {
975     ast_expression_codegen *cgen;
976
977     ir_value *dummy      = NULL;
978     ir_value *precond    = NULL;
979     ir_value *postcond   = NULL;
980
981     /* Since we insert some jumps "late" so we have blocks
982      * ordered "nicely", we need to keep track of the actual end-blocks
983      * of expressions to add the jumps to.
984      */
985     ir_block *bbody      = NULL, *end_bbody      = NULL;
986     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
987     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
988     ir_block *bincrement = NULL, *end_bincrement = NULL;
989     ir_block *bout       = NULL, *bin            = NULL;
990
991     /* let's at least move the outgoing block to the end */
992     size_t    bout_id;
993
994     /* 'break' and 'continue' need to be able to find the right blocks */
995     ir_block *bcontinue     = NULL;
996     ir_block *bbreak        = NULL;
997
998     ir_block *old_bcontinue = NULL;
999     ir_block *old_bbreak    = NULL;
1000
1001     ir_block *tmpblock      = NULL;
1002
1003     (void)lvalue;
1004     (void)out;
1005
1006     /* NOTE:
1007      * Should we ever need some kind of block ordering, better make this function
1008      * move blocks around than write a block ordering algorithm later... after all
1009      * the ast and ir should work together, not against each other.
1010      */
1011
1012     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1013      * anyway if for example it contains a ternary.
1014      */
1015     if (self->initexpr)
1016     {
1017         cgen = self->initexpr->expression.codegen;
1018         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1019             return false;
1020     }
1021
1022     /* Store the block from which we enter this chaos */
1023     bin = func->curblock;
1024
1025     /* The pre-loop condition needs its own block since we
1026      * need to be able to jump to the start of that expression.
1027      */
1028     if (self->precond)
1029     {
1030         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1031         if (!bprecond)
1032             return false;
1033
1034         /* the pre-loop-condition the least important place to 'continue' at */
1035         bcontinue = bprecond;
1036
1037         /* enter */
1038         func->curblock = bprecond;
1039
1040         /* generate */
1041         cgen = self->precond->expression.codegen;
1042         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1043             return false;
1044
1045         end_bprecond = func->curblock;
1046     } else {
1047         bprecond = end_bprecond = NULL;
1048     }
1049
1050     /* Now the next blocks won't be ordered nicely, but we need to
1051      * generate them this early for 'break' and 'continue'.
1052      */
1053     if (self->increment) {
1054         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1055         if (!bincrement)
1056             return false;
1057         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1058     } else {
1059         bincrement = end_bincrement = NULL;
1060     }
1061
1062     if (self->postcond) {
1063         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1064         if (!bpostcond)
1065             return false;
1066         bcontinue = bpostcond; /* postcond comes before the increment */
1067     } else {
1068         bpostcond = end_bpostcond = NULL;
1069     }
1070
1071     bout_id = func->ir_func->blocks_count;
1072     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1073     if (!bout)
1074         return false;
1075     bbreak = bout;
1076
1077     /* The loop body... */
1078     if (self->body)
1079     {
1080         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1081         if (!bbody)
1082             return false;
1083
1084         /* enter */
1085         func->curblock = bbody;
1086
1087         old_bbreak          = func->breakblock;
1088         old_bcontinue       = func->continueblock;
1089         func->breakblock    = bbreak;
1090         func->continueblock = bcontinue;
1091
1092         /* generate */
1093         cgen = self->body->expression.codegen;
1094         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1095             return false;
1096
1097         end_bbody = func->curblock;
1098         func->breakblock    = old_bbreak;
1099         func->continueblock = old_bcontinue;
1100     }
1101
1102     /* post-loop-condition */
1103     if (self->postcond)
1104     {
1105         /* enter */
1106         func->curblock = bpostcond;
1107
1108         /* generate */
1109         cgen = self->postcond->expression.codegen;
1110         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1111             return false;
1112
1113         end_bpostcond = func->curblock;
1114     }
1115
1116     /* The incrementor */
1117     if (self->increment)
1118     {
1119         /* enter */
1120         func->curblock = bincrement;
1121
1122         /* generate */
1123         cgen = self->increment->expression.codegen;
1124         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1125             return false;
1126
1127         end_bincrement = func->curblock;
1128     }
1129
1130     /* In any case now, we continue from the outgoing block */
1131     func->curblock = bout;
1132
1133     /* Now all blocks are in place */
1134     /* From 'bin' we jump to whatever comes first */
1135     if      (bprecond)   tmpblock = bprecond;
1136     else if (bbody)      tmpblock = bbody;
1137     else if (bpostcond)  tmpblock = bpostcond;
1138     else                 tmpblock = bout;
1139     if (!ir_block_create_jump(bin, tmpblock))
1140         return false;
1141
1142     /* From precond */
1143     if (bprecond)
1144     {
1145         ir_block *ontrue, *onfalse;
1146         if      (bbody)      ontrue = bbody;
1147         else if (bincrement) ontrue = bincrement;
1148         else if (bpostcond)  ontrue = bpostcond;
1149         else                 ontrue = bprecond;
1150         onfalse = bout;
1151         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1152             return false;
1153     }
1154
1155     /* from body */
1156     if (bbody)
1157     {
1158         if      (bincrement) tmpblock = bincrement;
1159         else if (bpostcond)  tmpblock = bpostcond;
1160         else if (bprecond)   tmpblock = bprecond;
1161         else                 tmpblock = bout;
1162         if (!ir_block_create_jump(end_bbody, tmpblock))
1163             return false;
1164     }
1165
1166     /* from increment */
1167     if (bincrement)
1168     {
1169         if      (bpostcond)  tmpblock = bpostcond;
1170         else if (bprecond)   tmpblock = bprecond;
1171         else if (bbody)      tmpblock = bbody;
1172         else                 tmpblock = bout;
1173         if (!ir_block_create_jump(end_bincrement, tmpblock))
1174             return false;
1175     }
1176
1177     /* from postcond */
1178     if (bpostcond)
1179     {
1180         ir_block *ontrue, *onfalse;
1181         if      (bprecond)   ontrue = bprecond;
1182         else if (bbody)      ontrue = bbody;
1183         else if (bincrement) ontrue = bincrement;
1184         else                 ontrue = bpostcond;
1185         onfalse = bout;
1186         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1187             return false;
1188     }
1189
1190     /* Move 'bout' to the end */
1191     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1192         !ir_function_blocks_add(func->ir_func, bout))
1193     {
1194         ir_block_delete(bout);
1195         return false;
1196     }
1197
1198     return true;
1199 }
1200
1201 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1202 {
1203     ast_expression_codegen *cgen;
1204     ir_value_vector         params;
1205     ir_instr               *callinstr;
1206     size_t i;
1207
1208     ir_value *funval = NULL;
1209
1210     /* return values are never rvalues */
1211     (void)lvalue;
1212
1213     cgen = self->func->expression.codegen;
1214     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1215         return false;
1216     if (!funval)
1217         return false;
1218
1219     MEM_VECTOR_INIT(&params, v);
1220
1221     /* parameters */
1222     for (i = 0; i < self->params_count; ++i)
1223     {
1224         ir_value *param;
1225         ast_expression *expr = self->params[i];
1226
1227         cgen = expr->expression.codegen;
1228         if (!(*cgen)(expr, func, false, &param))
1229             goto error;
1230         if (!param)
1231             goto error;
1232         if (!ir_value_vector_v_add(&params, param))
1233             goto error;
1234     }
1235
1236     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1237     if (!callinstr)
1238         goto error;
1239
1240     for (i = 0; i < params.v_count; ++i) {
1241         if (!ir_call_param(callinstr, params.v[i]))
1242             goto error;
1243     }
1244
1245     *out = ir_call_value(callinstr);
1246
1247     return true;
1248 error:
1249     MEM_VECTOR_CLEAR(&params, v);
1250     return false;
1251 }