]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_store to take ast_expression on its left, rather than ast_value. Assigning to...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60     MEM_VECTOR_INIT(&self->expression, params);
61 }
62
63 static void ast_expression_delete(ast_expression *self)
64 {
65     size_t i;
66     if (self->expression.next)
67         ast_delete(self->expression.next);
68     for (i = 0; i < self->expression.params_count; ++i) {
69         ast_delete(self->expression.params[i]);
70     }
71     MEM_VECTOR_CLEAR(&self->expression, params);
72 }
73
74 static void ast_expression_delete_full(ast_expression *self)
75 {
76     ast_expression_delete(self);
77     mem_d(self);
78 }
79
80 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
81
82 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
83 static ast_value* ast_value_copy(const ast_value *self)
84 {
85     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
86     if (self->expression.next) {
87         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
88         if (!cp->expression.next) {
89             ast_value_delete(cp);
90             return NULL;
91         }
92     }
93     return cp;
94 }
95
96 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
97 {
98     size_t i;
99     const ast_expression_common *fromex;
100     ast_expression_common *selfex;
101
102     if (!ex)
103         return NULL;
104     else
105     {
106         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
107
108         fromex   = &ex->expression;
109         selfex = &self->expression;
110
111         /* This may never be codegen()d */
112         selfex->codegen = NULL;
113
114         selfex->vtype = fromex->vtype;
115         if (fromex->next)
116         {
117             selfex->next = ast_type_copy(ctx, fromex->next);
118             if (!selfex->next) {
119                 ast_expression_delete_full(self);
120                 return NULL;
121             }
122         }
123         else
124             selfex->next = NULL;
125
126         for (i = 0; i < fromex->params_count; ++i) {
127             ast_value *v = ast_value_copy(fromex->params[i]);
128             if (!v || !ast_expression_common_params_add(selfex, v)) {
129                 ast_expression_delete_full(self);
130                 return NULL;
131             }
132         }
133
134         return self;
135     }
136 }
137
138 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
139 {
140     ast_instantiate(ast_value, ctx, ast_value_delete);
141     ast_expression_init((ast_expression*)self,
142                         (ast_expression_codegen*)&ast_value_codegen);
143     self->expression.node.keep = true; /* keep */
144
145     self->name = name ? util_strdup(name) : NULL;
146     self->expression.vtype = t;
147     self->expression.next  = NULL;
148     self->isconst = false;
149     memset(&self->constval, 0, sizeof(self->constval));
150
151     self->ir_v    = NULL;
152
153     return self;
154 }
155
156 void ast_value_delete(ast_value* self)
157 {
158     if (self->name)
159         mem_d((void*)self->name);
160     if (self->isconst) {
161         switch (self->expression.vtype)
162         {
163         case TYPE_STRING:
164             mem_d((void*)self->constval.vstring);
165             break;
166         case TYPE_FUNCTION:
167             /* unlink us from the function node */
168             self->constval.vfunc->vtype = NULL;
169             break;
170         /* NOTE: delete function? currently collected in
171          * the parser structure
172          */
173         default:
174             break;
175         }
176     }
177     ast_expression_delete((ast_expression*)self);
178     mem_d(self);
179 }
180
181 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
182 {
183     return ast_expression_common_params_add(&self->expression, p);
184 }
185
186 bool ast_value_set_name(ast_value *self, const char *name)
187 {
188     if (self->name)
189         mem_d((void*)self->name);
190     self->name = util_strdup(name);
191     return !!self->name;
192 }
193
194 ast_binary* ast_binary_new(lex_ctx ctx, int op,
195                            ast_expression* left, ast_expression* right)
196 {
197     ast_instantiate(ast_binary, ctx, ast_binary_delete);
198     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
199
200     self->op = op;
201     self->left = left;
202     self->right = right;
203
204     return self;
205 }
206
207 void ast_binary_delete(ast_binary *self)
208 {
209     ast_unref(self->left);
210     ast_unref(self->right);
211     ast_expression_delete((ast_expression*)self);
212     mem_d(self);
213 }
214
215 ast_unary* ast_unary_new(lex_ctx ctx, int op,
216                          ast_expression *expr)
217 {
218     ast_instantiate(ast_unary, ctx, ast_unary_delete);
219     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
220
221     self->op = op;
222     self->operand = expr;
223
224     return self;
225 }
226
227 void ast_unary_delete(ast_unary *self)
228 {
229     ast_unref(self->operand);
230     ast_expression_delete((ast_expression*)self);
231     mem_d(self);
232 }
233
234 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
235 {
236     ast_instantiate(ast_return, ctx, ast_return_delete);
237     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
238
239     self->operand = expr;
240
241     return self;
242 }
243
244 void ast_return_delete(ast_return *self)
245 {
246     ast_unref(self->operand);
247     ast_expression_delete((ast_expression*)self);
248     mem_d(self);
249 }
250
251 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
252 {
253     const ast_expression *outtype;
254
255     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
256
257     if (field->expression.vtype != TYPE_FIELD) {
258         mem_d(self);
259         return NULL;
260     }
261
262     outtype = field->expression.next;
263     if (!outtype) {
264         mem_d(self);
265         /* Error: field has no type... */
266         return NULL;
267     }
268
269     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
270
271     self->expression.vtype = outtype->expression.vtype;
272     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
273
274     self->entity = entity;
275     self->field  = field;
276
277     return self;
278 }
279
280 void ast_entfield_delete(ast_entfield *self)
281 {
282     ast_unref(self->entity);
283     ast_unref(self->field);
284     ast_expression_delete((ast_expression*)self);
285     mem_d(self);
286 }
287
288 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
289 {
290     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
291     if (!ontrue && !onfalse) {
292         /* because it is invalid */
293         mem_d(self);
294         return NULL;
295     }
296     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
297
298     self->cond     = cond;
299     self->on_true  = ontrue;
300     self->on_false = onfalse;
301
302     return self;
303 }
304
305 void ast_ifthen_delete(ast_ifthen *self)
306 {
307     ast_unref(self->cond);
308     if (self->on_true)
309         ast_unref(self->on_true);
310     if (self->on_false)
311         ast_unref(self->on_false);
312     ast_expression_delete((ast_expression*)self);
313     mem_d(self);
314 }
315
316 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
317 {
318     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
319     /* This time NEITHER must be NULL */
320     if (!ontrue || !onfalse) {
321         mem_d(self);
322         return NULL;
323     }
324     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
325
326     self->cond     = cond;
327     self->on_true  = ontrue;
328     self->on_false = onfalse;
329     self->phi_out  = NULL;
330
331     return self;
332 }
333
334 void ast_ternary_delete(ast_ternary *self)
335 {
336     ast_unref(self->cond);
337     ast_unref(self->on_true);
338     ast_unref(self->on_false);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_loop* ast_loop_new(lex_ctx ctx,
344                        ast_expression *initexpr,
345                        ast_expression *precond,
346                        ast_expression *postcond,
347                        ast_expression *increment,
348                        ast_expression *body)
349 {
350     ast_instantiate(ast_loop, ctx, ast_loop_delete);
351     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
352
353     self->initexpr  = initexpr;
354     self->precond   = precond;
355     self->postcond  = postcond;
356     self->increment = increment;
357     self->body      = body;
358
359     return self;
360 }
361
362 void ast_loop_delete(ast_loop *self)
363 {
364     if (self->initexpr)
365         ast_unref(self->initexpr);
366     if (self->precond)
367         ast_unref(self->precond);
368     if (self->postcond)
369         ast_unref(self->postcond);
370     if (self->increment)
371         ast_unref(self->increment);
372     if (self->body)
373         ast_unref(self->body);
374     ast_expression_delete((ast_expression*)self);
375     mem_d(self);
376 }
377
378 ast_call* ast_call_new(lex_ctx ctx,
379                        ast_expression *funcexpr)
380 {
381     ast_instantiate(ast_call, ctx, ast_call_delete);
382     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
383
384     MEM_VECTOR_INIT(self, params);
385
386     self->func = funcexpr;
387
388     return self;
389 }
390 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
391
392 void ast_call_delete(ast_call *self)
393 {
394     size_t i;
395     for (i = 0; i < self->params_count; ++i)
396         ast_unref(self->params[i]);
397     MEM_VECTOR_CLEAR(self, params);
398
399     if (self->func)
400         ast_unref(self->func);
401
402     ast_expression_delete((ast_expression*)self);
403     mem_d(self);
404 }
405
406 ast_store* ast_store_new(lex_ctx ctx, int op,
407                          ast_expression *dest, ast_expression *source)
408 {
409     ast_instantiate(ast_store, ctx, ast_store_delete);
410     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
411
412     self->op = op;
413     self->dest = dest;
414     self->source = source;
415
416     return self;
417 }
418
419 void ast_store_delete(ast_store *self)
420 {
421     ast_unref(self->dest);
422     ast_unref(self->source);
423     ast_expression_delete((ast_expression*)self);
424     mem_d(self);
425 }
426
427 ast_block* ast_block_new(lex_ctx ctx)
428 {
429     ast_instantiate(ast_block, ctx, ast_block_delete);
430     ast_expression_init((ast_expression*)self,
431                         (ast_expression_codegen*)&ast_block_codegen);
432
433     MEM_VECTOR_INIT(self, locals);
434     MEM_VECTOR_INIT(self, exprs);
435
436     return self;
437 }
438 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
439 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
440
441 void ast_block_delete(ast_block *self)
442 {
443     size_t i;
444     for (i = 0; i < self->exprs_count; ++i)
445         ast_unref(self->exprs[i]);
446     MEM_VECTOR_CLEAR(self, exprs);
447     for (i = 0; i < self->locals_count; ++i)
448         ast_delete(self->locals[i]);
449     MEM_VECTOR_CLEAR(self, locals);
450     ast_expression_delete((ast_expression*)self);
451     mem_d(self);
452 }
453
454 bool ast_block_set_type(ast_block *self, ast_expression *from)
455 {
456     if (self->expression.next)
457         ast_delete(self->expression.next);
458     self->expression.vtype = from->expression.vtype;
459     if (from->expression.next) {
460         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
461         if (!self->expression.next)
462             return false;
463     }
464     return true;
465 }
466
467 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
468 {
469     ast_instantiate(ast_function, ctx, ast_function_delete);
470
471     if (!vtype ||
472         vtype->isconst ||
473         vtype->expression.vtype != TYPE_FUNCTION)
474     {
475         mem_d(self);
476         return NULL;
477     }
478
479     self->vtype = vtype;
480     self->name = name ? util_strdup(name) : NULL;
481     MEM_VECTOR_INIT(self, blocks);
482
483     self->labelcount = 0;
484     self->builtin = 0;
485
486     self->ir_func = NULL;
487     self->curblock = NULL;
488
489     self->breakblock    = NULL;
490     self->continueblock = NULL;
491
492     vtype->isconst = true;
493     vtype->constval.vfunc = self;
494
495     return self;
496 }
497
498 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
499
500 void ast_function_delete(ast_function *self)
501 {
502     size_t i;
503     if (self->name)
504         mem_d((void*)self->name);
505     if (self->vtype) {
506         /* ast_value_delete(self->vtype); */
507         self->vtype->isconst = false;
508         self->vtype->constval.vfunc = NULL;
509         /* We use unref - if it was stored in a global table it is supposed
510          * to be deleted from *there*
511          */
512         ast_unref(self->vtype);
513     }
514     for (i = 0; i < self->blocks_count; ++i)
515         ast_delete(self->blocks[i]);
516     MEM_VECTOR_CLEAR(self, blocks);
517     mem_d(self);
518 }
519
520 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
521 {
522     unsigned int base = 10;
523 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
524 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
525     if (size < 1)
526         return;
527     checknul();
528     if (!num)
529         addch('0');
530     else {
531         while (num)
532         {
533             int digit = num % base;
534             num /= base;
535             addch('0' + digit);
536         }
537     }
538
539     *buf = 0;
540 #undef addch
541 #undef checknul
542 }
543
544 const char* ast_function_label(ast_function *self, const char *prefix)
545 {
546     size_t id = (self->labelcount++);
547     size_t len = strlen(prefix);
548     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
549     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
550     return self->labelbuf;
551 }
552
553 /*********************************************************************/
554 /* AST codegen part
555  * by convention you must never pass NULL to the 'ir_value **out'
556  * parameter. If you really don't care about the output, pass a dummy.
557  * But I can't imagine a pituation where the output is truly unnecessary.
558  */
559
560 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
561 {
562     /* NOTE: This is the codegen for a variable used in an expression.
563      * It is not the codegen to generate the value. For this purpose,
564      * ast_local_codegen and ast_global_codegen are to be used before this
565      * is executed. ast_function_codegen should take care of its locals,
566      * and the ast-user should take care of ast_global_codegen to be used
567      * on all the globals.
568      */
569     if (!self->ir_v) {
570         printf("ast_value used before generated (%s)\n", self->name);
571         return false;
572     }
573     *out = self->ir_v;
574     return true;
575 }
576
577 bool ast_global_codegen(ast_value *self, ir_builder *ir)
578 {
579     ir_value *v = NULL;
580     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
581     {
582         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
583         if (!func)
584             return false;
585
586         self->constval.vfunc->ir_func = func;
587         self->ir_v = func->value;
588         /* The function is filled later on ast_function_codegen... */
589         return true;
590     }
591
592     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
593     if (!v)
594         return false;
595
596     if (self->isconst) {
597         switch (self->expression.vtype)
598         {
599             case TYPE_FLOAT:
600                 if (!ir_value_set_float(v, self->constval.vfloat))
601                     goto error;
602                 break;
603             case TYPE_VECTOR:
604                 if (!ir_value_set_vector(v, self->constval.vvec))
605                     goto error;
606                 break;
607             case TYPE_STRING:
608                 if (!ir_value_set_string(v, self->constval.vstring))
609                     goto error;
610                 break;
611             case TYPE_FUNCTION:
612                 printf("global of type function not properly generated\n");
613                 goto error;
614                 /* Cannot generate an IR value for a function,
615                  * need a pointer pointing to a function rather.
616                  */
617             default:
618                 printf("TODO: global constant type %i\n", self->expression.vtype);
619                 break;
620         }
621     }
622
623     /* link us to the ir_value */
624     self->ir_v = v;
625     return true;
626
627 error: /* clean up */
628     ir_value_delete(v);
629     return false;
630 }
631
632 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
633 {
634     ir_value *v = NULL;
635     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
636     {
637         /* Do we allow local functions? I think not...
638          * this is NOT a function pointer atm.
639          */
640         return false;
641     }
642
643     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
644     if (!v)
645         return false;
646
647     /* A constant local... hmmm...
648      * I suppose the IR will have to deal with this
649      */
650     if (self->isconst) {
651         switch (self->expression.vtype)
652         {
653             case TYPE_FLOAT:
654                 if (!ir_value_set_float(v, self->constval.vfloat))
655                     goto error;
656                 break;
657             case TYPE_VECTOR:
658                 if (!ir_value_set_vector(v, self->constval.vvec))
659                     goto error;
660                 break;
661             case TYPE_STRING:
662                 if (!ir_value_set_string(v, self->constval.vstring))
663                     goto error;
664                 break;
665             default:
666                 printf("TODO: global constant type %i\n", self->expression.vtype);
667                 break;
668         }
669     }
670
671     /* link us to the ir_value */
672     self->ir_v = v;
673     return true;
674
675 error: /* clean up */
676     ir_value_delete(v);
677     return false;
678 }
679
680 bool ast_function_codegen(ast_function *self, ir_builder *ir)
681 {
682     ir_function *irf;
683     ir_value    *dummy;
684     ast_expression_common *ec;
685     size_t    i;
686
687     irf = self->ir_func;
688     if (!irf) {
689         printf("ast_function's related ast_value was not generated yet\n");
690         return false;
691     }
692
693     /* fill the parameter list */
694     ec = &self->vtype->expression;
695     for (i = 0; i < ec->params_count; ++i)
696     {
697         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
698             return false;
699         if (!self->builtin) {
700             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
701                 return false;
702         }
703     }
704
705     if (self->builtin) {
706         irf->builtin = self->builtin;
707         return true;
708     }
709
710     self->curblock = ir_function_create_block(irf, "entry");
711     if (!self->curblock)
712         return false;
713
714     for (i = 0; i < self->blocks_count; ++i) {
715         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
716         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
717             return false;
718     }
719
720     /* TODO: check return types */
721     if (!self->curblock->is_return)
722     {
723         if (!self->vtype->expression.next ||
724             self->vtype->expression.next->expression.vtype == TYPE_VOID)
725         {
726             return ir_block_create_return(self->curblock, NULL);
727         }
728         else
729         {
730             /* error("missing return"); */
731             return false;
732         }
733     }
734     return true;
735 }
736
737 /* Note, you will not see ast_block_codegen generate ir_blocks.
738  * To the AST and the IR, blocks are 2 different things.
739  * In the AST it represents a block of code, usually enclosed in
740  * curly braces {...}.
741  * While in the IR it represents a block in terms of control-flow.
742  */
743 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
744 {
745     size_t i;
746
747     /* We don't use this
748      * Note: an ast-representation using the comma-operator
749      * of the form: (a, b, c) = x should not assign to c...
750      */
751     (void)lvalue;
752
753     /* output is NULL at first, we'll have each expression
754      * assign to out output, thus, a comma-operator represention
755      * using an ast_block will return the last generated value,
756      * so: (b, c) + a  executed both b and c, and returns c,
757      * which is then added to a.
758      */
759     *out = NULL;
760
761     /* generate locals */
762     for (i = 0; i < self->locals_count; ++i)
763     {
764         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
765             return false;
766     }
767
768     for (i = 0; i < self->exprs_count; ++i)
769     {
770         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
771         if (!(*gen)(self->exprs[i], func, false, out))
772             return false;
773     }
774
775     return true;
776 }
777
778 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
779 {
780     ast_expression_codegen *cgen;
781     ir_value *left, *right;
782
783     cgen = self->dest->expression.codegen;
784     /* lvalue! */
785     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
786         return false;
787
788     cgen = self->source->expression.codegen;
789     /* rvalue! */
790     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
791         return false;
792
793     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
794         return false;
795
796     /* Theoretically, an assinment returns its left side as an
797      * lvalue, if we don't need an lvalue though, we return
798      * the right side as an rvalue, otherwise we have to
799      * somehow know whether or not we need to dereference the pointer
800      * on the left side - that is: OP_LOAD if it was an address.
801      * Also: in original QC we cannot OP_LOADP *anyway*.
802      */
803     *out = (lvalue ? left : right);
804
805     return true;
806 }
807
808 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
809 {
810     ast_expression_codegen *cgen;
811     ir_value *left, *right;
812
813     /* In the context of a binary operation, we can disregard
814      * the lvalue flag.
815      */
816      (void)lvalue;
817
818     cgen = self->left->expression.codegen;
819     /* lvalue! */
820     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
821         return false;
822
823     cgen = self->right->expression.codegen;
824     /* rvalue! */
825     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
826         return false;
827
828     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
829                                  self->op, left, right);
830     if (!*out)
831         return false;
832
833     return true;
834 }
835
836 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
837 {
838     ast_expression_codegen *cgen;
839     ir_value *operand;
840
841     /* In the context of a unary operation, we can disregard
842      * the lvalue flag.
843      */
844     (void)lvalue;
845
846     cgen = self->operand->expression.codegen;
847     /* lvalue! */
848     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
849         return false;
850
851     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
852                                  self->op, operand);
853     if (!*out)
854         return false;
855
856     return true;
857 }
858
859 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
860 {
861     ast_expression_codegen *cgen;
862     ir_value *operand;
863
864     /* In the context of a return operation, we can disregard
865      * the lvalue flag.
866      */
867     (void)lvalue;
868
869     cgen = self->operand->expression.codegen;
870     /* lvalue! */
871     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
872         return false;
873
874     if (!ir_block_create_return(func->curblock, operand))
875         return false;
876
877     return true;
878 }
879
880 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
881 {
882     ast_expression_codegen *cgen;
883     ir_value *ent, *field;
884
885     /* This function needs to take the 'lvalue' flag into account!
886      * As lvalue we provide a field-pointer, as rvalue we provide the
887      * value in a temp.
888      */
889
890     cgen = self->entity->expression.codegen;
891     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
892         return false;
893
894     cgen = self->field->expression.codegen;
895     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
896         return false;
897
898     if (lvalue) {
899         /* address! */
900         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
901                                             ent, field);
902     } else {
903         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
904                                              ent, field, self->expression.vtype);
905     }
906     if (!*out)
907         return false;
908
909     /* Hm that should be it... */
910     return true;
911 }
912
913 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
914 {
915     ast_expression_codegen *cgen;
916
917     ir_value *condval;
918     ir_value *dummy;
919
920     ir_block *cond = func->curblock;
921     ir_block *ontrue;
922     ir_block *onfalse;
923     ir_block *merge;
924
925     /* We don't output any value, thus also don't care about r/lvalue */
926     (void)out;
927     (void)lvalue;
928
929     /* generate the condition */
930     func->curblock = cond;
931     cgen = self->cond->expression.codegen;
932     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
933         return false;
934
935     /* on-true path */
936
937     if (self->on_true) {
938         /* create on-true block */
939         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
940         if (!ontrue)
941             return false;
942
943         /* enter the block */
944         func->curblock = ontrue;
945
946         /* generate */
947         cgen = self->on_true->expression.codegen;
948         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
949             return false;
950     } else
951         ontrue = NULL;
952
953     /* on-false path */
954     if (self->on_false) {
955         /* create on-false block */
956         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
957         if (!onfalse)
958             return false;
959
960         /* enter the block */
961         func->curblock = onfalse;
962
963         /* generate */
964         cgen = self->on_false->expression.codegen;
965         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
966             return false;
967     } else
968         onfalse = NULL;
969
970     /* Merge block were they all merge in to */
971     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
972     if (!merge)
973         return false;
974
975     /* add jumps ot the merge block */
976     if (ontrue && !ir_block_create_jump(ontrue, merge))
977         return false;
978     if (onfalse && !ir_block_create_jump(onfalse, merge))
979         return false;
980
981     /* we create the if here, that way all blocks are ordered :)
982      */
983     if (!ir_block_create_if(cond, condval,
984                             (ontrue  ? ontrue  : merge),
985                             (onfalse ? onfalse : merge)))
986     {
987         return false;
988     }
989
990     /* Now enter the merge block */
991     func->curblock = merge;
992
993     return true;
994 }
995
996 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
997 {
998     ast_expression_codegen *cgen;
999
1000     ir_value *condval;
1001     ir_value *trueval, *falseval;
1002     ir_instr *phi;
1003
1004     ir_block *cond = func->curblock;
1005     ir_block *ontrue;
1006     ir_block *onfalse;
1007     ir_block *merge;
1008
1009     /* In theory it shouldn't be possible to pass through a node twice, but
1010      * in case we add any kind of optimization pass for the AST itself, it
1011      * may still happen, thus we remember a created ir_value and simply return one
1012      * if it already exists.
1013      */
1014     if (self->phi_out) {
1015         *out = self->phi_out;
1016         return true;
1017     }
1018
1019     /* Ternary can never create an lvalue... */
1020     if (lvalue)
1021         return false;
1022
1023     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1024
1025     /* generate the condition */
1026     func->curblock = cond;
1027     cgen = self->cond->expression.codegen;
1028     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1029         return false;
1030
1031     /* create on-true block */
1032     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1033     if (!ontrue)
1034         return false;
1035     else
1036     {
1037         /* enter the block */
1038         func->curblock = ontrue;
1039
1040         /* generate */
1041         cgen = self->on_true->expression.codegen;
1042         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1043             return false;
1044     }
1045
1046     /* create on-false block */
1047     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1048     if (!onfalse)
1049         return false;
1050     else
1051     {
1052         /* enter the block */
1053         func->curblock = onfalse;
1054
1055         /* generate */
1056         cgen = self->on_false->expression.codegen;
1057         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1058             return false;
1059     }
1060
1061     /* create merge block */
1062     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1063     if (!merge)
1064         return false;
1065     /* jump to merge block */
1066     if (!ir_block_create_jump(ontrue, merge))
1067         return false;
1068     if (!ir_block_create_jump(onfalse, merge))
1069         return false;
1070
1071     /* create if instruction */
1072     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1073         return false;
1074
1075     /* Now enter the merge block */
1076     func->curblock = merge;
1077
1078     /* Here, now, we need a PHI node
1079      * but first some sanity checking...
1080      */
1081     if (trueval->vtype != falseval->vtype) {
1082         /* error("ternary with different types on the two sides"); */
1083         return false;
1084     }
1085
1086     /* create PHI */
1087     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1088     if (!phi ||
1089         !ir_phi_add(phi, ontrue,  trueval) ||
1090         !ir_phi_add(phi, onfalse, falseval))
1091     {
1092         return false;
1093     }
1094
1095     self->phi_out = ir_phi_value(phi);
1096     *out = self->phi_out;
1097
1098     return true;
1099 }
1100
1101 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1102 {
1103     ast_expression_codegen *cgen;
1104
1105     ir_value *dummy      = NULL;
1106     ir_value *precond    = NULL;
1107     ir_value *postcond   = NULL;
1108
1109     /* Since we insert some jumps "late" so we have blocks
1110      * ordered "nicely", we need to keep track of the actual end-blocks
1111      * of expressions to add the jumps to.
1112      */
1113     ir_block *bbody      = NULL, *end_bbody      = NULL;
1114     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1115     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1116     ir_block *bincrement = NULL, *end_bincrement = NULL;
1117     ir_block *bout       = NULL, *bin            = NULL;
1118
1119     /* let's at least move the outgoing block to the end */
1120     size_t    bout_id;
1121
1122     /* 'break' and 'continue' need to be able to find the right blocks */
1123     ir_block *bcontinue     = NULL;
1124     ir_block *bbreak        = NULL;
1125
1126     ir_block *old_bcontinue = NULL;
1127     ir_block *old_bbreak    = NULL;
1128
1129     ir_block *tmpblock      = NULL;
1130
1131     (void)lvalue;
1132     (void)out;
1133
1134     /* NOTE:
1135      * Should we ever need some kind of block ordering, better make this function
1136      * move blocks around than write a block ordering algorithm later... after all
1137      * the ast and ir should work together, not against each other.
1138      */
1139
1140     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1141      * anyway if for example it contains a ternary.
1142      */
1143     if (self->initexpr)
1144     {
1145         cgen = self->initexpr->expression.codegen;
1146         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1147             return false;
1148     }
1149
1150     /* Store the block from which we enter this chaos */
1151     bin = func->curblock;
1152
1153     /* The pre-loop condition needs its own block since we
1154      * need to be able to jump to the start of that expression.
1155      */
1156     if (self->precond)
1157     {
1158         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1159         if (!bprecond)
1160             return false;
1161
1162         /* the pre-loop-condition the least important place to 'continue' at */
1163         bcontinue = bprecond;
1164
1165         /* enter */
1166         func->curblock = bprecond;
1167
1168         /* generate */
1169         cgen = self->precond->expression.codegen;
1170         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1171             return false;
1172
1173         end_bprecond = func->curblock;
1174     } else {
1175         bprecond = end_bprecond = NULL;
1176     }
1177
1178     /* Now the next blocks won't be ordered nicely, but we need to
1179      * generate them this early for 'break' and 'continue'.
1180      */
1181     if (self->increment) {
1182         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1183         if (!bincrement)
1184             return false;
1185         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1186     } else {
1187         bincrement = end_bincrement = NULL;
1188     }
1189
1190     if (self->postcond) {
1191         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1192         if (!bpostcond)
1193             return false;
1194         bcontinue = bpostcond; /* postcond comes before the increment */
1195     } else {
1196         bpostcond = end_bpostcond = NULL;
1197     }
1198
1199     bout_id = func->ir_func->blocks_count;
1200     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1201     if (!bout)
1202         return false;
1203     bbreak = bout;
1204
1205     /* The loop body... */
1206     if (self->body)
1207     {
1208         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1209         if (!bbody)
1210             return false;
1211
1212         /* enter */
1213         func->curblock = bbody;
1214
1215         old_bbreak          = func->breakblock;
1216         old_bcontinue       = func->continueblock;
1217         func->breakblock    = bbreak;
1218         func->continueblock = bcontinue;
1219
1220         /* generate */
1221         cgen = self->body->expression.codegen;
1222         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1223             return false;
1224
1225         end_bbody = func->curblock;
1226         func->breakblock    = old_bbreak;
1227         func->continueblock = old_bcontinue;
1228     }
1229
1230     /* post-loop-condition */
1231     if (self->postcond)
1232     {
1233         /* enter */
1234         func->curblock = bpostcond;
1235
1236         /* generate */
1237         cgen = self->postcond->expression.codegen;
1238         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1239             return false;
1240
1241         end_bpostcond = func->curblock;
1242     }
1243
1244     /* The incrementor */
1245     if (self->increment)
1246     {
1247         /* enter */
1248         func->curblock = bincrement;
1249
1250         /* generate */
1251         cgen = self->increment->expression.codegen;
1252         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1253             return false;
1254
1255         end_bincrement = func->curblock;
1256     }
1257
1258     /* In any case now, we continue from the outgoing block */
1259     func->curblock = bout;
1260
1261     /* Now all blocks are in place */
1262     /* From 'bin' we jump to whatever comes first */
1263     if      (bprecond)   tmpblock = bprecond;
1264     else if (bbody)      tmpblock = bbody;
1265     else if (bpostcond)  tmpblock = bpostcond;
1266     else                 tmpblock = bout;
1267     if (!ir_block_create_jump(bin, tmpblock))
1268         return false;
1269
1270     /* From precond */
1271     if (bprecond)
1272     {
1273         ir_block *ontrue, *onfalse;
1274         if      (bbody)      ontrue = bbody;
1275         else if (bincrement) ontrue = bincrement;
1276         else if (bpostcond)  ontrue = bpostcond;
1277         else                 ontrue = bprecond;
1278         onfalse = bout;
1279         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1280             return false;
1281     }
1282
1283     /* from body */
1284     if (bbody)
1285     {
1286         if      (bincrement) tmpblock = bincrement;
1287         else if (bpostcond)  tmpblock = bpostcond;
1288         else if (bprecond)   tmpblock = bprecond;
1289         else                 tmpblock = bout;
1290         if (!ir_block_create_jump(end_bbody, tmpblock))
1291             return false;
1292     }
1293
1294     /* from increment */
1295     if (bincrement)
1296     {
1297         if      (bpostcond)  tmpblock = bpostcond;
1298         else if (bprecond)   tmpblock = bprecond;
1299         else if (bbody)      tmpblock = bbody;
1300         else                 tmpblock = bout;
1301         if (!ir_block_create_jump(end_bincrement, tmpblock))
1302             return false;
1303     }
1304
1305     /* from postcond */
1306     if (bpostcond)
1307     {
1308         ir_block *ontrue, *onfalse;
1309         if      (bprecond)   ontrue = bprecond;
1310         else if (bbody)      ontrue = bbody;
1311         else if (bincrement) ontrue = bincrement;
1312         else                 ontrue = bpostcond;
1313         onfalse = bout;
1314         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1315             return false;
1316     }
1317
1318     /* Move 'bout' to the end */
1319     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1320         !ir_function_blocks_add(func->ir_func, bout))
1321     {
1322         ir_block_delete(bout);
1323         return false;
1324     }
1325
1326     return true;
1327 }
1328
1329 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1330 {
1331     ast_expression_codegen *cgen;
1332     ir_value_vector         params;
1333     ir_instr               *callinstr;
1334     size_t i;
1335
1336     ir_value *funval = NULL;
1337
1338     /* return values are never rvalues */
1339     (void)lvalue;
1340
1341     cgen = self->func->expression.codegen;
1342     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1343         return false;
1344     if (!funval)
1345         return false;
1346
1347     MEM_VECTOR_INIT(&params, v);
1348
1349     /* parameters */
1350     for (i = 0; i < self->params_count; ++i)
1351     {
1352         ir_value *param;
1353         ast_expression *expr = self->params[i];
1354
1355         cgen = expr->expression.codegen;
1356         if (!(*cgen)(expr, func, false, &param))
1357             goto error;
1358         if (!param)
1359             goto error;
1360         if (!ir_value_vector_v_add(&params, param))
1361             goto error;
1362     }
1363
1364     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1365     if (!callinstr)
1366         goto error;
1367
1368     for (i = 0; i < params.v_count; ++i) {
1369         if (!ir_call_param(callinstr, params.v[i]))
1370             goto error;
1371     }
1372
1373     *out = ir_call_value(callinstr);
1374
1375     MEM_VECTOR_CLEAR(&params, v);
1376     return true;
1377 error:
1378     MEM_VECTOR_CLEAR(&params, v);
1379     return false;
1380 }