]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
cache filenames as such instead of using code_cachedstring
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
221 {
222     ast_instantiate(ast_value, ctx, ast_value_delete);
223     ast_expression_init((ast_expression*)self,
224                         (ast_expression_codegen*)&ast_value_codegen);
225     self->expression.node.keep = true; /* keep */
226
227     self->name = name ? util_strdup(name) : NULL;
228     self->expression.vtype = t;
229     self->expression.next  = NULL;
230     self->isconst = false;
231     self->uses    = 0;
232     memset(&self->constval, 0, sizeof(self->constval));
233
234     self->ir_v    = NULL;
235
236     return self;
237 }
238
239 void ast_value_delete(ast_value* self)
240 {
241     if (self->name)
242         mem_d((void*)self->name);
243     if (self->isconst) {
244         switch (self->expression.vtype)
245         {
246         case TYPE_STRING:
247             mem_d((void*)self->constval.vstring);
248             break;
249         case TYPE_FUNCTION:
250             /* unlink us from the function node */
251             self->constval.vfunc->vtype = NULL;
252             break;
253         /* NOTE: delete function? currently collected in
254          * the parser structure
255          */
256         default:
257             break;
258         }
259     }
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
265 {
266     return ast_expression_common_params_add(&self->expression, p);
267 }
268
269 bool ast_value_set_name(ast_value *self, const char *name)
270 {
271     if (self->name)
272         mem_d((void*)self->name);
273     self->name = util_strdup(name);
274     return !!self->name;
275 }
276
277 ast_binary* ast_binary_new(lex_ctx ctx, int op,
278                            ast_expression* left, ast_expression* right)
279 {
280     ast_instantiate(ast_binary, ctx, ast_binary_delete);
281     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
282
283     self->op = op;
284     self->left = left;
285     self->right = right;
286
287     if (op >= INSTR_EQ_F && op <= INSTR_GT)
288         self->expression.vtype = TYPE_FLOAT;
289     else if (op == INSTR_AND || op == INSTR_OR ||
290              op == INSTR_BITAND || op == INSTR_BITOR)
291         self->expression.vtype = TYPE_FLOAT;
292     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
293         self->expression.vtype = TYPE_VECTOR;
294     else if (op == INSTR_MUL_V)
295         self->expression.vtype = TYPE_FLOAT;
296     else
297         self->expression.vtype = left->expression.vtype;
298
299     return self;
300 }
301
302 void ast_binary_delete(ast_binary *self)
303 {
304     ast_unref(self->left);
305     ast_unref(self->right);
306     ast_expression_delete((ast_expression*)self);
307     mem_d(self);
308 }
309
310 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
311                                ast_expression* left, ast_expression* right)
312 {
313     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
314     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
315
316     self->opstore = storop;
317     self->opbin   = op;
318     self->dest    = left;
319     self->source  = right;
320
321     self->expression.vtype = left->expression.vtype;
322     if (left->expression.next) {
323         self->expression.next = ast_type_copy(ctx, left);
324         if (!self->expression.next) {
325             ast_delete(self);
326             return NULL;
327         }
328     }
329     else
330         self->expression.next = NULL;
331
332     return self;
333 }
334
335 void ast_binstore_delete(ast_binstore *self)
336 {
337     ast_unref(self->dest);
338     ast_unref(self->source);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_unary* ast_unary_new(lex_ctx ctx, int op,
344                          ast_expression *expr)
345 {
346     ast_instantiate(ast_unary, ctx, ast_unary_delete);
347     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
348
349     self->op = op;
350     self->operand = expr;
351
352     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
353         self->expression.vtype = TYPE_FLOAT;
354     } else
355         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
356
357     return self;
358 }
359
360 void ast_unary_delete(ast_unary *self)
361 {
362     ast_unref(self->operand);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
368 {
369     ast_instantiate(ast_return, ctx, ast_return_delete);
370     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
371
372     self->operand = expr;
373
374     return self;
375 }
376
377 void ast_return_delete(ast_return *self)
378 {
379     if (self->operand)
380         ast_unref(self->operand);
381     ast_expression_delete((ast_expression*)self);
382     mem_d(self);
383 }
384
385 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
386 {
387     const ast_expression *outtype;
388
389     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
390
391     if (field->expression.vtype != TYPE_FIELD) {
392         mem_d(self);
393         return NULL;
394     }
395
396     outtype = field->expression.next;
397     if (!outtype) {
398         mem_d(self);
399         /* Error: field has no type... */
400         return NULL;
401     }
402
403     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
404
405     self->entity = entity;
406     self->field  = field;
407
408     if (!ast_type_adopt(self, outtype)) {
409         ast_entfield_delete(self);
410         return NULL;
411     }
412
413     return self;
414 }
415
416 void ast_entfield_delete(ast_entfield *self)
417 {
418     ast_unref(self->entity);
419     ast_unref(self->field);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
425 {
426     ast_instantiate(ast_member, ctx, ast_member_delete);
427     if (field >= 3) {
428         mem_d(self);
429         return NULL;
430     }
431
432     if (owner->expression.vtype != TYPE_VECTOR &&
433         owner->expression.vtype != TYPE_FIELD) {
434         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
435         mem_d(self);
436         return NULL;
437     }
438
439     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
440     self->expression.node.keep = true; /* keep */
441
442     if (owner->expression.vtype == TYPE_VECTOR) {
443         self->expression.vtype = TYPE_FLOAT;
444         self->expression.next  = NULL;
445     } else {
446         self->expression.vtype = TYPE_FIELD;
447         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
448     }
449
450     self->owner = owner;
451     self->field = field;
452
453     return self;
454 }
455
456 void ast_member_delete(ast_member *self)
457 {
458     /* The owner is always an ast_value, which has .keep=true,
459      * also: ast_members are usually deleted after the owner, thus
460      * this will cause invalid access
461     ast_unref(self->owner);
462      * once we allow (expression).x to access a vector-member, we need
463      * to change this: preferably by creating an alternate ast node for this
464      * purpose that is not garbage-collected.
465     */
466     ast_expression_delete((ast_expression*)self);
467     mem_d(self);
468 }
469
470 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
471 {
472     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
473     if (!ontrue && !onfalse) {
474         /* because it is invalid */
475         mem_d(self);
476         return NULL;
477     }
478     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
479
480     self->cond     = cond;
481     self->on_true  = ontrue;
482     self->on_false = onfalse;
483
484     return self;
485 }
486
487 void ast_ifthen_delete(ast_ifthen *self)
488 {
489     ast_unref(self->cond);
490     if (self->on_true)
491         ast_unref(self->on_true);
492     if (self->on_false)
493         ast_unref(self->on_false);
494     ast_expression_delete((ast_expression*)self);
495     mem_d(self);
496 }
497
498 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
499 {
500     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
501     /* This time NEITHER must be NULL */
502     if (!ontrue || !onfalse) {
503         mem_d(self);
504         return NULL;
505     }
506     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
507
508     self->cond     = cond;
509     self->on_true  = ontrue;
510     self->on_false = onfalse;
511     self->phi_out  = NULL;
512
513     return self;
514 }
515
516 void ast_ternary_delete(ast_ternary *self)
517 {
518     ast_unref(self->cond);
519     ast_unref(self->on_true);
520     ast_unref(self->on_false);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_loop* ast_loop_new(lex_ctx ctx,
526                        ast_expression *initexpr,
527                        ast_expression *precond,
528                        ast_expression *postcond,
529                        ast_expression *increment,
530                        ast_expression *body)
531 {
532     ast_instantiate(ast_loop, ctx, ast_loop_delete);
533     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
534
535     self->initexpr  = initexpr;
536     self->precond   = precond;
537     self->postcond  = postcond;
538     self->increment = increment;
539     self->body      = body;
540
541     return self;
542 }
543
544 void ast_loop_delete(ast_loop *self)
545 {
546     if (self->initexpr)
547         ast_unref(self->initexpr);
548     if (self->precond)
549         ast_unref(self->precond);
550     if (self->postcond)
551         ast_unref(self->postcond);
552     if (self->increment)
553         ast_unref(self->increment);
554     if (self->body)
555         ast_unref(self->body);
556     ast_expression_delete((ast_expression*)self);
557     mem_d(self);
558 }
559
560 ast_call* ast_call_new(lex_ctx ctx,
561                        ast_expression *funcexpr)
562 {
563     ast_instantiate(ast_call, ctx, ast_call_delete);
564     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
565
566     MEM_VECTOR_INIT(self, params);
567
568     self->func = funcexpr;
569
570     self->expression.vtype = funcexpr->expression.next->expression.vtype;
571     if (funcexpr->expression.next->expression.next)
572         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
573
574     return self;
575 }
576 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
577
578 void ast_call_delete(ast_call *self)
579 {
580     size_t i;
581     for (i = 0; i < self->params_count; ++i)
582         ast_unref(self->params[i]);
583     MEM_VECTOR_CLEAR(self, params);
584
585     if (self->func)
586         ast_unref(self->func);
587
588     ast_expression_delete((ast_expression*)self);
589     mem_d(self);
590 }
591
592 ast_store* ast_store_new(lex_ctx ctx, int op,
593                          ast_expression *dest, ast_expression *source)
594 {
595     ast_instantiate(ast_store, ctx, ast_store_delete);
596     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
597
598     self->op = op;
599     self->dest = dest;
600     self->source = source;
601
602     return self;
603 }
604
605 void ast_store_delete(ast_store *self)
606 {
607     ast_unref(self->dest);
608     ast_unref(self->source);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_block* ast_block_new(lex_ctx ctx)
614 {
615     ast_instantiate(ast_block, ctx, ast_block_delete);
616     ast_expression_init((ast_expression*)self,
617                         (ast_expression_codegen*)&ast_block_codegen);
618
619     MEM_VECTOR_INIT(self, locals);
620     MEM_VECTOR_INIT(self, exprs);
621     MEM_VECTOR_INIT(self, collect);
622
623     return self;
624 }
625 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
626 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
627 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
628
629 bool ast_block_collect(ast_block *self, ast_expression *expr)
630 {
631     if (!ast_block_collect_add(self, expr))
632         return false;
633     expr->expression.node.keep = true;
634     return true;
635 }
636
637 void ast_block_delete(ast_block *self)
638 {
639     size_t i;
640     for (i = 0; i < self->exprs_count; ++i)
641         ast_unref(self->exprs[i]);
642     MEM_VECTOR_CLEAR(self, exprs);
643     for (i = 0; i < self->locals_count; ++i)
644         ast_delete(self->locals[i]);
645     MEM_VECTOR_CLEAR(self, locals);
646     for (i = 0; i < self->collect_count; ++i)
647         ast_delete(self->collect[i]);
648     MEM_VECTOR_CLEAR(self, collect);
649     ast_expression_delete((ast_expression*)self);
650     mem_d(self);
651 }
652
653 bool ast_block_set_type(ast_block *self, ast_expression *from)
654 {
655     if (self->expression.next)
656         ast_delete(self->expression.next);
657     self->expression.vtype = from->expression.vtype;
658     if (from->expression.next) {
659         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
660         if (!self->expression.next)
661             return false;
662     }
663     else
664         self->expression.next = NULL;
665     return true;
666 }
667
668 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
669 {
670     ast_instantiate(ast_function, ctx, ast_function_delete);
671
672     if (!vtype ||
673         vtype->isconst ||
674         vtype->expression.vtype != TYPE_FUNCTION)
675     {
676         mem_d(self);
677         return NULL;
678     }
679
680     self->vtype = vtype;
681     self->name = name ? util_strdup(name) : NULL;
682     MEM_VECTOR_INIT(self, blocks);
683
684     self->labelcount = 0;
685     self->builtin = 0;
686
687     self->ir_func = NULL;
688     self->curblock = NULL;
689
690     self->breakblock    = NULL;
691     self->continueblock = NULL;
692
693     vtype->isconst = true;
694     vtype->constval.vfunc = self;
695
696     return self;
697 }
698
699 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
700
701 void ast_function_delete(ast_function *self)
702 {
703     size_t i;
704     if (self->name)
705         mem_d((void*)self->name);
706     if (self->vtype) {
707         /* ast_value_delete(self->vtype); */
708         self->vtype->isconst = false;
709         self->vtype->constval.vfunc = NULL;
710         /* We use unref - if it was stored in a global table it is supposed
711          * to be deleted from *there*
712          */
713         ast_unref(self->vtype);
714     }
715     for (i = 0; i < self->blocks_count; ++i)
716         ast_delete(self->blocks[i]);
717     MEM_VECTOR_CLEAR(self, blocks);
718     mem_d(self);
719 }
720
721 const char* ast_function_label(ast_function *self, const char *prefix)
722 {
723     size_t id;
724     size_t len;
725     char  *from;
726
727     if (!opts_dump)
728         return NULL;
729
730     id  = (self->labelcount++);
731     len = strlen(prefix);
732
733     from = self->labelbuf + sizeof(self->labelbuf)-1;
734     *from-- = 0;
735     do {
736         unsigned int digit = id % 10;
737         *from = digit + '0';
738         id /= 10;
739     } while (id);
740     memcpy(from - len, prefix, len);
741     return from - len;
742 }
743
744 /*********************************************************************/
745 /* AST codegen part
746  * by convention you must never pass NULL to the 'ir_value **out'
747  * parameter. If you really don't care about the output, pass a dummy.
748  * But I can't imagine a pituation where the output is truly unnecessary.
749  */
750
751 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
752 {
753     /* NOTE: This is the codegen for a variable used in an expression.
754      * It is not the codegen to generate the value. For this purpose,
755      * ast_local_codegen and ast_global_codegen are to be used before this
756      * is executed. ast_function_codegen should take care of its locals,
757      * and the ast-user should take care of ast_global_codegen to be used
758      * on all the globals.
759      */
760     if (!self->ir_v) {
761         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
762         return false;
763     }
764     *out = self->ir_v;
765     return true;
766 }
767
768 bool ast_global_codegen(ast_value *self, ir_builder *ir)
769 {
770     ir_value *v = NULL;
771     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
772     {
773         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
774         if (!func)
775             return false;
776         func->context = ast_ctx(self);
777
778         self->constval.vfunc->ir_func = func;
779         self->ir_v = func->value;
780         /* The function is filled later on ast_function_codegen... */
781         return true;
782     }
783
784     if (self->expression.vtype == TYPE_FIELD) {
785         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
786         if (!v)
787             return false;
788         v->context = ast_ctx(self);
789         if (self->isconst) {
790             asterror(ast_ctx(self), "TODO: constant field pointers with value");
791             goto error;
792         }
793         self->ir_v = v;
794         return true;
795     }
796
797     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
798     if (!v) {
799         asterror(ast_ctx(self), "ir_builder_create_global failed");
800         return false;
801     }
802     v->context = ast_ctx(self);
803
804     if (self->isconst) {
805         switch (self->expression.vtype)
806         {
807             case TYPE_FLOAT:
808                 if (!ir_value_set_float(v, self->constval.vfloat))
809                     goto error;
810                 break;
811             case TYPE_VECTOR:
812                 if (!ir_value_set_vector(v, self->constval.vvec))
813                     goto error;
814                 break;
815             case TYPE_STRING:
816                 if (!ir_value_set_string(v, self->constval.vstring))
817                     goto error;
818                 break;
819             case TYPE_FUNCTION:
820                 asterror(ast_ctx(self), "global of type function not properly generated");
821                 goto error;
822                 /* Cannot generate an IR value for a function,
823                  * need a pointer pointing to a function rather.
824                  */
825             default:
826                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
827                 break;
828         }
829     }
830
831     /* link us to the ir_value */
832     self->ir_v = v;
833     return true;
834
835 error: /* clean up */
836     ir_value_delete(v);
837     return false;
838 }
839
840 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
841 {
842     ir_value *v = NULL;
843     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
844     {
845         /* Do we allow local functions? I think not...
846          * this is NOT a function pointer atm.
847          */
848         return false;
849     }
850
851     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
852     if (!v)
853         return false;
854     v->context = ast_ctx(self);
855
856     /* A constant local... hmmm...
857      * I suppose the IR will have to deal with this
858      */
859     if (self->isconst) {
860         switch (self->expression.vtype)
861         {
862             case TYPE_FLOAT:
863                 if (!ir_value_set_float(v, self->constval.vfloat))
864                     goto error;
865                 break;
866             case TYPE_VECTOR:
867                 if (!ir_value_set_vector(v, self->constval.vvec))
868                     goto error;
869                 break;
870             case TYPE_STRING:
871                 if (!ir_value_set_string(v, self->constval.vstring))
872                     goto error;
873                 break;
874             default:
875                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
876                 break;
877         }
878     }
879
880     /* link us to the ir_value */
881     self->ir_v = v;
882     return true;
883
884 error: /* clean up */
885     ir_value_delete(v);
886     return false;
887 }
888
889 bool ast_function_codegen(ast_function *self, ir_builder *ir)
890 {
891     ir_function *irf;
892     ir_value    *dummy;
893     ast_expression_common *ec;
894     size_t    i;
895
896     irf = self->ir_func;
897     if (!irf) {
898         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
899         return false;
900     }
901
902     /* fill the parameter list */
903     ec = &self->vtype->expression;
904     for (i = 0; i < ec->params_count; ++i)
905     {
906         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
907             return false;
908         if (!self->builtin) {
909             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
910                 return false;
911         }
912     }
913
914     if (self->builtin) {
915         irf->builtin = self->builtin;
916         return true;
917     }
918
919     if (!self->blocks_count) {
920         asterror(ast_ctx(self), "function `%s` has no body", self->name);
921         return false;
922     }
923
924     self->curblock = ir_function_create_block(irf, "entry");
925     if (!self->curblock) {
926         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
927         return false;
928     }
929
930     for (i = 0; i < self->blocks_count; ++i) {
931         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
932         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
933             return false;
934     }
935
936     /* TODO: check return types */
937     if (!self->curblock->is_return)
938     {
939         return ir_block_create_return(self->curblock, NULL);
940         /* From now on the parser has to handle this situation */
941 #if 0
942         if (!self->vtype->expression.next ||
943             self->vtype->expression.next->expression.vtype == TYPE_VOID)
944         {
945             return ir_block_create_return(self->curblock, NULL);
946         }
947         else
948         {
949             /* error("missing return"); */
950             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
951             return false;
952         }
953 #endif
954     }
955     return true;
956 }
957
958 /* Note, you will not see ast_block_codegen generate ir_blocks.
959  * To the AST and the IR, blocks are 2 different things.
960  * In the AST it represents a block of code, usually enclosed in
961  * curly braces {...}.
962  * While in the IR it represents a block in terms of control-flow.
963  */
964 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
965 {
966     size_t i;
967
968     /* We don't use this
969      * Note: an ast-representation using the comma-operator
970      * of the form: (a, b, c) = x should not assign to c...
971      */
972     (void)lvalue;
973     if (self->expression.outr) {
974         *out = self->expression.outr;
975         return true;
976     }
977
978     /* output is NULL at first, we'll have each expression
979      * assign to out output, thus, a comma-operator represention
980      * using an ast_block will return the last generated value,
981      * so: (b, c) + a  executed both b and c, and returns c,
982      * which is then added to a.
983      */
984     *out = NULL;
985
986     /* generate locals */
987     for (i = 0; i < self->locals_count; ++i)
988     {
989         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
990             if (opts_debug)
991                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
992             return false;
993         }
994     }
995
996     for (i = 0; i < self->exprs_count; ++i)
997     {
998         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
999         if (!(*gen)(self->exprs[i], func, false, out))
1000             return false;
1001     }
1002
1003     self->expression.outr = *out;
1004
1005     return true;
1006 }
1007
1008 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1009 {
1010     ast_expression_codegen *cgen;
1011     ir_value *left, *right;
1012
1013     if (lvalue && self->expression.outl) {
1014         *out = self->expression.outl;
1015         return true;
1016     }
1017
1018     if (!lvalue && self->expression.outr) {
1019         *out = self->expression.outr;
1020         return true;
1021     }
1022
1023     cgen = self->dest->expression.codegen;
1024     /* lvalue! */
1025     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1026         return false;
1027     self->expression.outl = left;
1028
1029     cgen = self->source->expression.codegen;
1030     /* rvalue! */
1031     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1032         return false;
1033
1034     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1035         return false;
1036     self->expression.outr = right;
1037
1038     /* Theoretically, an assinment returns its left side as an
1039      * lvalue, if we don't need an lvalue though, we return
1040      * the right side as an rvalue, otherwise we have to
1041      * somehow know whether or not we need to dereference the pointer
1042      * on the left side - that is: OP_LOAD if it was an address.
1043      * Also: in original QC we cannot OP_LOADP *anyway*.
1044      */
1045     *out = (lvalue ? left : right);
1046
1047     return true;
1048 }
1049
1050 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1051 {
1052     ast_expression_codegen *cgen;
1053     ir_value *left, *right;
1054
1055     /* In the context of a binary operation, we can disregard
1056      * the lvalue flag.
1057      */
1058     (void)lvalue;
1059     if (self->expression.outr) {
1060         *out = self->expression.outr;
1061         return true;
1062     }
1063
1064     cgen = self->left->expression.codegen;
1065     /* lvalue! */
1066     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1067         return false;
1068
1069     cgen = self->right->expression.codegen;
1070     /* rvalue! */
1071     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1072         return false;
1073
1074     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1075                                  self->op, left, right);
1076     if (!*out)
1077         return false;
1078     self->expression.outr = *out;
1079
1080     return true;
1081 }
1082
1083 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1084 {
1085     ast_expression_codegen *cgen;
1086     ir_value *leftl, *leftr, *right, *bin;
1087
1088     if (lvalue && self->expression.outl) {
1089         *out = self->expression.outl;
1090         return true;
1091     }
1092
1093     if (!lvalue && self->expression.outr) {
1094         *out = self->expression.outr;
1095         return true;
1096     }
1097
1098     /* for a binstore we need both an lvalue and an rvalue for the left side */
1099     /* rvalue of destination! */
1100     cgen = self->dest->expression.codegen;
1101     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1102         return false;
1103
1104     /* source as rvalue only */
1105     cgen = self->source->expression.codegen;
1106     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1107         return false;
1108
1109     /* now the binary */
1110     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1111                                 self->opbin, leftr, right);
1112     self->expression.outr = bin;
1113
1114     /* now store them */
1115     cgen = self->dest->expression.codegen;
1116     /* lvalue of destination */
1117     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1118         return false;
1119     self->expression.outl = leftl;
1120
1121     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1122         return false;
1123     self->expression.outr = bin;
1124
1125     /* Theoretically, an assinment returns its left side as an
1126      * lvalue, if we don't need an lvalue though, we return
1127      * the right side as an rvalue, otherwise we have to
1128      * somehow know whether or not we need to dereference the pointer
1129      * on the left side - that is: OP_LOAD if it was an address.
1130      * Also: in original QC we cannot OP_LOADP *anyway*.
1131      */
1132     *out = (lvalue ? leftl : bin);
1133
1134     return true;
1135 }
1136
1137 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1138 {
1139     ast_expression_codegen *cgen;
1140     ir_value *operand;
1141
1142     /* In the context of a unary operation, we can disregard
1143      * the lvalue flag.
1144      */
1145     (void)lvalue;
1146     if (self->expression.outr) {
1147         *out = self->expression.outr;
1148         return true;
1149     }
1150
1151     cgen = self->operand->expression.codegen;
1152     /* lvalue! */
1153     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1154         return false;
1155
1156     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1157                                  self->op, operand);
1158     if (!*out)
1159         return false;
1160     self->expression.outr = *out;
1161
1162     return true;
1163 }
1164
1165 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1166 {
1167     ast_expression_codegen *cgen;
1168     ir_value *operand;
1169
1170     /* In the context of a return operation, we can disregard
1171      * the lvalue flag.
1172      */
1173     (void)lvalue;
1174     if (self->expression.outr) {
1175         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1176         return false;
1177     }
1178     self->expression.outr = (ir_value*)1;
1179
1180     if (self->operand) {
1181         cgen = self->operand->expression.codegen;
1182         /* lvalue! */
1183         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1184             return false;
1185
1186         if (!ir_block_create_return(func->curblock, operand))
1187             return false;
1188     } else {
1189         if (!ir_block_create_return(func->curblock, NULL))
1190             return false;
1191     }
1192
1193     return true;
1194 }
1195
1196 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1197 {
1198     ast_expression_codegen *cgen;
1199     ir_value *ent, *field;
1200
1201     /* This function needs to take the 'lvalue' flag into account!
1202      * As lvalue we provide a field-pointer, as rvalue we provide the
1203      * value in a temp.
1204      */
1205
1206     if (lvalue && self->expression.outl) {
1207         *out = self->expression.outl;
1208         return true;
1209     }
1210
1211     if (!lvalue && self->expression.outr) {
1212         *out = self->expression.outr;
1213         return true;
1214     }
1215
1216     cgen = self->entity->expression.codegen;
1217     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1218         return false;
1219
1220     cgen = self->field->expression.codegen;
1221     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1222         return false;
1223
1224     if (lvalue) {
1225         /* address! */
1226         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1227                                             ent, field);
1228     } else {
1229         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1230                                              ent, field, self->expression.vtype);
1231     }
1232     if (!*out) {
1233         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1234                  (lvalue ? "ADDRESS" : "FIELD"),
1235                  type_name[self->expression.vtype]);
1236         return false;
1237     }
1238
1239     if (lvalue)
1240         self->expression.outl = *out;
1241     else
1242         self->expression.outr = *out;
1243
1244     /* Hm that should be it... */
1245     return true;
1246 }
1247
1248 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1249 {
1250     ast_expression_codegen *cgen;
1251     ir_value *vec;
1252
1253     /* in QC this is always an lvalue */
1254     (void)lvalue;
1255     if (self->expression.outl) {
1256         *out = self->expression.outl;
1257         return true;
1258     }
1259
1260     cgen = self->owner->expression.codegen;
1261     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1262         return false;
1263
1264     if (vec->vtype != TYPE_VECTOR &&
1265         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1266     {
1267         return false;
1268     }
1269
1270     *out = ir_value_vector_member(vec, self->field);
1271     self->expression.outl = *out;
1272
1273     return (*out != NULL);
1274 }
1275
1276 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1277 {
1278     ast_expression_codegen *cgen;
1279
1280     ir_value *condval;
1281     ir_value *dummy;
1282
1283     ir_block *cond = func->curblock;
1284     ir_block *ontrue;
1285     ir_block *onfalse;
1286     ir_block *ontrue_endblock;
1287     ir_block *onfalse_endblock;
1288     ir_block *merge;
1289
1290     /* We don't output any value, thus also don't care about r/lvalue */
1291     (void)out;
1292     (void)lvalue;
1293
1294     if (self->expression.outr) {
1295         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1296         return false;
1297     }
1298     self->expression.outr = (ir_value*)1;
1299
1300     /* generate the condition */
1301     func->curblock = cond;
1302     cgen = self->cond->expression.codegen;
1303     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1304         return false;
1305
1306     /* on-true path */
1307
1308     if (self->on_true) {
1309         /* create on-true block */
1310         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1311         if (!ontrue)
1312             return false;
1313
1314         /* enter the block */
1315         func->curblock = ontrue;
1316
1317         /* generate */
1318         cgen = self->on_true->expression.codegen;
1319         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1320             return false;
1321
1322         /* we now need to work from the current endpoint */
1323         ontrue_endblock = func->curblock;
1324     } else
1325         ontrue = NULL;
1326
1327     /* on-false path */
1328     if (self->on_false) {
1329         /* create on-false block */
1330         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1331         if (!onfalse)
1332             return false;
1333
1334         /* enter the block */
1335         func->curblock = onfalse;
1336
1337         /* generate */
1338         cgen = self->on_false->expression.codegen;
1339         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1340             return false;
1341
1342         /* we now need to work from the current endpoint */
1343         onfalse_endblock = func->curblock;
1344     } else
1345         onfalse = NULL;
1346
1347     /* Merge block were they all merge in to */
1348     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1349     if (!merge)
1350         return false;
1351
1352     /* add jumps ot the merge block */
1353     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1354         return false;
1355     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1356         return false;
1357
1358     /* we create the if here, that way all blocks are ordered :)
1359      */
1360     if (!ir_block_create_if(cond, condval,
1361                             (ontrue  ? ontrue  : merge),
1362                             (onfalse ? onfalse : merge)))
1363     {
1364         return false;
1365     }
1366
1367     /* Now enter the merge block */
1368     func->curblock = merge;
1369
1370     return true;
1371 }
1372
1373 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1374 {
1375     ast_expression_codegen *cgen;
1376
1377     ir_value *condval;
1378     ir_value *trueval, *falseval;
1379     ir_instr *phi;
1380
1381     ir_block *cond = func->curblock;
1382     ir_block *ontrue;
1383     ir_block *onfalse;
1384     ir_block *merge;
1385
1386     /* Ternary can never create an lvalue... */
1387     if (lvalue)
1388         return false;
1389
1390     /* In theory it shouldn't be possible to pass through a node twice, but
1391      * in case we add any kind of optimization pass for the AST itself, it
1392      * may still happen, thus we remember a created ir_value and simply return one
1393      * if it already exists.
1394      */
1395     if (self->phi_out) {
1396         *out = self->phi_out;
1397         return true;
1398     }
1399
1400     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1401
1402     /* generate the condition */
1403     func->curblock = cond;
1404     cgen = self->cond->expression.codegen;
1405     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1406         return false;
1407
1408     /* create on-true block */
1409     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1410     if (!ontrue)
1411         return false;
1412     else
1413     {
1414         /* enter the block */
1415         func->curblock = ontrue;
1416
1417         /* generate */
1418         cgen = self->on_true->expression.codegen;
1419         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1420             return false;
1421     }
1422
1423     /* create on-false block */
1424     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1425     if (!onfalse)
1426         return false;
1427     else
1428     {
1429         /* enter the block */
1430         func->curblock = onfalse;
1431
1432         /* generate */
1433         cgen = self->on_false->expression.codegen;
1434         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1435             return false;
1436     }
1437
1438     /* create merge block */
1439     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1440     if (!merge)
1441         return false;
1442     /* jump to merge block */
1443     if (!ir_block_create_jump(ontrue, merge))
1444         return false;
1445     if (!ir_block_create_jump(onfalse, merge))
1446         return false;
1447
1448     /* create if instruction */
1449     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1450         return false;
1451
1452     /* Now enter the merge block */
1453     func->curblock = merge;
1454
1455     /* Here, now, we need a PHI node
1456      * but first some sanity checking...
1457      */
1458     if (trueval->vtype != falseval->vtype) {
1459         /* error("ternary with different types on the two sides"); */
1460         return false;
1461     }
1462
1463     /* create PHI */
1464     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1465     if (!phi ||
1466         !ir_phi_add(phi, ontrue,  trueval) ||
1467         !ir_phi_add(phi, onfalse, falseval))
1468     {
1469         return false;
1470     }
1471
1472     self->phi_out = ir_phi_value(phi);
1473     *out = self->phi_out;
1474
1475     return true;
1476 }
1477
1478 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1479 {
1480     ast_expression_codegen *cgen;
1481
1482     ir_value *dummy      = NULL;
1483     ir_value *precond    = NULL;
1484     ir_value *postcond   = NULL;
1485
1486     /* Since we insert some jumps "late" so we have blocks
1487      * ordered "nicely", we need to keep track of the actual end-blocks
1488      * of expressions to add the jumps to.
1489      */
1490     ir_block *bbody      = NULL, *end_bbody      = NULL;
1491     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1492     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1493     ir_block *bincrement = NULL, *end_bincrement = NULL;
1494     ir_block *bout       = NULL, *bin            = NULL;
1495
1496     /* let's at least move the outgoing block to the end */
1497     size_t    bout_id;
1498
1499     /* 'break' and 'continue' need to be able to find the right blocks */
1500     ir_block *bcontinue     = NULL;
1501     ir_block *bbreak        = NULL;
1502
1503     ir_block *old_bcontinue = NULL;
1504     ir_block *old_bbreak    = NULL;
1505
1506     ir_block *tmpblock      = NULL;
1507
1508     (void)lvalue;
1509     (void)out;
1510
1511     if (self->expression.outr) {
1512         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1513         return false;
1514     }
1515     self->expression.outr = (ir_value*)1;
1516
1517     /* NOTE:
1518      * Should we ever need some kind of block ordering, better make this function
1519      * move blocks around than write a block ordering algorithm later... after all
1520      * the ast and ir should work together, not against each other.
1521      */
1522
1523     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1524      * anyway if for example it contains a ternary.
1525      */
1526     if (self->initexpr)
1527     {
1528         cgen = self->initexpr->expression.codegen;
1529         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1530             return false;
1531     }
1532
1533     /* Store the block from which we enter this chaos */
1534     bin = func->curblock;
1535
1536     /* The pre-loop condition needs its own block since we
1537      * need to be able to jump to the start of that expression.
1538      */
1539     if (self->precond)
1540     {
1541         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1542         if (!bprecond)
1543             return false;
1544
1545         /* the pre-loop-condition the least important place to 'continue' at */
1546         bcontinue = bprecond;
1547
1548         /* enter */
1549         func->curblock = bprecond;
1550
1551         /* generate */
1552         cgen = self->precond->expression.codegen;
1553         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1554             return false;
1555
1556         end_bprecond = func->curblock;
1557     } else {
1558         bprecond = end_bprecond = NULL;
1559     }
1560
1561     /* Now the next blocks won't be ordered nicely, but we need to
1562      * generate them this early for 'break' and 'continue'.
1563      */
1564     if (self->increment) {
1565         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1566         if (!bincrement)
1567             return false;
1568         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1569     } else {
1570         bincrement = end_bincrement = NULL;
1571     }
1572
1573     if (self->postcond) {
1574         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1575         if (!bpostcond)
1576             return false;
1577         bcontinue = bpostcond; /* postcond comes before the increment */
1578     } else {
1579         bpostcond = end_bpostcond = NULL;
1580     }
1581
1582     bout_id = func->ir_func->blocks_count;
1583     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1584     if (!bout)
1585         return false;
1586     bbreak = bout;
1587
1588     /* The loop body... */
1589     if (self->body)
1590     {
1591         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1592         if (!bbody)
1593             return false;
1594
1595         /* enter */
1596         func->curblock = bbody;
1597
1598         old_bbreak          = func->breakblock;
1599         old_bcontinue       = func->continueblock;
1600         func->breakblock    = bbreak;
1601         func->continueblock = bcontinue;
1602
1603         /* generate */
1604         cgen = self->body->expression.codegen;
1605         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1606             return false;
1607
1608         end_bbody = func->curblock;
1609         func->breakblock    = old_bbreak;
1610         func->continueblock = old_bcontinue;
1611     }
1612
1613     /* post-loop-condition */
1614     if (self->postcond)
1615     {
1616         /* enter */
1617         func->curblock = bpostcond;
1618
1619         /* generate */
1620         cgen = self->postcond->expression.codegen;
1621         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1622             return false;
1623
1624         end_bpostcond = func->curblock;
1625     }
1626
1627     /* The incrementor */
1628     if (self->increment)
1629     {
1630         /* enter */
1631         func->curblock = bincrement;
1632
1633         /* generate */
1634         cgen = self->increment->expression.codegen;
1635         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1636             return false;
1637
1638         end_bincrement = func->curblock;
1639     }
1640
1641     /* In any case now, we continue from the outgoing block */
1642     func->curblock = bout;
1643
1644     /* Now all blocks are in place */
1645     /* From 'bin' we jump to whatever comes first */
1646     if      (bprecond)   tmpblock = bprecond;
1647     else if (bbody)      tmpblock = bbody;
1648     else if (bpostcond)  tmpblock = bpostcond;
1649     else                 tmpblock = bout;
1650     if (!ir_block_create_jump(bin, tmpblock))
1651         return false;
1652
1653     /* From precond */
1654     if (bprecond)
1655     {
1656         ir_block *ontrue, *onfalse;
1657         if      (bbody)      ontrue = bbody;
1658         else if (bincrement) ontrue = bincrement;
1659         else if (bpostcond)  ontrue = bpostcond;
1660         else                 ontrue = bprecond;
1661         onfalse = bout;
1662         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1663             return false;
1664     }
1665
1666     /* from body */
1667     if (bbody)
1668     {
1669         if      (bincrement) tmpblock = bincrement;
1670         else if (bpostcond)  tmpblock = bpostcond;
1671         else if (bprecond)   tmpblock = bprecond;
1672         else                 tmpblock = bout;
1673         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1674             return false;
1675     }
1676
1677     /* from increment */
1678     if (bincrement)
1679     {
1680         if      (bpostcond)  tmpblock = bpostcond;
1681         else if (bprecond)   tmpblock = bprecond;
1682         else if (bbody)      tmpblock = bbody;
1683         else                 tmpblock = bout;
1684         if (!ir_block_create_jump(end_bincrement, tmpblock))
1685             return false;
1686     }
1687
1688     /* from postcond */
1689     if (bpostcond)
1690     {
1691         ir_block *ontrue, *onfalse;
1692         if      (bprecond)   ontrue = bprecond;
1693         else if (bbody)      ontrue = bbody;
1694         else if (bincrement) ontrue = bincrement;
1695         else                 ontrue = bpostcond;
1696         onfalse = bout;
1697         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1698             return false;
1699     }
1700
1701     /* Move 'bout' to the end */
1702     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1703         !ir_function_blocks_add(func->ir_func, bout))
1704     {
1705         ir_block_delete(bout);
1706         return false;
1707     }
1708
1709     return true;
1710 }
1711
1712 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1713 {
1714     ast_expression_codegen *cgen;
1715     ir_value_vector         params;
1716     ir_instr               *callinstr;
1717     size_t i;
1718
1719     ir_value *funval = NULL;
1720
1721     /* return values are never lvalues */
1722     (void)lvalue;
1723
1724     if (self->expression.outr) {
1725         *out = self->expression.outr;
1726         return true;
1727     }
1728
1729     cgen = self->func->expression.codegen;
1730     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1731         return false;
1732     if (!funval)
1733         return false;
1734
1735     MEM_VECTOR_INIT(&params, v);
1736
1737     /* parameters */
1738     for (i = 0; i < self->params_count; ++i)
1739     {
1740         ir_value *param;
1741         ast_expression *expr = self->params[i];
1742
1743         cgen = expr->expression.codegen;
1744         if (!(*cgen)(expr, func, false, &param))
1745             goto error;
1746         if (!param)
1747             goto error;
1748         if (!ir_value_vector_v_add(&params, param))
1749             goto error;
1750     }
1751
1752     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1753     if (!callinstr)
1754         goto error;
1755
1756     for (i = 0; i < params.v_count; ++i) {
1757         if (!ir_call_param(callinstr, params.v[i]))
1758             goto error;
1759     }
1760
1761     *out = ir_call_value(callinstr);
1762     self->expression.outr = *out;
1763
1764     MEM_VECTOR_CLEAR(&params, v);
1765     return true;
1766 error:
1767     MEM_VECTOR_CLEAR(&params, v);
1768     return false;
1769 }