]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
7487e2332798f0a4512f3602cfd802263ee46715
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     con_cvprintmsg((void*)&ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     con_err("ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     self->expression.params   = NULL;
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < vec_size(self->expression.params); ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     vec_free(self->expression.params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 ast_value* ast_value_copy(const ast_value *self)
94 {
95     size_t i;
96     const ast_expression_common *fromex;
97     ast_expression_common *selfex;
98     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
99     if (self->expression.next) {
100         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
101         if (!cp->expression.next) {
102             ast_value_delete(cp);
103             return NULL;
104         }
105     }
106     fromex   = &self->expression;
107     selfex = &cp->expression;
108     selfex->variadic = fromex->variadic;
109     for (i = 0; i < vec_size(fromex->params); ++i) {
110         ast_value *v = ast_value_copy(fromex->params[i]);
111         if (!v) {
112             ast_value_delete(cp);
113             return NULL;
114         }
115         vec_push(selfex->params, v);
116     }
117     return cp;
118 }
119
120 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
121 {
122     size_t i;
123     const ast_expression_common *fromex;
124     ast_expression_common *selfex;
125     self->expression.vtype = other->expression.vtype;
126     if (other->expression.next) {
127         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
128         if (!self->expression.next)
129             return false;
130     }
131     fromex   = &other->expression;
132     selfex = &self->expression;
133     selfex->variadic = fromex->variadic;
134     for (i = 0; i < vec_size(fromex->params); ++i) {
135         ast_value *v = ast_value_copy(fromex->params[i]);
136         if (!v)
137             return false;
138         vec_push(selfex->params, v);
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < vec_size(fromex->params); ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191             vec_push(selfex->params, v);
192         }
193
194         return self;
195     }
196 }
197
198 bool ast_compare_type(ast_expression *a, ast_expression *b)
199 {
200     if (a->expression.vtype != b->expression.vtype)
201         return false;
202     if (!a->expression.next != !b->expression.next)
203         return false;
204     if (vec_size(a->expression.params) != vec_size(b->expression.params))
205         return false;
206     if (a->expression.variadic != b->expression.variadic)
207         return false;
208     if (vec_size(a->expression.params)) {
209         size_t i;
210         for (i = 0; i < vec_size(a->expression.params); ++i) {
211             if (!ast_compare_type((ast_expression*)a->expression.params[i],
212                                   (ast_expression*)b->expression.params[i]))
213                 return false;
214         }
215     }
216     if (a->expression.next)
217         return ast_compare_type(a->expression.next, b->expression.next);
218     return true;
219 }
220
221 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
222 {
223     const char *typestr;
224     size_t typelen;
225     size_t i;
226
227     if (!e) {
228         if (pos + 6 >= bufsize)
229             goto full;
230         strcpy(buf + pos, "(null)");
231         return pos + 6;
232     }
233
234     if (pos + 1 >= bufsize)
235         goto full;
236
237     switch (e->expression.vtype) {
238         case TYPE_VARIANT:
239             strcpy(buf + pos, "(variant)");
240             return pos + 9;
241
242         case TYPE_FIELD:
243             buf[pos++] = '.';
244             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
245
246         case TYPE_POINTER:
247             if (pos + 3 >= bufsize)
248                 goto full;
249             buf[pos++] = '*';
250             buf[pos++] = '(';
251             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
252             if (pos + 1 >= bufsize)
253                 goto full;
254             buf[pos++] = ')';
255             return pos;
256
257         case TYPE_FUNCTION:
258             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259             if (pos + 2 >= bufsize)
260                 goto full;
261             if (!vec_size(e->expression.params)) {
262                 buf[pos++] = '(';
263                 buf[pos++] = ')';
264                 return pos;
265             }
266             buf[pos++] = '(';
267             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
268             for (i = 1; i < vec_size(e->expression.params); ++i) {
269                 if (pos + 2 >= bufsize)
270                     goto full;
271                 buf[pos++] = ',';
272                 buf[pos++] = ' ';
273                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
274             }
275             if (pos + 1 >= bufsize)
276                 goto full;
277             buf[pos++] = ')';
278             return pos;
279
280         case TYPE_ARRAY:
281             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
282             if (pos + 1 >= bufsize)
283                 goto full;
284             buf[pos++] = '[';
285             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
286             if (pos + 1 >= bufsize)
287                 goto full;
288             buf[pos++] = ']';
289             return pos;
290
291         default:
292             typestr = type_name[e->expression.vtype];
293             typelen = strlen(typestr);
294             if (pos + typelen >= bufsize)
295                 goto full;
296             strcpy(buf + pos, typestr);
297             return pos + typelen;
298     }
299
300 full:
301     buf[bufsize-3] = '.';
302     buf[bufsize-2] = '.';
303     buf[bufsize-1] = '.';
304     return bufsize;
305 }
306
307 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
308 {
309     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
310     buf[pos] = 0;
311 }
312
313 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
314 {
315     ast_instantiate(ast_value, ctx, ast_value_delete);
316     ast_expression_init((ast_expression*)self,
317                         (ast_expression_codegen*)&ast_value_codegen);
318     self->expression.node.keep = true; /* keep */
319
320     self->name = name ? util_strdup(name) : NULL;
321     self->expression.vtype = t;
322     self->expression.next  = NULL;
323     self->isconst = false;
324     self->uses    = 0;
325     memset(&self->constval, 0, sizeof(self->constval));
326
327     self->ir_v           = NULL;
328     self->ir_values      = NULL;
329     self->ir_value_count = 0;
330
331     self->setter = NULL;
332     self->getter = NULL;
333
334     return self;
335 }
336
337 void ast_value_delete(ast_value* self)
338 {
339     if (self->name)
340         mem_d((void*)self->name);
341     if (self->isconst) {
342         switch (self->expression.vtype)
343         {
344         case TYPE_STRING:
345             mem_d((void*)self->constval.vstring);
346             break;
347         case TYPE_FUNCTION:
348             /* unlink us from the function node */
349             self->constval.vfunc->vtype = NULL;
350             break;
351         /* NOTE: delete function? currently collected in
352          * the parser structure
353          */
354         default:
355             break;
356         }
357     }
358     if (self->ir_values)
359         mem_d(self->ir_values);
360     ast_expression_delete((ast_expression*)self);
361     mem_d(self);
362 }
363
364 void ast_value_params_add(ast_value *self, ast_value *p)
365 {
366     vec_push(self->expression.params, p);
367 }
368
369 bool ast_value_set_name(ast_value *self, const char *name)
370 {
371     if (self->name)
372         mem_d((void*)self->name);
373     self->name = util_strdup(name);
374     return !!self->name;
375 }
376
377 ast_binary* ast_binary_new(lex_ctx ctx, int op,
378                            ast_expression* left, ast_expression* right)
379 {
380     ast_instantiate(ast_binary, ctx, ast_binary_delete);
381     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
382
383     self->op = op;
384     self->left = left;
385     self->right = right;
386
387     if (op >= INSTR_EQ_F && op <= INSTR_GT)
388         self->expression.vtype = TYPE_FLOAT;
389     else if (op == INSTR_AND || op == INSTR_OR ||
390              op == INSTR_BITAND || op == INSTR_BITOR)
391         self->expression.vtype = TYPE_FLOAT;
392     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
393         self->expression.vtype = TYPE_VECTOR;
394     else if (op == INSTR_MUL_V)
395         self->expression.vtype = TYPE_FLOAT;
396     else
397         self->expression.vtype = left->expression.vtype;
398
399     return self;
400 }
401
402 void ast_binary_delete(ast_binary *self)
403 {
404     ast_unref(self->left);
405     ast_unref(self->right);
406     ast_expression_delete((ast_expression*)self);
407     mem_d(self);
408 }
409
410 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
411                                ast_expression* left, ast_expression* right)
412 {
413     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
414     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
415
416     self->opstore = storop;
417     self->opbin   = op;
418     self->dest    = left;
419     self->source  = right;
420
421     self->expression.vtype = left->expression.vtype;
422     if (left->expression.next) {
423         self->expression.next = ast_type_copy(ctx, left);
424         if (!self->expression.next) {
425             ast_delete(self);
426             return NULL;
427         }
428     }
429     else
430         self->expression.next = NULL;
431
432     return self;
433 }
434
435 void ast_binstore_delete(ast_binstore *self)
436 {
437     ast_unref(self->dest);
438     ast_unref(self->source);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_unary* ast_unary_new(lex_ctx ctx, int op,
444                          ast_expression *expr)
445 {
446     ast_instantiate(ast_unary, ctx, ast_unary_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
448
449     self->op = op;
450     self->operand = expr;
451
452     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
453         self->expression.vtype = TYPE_FLOAT;
454     } else
455         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
456
457     return self;
458 }
459
460 void ast_unary_delete(ast_unary *self)
461 {
462     ast_unref(self->operand);
463     ast_expression_delete((ast_expression*)self);
464     mem_d(self);
465 }
466
467 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
468 {
469     ast_instantiate(ast_return, ctx, ast_return_delete);
470     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
471
472     self->operand = expr;
473
474     return self;
475 }
476
477 void ast_return_delete(ast_return *self)
478 {
479     if (self->operand)
480         ast_unref(self->operand);
481     ast_expression_delete((ast_expression*)self);
482     mem_d(self);
483 }
484
485 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
486 {
487     if (field->expression.vtype != TYPE_FIELD) {
488         asterror(ctx, "ast_entfield_new with expression not of type field");
489         return NULL;
490     }
491     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
492 }
493
494 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
495 {
496     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
497
498     if (!outtype) {
499         mem_d(self);
500         /* Error: field has no type... */
501         return NULL;
502     }
503
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
505
506     self->entity = entity;
507     self->field  = field;
508
509     if (!ast_type_adopt(self, outtype)) {
510         ast_entfield_delete(self);
511         return NULL;
512     }
513
514     return self;
515 }
516
517 void ast_entfield_delete(ast_entfield *self)
518 {
519     ast_unref(self->entity);
520     ast_unref(self->field);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
526 {
527     ast_instantiate(ast_member, ctx, ast_member_delete);
528     if (field >= 3) {
529         mem_d(self);
530         return NULL;
531     }
532
533     if (owner->expression.vtype != TYPE_VECTOR &&
534         owner->expression.vtype != TYPE_FIELD) {
535         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
536         mem_d(self);
537         return NULL;
538     }
539
540     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
541     self->expression.node.keep = true; /* keep */
542
543     if (owner->expression.vtype == TYPE_VECTOR) {
544         self->expression.vtype = TYPE_FLOAT;
545         self->expression.next  = NULL;
546     } else {
547         self->expression.vtype = TYPE_FIELD;
548         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
549     }
550
551     self->owner = owner;
552     self->field = field;
553
554     return self;
555 }
556
557 void ast_member_delete(ast_member *self)
558 {
559     /* The owner is always an ast_value, which has .keep=true,
560      * also: ast_members are usually deleted after the owner, thus
561      * this will cause invalid access
562     ast_unref(self->owner);
563      * once we allow (expression).x to access a vector-member, we need
564      * to change this: preferably by creating an alternate ast node for this
565      * purpose that is not garbage-collected.
566     */
567     ast_expression_delete((ast_expression*)self);
568     mem_d(self);
569 }
570
571 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
572 {
573     ast_expression *outtype;
574     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
575
576     outtype = array->expression.next;
577     if (!outtype) {
578         mem_d(self);
579         /* Error: field has no type... */
580         return NULL;
581     }
582
583     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
584
585     self->array = array;
586     self->index = index;
587
588     if (!ast_type_adopt(self, outtype)) {
589         ast_array_index_delete(self);
590         return NULL;
591     }
592     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
593         if (self->expression.vtype != TYPE_ARRAY) {
594             asterror(ast_ctx(self), "array_index node on type");
595             ast_array_index_delete(self);
596             return NULL;
597         }
598         self->array = outtype;
599         self->expression.vtype = TYPE_FIELD;
600     }
601
602     return self;
603 }
604
605 void ast_array_index_delete(ast_array_index *self)
606 {
607     ast_unref(self->array);
608     ast_unref(self->index);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
614 {
615     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
616     if (!ontrue && !onfalse) {
617         /* because it is invalid */
618         mem_d(self);
619         return NULL;
620     }
621     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
622
623     self->cond     = cond;
624     self->on_true  = ontrue;
625     self->on_false = onfalse;
626
627     return self;
628 }
629
630 void ast_ifthen_delete(ast_ifthen *self)
631 {
632     ast_unref(self->cond);
633     if (self->on_true)
634         ast_unref(self->on_true);
635     if (self->on_false)
636         ast_unref(self->on_false);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
642 {
643     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
644     /* This time NEITHER must be NULL */
645     if (!ontrue || !onfalse) {
646         mem_d(self);
647         return NULL;
648     }
649     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
650
651     self->cond     = cond;
652     self->on_true  = ontrue;
653     self->on_false = onfalse;
654     self->phi_out  = NULL;
655
656     return self;
657 }
658
659 void ast_ternary_delete(ast_ternary *self)
660 {
661     ast_unref(self->cond);
662     ast_unref(self->on_true);
663     ast_unref(self->on_false);
664     ast_expression_delete((ast_expression*)self);
665     mem_d(self);
666 }
667
668 ast_loop* ast_loop_new(lex_ctx ctx,
669                        ast_expression *initexpr,
670                        ast_expression *precond,
671                        ast_expression *postcond,
672                        ast_expression *increment,
673                        ast_expression *body)
674 {
675     ast_instantiate(ast_loop, ctx, ast_loop_delete);
676     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
677
678     self->initexpr  = initexpr;
679     self->precond   = precond;
680     self->postcond  = postcond;
681     self->increment = increment;
682     self->body      = body;
683
684     return self;
685 }
686
687 void ast_loop_delete(ast_loop *self)
688 {
689     if (self->initexpr)
690         ast_unref(self->initexpr);
691     if (self->precond)
692         ast_unref(self->precond);
693     if (self->postcond)
694         ast_unref(self->postcond);
695     if (self->increment)
696         ast_unref(self->increment);
697     if (self->body)
698         ast_unref(self->body);
699     ast_expression_delete((ast_expression*)self);
700     mem_d(self);
701 }
702
703 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
704 {
705     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
706     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
707
708     self->is_continue = iscont;
709
710     return self;
711 }
712
713 void ast_breakcont_delete(ast_breakcont *self)
714 {
715     ast_expression_delete((ast_expression*)self);
716     mem_d(self);
717 }
718
719 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
720 {
721     ast_instantiate(ast_switch, ctx, ast_switch_delete);
722     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
723
724     self->operand = op;
725     self->cases   = NULL;
726
727     return self;
728 }
729
730 void ast_switch_delete(ast_switch *self)
731 {
732     size_t i;
733     ast_unref(self->operand);
734
735     for (i = 0; i < vec_size(self->cases); ++i) {
736         if (self->cases[i].value)
737             ast_unref(self->cases[i].value);
738         ast_unref(self->cases[i].code);
739     }
740     vec_free(self->cases);
741
742     ast_expression_delete((ast_expression*)self);
743     mem_d(self);
744 }
745
746 ast_call* ast_call_new(lex_ctx ctx,
747                        ast_expression *funcexpr)
748 {
749     ast_instantiate(ast_call, ctx, ast_call_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
751
752     self->params = NULL;
753     self->func   = funcexpr;
754
755     self->expression.vtype = funcexpr->expression.next->expression.vtype;
756     if (funcexpr->expression.next->expression.next)
757         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
758
759     return self;
760 }
761
762 void ast_call_delete(ast_call *self)
763 {
764     size_t i;
765     for (i = 0; i < vec_size(self->params); ++i)
766         ast_unref(self->params[i]);
767     vec_free(self->params);
768
769     if (self->func)
770         ast_unref(self->func);
771
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 bool ast_call_check_types(ast_call *self)
777 {
778     size_t i;
779     bool   retval = true;
780     const  ast_expression *func = self->func;
781     size_t count = vec_size(self->params);
782     if (count > vec_size(func->expression.params))
783         count = vec_size(func->expression.params);
784
785     for (i = 0; i < count; ++i) {
786         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
787             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
788                      (unsigned int)(i+1));
789             /* we don't immediately return */
790             retval = false;
791         }
792     }
793     return retval;
794 }
795
796 ast_store* ast_store_new(lex_ctx ctx, int op,
797                          ast_expression *dest, ast_expression *source)
798 {
799     ast_instantiate(ast_store, ctx, ast_store_delete);
800     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
801
802     self->op = op;
803     self->dest = dest;
804     self->source = source;
805
806     self->expression.vtype = dest->expression.vtype;
807     if (dest->expression.next) {
808         self->expression.next = ast_type_copy(ctx, dest);
809         if (!self->expression.next) {
810             ast_delete(self);
811             return NULL;
812         }
813     }
814     else
815         self->expression.next = NULL;
816
817     return self;
818 }
819
820 void ast_store_delete(ast_store *self)
821 {
822     ast_unref(self->dest);
823     ast_unref(self->source);
824     ast_expression_delete((ast_expression*)self);
825     mem_d(self);
826 }
827
828 ast_block* ast_block_new(lex_ctx ctx)
829 {
830     ast_instantiate(ast_block, ctx, ast_block_delete);
831     ast_expression_init((ast_expression*)self,
832                         (ast_expression_codegen*)&ast_block_codegen);
833
834     self->locals  = NULL;
835     self->exprs   = NULL;
836     self->collect = NULL;
837
838     return self;
839 }
840
841 void ast_block_collect(ast_block *self, ast_expression *expr)
842 {
843     vec_push(self->collect, expr);
844     expr->expression.node.keep = true;
845 }
846
847 void ast_block_delete(ast_block *self)
848 {
849     size_t i;
850     for (i = 0; i < vec_size(self->exprs); ++i)
851         ast_unref(self->exprs[i]);
852     vec_free(self->exprs);
853     for (i = 0; i < vec_size(self->locals); ++i)
854         ast_delete(self->locals[i]);
855     vec_free(self->locals);
856     for (i = 0; i < vec_size(self->collect); ++i)
857         ast_delete(self->collect[i]);
858     vec_free(self->collect);
859     ast_expression_delete((ast_expression*)self);
860     mem_d(self);
861 }
862
863 bool ast_block_set_type(ast_block *self, ast_expression *from)
864 {
865     if (self->expression.next)
866         ast_delete(self->expression.next);
867     self->expression.vtype = from->expression.vtype;
868     if (from->expression.next) {
869         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
870         if (!self->expression.next)
871             return false;
872     }
873     else
874         self->expression.next = NULL;
875     return true;
876 }
877
878 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
879 {
880     ast_instantiate(ast_function, ctx, ast_function_delete);
881
882     if (!vtype ||
883         vtype->isconst ||
884         vtype->expression.vtype != TYPE_FUNCTION)
885     {
886         mem_d(self);
887         return NULL;
888     }
889
890     self->vtype  = vtype;
891     self->name   = name ? util_strdup(name) : NULL;
892     self->blocks = NULL;
893
894     self->labelcount = 0;
895     self->builtin = 0;
896
897     self->ir_func = NULL;
898     self->curblock = NULL;
899
900     self->breakblock    = NULL;
901     self->continueblock = NULL;
902
903     vtype->isconst = true;
904     vtype->constval.vfunc = self;
905
906     return self;
907 }
908
909 void ast_function_delete(ast_function *self)
910 {
911     size_t i;
912     if (self->name)
913         mem_d((void*)self->name);
914     if (self->vtype) {
915         /* ast_value_delete(self->vtype); */
916         self->vtype->isconst = false;
917         self->vtype->constval.vfunc = NULL;
918         /* We use unref - if it was stored in a global table it is supposed
919          * to be deleted from *there*
920          */
921         ast_unref(self->vtype);
922     }
923     for (i = 0; i < vec_size(self->blocks); ++i)
924         ast_delete(self->blocks[i]);
925     vec_free(self->blocks);
926     mem_d(self);
927 }
928
929 const char* ast_function_label(ast_function *self, const char *prefix)
930 {
931     size_t id;
932     size_t len;
933     char  *from;
934
935     if (!opts_dump)
936         return NULL;
937
938     id  = (self->labelcount++);
939     len = strlen(prefix);
940
941     from = self->labelbuf + sizeof(self->labelbuf)-1;
942     *from-- = 0;
943     do {
944         unsigned int digit = id % 10;
945         *from = digit + '0';
946         id /= 10;
947     } while (id);
948     memcpy(from - len, prefix, len);
949     return from - len;
950 }
951
952 /*********************************************************************/
953 /* AST codegen part
954  * by convention you must never pass NULL to the 'ir_value **out'
955  * parameter. If you really don't care about the output, pass a dummy.
956  * But I can't imagine a pituation where the output is truly unnecessary.
957  */
958
959 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
960 {
961     /* NOTE: This is the codegen for a variable used in an expression.
962      * It is not the codegen to generate the value. For this purpose,
963      * ast_local_codegen and ast_global_codegen are to be used before this
964      * is executed. ast_function_codegen should take care of its locals,
965      * and the ast-user should take care of ast_global_codegen to be used
966      * on all the globals.
967      */
968     if (!self->ir_v) {
969         char typename[1024];
970         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
971         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
972         return false;
973     }
974     *out = self->ir_v;
975     return true;
976 }
977
978 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
979 {
980     ir_value *v = NULL;
981
982     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
983     {
984         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
985         if (!func)
986             return false;
987         func->context = ast_ctx(self);
988         func->value->context = ast_ctx(self);
989
990         self->constval.vfunc->ir_func = func;
991         self->ir_v = func->value;
992         /* The function is filled later on ast_function_codegen... */
993         return true;
994     }
995
996     if (isfield && self->expression.vtype == TYPE_FIELD) {
997         ast_expression *fieldtype = self->expression.next;
998
999         if (self->isconst) {
1000             asterror(ast_ctx(self), "TODO: constant field pointers with value");
1001             goto error;
1002         }
1003
1004         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1005             size_t ai;
1006             char   *name;
1007             size_t  namelen;
1008
1009             ast_expression_common *elemtype;
1010             int                    vtype;
1011             ast_value             *array = (ast_value*)fieldtype;
1012
1013             if (!ast_istype(fieldtype, ast_value)) {
1014                 asterror(ast_ctx(self), "internal error: ast_value required");
1015                 return false;
1016             }
1017
1018             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1019             if (!array->expression.count || array->expression.count > opts_max_array_size)
1020                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1021
1022             elemtype = &array->expression.next->expression;
1023             vtype = elemtype->vtype;
1024
1025             v = ir_builder_create_field(ir, self->name, vtype);
1026             if (!v) {
1027                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1028                 return false;
1029             }
1030             if (vtype == TYPE_FIELD)
1031                 v->fieldtype = elemtype->next->expression.vtype;
1032             v->context = ast_ctx(self);
1033             array->ir_v = self->ir_v = v;
1034
1035             namelen = strlen(self->name);
1036             name    = (char*)mem_a(namelen + 16);
1037             strcpy(name, self->name);
1038
1039             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1040             array->ir_values[0] = v;
1041             for (ai = 1; ai < array->expression.count; ++ai) {
1042                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1043                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1044                 if (!array->ir_values[ai]) {
1045                     mem_d(name);
1046                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1047                     return false;
1048                 }
1049                 if (vtype == TYPE_FIELD)
1050                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1051                 array->ir_values[ai]->context = ast_ctx(self);
1052             }
1053             mem_d(name);
1054         }
1055         else
1056         {
1057             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1058             if (!v)
1059                 return false;
1060             v->context = ast_ctx(self);
1061             self->ir_v = v;
1062         }
1063         return true;
1064     }
1065
1066     if (self->expression.vtype == TYPE_ARRAY) {
1067         size_t ai;
1068         char   *name;
1069         size_t  namelen;
1070
1071         ast_expression_common *elemtype = &self->expression.next->expression;
1072         int vtype = elemtype->vtype;
1073
1074         /* same as with field arrays */
1075         if (!self->expression.count || self->expression.count > opts_max_array_size)
1076             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1077
1078         v = ir_builder_create_global(ir, self->name, vtype);
1079         if (!v) {
1080             asterror(ast_ctx(self), "ir_builder_create_global failed");
1081             return false;
1082         }
1083         if (vtype == TYPE_FIELD)
1084             v->fieldtype = elemtype->next->expression.vtype;
1085         v->context = ast_ctx(self);
1086
1087         namelen = strlen(self->name);
1088         name    = (char*)mem_a(namelen + 16);
1089         strcpy(name, self->name);
1090
1091         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1092         self->ir_values[0] = v;
1093         for (ai = 1; ai < self->expression.count; ++ai) {
1094             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1095             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1096             if (!self->ir_values[ai]) {
1097                 mem_d(name);
1098                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1099                 return false;
1100             }
1101             if (vtype == TYPE_FIELD)
1102                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1103             self->ir_values[ai]->context = ast_ctx(self);
1104         }
1105         mem_d(name);
1106     }
1107     else
1108     {
1109         /* Arrays don't do this since there's no "array" value which spans across the
1110          * whole thing.
1111          */
1112         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1113         if (!v) {
1114             asterror(ast_ctx(self), "ir_builder_create_global failed");
1115             return false;
1116         }
1117         if (self->expression.vtype == TYPE_FIELD)
1118             v->fieldtype = self->expression.next->expression.vtype;
1119         v->context = ast_ctx(self);
1120     }
1121
1122     if (self->isconst) {
1123         switch (self->expression.vtype)
1124         {
1125             case TYPE_FLOAT:
1126                 if (!ir_value_set_float(v, self->constval.vfloat))
1127                     goto error;
1128                 break;
1129             case TYPE_VECTOR:
1130                 if (!ir_value_set_vector(v, self->constval.vvec))
1131                     goto error;
1132                 break;
1133             case TYPE_STRING:
1134                 if (!ir_value_set_string(v, self->constval.vstring))
1135                     goto error;
1136                 break;
1137             case TYPE_ARRAY:
1138                 asterror(ast_ctx(self), "TODO: global constant array");
1139                 break;
1140             case TYPE_FUNCTION:
1141                 asterror(ast_ctx(self), "global of type function not properly generated");
1142                 goto error;
1143                 /* Cannot generate an IR value for a function,
1144                  * need a pointer pointing to a function rather.
1145                  */
1146             default:
1147                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1148                 break;
1149         }
1150     }
1151
1152     /* link us to the ir_value */
1153     self->ir_v = v;
1154     return true;
1155
1156 error: /* clean up */
1157     ir_value_delete(v);
1158     return false;
1159 }
1160
1161 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1162 {
1163     ir_value *v = NULL;
1164     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1165     {
1166         /* Do we allow local functions? I think not...
1167          * this is NOT a function pointer atm.
1168          */
1169         return false;
1170     }
1171
1172     if (self->expression.vtype == TYPE_ARRAY) {
1173         size_t ai;
1174         char   *name;
1175         size_t  namelen;
1176
1177         ast_expression_common *elemtype = &self->expression.next->expression;
1178         int vtype = elemtype->vtype;
1179
1180         if (param) {
1181             asterror(ast_ctx(self), "array-parameters are not supported");
1182             return false;
1183         }
1184
1185         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1186         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1187             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1188         }
1189
1190         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1191         if (!self->ir_values) {
1192             asterror(ast_ctx(self), "failed to allocate array values");
1193             return false;
1194         }
1195
1196         v = ir_function_create_local(func, self->name, vtype, param);
1197         if (!v) {
1198             asterror(ast_ctx(self), "ir_function_create_local failed");
1199             return false;
1200         }
1201         if (vtype == TYPE_FIELD)
1202             v->fieldtype = elemtype->next->expression.vtype;
1203         v->context = ast_ctx(self);
1204
1205         namelen = strlen(self->name);
1206         name    = (char*)mem_a(namelen + 16);
1207         strcpy(name, self->name);
1208
1209         self->ir_values[0] = v;
1210         for (ai = 1; ai < self->expression.count; ++ai) {
1211             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1212             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1213             if (!self->ir_values[ai]) {
1214                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1215                 return false;
1216             }
1217             if (vtype == TYPE_FIELD)
1218                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1219             self->ir_values[ai]->context = ast_ctx(self);
1220         }
1221     }
1222     else
1223     {
1224         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1225         if (!v)
1226             return false;
1227         if (self->expression.vtype == TYPE_FIELD)
1228             v->fieldtype = self->expression.next->expression.vtype;
1229         v->context = ast_ctx(self);
1230     }
1231
1232     /* A constant local... hmmm...
1233      * I suppose the IR will have to deal with this
1234      */
1235     if (self->isconst) {
1236         switch (self->expression.vtype)
1237         {
1238             case TYPE_FLOAT:
1239                 if (!ir_value_set_float(v, self->constval.vfloat))
1240                     goto error;
1241                 break;
1242             case TYPE_VECTOR:
1243                 if (!ir_value_set_vector(v, self->constval.vvec))
1244                     goto error;
1245                 break;
1246             case TYPE_STRING:
1247                 if (!ir_value_set_string(v, self->constval.vstring))
1248                     goto error;
1249                 break;
1250             default:
1251                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1252                 break;
1253         }
1254     }
1255
1256     /* link us to the ir_value */
1257     self->ir_v = v;
1258
1259     if (self->setter) {
1260         if (!ast_global_codegen(self->setter, func->owner, false) ||
1261             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1262             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1263             return false;
1264     }
1265     if (self->getter) {
1266         if (!ast_global_codegen(self->getter, func->owner, false) ||
1267             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1268             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1269             return false;
1270     }
1271     return true;
1272
1273 error: /* clean up */
1274     ir_value_delete(v);
1275     return false;
1276 }
1277
1278 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1279 {
1280     ir_function *irf;
1281     ir_value    *dummy;
1282     ast_expression_common *ec;
1283     size_t    i;
1284
1285     irf = self->ir_func;
1286     if (!irf) {
1287         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1288         return false;
1289     }
1290
1291     /* fill the parameter list */
1292     ec = &self->vtype->expression;
1293     for (i = 0; i < vec_size(ec->params); ++i)
1294     {
1295         vec_push(irf->params, ec->params[i]->expression.vtype);
1296         if (!self->builtin) {
1297             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1298                 return false;
1299         }
1300     }
1301
1302     if (self->builtin) {
1303         irf->builtin = self->builtin;
1304         return true;
1305     }
1306
1307     if (!vec_size(self->blocks)) {
1308         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1309         return false;
1310     }
1311
1312     self->curblock = ir_function_create_block(irf, "entry");
1313     if (!self->curblock) {
1314         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1315         return false;
1316     }
1317
1318     for (i = 0; i < vec_size(self->blocks); ++i) {
1319         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1320         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1321             return false;
1322     }
1323
1324     /* TODO: check return types */
1325     if (!self->curblock->is_return)
1326     {
1327         return ir_block_create_return(self->curblock, NULL);
1328         /* From now on the parser has to handle this situation */
1329 #if 0
1330         if (!self->vtype->expression.next ||
1331             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1332         {
1333             return ir_block_create_return(self->curblock, NULL);
1334         }
1335         else
1336         {
1337             /* error("missing return"); */
1338             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1339             return false;
1340         }
1341 #endif
1342     }
1343     return true;
1344 }
1345
1346 /* Note, you will not see ast_block_codegen generate ir_blocks.
1347  * To the AST and the IR, blocks are 2 different things.
1348  * In the AST it represents a block of code, usually enclosed in
1349  * curly braces {...}.
1350  * While in the IR it represents a block in terms of control-flow.
1351  */
1352 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1353 {
1354     size_t i;
1355
1356     /* We don't use this
1357      * Note: an ast-representation using the comma-operator
1358      * of the form: (a, b, c) = x should not assign to c...
1359      */
1360     if (lvalue) {
1361         asterror(ast_ctx(self), "not an l-value (code-block)");
1362         return false;
1363     }
1364
1365     if (self->expression.outr) {
1366         *out = self->expression.outr;
1367         return true;
1368     }
1369
1370     /* output is NULL at first, we'll have each expression
1371      * assign to out output, thus, a comma-operator represention
1372      * using an ast_block will return the last generated value,
1373      * so: (b, c) + a  executed both b and c, and returns c,
1374      * which is then added to a.
1375      */
1376     *out = NULL;
1377
1378     /* generate locals */
1379     for (i = 0; i < vec_size(self->locals); ++i)
1380     {
1381         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1382             if (opts_debug)
1383                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1384             return false;
1385         }
1386     }
1387
1388     for (i = 0; i < vec_size(self->exprs); ++i)
1389     {
1390         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1391         if (func->curblock->final) {
1392             asterror(ast_ctx(self->exprs[i]), "unreachable statement");
1393             return false;
1394         }
1395         if (!(*gen)(self->exprs[i], func, false, out))
1396             return false;
1397     }
1398
1399     self->expression.outr = *out;
1400
1401     return true;
1402 }
1403
1404 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1405 {
1406     ast_expression_codegen *cgen;
1407     ir_value *left, *right;
1408
1409     ast_value       *arr;
1410     ast_value       *idx;
1411     ast_array_index *ai = NULL;
1412
1413     if (lvalue && self->expression.outl) {
1414         *out = self->expression.outl;
1415         return true;
1416     }
1417
1418     if (!lvalue && self->expression.outr) {
1419         *out = self->expression.outr;
1420         return true;
1421     }
1422
1423     if (ast_istype(self->dest, ast_array_index))
1424     {
1425
1426         ai = (ast_array_index*)self->dest;
1427         idx = (ast_value*)ai->index;
1428
1429         if (ast_istype(ai->index, ast_value) && idx->isconst)
1430             ai = NULL;
1431     }
1432
1433     if (ai) {
1434         /* we need to call the setter */
1435         ir_value  *iridx, *funval;
1436         ir_instr  *call;
1437
1438         if (lvalue) {
1439             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1440             return false;
1441         }
1442
1443         arr = (ast_value*)ai->array;
1444         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1445             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1446             return false;
1447         }
1448
1449         cgen = idx->expression.codegen;
1450         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1451             return false;
1452
1453         cgen = arr->setter->expression.codegen;
1454         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1455             return false;
1456
1457         cgen = self->source->expression.codegen;
1458         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1459             return false;
1460
1461         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1462         if (!call)
1463             return false;
1464         ir_call_param(call, iridx);
1465         ir_call_param(call, right);
1466         self->expression.outr = right;
1467     }
1468     else
1469     {
1470         /* regular code */
1471
1472         cgen = self->dest->expression.codegen;
1473         /* lvalue! */
1474         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1475             return false;
1476         self->expression.outl = left;
1477
1478         cgen = self->source->expression.codegen;
1479         /* rvalue! */
1480         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1481             return false;
1482
1483         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1484             return false;
1485         self->expression.outr = right;
1486     }
1487
1488     /* Theoretically, an assinment returns its left side as an
1489      * lvalue, if we don't need an lvalue though, we return
1490      * the right side as an rvalue, otherwise we have to
1491      * somehow know whether or not we need to dereference the pointer
1492      * on the left side - that is: OP_LOAD if it was an address.
1493      * Also: in original QC we cannot OP_LOADP *anyway*.
1494      */
1495     *out = (lvalue ? left : right);
1496
1497     return true;
1498 }
1499
1500 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1501 {
1502     ast_expression_codegen *cgen;
1503     ir_value *left, *right;
1504
1505     /* A binary operation cannot yield an l-value */
1506     if (lvalue) {
1507         asterror(ast_ctx(self), "not an l-value (binop)");
1508         return false;
1509     }
1510
1511     if (self->expression.outr) {
1512         *out = self->expression.outr;
1513         return true;
1514     }
1515
1516     if (OPTS_FLAG(SHORT_LOGIC) &&
1517         (self->op == INSTR_AND || self->op == INSTR_OR))
1518     {
1519         /* short circuit evaluation */
1520         ir_block *other, *merge;
1521         ir_block *from_left, *from_right;
1522         ir_instr *phi;
1523         size_t    merge_id;
1524
1525         merge_id = vec_size(func->blocks);
1526         merge = ir_function_create_block(func->ir_func, ast_function_label(func, "sce_merge"));
1527
1528         cgen = self->left->expression.codegen;
1529         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1530             return false;
1531
1532         from_left = func->curblock;
1533         other = ir_function_create_block(func->ir_func, ast_function_label(func, "sce_other"));
1534         if (self->op == INSTR_AND) {
1535             if (!ir_block_create_if(func->curblock, left, other, merge))
1536                 return false;
1537         } else {
1538             if (!ir_block_create_if(func->curblock, left, merge, other))
1539                 return false;
1540         }
1541
1542         func->curblock = other;
1543         cgen = self->right->expression.codegen;
1544         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1545             return false;
1546         from_right = func->curblock;
1547
1548         if (!ir_block_create_jump(func->curblock, merge))
1549             return false;
1550
1551         vec_remove(func->ir_func->blocks, merge_id, 1);
1552         vec_push(func->ir_func->blocks, merge);
1553
1554         func->curblock = merge;
1555         phi = ir_block_create_phi(func->curblock, ast_function_label(func, "sce_value"), TYPE_FLOAT);
1556         ir_phi_add(phi, from_left, left);
1557         ir_phi_add(phi, from_right, right);
1558         *out = ir_phi_value(phi);
1559         self->expression.outr = *out;
1560         return true;
1561     }
1562
1563     cgen = self->left->expression.codegen;
1564     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1565         return false;
1566
1567     cgen = self->right->expression.codegen;
1568     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1569         return false;
1570
1571     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1572                                  self->op, left, right);
1573     if (!*out)
1574         return false;
1575     self->expression.outr = *out;
1576
1577     return true;
1578 }
1579
1580 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1581 {
1582     ast_expression_codegen *cgen;
1583     ir_value *leftl, *leftr, *right, *bin;
1584
1585     if (lvalue && self->expression.outl) {
1586         *out = self->expression.outl;
1587         return true;
1588     }
1589
1590     if (!lvalue && self->expression.outr) {
1591         *out = self->expression.outr;
1592         return true;
1593     }
1594
1595     /* for a binstore we need both an lvalue and an rvalue for the left side */
1596     /* rvalue of destination! */
1597     cgen = self->dest->expression.codegen;
1598     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1599         return false;
1600
1601     /* source as rvalue only */
1602     cgen = self->source->expression.codegen;
1603     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1604         return false;
1605
1606     /* now the binary */
1607     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1608                                 self->opbin, leftr, right);
1609     self->expression.outr = bin;
1610
1611     /* now store them */
1612     cgen = self->dest->expression.codegen;
1613     /* lvalue of destination */
1614     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1615         return false;
1616     self->expression.outl = leftl;
1617
1618     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1619         return false;
1620     self->expression.outr = bin;
1621
1622     /* Theoretically, an assinment returns its left side as an
1623      * lvalue, if we don't need an lvalue though, we return
1624      * the right side as an rvalue, otherwise we have to
1625      * somehow know whether or not we need to dereference the pointer
1626      * on the left side - that is: OP_LOAD if it was an address.
1627      * Also: in original QC we cannot OP_LOADP *anyway*.
1628      */
1629     *out = (lvalue ? leftl : bin);
1630
1631     return true;
1632 }
1633
1634 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1635 {
1636     ast_expression_codegen *cgen;
1637     ir_value *operand;
1638
1639     /* An unary operation cannot yield an l-value */
1640     if (lvalue) {
1641         asterror(ast_ctx(self), "not an l-value (binop)");
1642         return false;
1643     }
1644
1645     if (self->expression.outr) {
1646         *out = self->expression.outr;
1647         return true;
1648     }
1649
1650     cgen = self->operand->expression.codegen;
1651     /* lvalue! */
1652     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1653         return false;
1654
1655     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1656                                  self->op, operand);
1657     if (!*out)
1658         return false;
1659     self->expression.outr = *out;
1660
1661     return true;
1662 }
1663
1664 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1665 {
1666     ast_expression_codegen *cgen;
1667     ir_value *operand;
1668
1669     /* In the context of a return operation, we don't actually return
1670      * anything...
1671      */
1672     if (lvalue) {
1673         asterror(ast_ctx(self), "return-expression is not an l-value");
1674         return false;
1675     }
1676
1677     if (self->expression.outr) {
1678         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1679         return false;
1680     }
1681     self->expression.outr = (ir_value*)1;
1682
1683     if (self->operand) {
1684         cgen = self->operand->expression.codegen;
1685         /* lvalue! */
1686         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1687             return false;
1688
1689         if (!ir_block_create_return(func->curblock, operand))
1690             return false;
1691     } else {
1692         if (!ir_block_create_return(func->curblock, NULL))
1693             return false;
1694     }
1695
1696     return true;
1697 }
1698
1699 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1700 {
1701     ast_expression_codegen *cgen;
1702     ir_value *ent, *field;
1703
1704     /* This function needs to take the 'lvalue' flag into account!
1705      * As lvalue we provide a field-pointer, as rvalue we provide the
1706      * value in a temp.
1707      */
1708
1709     if (lvalue && self->expression.outl) {
1710         *out = self->expression.outl;
1711         return true;
1712     }
1713
1714     if (!lvalue && self->expression.outr) {
1715         *out = self->expression.outr;
1716         return true;
1717     }
1718
1719     cgen = self->entity->expression.codegen;
1720     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1721         return false;
1722
1723     cgen = self->field->expression.codegen;
1724     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1725         return false;
1726
1727     if (lvalue) {
1728         /* address! */
1729         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1730                                             ent, field);
1731     } else {
1732         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1733                                              ent, field, self->expression.vtype);
1734     }
1735     if (!*out) {
1736         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1737                  (lvalue ? "ADDRESS" : "FIELD"),
1738                  type_name[self->expression.vtype]);
1739         return false;
1740     }
1741
1742     if (lvalue)
1743         self->expression.outl = *out;
1744     else
1745         self->expression.outr = *out;
1746
1747     /* Hm that should be it... */
1748     return true;
1749 }
1750
1751 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1752 {
1753     ast_expression_codegen *cgen;
1754     ir_value *vec;
1755
1756     /* in QC this is always an lvalue */
1757     (void)lvalue;
1758     if (self->expression.outl) {
1759         *out = self->expression.outl;
1760         return true;
1761     }
1762
1763     cgen = self->owner->expression.codegen;
1764     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1765         return false;
1766
1767     if (vec->vtype != TYPE_VECTOR &&
1768         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1769     {
1770         return false;
1771     }
1772
1773     *out = ir_value_vector_member(vec, self->field);
1774     self->expression.outl = *out;
1775
1776     return (*out != NULL);
1777 }
1778
1779 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1780 {
1781     ast_value *arr;
1782     ast_value *idx;
1783
1784     if (!lvalue && self->expression.outr) {
1785         *out = self->expression.outr;
1786     }
1787     if (lvalue && self->expression.outl) {
1788         *out = self->expression.outl;
1789     }
1790
1791     if (!ast_istype(self->array, ast_value)) {
1792         asterror(ast_ctx(self), "array indexing this way is not supported");
1793         /* note this would actually be pointer indexing because the left side is
1794          * not an actual array but (hopefully) an indexable expression.
1795          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1796          * support this path will be filled.
1797          */
1798         return false;
1799     }
1800
1801     arr = (ast_value*)self->array;
1802     idx = (ast_value*)self->index;
1803
1804     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1805         /* Time to use accessor functions */
1806         ast_expression_codegen *cgen;
1807         ir_value               *iridx, *funval;
1808         ir_instr               *call;
1809
1810         if (lvalue) {
1811             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1812             return false;
1813         }
1814
1815         if (!arr->getter) {
1816             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1817             return false;
1818         }
1819
1820         cgen = self->index->expression.codegen;
1821         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1822             return false;
1823
1824         cgen = arr->getter->expression.codegen;
1825         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1826             return false;
1827
1828         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1829         if (!call)
1830             return false;
1831         ir_call_param(call, iridx);
1832
1833         *out = ir_call_value(call);
1834         self->expression.outr = *out;
1835         return true;
1836     }
1837
1838     if (idx->expression.vtype == TYPE_FLOAT)
1839         *out = arr->ir_values[(int)idx->constval.vfloat];
1840     else if (idx->expression.vtype == TYPE_INTEGER)
1841         *out = arr->ir_values[idx->constval.vint];
1842     else {
1843         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1844         return false;
1845     }
1846     return true;
1847 }
1848
1849 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1850 {
1851     ast_expression_codegen *cgen;
1852
1853     ir_value *condval;
1854     ir_value *dummy;
1855
1856     ir_block *cond = func->curblock;
1857     ir_block *ontrue;
1858     ir_block *onfalse;
1859     ir_block *ontrue_endblock = NULL;
1860     ir_block *onfalse_endblock = NULL;
1861     ir_block *merge;
1862
1863     /* We don't output any value, thus also don't care about r/lvalue */
1864     (void)out;
1865     (void)lvalue;
1866
1867     if (self->expression.outr) {
1868         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1869         return false;
1870     }
1871     self->expression.outr = (ir_value*)1;
1872
1873     /* generate the condition */
1874     func->curblock = cond;
1875     cgen = self->cond->expression.codegen;
1876     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1877         return false;
1878
1879     /* on-true path */
1880
1881     if (self->on_true) {
1882         /* create on-true block */
1883         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1884         if (!ontrue)
1885             return false;
1886
1887         /* enter the block */
1888         func->curblock = ontrue;
1889
1890         /* generate */
1891         cgen = self->on_true->expression.codegen;
1892         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1893             return false;
1894
1895         /* we now need to work from the current endpoint */
1896         ontrue_endblock = func->curblock;
1897     } else
1898         ontrue = NULL;
1899
1900     /* on-false path */
1901     if (self->on_false) {
1902         /* create on-false block */
1903         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1904         if (!onfalse)
1905             return false;
1906
1907         /* enter the block */
1908         func->curblock = onfalse;
1909
1910         /* generate */
1911         cgen = self->on_false->expression.codegen;
1912         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1913             return false;
1914
1915         /* we now need to work from the current endpoint */
1916         onfalse_endblock = func->curblock;
1917     } else
1918         onfalse = NULL;
1919
1920     /* Merge block were they all merge in to */
1921     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1922     if (!merge)
1923         return false;
1924
1925     /* add jumps ot the merge block */
1926     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1927         return false;
1928     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1929         return false;
1930
1931     /* we create the if here, that way all blocks are ordered :)
1932      */
1933     if (!ir_block_create_if(cond, condval,
1934                             (ontrue  ? ontrue  : merge),
1935                             (onfalse ? onfalse : merge)))
1936     {
1937         return false;
1938     }
1939
1940     /* Now enter the merge block */
1941     func->curblock = merge;
1942
1943     return true;
1944 }
1945
1946 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1947 {
1948     ast_expression_codegen *cgen;
1949
1950     ir_value *condval;
1951     ir_value *trueval, *falseval;
1952     ir_instr *phi;
1953
1954     ir_block *cond = func->curblock;
1955     ir_block *ontrue;
1956     ir_block *onfalse;
1957     ir_block *merge;
1958
1959     /* Ternary can never create an lvalue... */
1960     if (lvalue)
1961         return false;
1962
1963     /* In theory it shouldn't be possible to pass through a node twice, but
1964      * in case we add any kind of optimization pass for the AST itself, it
1965      * may still happen, thus we remember a created ir_value and simply return one
1966      * if it already exists.
1967      */
1968     if (self->phi_out) {
1969         *out = self->phi_out;
1970         return true;
1971     }
1972
1973     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1974
1975     /* generate the condition */
1976     func->curblock = cond;
1977     cgen = self->cond->expression.codegen;
1978     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1979         return false;
1980
1981     /* create on-true block */
1982     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1983     if (!ontrue)
1984         return false;
1985     else
1986     {
1987         /* enter the block */
1988         func->curblock = ontrue;
1989
1990         /* generate */
1991         cgen = self->on_true->expression.codegen;
1992         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1993             return false;
1994     }
1995
1996     /* create on-false block */
1997     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1998     if (!onfalse)
1999         return false;
2000     else
2001     {
2002         /* enter the block */
2003         func->curblock = onfalse;
2004
2005         /* generate */
2006         cgen = self->on_false->expression.codegen;
2007         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2008             return false;
2009     }
2010
2011     /* create merge block */
2012     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
2013     if (!merge)
2014         return false;
2015     /* jump to merge block */
2016     if (!ir_block_create_jump(ontrue, merge))
2017         return false;
2018     if (!ir_block_create_jump(onfalse, merge))
2019         return false;
2020
2021     /* create if instruction */
2022     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
2023         return false;
2024
2025     /* Now enter the merge block */
2026     func->curblock = merge;
2027
2028     /* Here, now, we need a PHI node
2029      * but first some sanity checking...
2030      */
2031     if (trueval->vtype != falseval->vtype) {
2032         /* error("ternary with different types on the two sides"); */
2033         return false;
2034     }
2035
2036     /* create PHI */
2037     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
2038     if (!phi)
2039         return false;
2040     ir_phi_add(phi, ontrue,  trueval);
2041     ir_phi_add(phi, onfalse, falseval);
2042
2043     self->phi_out = ir_phi_value(phi);
2044     *out = self->phi_out;
2045
2046     return true;
2047 }
2048
2049 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2050 {
2051     ast_expression_codegen *cgen;
2052
2053     ir_value *dummy      = NULL;
2054     ir_value *precond    = NULL;
2055     ir_value *postcond   = NULL;
2056
2057     /* Since we insert some jumps "late" so we have blocks
2058      * ordered "nicely", we need to keep track of the actual end-blocks
2059      * of expressions to add the jumps to.
2060      */
2061     ir_block *bbody      = NULL, *end_bbody      = NULL;
2062     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2063     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2064     ir_block *bincrement = NULL, *end_bincrement = NULL;
2065     ir_block *bout       = NULL, *bin            = NULL;
2066
2067     /* let's at least move the outgoing block to the end */
2068     size_t    bout_id;
2069
2070     /* 'break' and 'continue' need to be able to find the right blocks */
2071     ir_block *bcontinue     = NULL;
2072     ir_block *bbreak        = NULL;
2073
2074     ir_block *old_bcontinue = NULL;
2075     ir_block *old_bbreak    = NULL;
2076
2077     ir_block *tmpblock      = NULL;
2078
2079     (void)lvalue;
2080     (void)out;
2081
2082     if (self->expression.outr) {
2083         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2084         return false;
2085     }
2086     self->expression.outr = (ir_value*)1;
2087
2088     /* NOTE:
2089      * Should we ever need some kind of block ordering, better make this function
2090      * move blocks around than write a block ordering algorithm later... after all
2091      * the ast and ir should work together, not against each other.
2092      */
2093
2094     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2095      * anyway if for example it contains a ternary.
2096      */
2097     if (self->initexpr)
2098     {
2099         cgen = self->initexpr->expression.codegen;
2100         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2101             return false;
2102     }
2103
2104     /* Store the block from which we enter this chaos */
2105     bin = func->curblock;
2106
2107     /* The pre-loop condition needs its own block since we
2108      * need to be able to jump to the start of that expression.
2109      */
2110     if (self->precond)
2111     {
2112         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2113         if (!bprecond)
2114             return false;
2115
2116         /* the pre-loop-condition the least important place to 'continue' at */
2117         bcontinue = bprecond;
2118
2119         /* enter */
2120         func->curblock = bprecond;
2121
2122         /* generate */
2123         cgen = self->precond->expression.codegen;
2124         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2125             return false;
2126
2127         end_bprecond = func->curblock;
2128     } else {
2129         bprecond = end_bprecond = NULL;
2130     }
2131
2132     /* Now the next blocks won't be ordered nicely, but we need to
2133      * generate them this early for 'break' and 'continue'.
2134      */
2135     if (self->increment) {
2136         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2137         if (!bincrement)
2138             return false;
2139         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2140     } else {
2141         bincrement = end_bincrement = NULL;
2142     }
2143
2144     if (self->postcond) {
2145         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2146         if (!bpostcond)
2147             return false;
2148         bcontinue = bpostcond; /* postcond comes before the increment */
2149     } else {
2150         bpostcond = end_bpostcond = NULL;
2151     }
2152
2153     bout_id = vec_size(func->ir_func->blocks);
2154     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2155     if (!bout)
2156         return false;
2157     bbreak = bout;
2158
2159     /* The loop body... */
2160     if (self->body)
2161     {
2162         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2163         if (!bbody)
2164             return false;
2165
2166         /* enter */
2167         func->curblock = bbody;
2168
2169         old_bbreak          = func->breakblock;
2170         old_bcontinue       = func->continueblock;
2171         func->breakblock    = bbreak;
2172         func->continueblock = bcontinue;
2173
2174         /* generate */
2175         cgen = self->body->expression.codegen;
2176         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2177             return false;
2178
2179         end_bbody = func->curblock;
2180         func->breakblock    = old_bbreak;
2181         func->continueblock = old_bcontinue;
2182     }
2183
2184     /* post-loop-condition */
2185     if (self->postcond)
2186     {
2187         /* enter */
2188         func->curblock = bpostcond;
2189
2190         /* generate */
2191         cgen = self->postcond->expression.codegen;
2192         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2193             return false;
2194
2195         end_bpostcond = func->curblock;
2196     }
2197
2198     /* The incrementor */
2199     if (self->increment)
2200     {
2201         /* enter */
2202         func->curblock = bincrement;
2203
2204         /* generate */
2205         cgen = self->increment->expression.codegen;
2206         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2207             return false;
2208
2209         end_bincrement = func->curblock;
2210     }
2211
2212     /* In any case now, we continue from the outgoing block */
2213     func->curblock = bout;
2214
2215     /* Now all blocks are in place */
2216     /* From 'bin' we jump to whatever comes first */
2217     if      (bprecond)   tmpblock = bprecond;
2218     else if (bbody)      tmpblock = bbody;
2219     else if (bpostcond)  tmpblock = bpostcond;
2220     else                 tmpblock = bout;
2221     if (!ir_block_create_jump(bin, tmpblock))
2222         return false;
2223
2224     /* From precond */
2225     if (bprecond)
2226     {
2227         ir_block *ontrue, *onfalse;
2228         if      (bbody)      ontrue = bbody;
2229         else if (bincrement) ontrue = bincrement;
2230         else if (bpostcond)  ontrue = bpostcond;
2231         else                 ontrue = bprecond;
2232         onfalse = bout;
2233         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2234             return false;
2235     }
2236
2237     /* from body */
2238     if (bbody)
2239     {
2240         if      (bincrement) tmpblock = bincrement;
2241         else if (bpostcond)  tmpblock = bpostcond;
2242         else if (bprecond)   tmpblock = bprecond;
2243         else                 tmpblock = bout;
2244         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2245             return false;
2246     }
2247
2248     /* from increment */
2249     if (bincrement)
2250     {
2251         if      (bpostcond)  tmpblock = bpostcond;
2252         else if (bprecond)   tmpblock = bprecond;
2253         else if (bbody)      tmpblock = bbody;
2254         else                 tmpblock = bout;
2255         if (!ir_block_create_jump(end_bincrement, tmpblock))
2256             return false;
2257     }
2258
2259     /* from postcond */
2260     if (bpostcond)
2261     {
2262         ir_block *ontrue, *onfalse;
2263         if      (bprecond)   ontrue = bprecond;
2264         else if (bbody)      ontrue = bbody;
2265         else if (bincrement) ontrue = bincrement;
2266         else                 ontrue = bpostcond;
2267         onfalse = bout;
2268         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2269             return false;
2270     }
2271
2272     /* Move 'bout' to the end */
2273     vec_remove(func->ir_func->blocks, bout_id, 1);
2274     vec_push(func->ir_func->blocks, bout);
2275
2276     return true;
2277 }
2278
2279 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2280 {
2281     ir_block *target;
2282
2283     if (lvalue) {
2284         asterror(ast_ctx(self), "break/continue expression is not an l-value");
2285         return false;
2286     }
2287
2288     if (self->expression.outr) {
2289         asterror(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2290         return false;
2291     }
2292     self->expression.outr = (ir_value*)1;
2293
2294     if (self->is_continue)
2295         target = func->continueblock;
2296     else
2297         target = func->breakblock;
2298
2299     if (!ir_block_create_jump(func->curblock, target))
2300         return false;
2301     return true;
2302 }
2303
2304 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2305 {
2306     ast_expression_codegen *cgen;
2307
2308     ast_switch_case *def_case  = NULL;
2309     ir_block        *def_bfall = NULL;
2310
2311     ir_value *dummy     = NULL;
2312     ir_value *irop      = NULL;
2313     ir_block *old_break = NULL;
2314     ir_block *bout      = NULL;
2315     ir_block *bfall     = NULL;
2316     size_t    bout_id;
2317     size_t    c;
2318
2319     char      typestr[1024];
2320     uint16_t  cmpinstr;
2321
2322     if (lvalue) {
2323         asterror(ast_ctx(self), "switch expression is not an l-value");
2324         return false;
2325     }
2326
2327     if (self->expression.outr) {
2328         asterror(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2329         return false;
2330     }
2331     self->expression.outr = (ir_value*)1;
2332
2333     (void)lvalue;
2334     (void)out;
2335
2336     cgen = self->operand->expression.codegen;
2337     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2338         return false;
2339
2340     if (!vec_size(self->cases))
2341         return true;
2342
2343     cmpinstr = type_eq_instr[irop->vtype];
2344     if (cmpinstr >= AINSTR_END) {
2345         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2346         asterror(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2347         return false;
2348     }
2349
2350     bout_id = vec_size(func->ir_func->blocks);
2351     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_switch"));
2352     if (!bout)
2353         return false;
2354
2355     /* setup the break block */
2356     old_break        = func->breakblock;
2357     func->breakblock = bout;
2358
2359     /* Now create all cases */
2360     for (c = 0; c < vec_size(self->cases); ++c) {
2361         ir_value *cond, *val;
2362         ir_block *bcase, *bnot;
2363         size_t bnot_id;
2364
2365         ast_switch_case *swcase = &self->cases[c];
2366
2367         if (swcase->value) {
2368             /* A regular case */
2369             /* generate the condition operand */
2370             cgen = swcase->value->expression.codegen;
2371             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2372                 return false;
2373             /* generate the condition */
2374             cond = ir_block_create_binop(func->curblock, ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2375             if (!cond)
2376                 return false;
2377
2378             bcase = ir_function_create_block(func->ir_func, ast_function_label(func, "case"));
2379             bnot_id = vec_size(func->ir_func->blocks);
2380             bnot = ir_function_create_block(func->ir_func, ast_function_label(func, "not_case"));
2381             if (!bcase || !bnot)
2382                 return false;
2383             if (!ir_block_create_if(func->curblock, cond, bcase, bnot))
2384                 return false;
2385
2386             /* Make the previous case-end fall through */
2387             if (bfall && !bfall->final) {
2388                 if (!ir_block_create_jump(bfall, bcase))
2389                     return false;
2390             }
2391
2392             /* enter the case */
2393             func->curblock = bcase;
2394             cgen = swcase->code->expression.codegen;
2395             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2396                 return false;
2397
2398             /* remember this block to fall through from */
2399             bfall = func->curblock;
2400
2401             /* enter the else and move it down */
2402             func->curblock = bnot;
2403             vec_remove(func->ir_func->blocks, bnot_id, 1);
2404             vec_push(func->ir_func->blocks, bnot);
2405         } else {
2406             /* The default case */
2407             /* Remember where to fall through from: */
2408             def_bfall = bfall;
2409             bfall     = NULL;
2410             /* remember which case it was */
2411             def_case  = swcase;
2412         }
2413     }
2414
2415     /* Jump from the last bnot to bout */
2416     if (bfall && !bfall->final && !ir_block_create_jump(bfall, bout)) {
2417         /*
2418         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2419         */
2420         return false;
2421     }
2422
2423     /* If there was a default case, put it down here */
2424     if (def_case) {
2425         ir_block *bcase;
2426
2427         /* No need to create an extra block */
2428         bcase = func->curblock;
2429
2430         /* Insert the fallthrough jump */
2431         if (def_bfall && !def_bfall->final) {
2432             if (!ir_block_create_jump(def_bfall, bcase))
2433                 return false;
2434         }
2435
2436         /* Now generate the default code */
2437         cgen = def_case->code->expression.codegen;
2438         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2439             return false;
2440     }
2441
2442     /* Jump from the last bnot to bout */
2443     if (!func->curblock->final && !ir_block_create_jump(func->curblock, bout))
2444         return false;
2445     /* enter the outgoing block */
2446     func->curblock = bout;
2447
2448     /* restore the break block */
2449     func->breakblock = old_break;
2450
2451     /* Move 'bout' to the end, it's nicer */
2452     vec_remove(func->ir_func->blocks, bout_id, 1);
2453     vec_push(func->ir_func->blocks, bout);
2454
2455     return true;
2456 }
2457
2458 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2459 {
2460     ast_expression_codegen *cgen;
2461     ir_value              **params;
2462     ir_instr               *callinstr;
2463     size_t i;
2464
2465     ir_value *funval = NULL;
2466
2467     /* return values are never lvalues */
2468     if (lvalue) {
2469         asterror(ast_ctx(self), "not an l-value (function call)");
2470         return false;
2471     }
2472
2473     if (self->expression.outr) {
2474         *out = self->expression.outr;
2475         return true;
2476     }
2477
2478     cgen = self->func->expression.codegen;
2479     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2480         return false;
2481     if (!funval)
2482         return false;
2483
2484     params = NULL;
2485
2486     /* parameters */
2487     for (i = 0; i < vec_size(self->params); ++i)
2488     {
2489         ir_value *param;
2490         ast_expression *expr = self->params[i];
2491
2492         cgen = expr->expression.codegen;
2493         if (!(*cgen)(expr, func, false, &param))
2494             goto error;
2495         if (!param)
2496             goto error;
2497         vec_push(params, param);
2498     }
2499
2500     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2501     if (!callinstr)
2502         goto error;
2503
2504     for (i = 0; i < vec_size(params); ++i) {
2505         ir_call_param(callinstr, params[i]);
2506     }
2507
2508     *out = ir_call_value(callinstr);
2509     self->expression.outr = *out;
2510
2511     vec_free(params);
2512     return true;
2513 error:
2514     vec_free(params);
2515     return false;
2516 }