]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Merge branch 'master' into blub/bc3
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     if (op >= INSTR_EQ_F && op <= INSTR_GT)
174         self->expression.vtype = TYPE_FLOAT;
175     else if (op == INSTR_AND || op == INSTR_OR ||
176              op == INSTR_BITAND || op == INSTR_BITOR)
177         self->expression.vtype = TYPE_FLOAT;
178     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
179         self->expression.vtype = TYPE_VECTOR;
180     else if (op == INSTR_MUL_V)
181         self->expression.vtype = TYPE_FLOAT;
182     else
183         self->expression.vtype = left->expression.vtype;
184
185     return self;
186 }
187
188 void ast_binary_delete(ast_binary *self)
189 {
190     ast_unref(self->left);
191     ast_unref(self->right);
192     ast_expression_delete((ast_expression*)self);
193     mem_d(self);
194 }
195
196 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
197 {
198     const ast_expression *outtype;
199
200     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
201
202     if (field->expression.vtype != TYPE_FIELD) {
203         mem_d(self);
204         return NULL;
205     }
206
207     outtype = field->expression.next;
208     if (!outtype) {
209         mem_d(self);
210         /* Error: field has no type... */
211         return NULL;
212     }
213
214     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
215
216     self->expression.vtype = outtype->expression.vtype;
217     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
218
219     self->entity = entity;
220     self->field  = field;
221
222     return self;
223 }
224
225 void ast_entfield_delete(ast_entfield *self)
226 {
227     ast_unref(self->entity);
228     ast_unref(self->field);
229     ast_expression_delete((ast_expression*)self);
230     mem_d(self);
231 }
232
233 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
234 {
235     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
236     if (!ontrue && !onfalse) {
237         /* because it is invalid */
238         mem_d(self);
239         return NULL;
240     }
241     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
242
243     self->cond     = cond;
244     self->on_true  = ontrue;
245     self->on_false = onfalse;
246
247     return self;
248 }
249
250 void ast_ifthen_delete(ast_ifthen *self)
251 {
252     ast_unref(self->cond);
253     if (self->on_true)
254         ast_unref(self->on_true);
255     if (self->on_false)
256         ast_unref(self->on_false);
257     ast_expression_delete((ast_expression*)self);
258     mem_d(self);
259 }
260
261 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
262 {
263     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
264     /* This time NEITHER must be NULL */
265     if (!ontrue || !onfalse) {
266         mem_d(self);
267         return NULL;
268     }
269     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
270
271     self->cond     = cond;
272     self->on_true  = ontrue;
273     self->on_false = onfalse;
274     self->phi_out  = NULL;
275
276     return self;
277 }
278
279 void ast_ternary_delete(ast_ternary *self)
280 {
281     ast_unref(self->cond);
282     ast_unref(self->on_true);
283     ast_unref(self->on_false);
284     ast_expression_delete((ast_expression*)self);
285     mem_d(self);
286 }
287
288 ast_loop* ast_loop_new(lex_ctx ctx,
289                        ast_expression *initexpr,
290                        ast_expression *precond,
291                        ast_expression *postcond,
292                        ast_expression *increment,
293                        ast_expression *body)
294 {
295     ast_instantiate(ast_loop, ctx, ast_loop_delete);
296     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
297
298     self->initexpr  = initexpr;
299     self->precond   = precond;
300     self->postcond  = postcond;
301     self->increment = increment;
302     self->body      = body;
303
304     return self;
305 }
306
307 void ast_loop_delete(ast_loop *self)
308 {
309     if (self->initexpr)
310         ast_unref(self->initexpr);
311     if (self->precond)
312         ast_unref(self->precond);
313     if (self->postcond)
314         ast_unref(self->postcond);
315     if (self->increment)
316         ast_unref(self->increment);
317     if (self->body)
318         ast_unref(self->body);
319     ast_expression_delete((ast_expression*)self);
320     mem_d(self);
321 }
322
323 ast_call* ast_call_new(lex_ctx ctx,
324                        ast_expression *funcexpr)
325 {
326     ast_instantiate(ast_call, ctx, ast_call_delete);
327     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
328
329     MEM_VECTOR_INIT(self, params);
330
331     self->func = funcexpr;
332
333     return self;
334 }
335 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
336
337 void ast_call_delete(ast_call *self)
338 {
339     size_t i;
340     for (i = 0; i < self->params_count; ++i)
341         ast_unref(self->params[i]);
342     MEM_VECTOR_CLEAR(self, params);
343
344     if (self->func)
345         ast_unref(self->func);
346
347     ast_expression_delete((ast_expression*)self);
348     mem_d(self);
349 }
350
351 ast_store* ast_store_new(lex_ctx ctx, int op,
352                          ast_value *dest, ast_expression *source)
353 {
354     ast_instantiate(ast_store, ctx, ast_store_delete);
355     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
356
357     self->op = op;
358     self->dest = dest;
359     self->source = source;
360
361     return self;
362 }
363
364 void ast_store_delete(ast_store *self)
365 {
366     ast_unref(self->dest);
367     ast_unref(self->source);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 ast_block* ast_block_new(lex_ctx ctx)
373 {
374     ast_instantiate(ast_block, ctx, ast_block_delete);
375     ast_expression_init((ast_expression*)self,
376                         (ast_expression_codegen*)&ast_block_codegen);
377
378     MEM_VECTOR_INIT(self, locals);
379     MEM_VECTOR_INIT(self, exprs);
380
381     return self;
382 }
383 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
384 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
385
386 void ast_block_delete(ast_block *self)
387 {
388     size_t i;
389     for (i = 0; i < self->exprs_count; ++i)
390         ast_unref(self->exprs[i]);
391     MEM_VECTOR_CLEAR(self, exprs);
392     for (i = 0; i < self->locals_count; ++i)
393         ast_delete(self->locals[i]);
394     MEM_VECTOR_CLEAR(self, locals);
395     ast_expression_delete((ast_expression*)self);
396     mem_d(self);
397 }
398
399 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
400 {
401     ast_instantiate(ast_function, ctx, ast_function_delete);
402
403     if (!vtype ||
404         vtype->isconst ||
405         vtype->expression.vtype != TYPE_FUNCTION)
406     {
407         mem_d(self);
408         return NULL;
409     }
410
411     self->vtype = vtype;
412     self->name = name ? util_strdup(name) : NULL;
413     MEM_VECTOR_INIT(self, blocks);
414     MEM_VECTOR_INIT(self, params);
415
416     self->labelcount = 0;
417     self->builtin = 0;
418
419     self->ir_func = NULL;
420     self->curblock = NULL;
421
422     self->breakblock    = NULL;
423     self->continueblock = NULL;
424
425     vtype->isconst = true;
426     vtype->constval.vfunc = self;
427
428     return self;
429 }
430
431 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
432 MEM_VEC_FUNCTIONS(ast_function, ast_value*, params)
433
434 void ast_function_delete(ast_function *self)
435 {
436     size_t i;
437     if (self->name)
438         mem_d((void*)self->name);
439     if (self->vtype) {
440         /* ast_value_delete(self->vtype); */
441         self->vtype->isconst = false;
442         self->vtype->constval.vfunc = NULL;
443         /* We use unref - if it was stored in a global table it is supposed
444          * to be deleted from *there*
445          */
446         ast_unref(self->vtype);
447     }
448     for (i = 0; i < self->blocks_count; ++i)
449         ast_delete(self->blocks[i]);
450     MEM_VECTOR_CLEAR(self, blocks);
451     /* ast_delete, not unref, there must only have been references
452      * to the parameter values inside the blocks deleted above.
453      */
454     for (i = 0; i < self->params_count; ++i)
455         ast_delete(self->params[i]);
456     MEM_VECTOR_CLEAR(self, params);
457     mem_d(self);
458 }
459
460 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
461 {
462     unsigned int base = 10;
463 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
464 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
465     if (size < 1)
466         return;
467     checknul();
468     if (!num)
469         addch('0');
470     else {
471         while (num)
472         {
473             int digit = num % base;
474             num /= base;
475             addch('0' + digit);
476         }
477     }
478
479     *buf = 0;
480 #undef addch
481 #undef checknul
482 }
483
484 const char* ast_function_label(ast_function *self, const char *prefix)
485 {
486     size_t id = (self->labelcount++);
487     size_t len = strlen(prefix);
488     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
489     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
490     return self->labelbuf;
491 }
492
493 /*********************************************************************/
494 /* AST codegen part
495  * by convention you must never pass NULL to the 'ir_value **out'
496  * parameter. If you really don't care about the output, pass a dummy.
497  * But I can't imagine a pituation where the output is truly unnecessary.
498  */
499
500 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
501 {
502     /* NOTE: This is the codegen for a variable used in an expression.
503      * It is not the codegen to generate the value. For this purpose,
504      * ast_local_codegen and ast_global_codegen are to be used before this
505      * is executed. ast_function_codegen should take care of its locals,
506      * and the ast-user should take care of ast_global_codegen to be used
507      * on all the globals.
508      */
509     if (!self->ir_v) {
510         printf("ast_value used before generated (%s)\n", self->name);
511         return false;
512     }
513     *out = self->ir_v;
514     return true;
515 }
516
517 bool ast_global_codegen(ast_value *self, ir_builder *ir)
518 {
519     ir_value *v = NULL;
520     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
521     {
522         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
523         if (!func)
524             return false;
525
526         self->constval.vfunc->ir_func = func;
527         self->ir_v = func->value;
528         /* The function is filled later on ast_function_codegen... */
529         return true;
530     }
531
532     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
533     if (!v) {
534         printf("ir_builder_create_global failed\n");
535         return false;
536     }
537
538     if (self->isconst) {
539         switch (self->expression.vtype)
540         {
541             case TYPE_FLOAT:
542                 if (!ir_value_set_float(v, self->constval.vfloat))
543                     goto error;
544                 break;
545             case TYPE_VECTOR:
546                 if (!ir_value_set_vector(v, self->constval.vvec))
547                     goto error;
548                 break;
549             case TYPE_STRING:
550                 if (!ir_value_set_string(v, self->constval.vstring))
551                     goto error;
552                 break;
553             case TYPE_FUNCTION:
554                 printf("global of type function not properly generated\n");
555                 goto error;
556                 /* Cannot generate an IR value for a function,
557                  * need a pointer pointing to a function rather.
558                  */
559             default:
560                 printf("TODO: global constant type %i\n", self->expression.vtype);
561                 break;
562         }
563     }
564
565     /* link us to the ir_value */
566     self->ir_v = v;
567     return true;
568
569 error: /* clean up */
570     ir_value_delete(v);
571     return false;
572 }
573
574 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
575 {
576     ir_value *v = NULL;
577     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
578     {
579         /* Do we allow local functions? I think not...
580          * this is NOT a function pointer atm.
581          */
582         return false;
583     }
584
585     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
586     if (!v)
587         return false;
588
589     /* A constant local... hmmm...
590      * I suppose the IR will have to deal with this
591      */
592     if (self->isconst) {
593         switch (self->expression.vtype)
594         {
595             case TYPE_FLOAT:
596                 if (!ir_value_set_float(v, self->constval.vfloat))
597                     goto error;
598                 break;
599             case TYPE_VECTOR:
600                 if (!ir_value_set_vector(v, self->constval.vvec))
601                     goto error;
602                 break;
603             case TYPE_STRING:
604                 if (!ir_value_set_string(v, self->constval.vstring))
605                     goto error;
606                 break;
607             default:
608                 printf("TODO: global constant type %i\n", self->expression.vtype);
609                 break;
610         }
611     }
612
613     /* link us to the ir_value */
614     self->ir_v = v;
615     return true;
616
617 error: /* clean up */
618     ir_value_delete(v);
619     return false;
620 }
621
622 bool ast_function_codegen(ast_function *self, ir_builder *ir)
623 {
624     ir_function *irf;
625     ir_value    *dummy;
626     size_t    i;
627
628     irf = self->ir_func;
629     if (!irf) {
630         printf("ast_function's related ast_value was not generated yet\n");
631         return false;
632     }
633
634     if (!self->builtin && self->vtype->params_count != self->params_count) {
635         printf("ast_function's parameter variables doesn't match the declared parameter count\n");
636         printf("%i != %i\n", (int)self->vtype->params_count, (int)self->params_count);
637         return false;
638     }
639
640     /* fill the parameter list */
641     for (i = 0; i < self->vtype->params_count; ++i)
642     {
643         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
644             return false;
645     }
646     /* generate the parameter locals */
647     for (i = 0; i < self->params_count; ++i) {
648         if (!ast_local_codegen(self->params[i], self->ir_func, true))
649             return false;
650     }
651
652     if (self->builtin) {
653         irf->builtin = self->builtin;
654         return true;
655     }
656
657     self->curblock = ir_function_create_block(irf, "entry");
658     if (!self->curblock)
659         return false;
660
661     for (i = 0; i < self->blocks_count; ++i) {
662         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
663         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
664             return false;
665     }
666
667     /* TODO: check return types */
668     if (!self->curblock->is_return)
669     {
670         if (!self->vtype->expression.next ||
671             self->vtype->expression.next->expression.vtype == TYPE_VOID)
672         {
673             return ir_block_create_return(self->curblock, NULL);
674         }
675         else
676         {
677             /* error("missing return"); */
678             return false;
679         }
680     }
681     return true;
682 }
683
684 /* Note, you will not see ast_block_codegen generate ir_blocks.
685  * To the AST and the IR, blocks are 2 different things.
686  * In the AST it represents a block of code, usually enclosed in
687  * curly braces {...}.
688  * While in the IR it represents a block in terms of control-flow.
689  */
690 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
691 {
692     size_t i;
693
694     /* We don't use this
695      * Note: an ast-representation using the comma-operator
696      * of the form: (a, b, c) = x should not assign to c...
697      */
698     (void)lvalue;
699
700     /* output is NULL at first, we'll have each expression
701      * assign to out output, thus, a comma-operator represention
702      * using an ast_block will return the last generated value,
703      * so: (b, c) + a  executed both b and c, and returns c,
704      * which is then added to a.
705      */
706     *out = NULL;
707
708     /* generate locals */
709     for (i = 0; i < self->locals_count; ++i)
710     {
711         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
712             return false;
713     }
714
715     for (i = 0; i < self->exprs_count; ++i)
716     {
717         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
718         if (!(*gen)(self->exprs[i], func, false, out))
719             return false;
720     }
721
722     return true;
723 }
724
725 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
726 {
727     ast_expression_codegen *cgen;
728     ir_value *left, *right;
729
730     cgen = self->dest->expression.codegen;
731     /* lvalue! */
732     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
733         return false;
734
735     cgen = self->source->expression.codegen;
736     /* rvalue! */
737     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
738         return false;
739
740     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
741         return false;
742
743     /* Theoretically, an assinment returns its left side as an
744      * lvalue, if we don't need an lvalue though, we return
745      * the right side as an rvalue, otherwise we have to
746      * somehow know whether or not we need to dereference the pointer
747      * on the left side - that is: OP_LOAD if it was an address.
748      * Also: in original QC we cannot OP_LOADP *anyway*.
749      */
750     *out = (lvalue ? left : right);
751
752     return true;
753 }
754
755 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
756 {
757     ast_expression_codegen *cgen;
758     ir_value *left, *right;
759
760     /* In the context of a binary operation, we can disregard
761      * the lvalue flag.
762      */
763      (void)lvalue;
764
765     cgen = self->left->expression.codegen;
766     /* lvalue! */
767     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
768         return false;
769
770     cgen = self->right->expression.codegen;
771     /* rvalue! */
772     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
773         return false;
774
775     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
776                                  self->op, left, right);
777     if (!*out)
778         return false;
779
780     return true;
781 }
782
783 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
784 {
785     ast_expression_codegen *cgen;
786     ir_value *ent, *field;
787
788     /* This function needs to take the 'lvalue' flag into account!
789      * As lvalue we provide a field-pointer, as rvalue we provide the
790      * value in a temp.
791      */
792
793     cgen = self->entity->expression.codegen;
794     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
795         return false;
796
797     cgen = self->field->expression.codegen;
798     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
799         return false;
800
801     if (lvalue) {
802         /* address! */
803         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
804                                             ent, field);
805     } else {
806         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
807                                              ent, field, self->expression.vtype);
808     }
809     if (!*out)
810         return false;
811
812     /* Hm that should be it... */
813     return true;
814 }
815
816 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
817 {
818     ast_expression_codegen *cgen;
819
820     ir_value *condval;
821     ir_value *dummy;
822
823     ir_block *cond = func->curblock;
824     ir_block *ontrue;
825     ir_block *onfalse;
826     ir_block *merge;
827
828     /* We don't output any value, thus also don't care about r/lvalue */
829     (void)out;
830     (void)lvalue;
831
832     /* generate the condition */
833     func->curblock = cond;
834     cgen = self->cond->expression.codegen;
835     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
836         return false;
837
838     /* on-true path */
839
840     if (self->on_true) {
841         /* create on-true block */
842         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
843         if (!ontrue)
844             return false;
845
846         /* enter the block */
847         func->curblock = ontrue;
848
849         /* generate */
850         cgen = self->on_true->expression.codegen;
851         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
852             return false;
853     } else
854         ontrue = NULL;
855
856     /* on-false path */
857     if (self->on_false) {
858         /* create on-false block */
859         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
860         if (!onfalse)
861             return false;
862
863         /* enter the block */
864         func->curblock = onfalse;
865
866         /* generate */
867         cgen = self->on_false->expression.codegen;
868         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
869             return false;
870     } else
871         onfalse = NULL;
872
873     /* Merge block were they all merge in to */
874     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
875     if (!merge)
876         return false;
877
878     /* add jumps ot the merge block */
879     if (ontrue && !ir_block_create_jump(ontrue, merge))
880         return false;
881     if (onfalse && !ir_block_create_jump(onfalse, merge))
882         return false;
883
884     /* we create the if here, that way all blocks are ordered :)
885      */
886     if (!ir_block_create_if(cond, condval,
887                             (ontrue  ? ontrue  : merge),
888                             (onfalse ? onfalse : merge)))
889     {
890         return false;
891     }
892
893     /* Now enter the merge block */
894     func->curblock = merge;
895
896     return true;
897 }
898
899 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
900 {
901     ast_expression_codegen *cgen;
902
903     ir_value *condval;
904     ir_value *trueval, *falseval;
905     ir_instr *phi;
906
907     ir_block *cond = func->curblock;
908     ir_block *ontrue;
909     ir_block *onfalse;
910     ir_block *merge;
911
912     /* In theory it shouldn't be possible to pass through a node twice, but
913      * in case we add any kind of optimization pass for the AST itself, it
914      * may still happen, thus we remember a created ir_value and simply return one
915      * if it already exists.
916      */
917     if (self->phi_out) {
918         *out = self->phi_out;
919         return true;
920     }
921
922     /* Ternary can never create an lvalue... */
923     if (lvalue)
924         return false;
925
926     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
927
928     /* generate the condition */
929     func->curblock = cond;
930     cgen = self->cond->expression.codegen;
931     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
932         return false;
933
934     /* create on-true block */
935     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
936     if (!ontrue)
937         return false;
938     else
939     {
940         /* enter the block */
941         func->curblock = ontrue;
942
943         /* generate */
944         cgen = self->on_true->expression.codegen;
945         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
946             return false;
947     }
948
949     /* create on-false block */
950     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
951     if (!onfalse)
952         return false;
953     else
954     {
955         /* enter the block */
956         func->curblock = onfalse;
957
958         /* generate */
959         cgen = self->on_false->expression.codegen;
960         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
961             return false;
962     }
963
964     /* create merge block */
965     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
966     if (!merge)
967         return false;
968     /* jump to merge block */
969     if (!ir_block_create_jump(ontrue, merge))
970         return false;
971     if (!ir_block_create_jump(onfalse, merge))
972         return false;
973
974     /* create if instruction */
975     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
976         return false;
977
978     /* Now enter the merge block */
979     func->curblock = merge;
980
981     /* Here, now, we need a PHI node
982      * but first some sanity checking...
983      */
984     if (trueval->vtype != falseval->vtype) {
985         /* error("ternary with different types on the two sides"); */
986         return false;
987     }
988
989     /* create PHI */
990     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
991     if (!phi ||
992         !ir_phi_add(phi, ontrue,  trueval) ||
993         !ir_phi_add(phi, onfalse, falseval))
994     {
995         return false;
996     }
997
998     self->phi_out = ir_phi_value(phi);
999     *out = self->phi_out;
1000
1001     return true;
1002 }
1003
1004 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1005 {
1006     ast_expression_codegen *cgen;
1007
1008     ir_value *dummy      = NULL;
1009     ir_value *precond    = NULL;
1010     ir_value *postcond   = NULL;
1011
1012     /* Since we insert some jumps "late" so we have blocks
1013      * ordered "nicely", we need to keep track of the actual end-blocks
1014      * of expressions to add the jumps to.
1015      */
1016     ir_block *bbody      = NULL, *end_bbody      = NULL;
1017     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1018     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1019     ir_block *bincrement = NULL, *end_bincrement = NULL;
1020     ir_block *bout       = NULL, *bin            = NULL;
1021
1022     /* let's at least move the outgoing block to the end */
1023     size_t    bout_id;
1024
1025     /* 'break' and 'continue' need to be able to find the right blocks */
1026     ir_block *bcontinue     = NULL;
1027     ir_block *bbreak        = NULL;
1028
1029     ir_block *old_bcontinue = NULL;
1030     ir_block *old_bbreak    = NULL;
1031
1032     ir_block *tmpblock      = NULL;
1033
1034     (void)lvalue;
1035     (void)out;
1036
1037     /* NOTE:
1038      * Should we ever need some kind of block ordering, better make this function
1039      * move blocks around than write a block ordering algorithm later... after all
1040      * the ast and ir should work together, not against each other.
1041      */
1042
1043     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1044      * anyway if for example it contains a ternary.
1045      */
1046     if (self->initexpr)
1047     {
1048         cgen = self->initexpr->expression.codegen;
1049         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1050             return false;
1051     }
1052
1053     /* Store the block from which we enter this chaos */
1054     bin = func->curblock;
1055
1056     /* The pre-loop condition needs its own block since we
1057      * need to be able to jump to the start of that expression.
1058      */
1059     if (self->precond)
1060     {
1061         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1062         if (!bprecond)
1063             return false;
1064
1065         /* the pre-loop-condition the least important place to 'continue' at */
1066         bcontinue = bprecond;
1067
1068         /* enter */
1069         func->curblock = bprecond;
1070
1071         /* generate */
1072         cgen = self->precond->expression.codegen;
1073         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1074             return false;
1075
1076         end_bprecond = func->curblock;
1077     } else {
1078         bprecond = end_bprecond = NULL;
1079     }
1080
1081     /* Now the next blocks won't be ordered nicely, but we need to
1082      * generate them this early for 'break' and 'continue'.
1083      */
1084     if (self->increment) {
1085         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1086         if (!bincrement)
1087             return false;
1088         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1089     } else {
1090         bincrement = end_bincrement = NULL;
1091     }
1092
1093     if (self->postcond) {
1094         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1095         if (!bpostcond)
1096             return false;
1097         bcontinue = bpostcond; /* postcond comes before the increment */
1098     } else {
1099         bpostcond = end_bpostcond = NULL;
1100     }
1101
1102     bout_id = func->ir_func->blocks_count;
1103     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1104     if (!bout)
1105         return false;
1106     bbreak = bout;
1107
1108     /* The loop body... */
1109     if (self->body)
1110     {
1111         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1112         if (!bbody)
1113             return false;
1114
1115         /* enter */
1116         func->curblock = bbody;
1117
1118         old_bbreak          = func->breakblock;
1119         old_bcontinue       = func->continueblock;
1120         func->breakblock    = bbreak;
1121         func->continueblock = bcontinue;
1122
1123         /* generate */
1124         cgen = self->body->expression.codegen;
1125         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1126             return false;
1127
1128         end_bbody = func->curblock;
1129         func->breakblock    = old_bbreak;
1130         func->continueblock = old_bcontinue;
1131     }
1132
1133     /* post-loop-condition */
1134     if (self->postcond)
1135     {
1136         /* enter */
1137         func->curblock = bpostcond;
1138
1139         /* generate */
1140         cgen = self->postcond->expression.codegen;
1141         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1142             return false;
1143
1144         end_bpostcond = func->curblock;
1145     }
1146
1147     /* The incrementor */
1148     if (self->increment)
1149     {
1150         /* enter */
1151         func->curblock = bincrement;
1152
1153         /* generate */
1154         cgen = self->increment->expression.codegen;
1155         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1156             return false;
1157
1158         end_bincrement = func->curblock;
1159     }
1160
1161     /* In any case now, we continue from the outgoing block */
1162     func->curblock = bout;
1163
1164     /* Now all blocks are in place */
1165     /* From 'bin' we jump to whatever comes first */
1166     if      (bprecond)   tmpblock = bprecond;
1167     else if (bbody)      tmpblock = bbody;
1168     else if (bpostcond)  tmpblock = bpostcond;
1169     else                 tmpblock = bout;
1170     if (!ir_block_create_jump(bin, tmpblock))
1171         return false;
1172
1173     /* From precond */
1174     if (bprecond)
1175     {
1176         ir_block *ontrue, *onfalse;
1177         if      (bbody)      ontrue = bbody;
1178         else if (bincrement) ontrue = bincrement;
1179         else if (bpostcond)  ontrue = bpostcond;
1180         else                 ontrue = bprecond;
1181         onfalse = bout;
1182         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1183             return false;
1184     }
1185
1186     /* from body */
1187     if (bbody)
1188     {
1189         if      (bincrement) tmpblock = bincrement;
1190         else if (bpostcond)  tmpblock = bpostcond;
1191         else if (bprecond)   tmpblock = bprecond;
1192         else                 tmpblock = bout;
1193         if (!ir_block_create_jump(end_bbody, tmpblock))
1194             return false;
1195     }
1196
1197     /* from increment */
1198     if (bincrement)
1199     {
1200         if      (bpostcond)  tmpblock = bpostcond;
1201         else if (bprecond)   tmpblock = bprecond;
1202         else if (bbody)      tmpblock = bbody;
1203         else                 tmpblock = bout;
1204         if (!ir_block_create_jump(end_bincrement, tmpblock))
1205             return false;
1206     }
1207
1208     /* from postcond */
1209     if (bpostcond)
1210     {
1211         ir_block *ontrue, *onfalse;
1212         if      (bprecond)   ontrue = bprecond;
1213         else if (bbody)      ontrue = bbody;
1214         else if (bincrement) ontrue = bincrement;
1215         else                 ontrue = bpostcond;
1216         onfalse = bout;
1217         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1218             return false;
1219     }
1220
1221     /* Move 'bout' to the end */
1222     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1223         !ir_function_blocks_add(func->ir_func, bout))
1224     {
1225         ir_block_delete(bout);
1226         return false;
1227     }
1228
1229     return true;
1230 }
1231
1232 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1233 {
1234     ast_expression_codegen *cgen;
1235     ir_value_vector         params;
1236     ir_instr               *callinstr;
1237     size_t i;
1238
1239     ir_value *funval = NULL;
1240
1241     /* return values are never rvalues */
1242     (void)lvalue;
1243
1244     cgen = self->func->expression.codegen;
1245     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1246         return false;
1247     if (!funval)
1248         return false;
1249
1250     MEM_VECTOR_INIT(&params, v);
1251
1252     /* parameters */
1253     for (i = 0; i < self->params_count; ++i)
1254     {
1255         ir_value *param;
1256         ast_expression *expr = self->params[i];
1257
1258         cgen = expr->expression.codegen;
1259         if (!(*cgen)(expr, func, false, &param))
1260             goto error;
1261         if (!param)
1262             goto error;
1263         if (!ir_value_vector_v_add(&params, param))
1264             goto error;
1265     }
1266
1267     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1268     if (!callinstr)
1269         goto error;
1270
1271     for (i = 0; i < params.v_count; ++i) {
1272         if (!ir_call_param(callinstr, params.v[i]))
1273             goto error;
1274     }
1275
1276     *out = ir_call_value(callinstr);
1277
1278     return true;
1279 error:
1280     MEM_VECTOR_CLEAR(&params, v);
1281     return false;
1282 }