]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Removed params from ast_function again. It really is superfluous to copy them, just...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx);                            \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51 }
52
53 /* General expression initialization */
54 static void ast_expression_init(ast_expression *self,
55                                 ast_expression_codegen *codegen)
56 {
57     self->expression.codegen = codegen;
58     self->expression.vtype   = TYPE_VOID;
59     self->expression.next    = NULL;
60 }
61
62 static void ast_expression_delete(ast_expression *self)
63 {
64     if (self->expression.next)
65         ast_delete(self->expression.next);
66 }
67
68 static void ast_expression_delete_full(ast_expression *self)
69 {
70     ast_expression_delete(self);
71     mem_d(self);
72 }
73
74 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
75 {
76     const ast_expression_common *cpex;
77     ast_expression_common *selfex;
78
79     if (!ex)
80         return NULL;
81     else
82     {
83         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
84
85         cpex   = &ex->expression;
86         selfex = &self->expression;
87
88         selfex->vtype = cpex->vtype;
89         if (cpex->next)
90         {
91             selfex->next = ast_type_copy(ctx, cpex->next);
92             if (!selfex->next) {
93                 mem_d(self);
94                 return NULL;
95             }
96         }
97         else
98             selfex->next = NULL;
99
100         /* This may never be codegen()d */
101         selfex->codegen = NULL;
102         return self;
103     }
104 }
105
106 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
107 {
108     ast_instantiate(ast_value, ctx, ast_value_delete);
109     ast_expression_init((ast_expression*)self,
110                         (ast_expression_codegen*)&ast_value_codegen);
111     self->expression.node.keep = true; /* keep */
112
113     self->name = name ? util_strdup(name) : NULL;
114     self->expression.vtype = t;
115     self->expression.next  = NULL;
116     MEM_VECTOR_INIT(self, params);
117     self->isconst = false;
118     memset(&self->constval, 0, sizeof(self->constval));
119
120     self->ir_v    = NULL;
121
122     return self;
123 }
124 MEM_VEC_FUNCTIONS(ast_value, ast_value*, params)
125
126 void ast_value_delete(ast_value* self)
127 {
128     size_t i;
129     if (self->name)
130         mem_d((void*)self->name);
131     for (i = 0; i < self->params_count; ++i)
132         ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */
133     MEM_VECTOR_CLEAR(self, params);
134     if (self->isconst) {
135         switch (self->expression.vtype)
136         {
137         case TYPE_STRING:
138             mem_d((void*)self->constval.vstring);
139             break;
140         case TYPE_FUNCTION:
141             /* unlink us from the function node */
142             self->constval.vfunc->vtype = NULL;
143             break;
144         /* NOTE: delete function? currently collected in
145          * the parser structure
146          */
147         default:
148             break;
149         }
150     }
151     ast_expression_delete((ast_expression*)self);
152     mem_d(self);
153 }
154
155 bool ast_value_set_name(ast_value *self, const char *name)
156 {
157     if (self->name)
158         mem_d((void*)self->name);
159     self->name = util_strdup(name);
160     return !!self->name;
161 }
162
163 ast_binary* ast_binary_new(lex_ctx ctx, int op,
164                            ast_expression* left, ast_expression* right)
165 {
166     ast_instantiate(ast_binary, ctx, ast_binary_delete);
167     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
168
169     self->op = op;
170     self->left = left;
171     self->right = right;
172
173     return self;
174 }
175
176 void ast_binary_delete(ast_binary *self)
177 {
178     ast_unref(self->left);
179     ast_unref(self->right);
180     ast_expression_delete((ast_expression*)self);
181     mem_d(self);
182 }
183
184 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
185 {
186     const ast_expression *outtype;
187
188     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
189
190     if (field->expression.vtype != TYPE_FIELD) {
191         mem_d(self);
192         return NULL;
193     }
194
195     outtype = field->expression.next;
196     if (!outtype) {
197         mem_d(self);
198         /* Error: field has no type... */
199         return NULL;
200     }
201
202     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
203
204     self->expression.vtype = outtype->expression.vtype;
205     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
206
207     self->entity = entity;
208     self->field  = field;
209
210     return self;
211 }
212
213 void ast_entfield_delete(ast_entfield *self)
214 {
215     ast_unref(self->entity);
216     ast_unref(self->field);
217     ast_expression_delete((ast_expression*)self);
218     mem_d(self);
219 }
220
221 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
222 {
223     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
224     if (!ontrue && !onfalse) {
225         /* because it is invalid */
226         mem_d(self);
227         return NULL;
228     }
229     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
230
231     self->cond     = cond;
232     self->on_true  = ontrue;
233     self->on_false = onfalse;
234
235     return self;
236 }
237
238 void ast_ifthen_delete(ast_ifthen *self)
239 {
240     ast_unref(self->cond);
241     if (self->on_true)
242         ast_unref(self->on_true);
243     if (self->on_false)
244         ast_unref(self->on_false);
245     ast_expression_delete((ast_expression*)self);
246     mem_d(self);
247 }
248
249 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
250 {
251     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
252     /* This time NEITHER must be NULL */
253     if (!ontrue || !onfalse) {
254         mem_d(self);
255         return NULL;
256     }
257     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
258
259     self->cond     = cond;
260     self->on_true  = ontrue;
261     self->on_false = onfalse;
262     self->phi_out  = NULL;
263
264     return self;
265 }
266
267 void ast_ternary_delete(ast_ternary *self)
268 {
269     ast_unref(self->cond);
270     ast_unref(self->on_true);
271     ast_unref(self->on_false);
272     ast_expression_delete((ast_expression*)self);
273     mem_d(self);
274 }
275
276 ast_loop* ast_loop_new(lex_ctx ctx,
277                        ast_expression *initexpr,
278                        ast_expression *precond,
279                        ast_expression *postcond,
280                        ast_expression *increment,
281                        ast_expression *body)
282 {
283     ast_instantiate(ast_loop, ctx, ast_loop_delete);
284     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
285
286     self->initexpr  = initexpr;
287     self->precond   = precond;
288     self->postcond  = postcond;
289     self->increment = increment;
290     self->body      = body;
291
292     return self;
293 }
294
295 void ast_loop_delete(ast_loop *self)
296 {
297     if (self->initexpr)
298         ast_unref(self->initexpr);
299     if (self->precond)
300         ast_unref(self->precond);
301     if (self->postcond)
302         ast_unref(self->postcond);
303     if (self->increment)
304         ast_unref(self->increment);
305     if (self->body)
306         ast_unref(self->body);
307     ast_expression_delete((ast_expression*)self);
308     mem_d(self);
309 }
310
311 ast_call* ast_call_new(lex_ctx ctx,
312                        ast_expression *funcexpr)
313 {
314     ast_instantiate(ast_call, ctx, ast_call_delete);
315     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
316
317     MEM_VECTOR_INIT(self, params);
318
319     self->func = funcexpr;
320
321     return self;
322 }
323 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
324
325 void ast_call_delete(ast_call *self)
326 {
327     size_t i;
328     for (i = 0; i < self->params_count; ++i)
329         ast_unref(self->params[i]);
330     MEM_VECTOR_CLEAR(self, params);
331
332     if (self->func)
333         ast_unref(self->func);
334
335     ast_expression_delete((ast_expression*)self);
336     mem_d(self);
337 }
338
339 ast_store* ast_store_new(lex_ctx ctx, int op,
340                          ast_value *dest, ast_expression *source)
341 {
342     ast_instantiate(ast_store, ctx, ast_store_delete);
343     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
344
345     self->op = op;
346     self->dest = dest;
347     self->source = source;
348
349     return self;
350 }
351
352 void ast_store_delete(ast_store *self)
353 {
354     ast_unref(self->dest);
355     ast_unref(self->source);
356     ast_expression_delete((ast_expression*)self);
357     mem_d(self);
358 }
359
360 ast_block* ast_block_new(lex_ctx ctx)
361 {
362     ast_instantiate(ast_block, ctx, ast_block_delete);
363     ast_expression_init((ast_expression*)self,
364                         (ast_expression_codegen*)&ast_block_codegen);
365
366     MEM_VECTOR_INIT(self, locals);
367     MEM_VECTOR_INIT(self, exprs);
368
369     return self;
370 }
371 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
372 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
373
374 void ast_block_delete(ast_block *self)
375 {
376     size_t i;
377     for (i = 0; i < self->exprs_count; ++i)
378         ast_unref(self->exprs[i]);
379     MEM_VECTOR_CLEAR(self, exprs);
380     for (i = 0; i < self->locals_count; ++i)
381         ast_delete(self->locals[i]);
382     MEM_VECTOR_CLEAR(self, locals);
383     ast_expression_delete((ast_expression*)self);
384     mem_d(self);
385 }
386
387 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
388 {
389     ast_instantiate(ast_function, ctx, ast_function_delete);
390
391     if (!vtype ||
392         vtype->isconst ||
393         vtype->expression.vtype != TYPE_FUNCTION)
394     {
395         mem_d(self);
396         return NULL;
397     }
398
399     self->vtype = vtype;
400     self->name = name ? util_strdup(name) : NULL;
401     MEM_VECTOR_INIT(self, blocks);
402
403     self->labelcount = 0;
404     self->builtin = 0;
405
406     self->ir_func = NULL;
407     self->curblock = NULL;
408
409     self->breakblock    = NULL;
410     self->continueblock = NULL;
411
412     vtype->isconst = true;
413     vtype->constval.vfunc = self;
414
415     return self;
416 }
417
418 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
419
420 void ast_function_delete(ast_function *self)
421 {
422     size_t i;
423     if (self->name)
424         mem_d((void*)self->name);
425     if (self->vtype) {
426         /* ast_value_delete(self->vtype); */
427         self->vtype->isconst = false;
428         self->vtype->constval.vfunc = NULL;
429         /* We use unref - if it was stored in a global table it is supposed
430          * to be deleted from *there*
431          */
432         ast_unref(self->vtype);
433     }
434     for (i = 0; i < self->blocks_count; ++i)
435         ast_delete(self->blocks[i]);
436     MEM_VECTOR_CLEAR(self, blocks);
437     mem_d(self);
438 }
439
440 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
441 {
442     unsigned int base = 10;
443 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
444 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
445     if (size < 1)
446         return;
447     checknul();
448     if (!num)
449         addch('0');
450     else {
451         while (num)
452         {
453             int digit = num % base;
454             num /= base;
455             addch('0' + digit);
456         }
457     }
458
459     *buf = 0;
460 #undef addch
461 #undef checknul
462 }
463
464 const char* ast_function_label(ast_function *self, const char *prefix)
465 {
466     size_t id = (self->labelcount++);
467     size_t len = strlen(prefix);
468     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
469     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
470     return self->labelbuf;
471 }
472
473 /*********************************************************************/
474 /* AST codegen part
475  * by convention you must never pass NULL to the 'ir_value **out'
476  * parameter. If you really don't care about the output, pass a dummy.
477  * But I can't imagine a pituation where the output is truly unnecessary.
478  */
479
480 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
481 {
482     /* NOTE: This is the codegen for a variable used in an expression.
483      * It is not the codegen to generate the value. For this purpose,
484      * ast_local_codegen and ast_global_codegen are to be used before this
485      * is executed. ast_function_codegen should take care of its locals,
486      * and the ast-user should take care of ast_global_codegen to be used
487      * on all the globals.
488      */
489     if (!self->ir_v) {
490         printf("ast_value used before generated (%s)\n", self->name);
491         return false;
492     }
493     *out = self->ir_v;
494     return true;
495 }
496
497 bool ast_global_codegen(ast_value *self, ir_builder *ir)
498 {
499     ir_value *v = NULL;
500     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
501     {
502         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
503         if (!func)
504             return false;
505
506         self->constval.vfunc->ir_func = func;
507         self->ir_v = func->value;
508         /* The function is filled later on ast_function_codegen... */
509         return true;
510     }
511
512     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
513     if (!v)
514         return false;
515
516     if (self->isconst) {
517         switch (self->expression.vtype)
518         {
519             case TYPE_FLOAT:
520                 if (!ir_value_set_float(v, self->constval.vfloat))
521                     goto error;
522                 break;
523             case TYPE_VECTOR:
524                 if (!ir_value_set_vector(v, self->constval.vvec))
525                     goto error;
526                 break;
527             case TYPE_STRING:
528                 if (!ir_value_set_string(v, self->constval.vstring))
529                     goto error;
530                 break;
531             case TYPE_FUNCTION:
532                 printf("global of type function not properly generated\n");
533                 goto error;
534                 /* Cannot generate an IR value for a function,
535                  * need a pointer pointing to a function rather.
536                  */
537             default:
538                 printf("TODO: global constant type %i\n", self->expression.vtype);
539                 break;
540         }
541     }
542
543     /* link us to the ir_value */
544     self->ir_v = v;
545     return true;
546
547 error: /* clean up */
548     ir_value_delete(v);
549     return false;
550 }
551
552 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
553 {
554     ir_value *v = NULL;
555     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
556     {
557         /* Do we allow local functions? I think not...
558          * this is NOT a function pointer atm.
559          */
560         return false;
561     }
562
563     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
564     if (!v)
565         return false;
566
567     /* A constant local... hmmm...
568      * I suppose the IR will have to deal with this
569      */
570     if (self->isconst) {
571         switch (self->expression.vtype)
572         {
573             case TYPE_FLOAT:
574                 if (!ir_value_set_float(v, self->constval.vfloat))
575                     goto error;
576                 break;
577             case TYPE_VECTOR:
578                 if (!ir_value_set_vector(v, self->constval.vvec))
579                     goto error;
580                 break;
581             case TYPE_STRING:
582                 if (!ir_value_set_string(v, self->constval.vstring))
583                     goto error;
584                 break;
585             default:
586                 printf("TODO: global constant type %i\n", self->expression.vtype);
587                 break;
588         }
589     }
590
591     /* link us to the ir_value */
592     self->ir_v = v;
593     return true;
594
595 error: /* clean up */
596     ir_value_delete(v);
597     return false;
598 }
599
600 bool ast_function_codegen(ast_function *self, ir_builder *ir)
601 {
602     ir_function *irf;
603     ir_value    *dummy;
604     size_t    i;
605
606     irf = self->ir_func;
607     if (!irf) {
608         printf("ast_function's related ast_value was not generated yet\n");
609         return false;
610     }
611
612     /* fill the parameter list */
613     for (i = 0; i < self->vtype->params_count; ++i)
614     {
615         if (!ir_function_params_add(irf, self->vtype->params[i]->expression.vtype))
616             return false;
617         if (!self->builtin) {
618             if (!ast_local_codegen(self->vtype->params[i], self->ir_func, true))
619                 return false;
620         }
621     }
622
623     if (self->builtin) {
624         irf->builtin = self->builtin;
625         return true;
626     }
627
628     self->curblock = ir_function_create_block(irf, "entry");
629     if (!self->curblock)
630         return false;
631
632     for (i = 0; i < self->blocks_count; ++i) {
633         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
634         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
635             return false;
636     }
637
638     /* TODO: check return types */
639     if (!self->curblock->is_return)
640     {
641         if (!self->vtype->expression.next ||
642             self->vtype->expression.next->expression.vtype == TYPE_VOID)
643         {
644             return ir_block_create_return(self->curblock, NULL);
645         }
646         else
647         {
648             /* error("missing return"); */
649             return false;
650         }
651     }
652     return true;
653 }
654
655 /* Note, you will not see ast_block_codegen generate ir_blocks.
656  * To the AST and the IR, blocks are 2 different things.
657  * In the AST it represents a block of code, usually enclosed in
658  * curly braces {...}.
659  * While in the IR it represents a block in terms of control-flow.
660  */
661 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
662 {
663     size_t i;
664
665     /* We don't use this
666      * Note: an ast-representation using the comma-operator
667      * of the form: (a, b, c) = x should not assign to c...
668      */
669     (void)lvalue;
670
671     /* output is NULL at first, we'll have each expression
672      * assign to out output, thus, a comma-operator represention
673      * using an ast_block will return the last generated value,
674      * so: (b, c) + a  executed both b and c, and returns c,
675      * which is then added to a.
676      */
677     *out = NULL;
678
679     /* generate locals */
680     for (i = 0; i < self->locals_count; ++i)
681     {
682         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
683             return false;
684     }
685
686     for (i = 0; i < self->exprs_count; ++i)
687     {
688         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
689         if (!(*gen)(self->exprs[i], func, false, out))
690             return false;
691     }
692
693     return true;
694 }
695
696 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
697 {
698     ast_expression_codegen *cgen;
699     ir_value *left, *right;
700
701     cgen = self->dest->expression.codegen;
702     /* lvalue! */
703     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
704         return false;
705
706     cgen = self->source->expression.codegen;
707     /* rvalue! */
708     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
709         return false;
710
711     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
712         return false;
713
714     /* Theoretically, an assinment returns its left side as an
715      * lvalue, if we don't need an lvalue though, we return
716      * the right side as an rvalue, otherwise we have to
717      * somehow know whether or not we need to dereference the pointer
718      * on the left side - that is: OP_LOAD if it was an address.
719      * Also: in original QC we cannot OP_LOADP *anyway*.
720      */
721     *out = (lvalue ? left : right);
722
723     return true;
724 }
725
726 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
727 {
728     ast_expression_codegen *cgen;
729     ir_value *left, *right;
730
731     /* In the context of a binary operation, we can disregard
732      * the lvalue flag.
733      */
734      (void)lvalue;
735
736     cgen = self->left->expression.codegen;
737     /* lvalue! */
738     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
739         return false;
740
741     cgen = self->right->expression.codegen;
742     /* rvalue! */
743     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
744         return false;
745
746     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
747                                  self->op, left, right);
748     if (!*out)
749         return false;
750
751     return true;
752 }
753
754 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
755 {
756     ast_expression_codegen *cgen;
757     ir_value *ent, *field;
758
759     /* This function needs to take the 'lvalue' flag into account!
760      * As lvalue we provide a field-pointer, as rvalue we provide the
761      * value in a temp.
762      */
763
764     cgen = self->entity->expression.codegen;
765     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
766         return false;
767
768     cgen = self->field->expression.codegen;
769     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
770         return false;
771
772     if (lvalue) {
773         /* address! */
774         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
775                                             ent, field);
776     } else {
777         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
778                                              ent, field, self->expression.vtype);
779     }
780     if (!*out)
781         return false;
782
783     /* Hm that should be it... */
784     return true;
785 }
786
787 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
788 {
789     ast_expression_codegen *cgen;
790
791     ir_value *condval;
792     ir_value *dummy;
793
794     ir_block *cond = func->curblock;
795     ir_block *ontrue;
796     ir_block *onfalse;
797     ir_block *merge;
798
799     /* We don't output any value, thus also don't care about r/lvalue */
800     (void)out;
801     (void)lvalue;
802
803     /* generate the condition */
804     func->curblock = cond;
805     cgen = self->cond->expression.codegen;
806     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
807         return false;
808
809     /* on-true path */
810
811     if (self->on_true) {
812         /* create on-true block */
813         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
814         if (!ontrue)
815             return false;
816
817         /* enter the block */
818         func->curblock = ontrue;
819
820         /* generate */
821         cgen = self->on_true->expression.codegen;
822         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
823             return false;
824     } else
825         ontrue = NULL;
826
827     /* on-false path */
828     if (self->on_false) {
829         /* create on-false block */
830         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
831         if (!onfalse)
832             return false;
833
834         /* enter the block */
835         func->curblock = onfalse;
836
837         /* generate */
838         cgen = self->on_false->expression.codegen;
839         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
840             return false;
841     } else
842         onfalse = NULL;
843
844     /* Merge block were they all merge in to */
845     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
846     if (!merge)
847         return false;
848
849     /* add jumps ot the merge block */
850     if (ontrue && !ir_block_create_jump(ontrue, merge))
851         return false;
852     if (onfalse && !ir_block_create_jump(onfalse, merge))
853         return false;
854
855     /* we create the if here, that way all blocks are ordered :)
856      */
857     if (!ir_block_create_if(cond, condval,
858                             (ontrue  ? ontrue  : merge),
859                             (onfalse ? onfalse : merge)))
860     {
861         return false;
862     }
863
864     /* Now enter the merge block */
865     func->curblock = merge;
866
867     return true;
868 }
869
870 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
871 {
872     ast_expression_codegen *cgen;
873
874     ir_value *condval;
875     ir_value *trueval, *falseval;
876     ir_instr *phi;
877
878     ir_block *cond = func->curblock;
879     ir_block *ontrue;
880     ir_block *onfalse;
881     ir_block *merge;
882
883     /* In theory it shouldn't be possible to pass through a node twice, but
884      * in case we add any kind of optimization pass for the AST itself, it
885      * may still happen, thus we remember a created ir_value and simply return one
886      * if it already exists.
887      */
888     if (self->phi_out) {
889         *out = self->phi_out;
890         return true;
891     }
892
893     /* Ternary can never create an lvalue... */
894     if (lvalue)
895         return false;
896
897     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
898
899     /* generate the condition */
900     func->curblock = cond;
901     cgen = self->cond->expression.codegen;
902     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
903         return false;
904
905     /* create on-true block */
906     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
907     if (!ontrue)
908         return false;
909     else
910     {
911         /* enter the block */
912         func->curblock = ontrue;
913
914         /* generate */
915         cgen = self->on_true->expression.codegen;
916         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
917             return false;
918     }
919
920     /* create on-false block */
921     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
922     if (!onfalse)
923         return false;
924     else
925     {
926         /* enter the block */
927         func->curblock = onfalse;
928
929         /* generate */
930         cgen = self->on_false->expression.codegen;
931         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
932             return false;
933     }
934
935     /* create merge block */
936     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
937     if (!merge)
938         return false;
939     /* jump to merge block */
940     if (!ir_block_create_jump(ontrue, merge))
941         return false;
942     if (!ir_block_create_jump(onfalse, merge))
943         return false;
944
945     /* create if instruction */
946     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
947         return false;
948
949     /* Now enter the merge block */
950     func->curblock = merge;
951
952     /* Here, now, we need a PHI node
953      * but first some sanity checking...
954      */
955     if (trueval->vtype != falseval->vtype) {
956         /* error("ternary with different types on the two sides"); */
957         return false;
958     }
959
960     /* create PHI */
961     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
962     if (!phi ||
963         !ir_phi_add(phi, ontrue,  trueval) ||
964         !ir_phi_add(phi, onfalse, falseval))
965     {
966         return false;
967     }
968
969     self->phi_out = ir_phi_value(phi);
970     *out = self->phi_out;
971
972     return true;
973 }
974
975 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
976 {
977     ast_expression_codegen *cgen;
978
979     ir_value *dummy      = NULL;
980     ir_value *precond    = NULL;
981     ir_value *postcond   = NULL;
982
983     /* Since we insert some jumps "late" so we have blocks
984      * ordered "nicely", we need to keep track of the actual end-blocks
985      * of expressions to add the jumps to.
986      */
987     ir_block *bbody      = NULL, *end_bbody      = NULL;
988     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
989     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
990     ir_block *bincrement = NULL, *end_bincrement = NULL;
991     ir_block *bout       = NULL, *bin            = NULL;
992
993     /* let's at least move the outgoing block to the end */
994     size_t    bout_id;
995
996     /* 'break' and 'continue' need to be able to find the right blocks */
997     ir_block *bcontinue     = NULL;
998     ir_block *bbreak        = NULL;
999
1000     ir_block *old_bcontinue = NULL;
1001     ir_block *old_bbreak    = NULL;
1002
1003     ir_block *tmpblock      = NULL;
1004
1005     (void)lvalue;
1006     (void)out;
1007
1008     /* NOTE:
1009      * Should we ever need some kind of block ordering, better make this function
1010      * move blocks around than write a block ordering algorithm later... after all
1011      * the ast and ir should work together, not against each other.
1012      */
1013
1014     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1015      * anyway if for example it contains a ternary.
1016      */
1017     if (self->initexpr)
1018     {
1019         cgen = self->initexpr->expression.codegen;
1020         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1021             return false;
1022     }
1023
1024     /* Store the block from which we enter this chaos */
1025     bin = func->curblock;
1026
1027     /* The pre-loop condition needs its own block since we
1028      * need to be able to jump to the start of that expression.
1029      */
1030     if (self->precond)
1031     {
1032         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1033         if (!bprecond)
1034             return false;
1035
1036         /* the pre-loop-condition the least important place to 'continue' at */
1037         bcontinue = bprecond;
1038
1039         /* enter */
1040         func->curblock = bprecond;
1041
1042         /* generate */
1043         cgen = self->precond->expression.codegen;
1044         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1045             return false;
1046
1047         end_bprecond = func->curblock;
1048     } else {
1049         bprecond = end_bprecond = NULL;
1050     }
1051
1052     /* Now the next blocks won't be ordered nicely, but we need to
1053      * generate them this early for 'break' and 'continue'.
1054      */
1055     if (self->increment) {
1056         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1057         if (!bincrement)
1058             return false;
1059         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1060     } else {
1061         bincrement = end_bincrement = NULL;
1062     }
1063
1064     if (self->postcond) {
1065         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1066         if (!bpostcond)
1067             return false;
1068         bcontinue = bpostcond; /* postcond comes before the increment */
1069     } else {
1070         bpostcond = end_bpostcond = NULL;
1071     }
1072
1073     bout_id = func->ir_func->blocks_count;
1074     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1075     if (!bout)
1076         return false;
1077     bbreak = bout;
1078
1079     /* The loop body... */
1080     if (self->body)
1081     {
1082         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1083         if (!bbody)
1084             return false;
1085
1086         /* enter */
1087         func->curblock = bbody;
1088
1089         old_bbreak          = func->breakblock;
1090         old_bcontinue       = func->continueblock;
1091         func->breakblock    = bbreak;
1092         func->continueblock = bcontinue;
1093
1094         /* generate */
1095         cgen = self->body->expression.codegen;
1096         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1097             return false;
1098
1099         end_bbody = func->curblock;
1100         func->breakblock    = old_bbreak;
1101         func->continueblock = old_bcontinue;
1102     }
1103
1104     /* post-loop-condition */
1105     if (self->postcond)
1106     {
1107         /* enter */
1108         func->curblock = bpostcond;
1109
1110         /* generate */
1111         cgen = self->postcond->expression.codegen;
1112         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1113             return false;
1114
1115         end_bpostcond = func->curblock;
1116     }
1117
1118     /* The incrementor */
1119     if (self->increment)
1120     {
1121         /* enter */
1122         func->curblock = bincrement;
1123
1124         /* generate */
1125         cgen = self->increment->expression.codegen;
1126         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1127             return false;
1128
1129         end_bincrement = func->curblock;
1130     }
1131
1132     /* In any case now, we continue from the outgoing block */
1133     func->curblock = bout;
1134
1135     /* Now all blocks are in place */
1136     /* From 'bin' we jump to whatever comes first */
1137     if      (bprecond)   tmpblock = bprecond;
1138     else if (bbody)      tmpblock = bbody;
1139     else if (bpostcond)  tmpblock = bpostcond;
1140     else                 tmpblock = bout;
1141     if (!ir_block_create_jump(bin, tmpblock))
1142         return false;
1143
1144     /* From precond */
1145     if (bprecond)
1146     {
1147         ir_block *ontrue, *onfalse;
1148         if      (bbody)      ontrue = bbody;
1149         else if (bincrement) ontrue = bincrement;
1150         else if (bpostcond)  ontrue = bpostcond;
1151         else                 ontrue = bprecond;
1152         onfalse = bout;
1153         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1154             return false;
1155     }
1156
1157     /* from body */
1158     if (bbody)
1159     {
1160         if      (bincrement) tmpblock = bincrement;
1161         else if (bpostcond)  tmpblock = bpostcond;
1162         else if (bprecond)   tmpblock = bprecond;
1163         else                 tmpblock = bout;
1164         if (!ir_block_create_jump(end_bbody, tmpblock))
1165             return false;
1166     }
1167
1168     /* from increment */
1169     if (bincrement)
1170     {
1171         if      (bpostcond)  tmpblock = bpostcond;
1172         else if (bprecond)   tmpblock = bprecond;
1173         else if (bbody)      tmpblock = bbody;
1174         else                 tmpblock = bout;
1175         if (!ir_block_create_jump(end_bincrement, tmpblock))
1176             return false;
1177     }
1178
1179     /* from postcond */
1180     if (bpostcond)
1181     {
1182         ir_block *ontrue, *onfalse;
1183         if      (bprecond)   ontrue = bprecond;
1184         else if (bbody)      ontrue = bbody;
1185         else if (bincrement) ontrue = bincrement;
1186         else                 ontrue = bpostcond;
1187         onfalse = bout;
1188         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1189             return false;
1190     }
1191
1192     /* Move 'bout' to the end */
1193     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1194         !ir_function_blocks_add(func->ir_func, bout))
1195     {
1196         ir_block_delete(bout);
1197         return false;
1198     }
1199
1200     return true;
1201 }
1202
1203 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1204 {
1205     ast_expression_codegen *cgen;
1206     ir_value_vector         params;
1207     ir_instr               *callinstr;
1208     size_t i;
1209
1210     ir_value *funval = NULL;
1211
1212     /* return values are never rvalues */
1213     (void)lvalue;
1214
1215     cgen = self->func->expression.codegen;
1216     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1217         return false;
1218     if (!funval)
1219         return false;
1220
1221     MEM_VECTOR_INIT(&params, v);
1222
1223     /* parameters */
1224     for (i = 0; i < self->params_count; ++i)
1225     {
1226         ir_value *param;
1227         ast_expression *expr = self->params[i];
1228
1229         cgen = expr->expression.codegen;
1230         if (!(*cgen)(expr, func, false, &param))
1231             goto error;
1232         if (!param)
1233             goto error;
1234         if (!ir_value_vector_v_add(&params, param))
1235             goto error;
1236     }
1237
1238     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1239     if (!callinstr)
1240         goto error;
1241
1242     for (i = 0; i < params.v_count; ++i) {
1243         if (!ir_call_param(callinstr, params.v[i]))
1244             goto error;
1245     }
1246
1247     *out = ir_call_value(callinstr);
1248
1249     return true;
1250 error:
1251     MEM_VECTOR_CLEAR(&params, v);
1252     return false;
1253 }