]> git.xonotic.org Git - xonotic/darkplaces.git/blob - gl_rmain.c
rcon: support variable expansion in received commands
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "image.h"
26 #include "ft2.h"
27 #include "csprogs.h"
28 #include "cl_video.h"
29 #include "cl_collision.h"
30
31 #ifdef WIN32
32 // Enable NVIDIA High Performance Graphics while using Integrated Graphics.
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 __declspec(dllexport) DWORD NvOptimusEnablement = 0x00000001;
37 #ifdef __cplusplus
38 }
39 #endif
40 #endif
41
42 mempool_t *r_main_mempool;
43 rtexturepool_t *r_main_texturepool;
44
45 int r_textureframe = 0; ///< used only by R_GetCurrentTexture, incremented per view and per UI render
46
47 static qbool r_loadnormalmap;
48 static qbool r_loadgloss;
49 qbool r_loadfog;
50 static qbool r_loaddds;
51 static qbool r_savedds;
52 static qbool r_gpuskeletal;
53
54 //
55 // screen size info
56 //
57 r_refdef_t r_refdef;
58
59 cvar_t r_motionblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur", "0", "screen motionblur - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
60 cvar_t r_damageblur = {CF_CLIENT | CF_ARCHIVE, "r_damageblur", "0", "screen motionblur based on damage - value represents intensity, somewhere around 0.5 recommended - NOTE: bad performance on multi-gpu!"};
61 cvar_t r_motionblur_averaging = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_averaging", "0.1", "sliding average reaction time for velocity (higher = slower adaption to change)"};
62 cvar_t r_motionblur_randomize = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"};
63 cvar_t r_motionblur_minblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_minblur", "0.5", "factor of blur to apply at all times (always have this amount of blur no matter what the other factors are)"};
64 cvar_t r_motionblur_maxblur = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_maxblur", "0.9", "maxmimum amount of blur"};
65 cvar_t r_motionblur_velocityfactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor", "1", "factoring in of player velocity to the blur equation - the faster the player moves around the map, the more blur they get"};
66 cvar_t r_motionblur_velocityfactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_minspeed", "400", "lower value of velocity when it starts to factor into blur equation"};
67 cvar_t r_motionblur_velocityfactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_velocityfactor_maxspeed", "800", "upper value of velocity when it reaches the peak factor into blur equation"};
68 cvar_t r_motionblur_mousefactor = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor", "2", "factoring in of mouse acceleration to the blur equation - the faster the player turns their mouse, the more blur they get"};
69 cvar_t r_motionblur_mousefactor_minspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_minspeed", "0", "lower value of mouse acceleration when it starts to factor into blur equation"};
70 cvar_t r_motionblur_mousefactor_maxspeed = {CF_CLIENT | CF_ARCHIVE, "r_motionblur_mousefactor_maxspeed", "50", "upper value of mouse acceleration when it reaches the peak factor into blur equation"};
71
72 cvar_t r_depthfirst = {CF_CLIENT | CF_ARCHIVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
73 cvar_t r_useinfinitefarclip = {CF_CLIENT | CF_ARCHIVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
74 cvar_t r_farclip_base = {CF_CLIENT, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"};
75 cvar_t r_farclip_world = {CF_CLIENT, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"};
76 cvar_t r_nearclip = {CF_CLIENT, "r_nearclip", "1", "distance from camera of nearclip plane" };
77 cvar_t r_deformvertexes = {CF_CLIENT, "r_deformvertexes", "1", "allows use of deformvertexes in shader files (can be turned off to check performance impact)"};
78 cvar_t r_transparent = {CF_CLIENT, "r_transparent", "1", "allows use of transparent surfaces (can be turned off to check performance impact)"};
79 cvar_t r_transparent_alphatocoverage = {CF_CLIENT, "r_transparent_alphatocoverage", "1", "enables GL_ALPHA_TO_COVERAGE antialiasing technique on alphablend and alphatest surfaces when using vid_samples 2 or higher"};
80 cvar_t r_transparent_sortsurfacesbynearest = {CF_CLIENT, "r_transparent_sortsurfacesbynearest", "1", "sort entity and world surfaces by nearest point on bounding box instead of using the center of the bounding box, usually reduces sorting artifacts"};
81 cvar_t r_transparent_useplanardistance = {CF_CLIENT, "r_transparent_useplanardistance", "0", "sort transparent meshes by distance from view plane rather than spherical distance to the chosen point"};
82 cvar_t r_showoverdraw = {CF_CLIENT, "r_showoverdraw", "0", "shows overlapping geometry"};
83 cvar_t r_showbboxes = {CF_CLIENT, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
84 cvar_t r_showbboxes_client = {CF_CLIENT, "r_showbboxes_client", "0", "shows bounding boxes of clientside qc entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
85 cvar_t r_showsurfaces = {CF_CLIENT, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
86 cvar_t r_showtris = {CF_CLIENT, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
87 cvar_t r_shownormals = {CF_CLIENT, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
88 cvar_t r_showlighting = {CF_CLIENT, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
89 cvar_t r_showcollisionbrushes = {CF_CLIENT, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
90 cvar_t r_showcollisionbrushes_polygonfactor = {CF_CLIENT, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
91 cvar_t r_showcollisionbrushes_polygonoffset = {CF_CLIENT, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
92 cvar_t r_showdisabledepthtest = {CF_CLIENT, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
93 cvar_t r_showspriteedges = {CF_CLIENT, "r_showspriteedges", "0", "renders a debug outline to show the polygon shape of each sprite frame rendered (may be 2 or more in case of interpolated animations), for debugging rendering bugs with specific view types"};
94 cvar_t r_showparticleedges = {CF_CLIENT, "r_showparticleedges", "0", "renders a debug outline to show the polygon shape of each particle, for debugging rendering bugs with specific view types"};
95 cvar_t r_drawportals = {CF_CLIENT, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
96 cvar_t r_drawentities = {CF_CLIENT, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
97 cvar_t r_draw2d = {CF_CLIENT, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"};
98 cvar_t r_drawworld = {CF_CLIENT, "r_drawworld","1", "draw world (most static stuff)"};
99 cvar_t r_drawviewmodel = {CF_CLIENT, "r_drawviewmodel","1", "draw your weapon model"};
100 cvar_t r_drawexteriormodel = {CF_CLIENT, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"};
101 cvar_t r_cullentities_trace = {CF_CLIENT, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
102 cvar_t r_cullentities_trace_entityocclusion = {CF_CLIENT, "r_cullentities_trace_entityocclusion", "1", "check for occluding entities such as doors, not just world hull"};
103 cvar_t r_cullentities_trace_samples = {CF_CLIENT, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"};
104 cvar_t r_cullentities_trace_tempentitysamples = {CF_CLIENT, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"};
105 cvar_t r_cullentities_trace_enlarge = {CF_CLIENT, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
106 cvar_t r_cullentities_trace_expand = {CF_CLIENT, "r_cullentities_trace_expand", "0", "box expanded by this many units for entity culling"};
107 cvar_t r_cullentities_trace_pad = {CF_CLIENT, "r_cullentities_trace_pad", "8", "accept traces that hit within this many units of the box"};
108 cvar_t r_cullentities_trace_delay = {CF_CLIENT, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
109 cvar_t r_cullentities_trace_eyejitter = {CF_CLIENT, "r_cullentities_trace_eyejitter", "16", "randomly offset rays from the eye by this much to reduce the odds of flickering"};
110 cvar_t r_sortentities = {CF_CLIENT, "r_sortentities", "0", "sort entities before drawing (might be faster)"};
111 cvar_t r_speeds = {CF_CLIENT, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
112 cvar_t r_fullbright = {CF_CLIENT, "r_fullbright","0", "makes map very bright and renders faster"};
113
114 cvar_t r_fullbright_directed = {CF_CLIENT, "r_fullbright_directed", "0", "render fullbright things (unlit worldmodel and EF_FULLBRIGHT entities, but not fullbright shaders) using a constant light direction instead to add more depth while keeping uniform brightness"};
115 cvar_t r_fullbright_directed_ambient = {CF_CLIENT, "r_fullbright_directed_ambient", "0.5", "ambient light multiplier for directed fullbright"};
116 cvar_t r_fullbright_directed_diffuse = {CF_CLIENT, "r_fullbright_directed_diffuse", "0.75", "diffuse light multiplier for directed fullbright"};
117 cvar_t r_fullbright_directed_pitch = {CF_CLIENT, "r_fullbright_directed_pitch", "20", "constant pitch direction ('height') of the fake light source to use for fullbright"};
118 cvar_t r_fullbright_directed_pitch_relative = {CF_CLIENT, "r_fullbright_directed_pitch_relative", "0", "whether r_fullbright_directed_pitch is interpreted as absolute (0) or relative (1) pitch"};
119
120 cvar_t r_wateralpha = {CF_CLIENT | CF_ARCHIVE, "r_wateralpha","1", "opacity of water polygons"};
121 cvar_t r_dynamic = {CF_CLIENT | CF_ARCHIVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
122 cvar_t r_fullbrights = {CF_CLIENT | CF_ARCHIVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
123 cvar_t r_shadows = {CF_CLIENT | CF_ARCHIVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."};
124 cvar_t r_shadows_darken = {CF_CLIENT | CF_ARCHIVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"};
125 cvar_t r_shadows_throwdistance = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
126 cvar_t r_shadows_throwdirection = {CF_CLIENT | CF_ARCHIVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"};
127 cvar_t r_shadows_drawafterrtlighting = {CF_CLIENT | CF_ARCHIVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."};
128 cvar_t r_shadows_castfrombmodels = {CF_CLIENT | CF_ARCHIVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"};
129 cvar_t r_shadows_focus = {CF_CLIENT | CF_ARCHIVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"};
130 cvar_t r_shadows_shadowmapscale = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapscale", "0.25", "higher values increase shadowmap quality at a cost of area covered (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."};
131 cvar_t r_shadows_shadowmapbias = {CF_CLIENT | CF_ARCHIVE, "r_shadows_shadowmapbias", "-1", "sets shadowmap bias for fake shadows. -1 sets the value of r_shadow_shadowmapping_bias. Needs shadowmapping ON."};
132 cvar_t r_q1bsp_skymasking = {CF_CLIENT, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
133 cvar_t r_polygonoffset_submodel_factor = {CF_CLIENT, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
134 cvar_t r_polygonoffset_submodel_offset = {CF_CLIENT, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
135 cvar_t r_polygonoffset_decals_factor = {CF_CLIENT, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"};
136 cvar_t r_polygonoffset_decals_offset = {CF_CLIENT, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"};
137 cvar_t r_fog_exp2 = {CF_CLIENT, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
138 cvar_t r_fog_clear = {CF_CLIENT, "r_fog_clear", "1", "clears renderbuffer with fog color before render starts"};
139 cvar_t r_drawfog = {CF_CLIENT | CF_ARCHIVE, "r_drawfog", "1", "allows one to disable fog rendering"};
140 cvar_t r_transparentdepthmasking = {CF_CLIENT | CF_ARCHIVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"};
141 cvar_t r_transparent_sortmindist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmindist", "0", "lower distance limit for transparent sorting"};
142 cvar_t r_transparent_sortmaxdist = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortmaxdist", "32768", "upper distance limit for transparent sorting"};
143 cvar_t r_transparent_sortarraysize = {CF_CLIENT | CF_ARCHIVE, "r_transparent_sortarraysize", "4096", "number of distance-sorting layers"};
144 cvar_t r_celshading = {CF_CLIENT | CF_ARCHIVE, "r_celshading", "0", "cartoon-style light shading (OpenGL 2.x only)"}; // FIXME remove OpenGL 2.x only once implemented for DX9
145 cvar_t r_celoutlines = {CF_CLIENT | CF_ARCHIVE, "r_celoutlines", "0", "cartoon-style outlines (requires r_shadow_deferred)"};
146
147 cvar_t gl_fogenable = {CF_CLIENT, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
148 cvar_t gl_fogdensity = {CF_CLIENT, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
149 cvar_t gl_fogred = {CF_CLIENT, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
150 cvar_t gl_foggreen = {CF_CLIENT, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
151 cvar_t gl_fogblue = {CF_CLIENT, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
152 cvar_t gl_fogstart = {CF_CLIENT, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
153 cvar_t gl_fogend = {CF_CLIENT, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
154 cvar_t gl_skyclip = {CF_CLIENT, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
155
156 cvar_t r_texture_dds_load = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"};
157 cvar_t r_texture_dds_save = {CF_CLIENT | CF_ARCHIVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"};
158
159 cvar_t r_usedepthtextures = {CF_CLIENT | CF_ARCHIVE, "r_usedepthtextures", "1", "use depth texture instead of depth renderbuffer where possible, uses less video memory but may render slower (or faster) depending on hardware"};
160 cvar_t r_viewfbo = {CF_CLIENT | CF_ARCHIVE, "r_viewfbo", "0", "enables use of an 8bit (1) or 16bit (2) or 32bit (3) per component float framebuffer render, which may be at a different resolution than the video mode"};
161 cvar_t r_rendertarget_debug = {CF_CLIENT, "r_rendertarget_debug", "-1", "replaces the view with the contents of the specified render target (by number - note that these can fluctuate depending on scene)"};
162 cvar_t r_viewscale = {CF_CLIENT | CF_ARCHIVE, "r_viewscale", "1", "scaling factor for resolution of the fbo rendering method, must be > 0, can be above 1 for a costly antialiasing behavior, typical values are 0.5 for 1/4th as many pixels rendered, or 1 for normal rendering"};
163 cvar_t r_viewscale_fpsscaling = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling", "0", "change resolution based on framerate"};
164 cvar_t r_viewscale_fpsscaling_min = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_min", "0.0625", "worst acceptable quality"};
165 cvar_t r_viewscale_fpsscaling_multiply = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_multiply", "5", "adjust quality up or down by the frametime difference from 1.0/target, multiplied by this factor"};
166 cvar_t r_viewscale_fpsscaling_stepsize = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepsize", "0.01", "smallest adjustment to hit the target framerate (this value prevents minute oscillations)"};
167 cvar_t r_viewscale_fpsscaling_stepmax = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_stepmax", "1.00", "largest adjustment to hit the target framerate (this value prevents wild overshooting of the estimate)"};
168 cvar_t r_viewscale_fpsscaling_target = {CF_CLIENT | CF_ARCHIVE, "r_viewscale_fpsscaling_target", "70", "desired framerate"};
169
170 cvar_t r_glsl_skeletal = {CF_CLIENT | CF_ARCHIVE, "r_glsl_skeletal", "1", "render skeletal models faster using a gpu-skinning technique"};
171 cvar_t r_glsl_deluxemapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
172 cvar_t r_glsl_offsetmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
173 cvar_t r_glsl_offsetmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_steps", "2", "offset mapping steps (note: too high values may be not supported by your GPU)"};
174 cvar_t r_glsl_offsetmapping_reliefmapping = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
175 cvar_t r_glsl_offsetmapping_reliefmapping_steps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_steps", "10", "relief mapping steps (note: too high values may be not supported by your GPU)"};
176 cvar_t r_glsl_offsetmapping_reliefmapping_refinesteps = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_reliefmapping_refinesteps", "5", "relief mapping refine steps (these are a binary search executed as the last step as given by r_glsl_offsetmapping_reliefmapping_steps)"};
177 cvar_t r_glsl_offsetmapping_scale = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
178 cvar_t r_glsl_offsetmapping_lod = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod", "0", "apply distance-based level-of-detail correction to number of offsetmappig steps, effectively making it render faster on large open-area maps"};
179 cvar_t r_glsl_offsetmapping_lod_distance = {CF_CLIENT | CF_ARCHIVE, "r_glsl_offsetmapping_lod_distance", "32", "first LOD level distance, second level (-50% steps) is 2x of this, third (33%) - 3x etc."};
180 cvar_t r_glsl_postprocess = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
181 cvar_t r_glsl_postprocess_uservec1 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
182 cvar_t r_glsl_postprocess_uservec2 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
183 cvar_t r_glsl_postprocess_uservec3 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
184 cvar_t r_glsl_postprocess_uservec4 = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
185 cvar_t r_glsl_postprocess_uservec1_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
186 cvar_t r_glsl_postprocess_uservec2_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
187 cvar_t r_glsl_postprocess_uservec3_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
188 cvar_t r_glsl_postprocess_uservec4_enable = {CF_CLIENT | CF_ARCHIVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"};
189 cvar_t r_colorfringe = {CF_CLIENT | CF_ARCHIVE, "r_colorfringe", "0", "Chromatic aberration. Values higher than 0.025 will noticeably distort the image"};
190 cvar_t r_fxaa = {CF_CLIENT | CF_ARCHIVE, "r_fxaa", "0", "fast approximate anti aliasing"};
191
192 cvar_t r_water = {CF_CLIENT | CF_ARCHIVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
193 cvar_t r_water_cameraentitiesonly = {CF_CLIENT | CF_ARCHIVE, "r_water_cameraentitiesonly", "0", "whether to only show QC-defined reflections/refractions (typically used for camera- or portal-like effects)"};
194 cvar_t r_water_clippingplanebias = {CF_CLIENT | CF_ARCHIVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
195 cvar_t r_water_resolutionmultiplier = {CF_CLIENT | CF_ARCHIVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
196 cvar_t r_water_refractdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
197 cvar_t r_water_reflectdistort = {CF_CLIENT | CF_ARCHIVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
198 cvar_t r_water_scissormode = {CF_CLIENT, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"};
199 cvar_t r_water_lowquality = {CF_CLIENT, "r_water_lowquality", "0", "special option to accelerate water rendering: 1 disables all dynamic lights, 2 disables particles too"};
200 cvar_t r_water_hideplayer = {CF_CLIENT | CF_ARCHIVE, "r_water_hideplayer", "0", "if set to 1 then player will be hidden in refraction views, if set to 2 then player will also be hidden in reflection views, player is always visible in camera views"};
201
202 cvar_t r_lerpsprites = {CF_CLIENT | CF_ARCHIVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"};
203 cvar_t r_lerpmodels = {CF_CLIENT | CF_ARCHIVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
204 cvar_t r_nolerp_list = {CF_CLIENT | CF_ARCHIVE, "r_nolerp_list", "progs/v_nail.mdl,progs/v_nail2.mdl,progs/flame.mdl,progs/flame2.mdl,progs/braztall.mdl,progs/brazshrt.mdl,progs/longtrch.mdl,progs/flame_pyre.mdl,progs/v_saw.mdl,progs/v_xfist.mdl,progs/h2stuff/newfire.mdl", "comma separated list of models that will not have their animations smoothed"};
205 cvar_t r_lerplightstyles = {CF_CLIENT | CF_ARCHIVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
206 cvar_t r_waterscroll = {CF_CLIENT | CF_ARCHIVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
207
208 cvar_t r_bloom = {CF_CLIENT | CF_ARCHIVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
209 cvar_t r_bloom_colorscale = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorscale", "1", "how bright the glow is"};
210
211 cvar_t r_bloom_brighten = {CF_CLIENT | CF_ARCHIVE, "r_bloom_brighten", "1", "how bright the glow is, after subtract/power"};
212 cvar_t r_bloom_blur = {CF_CLIENT | CF_ARCHIVE, "r_bloom_blur", "4", "how large the glow is"};
213 cvar_t r_bloom_resolution = {CF_CLIENT | CF_ARCHIVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
214 cvar_t r_bloom_colorexponent = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorexponent", "1", "how exaggerated the glow is"};
215 cvar_t r_bloom_colorsubtract = {CF_CLIENT | CF_ARCHIVE, "r_bloom_colorsubtract", "0.1", "reduces bloom colors by a certain amount"};
216 cvar_t r_bloom_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_bloom_scenebrightness", "1", "global rendering brightness when bloom is enabled"};
217
218 cvar_t r_hdr_scenebrightness = {CF_CLIENT | CF_ARCHIVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
219 cvar_t r_hdr_glowintensity = {CF_CLIENT | CF_ARCHIVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
220 cvar_t r_hdr_irisadaptation = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation", "0", "adjust scene brightness according to light intensity at player location"};
221 cvar_t r_hdr_irisadaptation_multiplier = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_multiplier", "2", "brightness at which value will be 1.0"};
222 cvar_t r_hdr_irisadaptation_minvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_minvalue", "0.5", "minimum value that can result from multiplier / brightness"};
223 cvar_t r_hdr_irisadaptation_maxvalue = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_maxvalue", "4", "maximum value that can result from multiplier / brightness"};
224 cvar_t r_hdr_irisadaptation_value = {CF_CLIENT, "r_hdr_irisadaptation_value", "1", "current value as scenebrightness multiplier, changes continuously when irisadaptation is active"};
225 cvar_t r_hdr_irisadaptation_fade_up = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_up", "0.1", "fade rate at which value adjusts to darkness"};
226 cvar_t r_hdr_irisadaptation_fade_down = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_fade_down", "0.5", "fade rate at which value adjusts to brightness"};
227 cvar_t r_hdr_irisadaptation_radius = {CF_CLIENT | CF_ARCHIVE, "r_hdr_irisadaptation_radius", "15", "lighting within this many units of the eye is averaged"};
228
229 cvar_t r_smoothnormals_areaweighting = {CF_CLIENT, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
230
231 cvar_t developer_texturelogging = {CF_CLIENT, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
232
233 cvar_t gl_lightmaps = {CF_CLIENT, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers), a value of 2 keeps normalmap shading"};
234
235 cvar_t r_test = {CF_CLIENT, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
236
237 cvar_t r_batch_multidraw = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw", "1", "issue multiple glDrawElements calls when rendering a batch of surfaces with the same texture (otherwise the index data is copied to make it one draw)"};
238 cvar_t r_batch_multidraw_mintriangles = {CF_CLIENT | CF_ARCHIVE, "r_batch_multidraw_mintriangles", "0", "minimum number of triangles to activate multidraw path (copying small groups of triangles may be faster)"};
239 cvar_t r_batch_debugdynamicvertexpath = {CF_CLIENT | CF_ARCHIVE, "r_batch_debugdynamicvertexpath", "0", "force the dynamic batching code path for debugging purposes"};
240 cvar_t r_batch_dynamicbuffer = {CF_CLIENT | CF_ARCHIVE, "r_batch_dynamicbuffer", "0", "use vertex/index buffers for drawing dynamic and copytriangles batches"};
241
242 cvar_t r_glsl_saturation = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"};
243 cvar_t r_glsl_saturation_redcompensate = {CF_CLIENT | CF_ARCHIVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"};
244
245 cvar_t r_glsl_vertextextureblend_usebothalphas = {CF_CLIENT | CF_ARCHIVE, "r_glsl_vertextextureblend_usebothalphas", "0", "use both alpha layers on vertex blended surfaces, each alpha layer sets amount of 'blend leak' on another layer, requires mod_q3shader_force_terrain_alphaflag on."};
246
247 // FIXME: This cvar would grow to a ridiculous size after several launches and clean exits when used during surface sorting.
248 cvar_t r_framedatasize = {CF_CLIENT | CF_ARCHIVE, "r_framedatasize", "0.5", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"};
249 cvar_t r_buffermegs[R_BUFFERDATA_COUNT] =
250 {
251         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_vertex", "4", "vertex buffer size for one frame"},
252         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index16", "1", "index buffer size for one frame (16bit indices)"},
253         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_index32", "1", "index buffer size for one frame (32bit indices)"},
254         {CF_CLIENT | CF_ARCHIVE, "r_buffermegs_uniform", "0.25", "uniform buffer size for one frame"},
255 };
256
257 cvar_t r_q1bsp_lightmap_updates_enabled = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_enabled", "1", "allow lightmaps to be updated on Q1BSP maps (don't turn this off except for debugging)"};
258 cvar_t r_q1bsp_lightmap_updates_combine = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_combine", "2", "combine lightmap texture updates to make fewer glTexSubImage2D calls, modes: 0 = immediately upload lightmaps (may be thousands of small 3x3 updates), 1 = combine to one call, 2 = combine to one full texture update (glTexImage2D) which tells the driver it does not need to lock the resource (faster on most drivers)"};
259 cvar_t r_q1bsp_lightmap_updates_hidden_surfaces = {CF_CLIENT | CF_ARCHIVE, "r_q1bsp_lightmap_updates_hidden_surfaces", "0", "update lightmaps on surfaces that are not visible, so that updates only occur on frames where lightstyles changed value (animation or light switches), only makes sense with combine = 2"};
260
261 extern cvar_t v_glslgamma_2d;
262
263 extern qbool v_flipped_state;
264
265 r_framebufferstate_t r_fb;
266
267 /// shadow volume bsp struct with automatically growing nodes buffer
268 svbsp_t r_svbsp;
269
270 int r_uniformbufferalignment = 32; // dynamically updated to match GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
271
272 rtexture_t *r_texture_blanknormalmap;
273 rtexture_t *r_texture_white;
274 rtexture_t *r_texture_grey128;
275 rtexture_t *r_texture_black;
276 rtexture_t *r_texture_notexture;
277 rtexture_t *r_texture_whitecube;
278 rtexture_t *r_texture_normalizationcube;
279 rtexture_t *r_texture_fogattenuation;
280 rtexture_t *r_texture_fogheighttexture;
281 rtexture_t *r_texture_gammaramps;
282 unsigned int r_texture_gammaramps_serial;
283 //rtexture_t *r_texture_fogintensity;
284 rtexture_t *r_texture_reflectcube;
285
286 // TODO: hash lookups?
287 typedef struct cubemapinfo_s
288 {
289         char basename[64];
290         rtexture_t *texture;
291 }
292 cubemapinfo_t;
293
294 int r_texture_numcubemaps;
295 cubemapinfo_t *r_texture_cubemaps[MAX_CUBEMAPS];
296
297 unsigned int r_queries[MAX_OCCLUSION_QUERIES];
298 unsigned int r_numqueries;
299 unsigned int r_maxqueries;
300
301 typedef struct r_qwskincache_s
302 {
303         char name[MAX_QPATH];
304         skinframe_t *skinframe;
305 }
306 r_qwskincache_t;
307
308 static r_qwskincache_t *r_qwskincache;
309 static int r_qwskincache_size;
310
311 /// vertex coordinates for a quad that covers the screen exactly
312 extern const float r_screenvertex3f[12];
313 const float r_screenvertex3f[12] =
314 {
315         0, 0, 0,
316         1, 0, 0,
317         1, 1, 0,
318         0, 1, 0
319 };
320
321 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
322 {
323         int i;
324         for (i = 0;i < verts;i++)
325         {
326                 out[0] = in[0] * r;
327                 out[1] = in[1] * g;
328                 out[2] = in[2] * b;
329                 out[3] = in[3];
330                 in += 4;
331                 out += 4;
332         }
333 }
334
335 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
336 {
337         int i;
338         for (i = 0;i < verts;i++)
339         {
340                 out[0] = r;
341                 out[1] = g;
342                 out[2] = b;
343                 out[3] = a;
344                 out += 4;
345         }
346 }
347
348 // FIXME: move this to client?
349 void FOG_clear(void)
350 {
351         if (gamemode == GAME_NEHAHRA)
352         {
353                 Cvar_Set(&cvars_all, "gl_fogenable", "0");
354                 Cvar_Set(&cvars_all, "gl_fogdensity", "0.2");
355                 Cvar_Set(&cvars_all, "gl_fogred", "0.3");
356                 Cvar_Set(&cvars_all, "gl_foggreen", "0.3");
357                 Cvar_Set(&cvars_all, "gl_fogblue", "0.3");
358         }
359         r_refdef.fog_density = 0;
360         r_refdef.fog_red = 0;
361         r_refdef.fog_green = 0;
362         r_refdef.fog_blue = 0;
363         r_refdef.fog_alpha = 1;
364         r_refdef.fog_start = 0;
365         r_refdef.fog_end = 16384;
366         r_refdef.fog_height = 1<<30;
367         r_refdef.fog_fadedepth = 128;
368         memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename));
369 }
370
371 static void R_BuildBlankTextures(void)
372 {
373         unsigned char data[4];
374         data[2] = 128; // normal X
375         data[1] = 128; // normal Y
376         data[0] = 255; // normal Z
377         data[3] = 255; // height
378         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
379         data[0] = 255;
380         data[1] = 255;
381         data[2] = 255;
382         data[3] = 255;
383         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
384         data[0] = 128;
385         data[1] = 128;
386         data[2] = 128;
387         data[3] = 255;
388         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
389         data[0] = 0;
390         data[1] = 0;
391         data[2] = 0;
392         data[3] = 255;
393         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL);
394 }
395
396 static void R_BuildNoTexture(void)
397 {
398         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, Image_GenerateNoTexture(), TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL);
399 }
400
401 static void R_BuildWhiteCube(void)
402 {
403         unsigned char data[6*1*1*4];
404         memset(data, 255, sizeof(data));
405         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
406 }
407
408 static void R_BuildNormalizationCube(void)
409 {
410         int x, y, side;
411         vec3_t v;
412         vec_t s, t, intensity;
413 #define NORMSIZE 64
414         unsigned char *data;
415         data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4);
416         for (side = 0;side < 6;side++)
417         {
418                 for (y = 0;y < NORMSIZE;y++)
419                 {
420                         for (x = 0;x < NORMSIZE;x++)
421                         {
422                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
423                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
424                                 switch(side)
425                                 {
426                                 default:
427                                 case 0:
428                                         v[0] = 1;
429                                         v[1] = -t;
430                                         v[2] = -s;
431                                         break;
432                                 case 1:
433                                         v[0] = -1;
434                                         v[1] = -t;
435                                         v[2] = s;
436                                         break;
437                                 case 2:
438                                         v[0] = s;
439                                         v[1] = 1;
440                                         v[2] = t;
441                                         break;
442                                 case 3:
443                                         v[0] = s;
444                                         v[1] = -1;
445                                         v[2] = -t;
446                                         break;
447                                 case 4:
448                                         v[0] = s;
449                                         v[1] = -t;
450                                         v[2] = 1;
451                                         break;
452                                 case 5:
453                                         v[0] = -s;
454                                         v[1] = -t;
455                                         v[2] = -1;
456                                         break;
457                                 }
458                                 intensity = 127.0f / sqrt(DotProduct(v, v));
459                                 data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]);
460                                 data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]);
461                                 data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]);
462                                 data[((side*64+y)*64+x)*4+3] = 255;
463                         }
464                 }
465         }
466         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
467         Mem_Free(data);
468 }
469
470 static void R_BuildFogTexture(void)
471 {
472         int x, b;
473 #define FOGWIDTH 256
474         unsigned char data1[FOGWIDTH][4];
475         //unsigned char data2[FOGWIDTH][4];
476         double d, r, alpha;
477
478         r_refdef.fogmasktable_start = r_refdef.fog_start;
479         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
480         r_refdef.fogmasktable_range = r_refdef.fogrange;
481         r_refdef.fogmasktable_density = r_refdef.fog_density;
482
483         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
484         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
485         {
486                 d = (x * r - r_refdef.fogmasktable_start);
487                 if(developer_extra.integer)
488                         Con_DPrintf("%f ", d);
489                 d = max(0, d);
490                 if (r_fog_exp2.integer)
491                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
492                 else
493                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
494                 if(developer_extra.integer)
495                         Con_DPrintf(" : %f ", alpha);
496                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
497                 if(developer_extra.integer)
498                         Con_DPrintf(" = %f\n", alpha);
499                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
500         }
501
502         for (x = 0;x < FOGWIDTH;x++)
503         {
504                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
505                 data1[x][0] = b;
506                 data1[x][1] = b;
507                 data1[x][2] = b;
508                 data1[x][3] = 255;
509                 //data2[x][0] = 255 - b;
510                 //data2[x][1] = 255 - b;
511                 //data2[x][2] = 255 - b;
512                 //data2[x][3] = 255;
513         }
514         if (r_texture_fogattenuation)
515         {
516                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
517                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, 0, FOGWIDTH, 1, 1, 0);
518         }
519         else
520         {
521                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
522                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
523         }
524 }
525
526 static void R_BuildFogHeightTexture(void)
527 {
528         unsigned char *inpixels;
529         int size;
530         int x;
531         int y;
532         int j;
533         float c[4];
534         float f;
535         inpixels = NULL;
536         strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename));
537         if (r_refdef.fogheighttexturename[0])
538                 inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL);
539         if (!inpixels)
540         {
541                 r_refdef.fog_height_tablesize = 0;
542                 if (r_texture_fogheighttexture)
543                         R_FreeTexture(r_texture_fogheighttexture);
544                 r_texture_fogheighttexture = NULL;
545                 if (r_refdef.fog_height_table2d)
546                         Mem_Free(r_refdef.fog_height_table2d);
547                 r_refdef.fog_height_table2d = NULL;
548                 if (r_refdef.fog_height_table1d)
549                         Mem_Free(r_refdef.fog_height_table1d);
550                 r_refdef.fog_height_table1d = NULL;
551                 return;
552         }
553         size = image_width;
554         r_refdef.fog_height_tablesize = size;
555         r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4);
556         r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4);
557         memcpy(r_refdef.fog_height_table1d, inpixels, size * 4);
558         Mem_Free(inpixels);
559         // LadyHavoc: now the magic - what is that table2d for?  it is a cooked
560         // average fog color table accounting for every fog layer between a point
561         // and the camera.  (Note: attenuation is handled separately!)
562         for (y = 0;y < size;y++)
563         {
564                 for (x = 0;x < size;x++)
565                 {
566                         Vector4Clear(c);
567                         f = 0;
568                         if (x < y)
569                         {
570                                 for (j = x;j <= y;j++)
571                                 {
572                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
573                                         f++;
574                                 }
575                         }
576                         else
577                         {
578                                 for (j = x;j >= y;j--)
579                                 {
580                                         Vector4Add(c, r_refdef.fog_height_table1d + j*4, c);
581                                         f++;
582                                 }
583                         }
584                         f = 1.0f / f;
585                         r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f);
586                         r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f);
587                         r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f);
588                         r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f);
589                 }
590         }
591         r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL);
592 }
593
594 //=======================================================================================================================================================
595
596 static const char *builtinshaderstrings[] =
597 {
598 #include "shader_glsl.h"
599 0
600 };
601
602 //=======================================================================================================================================================
603
604 typedef struct shaderpermutationinfo_s
605 {
606         const char *pretext;
607         const char *name;
608 }
609 shaderpermutationinfo_t;
610
611 typedef struct shadermodeinfo_s
612 {
613         const char *sourcebasename;
614         const char *extension;
615         const char **builtinshaderstrings;
616         const char *pretext;
617         const char *name;
618         char *filename;
619         char *builtinstring;
620         int builtincrc;
621 }
622 shadermodeinfo_t;
623
624 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
625 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
626 {
627         {"#define USEDIFFUSE\n", " diffuse"},
628         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
629         {"#define USEVIEWTINT\n", " viewtint"},
630         {"#define USECOLORMAPPING\n", " colormapping"},
631         {"#define USESATURATION\n", " saturation"},
632         {"#define USEFOGINSIDE\n", " foginside"},
633         {"#define USEFOGOUTSIDE\n", " fogoutside"},
634         {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"},
635         {"#define USEFOGALPHAHACK\n", " fogalphahack"},
636         {"#define USEGAMMARAMPS\n", " gammaramps"},
637         {"#define USECUBEFILTER\n", " cubefilter"},
638         {"#define USEGLOW\n", " glow"},
639         {"#define USEBLOOM\n", " bloom"},
640         {"#define USESPECULAR\n", " specular"},
641         {"#define USEPOSTPROCESSING\n", " postprocessing"},
642         {"#define USEREFLECTION\n", " reflection"},
643         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
644         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
645         {"#define USESHADOWMAP2D\n", " shadowmap2d"},
646         {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, // TODO make this a static parm
647         {"#define USESHADOWMAPORTHO\n", " shadowmaportho"},
648         {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"},
649         {"#define USEALPHAKILL\n", " alphakill"},
650         {"#define USEREFLECTCUBE\n", " reflectcube"},
651         {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"},
652         {"#define USEBOUNCEGRID\n", " bouncegrid"},
653         {"#define USEBOUNCEGRIDDIRECTIONAL\n", " bouncegriddirectional"}, // TODO make this a static parm
654         {"#define USETRIPPY\n", " trippy"},
655         {"#define USEDEPTHRGB\n", " depthrgb"},
656         {"#define USEALPHAGENVERTEX\n", " alphagenvertex"},
657         {"#define USESKELETAL\n", " skeletal"},
658         {"#define USEOCCLUDE\n", " occlude"}
659 };
660
661 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
662 shadermodeinfo_t shadermodeinfo[SHADERLANGUAGE_COUNT][SHADERMODE_COUNT] =
663 {
664         // SHADERLANGUAGE_GLSL
665         {
666                 {"combined", "glsl", builtinshaderstrings, "#define MODE_GENERIC\n", " generic"},
667                 {"combined", "glsl", builtinshaderstrings, "#define MODE_POSTPROCESS\n", " postprocess"},
668                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
669                 {"combined", "glsl", builtinshaderstrings, "#define MODE_FLATCOLOR\n", " flatcolor"},
670                 {"combined", "glsl", builtinshaderstrings, "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
671                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTMAP\n", " lightmap"},
672                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
673                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
674                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP\n", " lightdirectionmap_forced_lightmap"},
675                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR\n", " lightdirectionmap_forced_vertexcolor"},
676                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTGRID\n", " lightgrid"},
677                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
678                 {"combined", "glsl", builtinshaderstrings, "#define MODE_LIGHTSOURCE\n", " lightsource"},
679                 {"combined", "glsl", builtinshaderstrings, "#define MODE_REFRACTION\n", " refraction"},
680                 {"combined", "glsl", builtinshaderstrings, "#define MODE_WATER\n", " water"},
681                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"},
682                 {"combined", "glsl", builtinshaderstrings, "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"},
683         },
684 };
685
686 struct r_glsl_permutation_s;
687 typedef struct r_glsl_permutation_s
688 {
689         /// hash lookup data
690         struct r_glsl_permutation_s *hashnext;
691         unsigned int mode;
692         uint64_t permutation;
693
694         /// indicates if we have tried compiling this permutation already
695         qbool compiled;
696         /// 0 if compilation failed
697         int program;
698         // texture units assigned to each detected uniform
699         int tex_Texture_First;
700         int tex_Texture_Second;
701         int tex_Texture_GammaRamps;
702         int tex_Texture_Normal;
703         int tex_Texture_Color;
704         int tex_Texture_Gloss;
705         int tex_Texture_Glow;
706         int tex_Texture_SecondaryNormal;
707         int tex_Texture_SecondaryColor;
708         int tex_Texture_SecondaryGloss;
709         int tex_Texture_SecondaryGlow;
710         int tex_Texture_Pants;
711         int tex_Texture_Shirt;
712         int tex_Texture_FogHeightTexture;
713         int tex_Texture_FogMask;
714         int tex_Texture_LightGrid;
715         int tex_Texture_Lightmap;
716         int tex_Texture_Deluxemap;
717         int tex_Texture_Attenuation;
718         int tex_Texture_Cube;
719         int tex_Texture_Refraction;
720         int tex_Texture_Reflection;
721         int tex_Texture_ShadowMap2D;
722         int tex_Texture_CubeProjection;
723         int tex_Texture_ScreenNormalMap;
724         int tex_Texture_ScreenDiffuse;
725         int tex_Texture_ScreenSpecular;
726         int tex_Texture_ReflectMask;
727         int tex_Texture_ReflectCube;
728         int tex_Texture_BounceGrid;
729         /// locations of detected uniforms in program object, or -1 if not found
730         int loc_Texture_First;
731         int loc_Texture_Second;
732         int loc_Texture_GammaRamps;
733         int loc_Texture_Normal;
734         int loc_Texture_Color;
735         int loc_Texture_Gloss;
736         int loc_Texture_Glow;
737         int loc_Texture_SecondaryNormal;
738         int loc_Texture_SecondaryColor;
739         int loc_Texture_SecondaryGloss;
740         int loc_Texture_SecondaryGlow;
741         int loc_Texture_Pants;
742         int loc_Texture_Shirt;
743         int loc_Texture_FogHeightTexture;
744         int loc_Texture_FogMask;
745         int loc_Texture_LightGrid;
746         int loc_Texture_Lightmap;
747         int loc_Texture_Deluxemap;
748         int loc_Texture_Attenuation;
749         int loc_Texture_Cube;
750         int loc_Texture_Refraction;
751         int loc_Texture_Reflection;
752         int loc_Texture_ShadowMap2D;
753         int loc_Texture_CubeProjection;
754         int loc_Texture_ScreenNormalMap;
755         int loc_Texture_ScreenDiffuse;
756         int loc_Texture_ScreenSpecular;
757         int loc_Texture_ReflectMask;
758         int loc_Texture_ReflectCube;
759         int loc_Texture_BounceGrid;
760         int loc_Alpha;
761         int loc_BloomBlur_Parameters;
762         int loc_ClientTime;
763         int loc_Color_Ambient;
764         int loc_Color_Diffuse;
765         int loc_Color_Specular;
766         int loc_Color_Glow;
767         int loc_Color_Pants;
768         int loc_Color_Shirt;
769         int loc_DeferredColor_Ambient;
770         int loc_DeferredColor_Diffuse;
771         int loc_DeferredColor_Specular;
772         int loc_DeferredMod_Diffuse;
773         int loc_DeferredMod_Specular;
774         int loc_DistortScaleRefractReflect;
775         int loc_EyePosition;
776         int loc_FogColor;
777         int loc_FogHeightFade;
778         int loc_FogPlane;
779         int loc_FogPlaneViewDist;
780         int loc_FogRangeRecip;
781         int loc_LightColor;
782         int loc_LightDir;
783         int loc_LightGridMatrix;
784         int loc_LightGridNormalMatrix;
785         int loc_LightPosition;
786         int loc_OffsetMapping_ScaleSteps;
787         int loc_OffsetMapping_LodDistance;
788         int loc_OffsetMapping_Bias;
789         int loc_PixelSize;
790         int loc_ReflectColor;
791         int loc_ReflectFactor;
792         int loc_ReflectOffset;
793         int loc_RefractColor;
794         int loc_Saturation;
795         int loc_ScreenCenterRefractReflect;
796         int loc_ScreenScaleRefractReflect;
797         int loc_ScreenToDepth;
798         int loc_ShadowMap_Parameters;
799         int loc_ShadowMap_TextureScale;
800         int loc_SpecularPower;
801         int loc_Skeletal_Transform12;
802         int loc_UserVec1;
803         int loc_UserVec2;
804         int loc_UserVec3;
805         int loc_UserVec4;
806         int loc_ColorFringe;
807         int loc_ViewTintColor;
808         int loc_ViewToLight;
809         int loc_ModelToLight;
810         int loc_TexMatrix;
811         int loc_BackgroundTexMatrix;
812         int loc_ModelViewProjectionMatrix;
813         int loc_ModelViewMatrix;
814         int loc_PixelToScreenTexCoord;
815         int loc_ModelToReflectCube;
816         int loc_ShadowMapMatrix;
817         int loc_BloomColorSubtract;
818         int loc_NormalmapScrollBlend;
819         int loc_BounceGridMatrix;
820         int loc_BounceGridIntensity;
821         /// uniform block bindings
822         int ubibind_Skeletal_Transform12_UniformBlock;
823         /// uniform block indices
824         int ubiloc_Skeletal_Transform12_UniformBlock;
825 }
826 r_glsl_permutation_t;
827
828 #define SHADERPERMUTATION_HASHSIZE 256
829
830
831 // non-degradable "lightweight" shader parameters to keep the permutations simpler
832 // these can NOT degrade! only use for simple stuff
833 enum
834 {
835         SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation
836         SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation
837         SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled
838         SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled
839         SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled
840         SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5,  ///< postprocess uservec4 is enabled
841         SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS = 6, // use both alpha layers while blending materials, allows more advanced microblending
842         SHADERSTATICPARM_OFFSETMAPPING_USELOD = 7,  ///< LOD for offsetmapping
843         SHADERSTATICPARM_SHADOWMAPPCF_1 = 8, ///< PCF 1
844         SHADERSTATICPARM_SHADOWMAPPCF_2 = 9, ///< PCF 2
845         SHADERSTATICPARM_SHADOWSAMPLER = 10, ///< sampler
846         SHADERSTATICPARM_CELSHADING = 11, ///< celshading (alternative diffuse and specular math)
847         SHADERSTATICPARM_CELOUTLINES = 12, ///< celoutline (depth buffer analysis to produce outlines)
848         SHADERSTATICPARM_FXAA = 13, ///< fast approximate anti aliasing
849         SHADERSTATICPARM_COLORFRINGE = 14 ///< colorfringe (chromatic aberration)
850 };
851 #define SHADERSTATICPARMS_COUNT 15
852
853 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT];
854 static int shaderstaticparms_count = 0;
855
856 static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0};
857 #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F))
858
859 extern qbool r_shadow_shadowmapsampler;
860 extern int r_shadow_shadowmappcf;
861 qbool R_CompileShader_CheckStaticParms(void)
862 {
863         static int r_compileshader_staticparms_save[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5];
864         memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms));
865         memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms));
866
867         // detect all
868         if (r_glsl_saturation_redcompensate.integer)
869                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE);
870         if (r_glsl_vertextextureblend_usebothalphas.integer)
871                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS);
872         if (r_shadow_glossexact.integer)
873                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH);
874         if (r_glsl_postprocess.integer)
875         {
876                 if (r_glsl_postprocess_uservec1_enable.integer)
877                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1);
878                 if (r_glsl_postprocess_uservec2_enable.integer)
879                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2);
880                 if (r_glsl_postprocess_uservec3_enable.integer)
881                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3);
882                 if (r_glsl_postprocess_uservec4_enable.integer)
883                         R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4);
884         }
885         if (r_fxaa.integer)
886                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_FXAA);
887         if (r_glsl_offsetmapping_lod.integer && r_glsl_offsetmapping_lod_distance.integer > 0)
888                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_OFFSETMAPPING_USELOD);
889
890         if (r_shadow_shadowmapsampler)
891                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWSAMPLER);
892         if (r_shadow_shadowmappcf > 1)
893                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_2);
894         else if (r_shadow_shadowmappcf)
895                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SHADOWMAPPCF_1);
896         if (r_celshading.integer)
897                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELSHADING);
898         if (r_celoutlines.integer)
899                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_CELOUTLINES);
900         if (r_colorfringe.value)
901                 R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_COLORFRINGE);
902
903         return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0;
904 }
905
906 #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \
907         if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \
908                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \
909         else \
910                 shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n"
911 static void R_CompileShader_AddStaticParms(unsigned int mode, uint64_t permutation)
912 {
913         shaderstaticparms_count = 0;
914
915         // emit all
916         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE");
917         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH");
918         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1");
919         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2");
920         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3");
921         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4");
922         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_VERTEXTEXTUREBLEND_USEBOTHALPHAS, "USEBOTHALPHAS");
923         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_OFFSETMAPPING_USELOD, "USEOFFSETMAPPING_LOD");
924         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_1, "USESHADOWMAPPCF 1");
925         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWMAPPCF_2, "USESHADOWMAPPCF 2");
926         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SHADOWSAMPLER, "USESHADOWSAMPLER");
927         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELSHADING, "USECELSHADING");
928         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_CELOUTLINES, "USECELOUTLINES");
929         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_FXAA, "USEFXAA");
930         R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_COLORFRINGE, "USECOLORFRINGE");
931 }
932
933 /// information about each possible shader permutation
934 r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE];
935 /// currently selected permutation
936 r_glsl_permutation_t *r_glsl_permutation;
937 /// storage for permutations linked in the hash table
938 memexpandablearray_t r_glsl_permutationarray;
939
940 static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, uint64_t permutation)
941 {
942         //unsigned int hashdepth = 0;
943         unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1);
944         r_glsl_permutation_t *p;
945         for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext)
946         {
947                 if (p->mode == mode && p->permutation == permutation)
948                 {
949                         //if (hashdepth > 10)
950                         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
951                         return p;
952                 }
953                 //hashdepth++;
954         }
955         p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray);
956         p->mode = mode;
957         p->permutation = permutation;
958         p->hashnext = r_glsl_permutationhash[mode][hashindex];
959         r_glsl_permutationhash[mode][hashindex] = p;
960         //if (hashdepth > 10)
961         //      Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth);
962         return p;
963 }
964
965 static char *R_ShaderStrCat(const char **strings)
966 {
967         char *string, *s;
968         const char **p = strings;
969         const char *t;
970         size_t len = 0;
971         for (p = strings;(t = *p);p++)
972                 len += strlen(t);
973         len++;
974         s = string = (char *)Mem_Alloc(r_main_mempool, len);
975         len = 0;
976         for (p = strings;(t = *p);p++)
977         {
978                 len = strlen(t);
979                 memcpy(s, t, len);
980                 s += len;
981         }
982         *s = 0;
983         return string;
984 }
985
986 static char *R_ShaderStrCat(const char **strings);
987 static void R_InitShaderModeInfo(void)
988 {
989         int i, language;
990         shadermodeinfo_t *modeinfo;
991         // we have a bunch of things to compute that weren't calculated at engine compile time - all filenames should have a crc of the builtin strings to prevent accidental overrides (any customization must be updated to match engine)
992         for (language = 0; language < SHADERLANGUAGE_COUNT; language++)
993         {
994                 for (i = 0; i < SHADERMODE_COUNT; i++)
995                 {
996                         char filename[MAX_QPATH];
997                         modeinfo = &shadermodeinfo[language][i];
998                         modeinfo->builtinstring = R_ShaderStrCat(modeinfo->builtinshaderstrings);
999                         modeinfo->builtincrc = CRC_Block((const unsigned char *)modeinfo->builtinstring, strlen(modeinfo->builtinstring));
1000                         dpsnprintf(filename, sizeof(filename), "%s/%s_crc%i.%s", modeinfo->extension, modeinfo->sourcebasename, modeinfo->builtincrc, modeinfo->extension);
1001                         modeinfo->filename = Mem_strdup(r_main_mempool, filename);
1002                 }
1003         }
1004 }
1005
1006 static char *ShaderModeInfo_GetShaderText(shadermodeinfo_t *modeinfo, qbool printfromdisknotice, qbool builtinonly)
1007 {
1008         char *shaderstring;
1009         // if the mode has no filename we have to return the builtin string
1010         if (builtinonly || !modeinfo->filename)
1011                 return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1012         // note that FS_LoadFile appends a 0 byte to make it a valid string
1013         shaderstring = (char *)FS_LoadFile(modeinfo->filename, r_main_mempool, false, NULL);
1014         if (shaderstring)
1015         {
1016                 if (printfromdisknotice)
1017                         Con_DPrintf("Loading shaders from file %s...\n", modeinfo->filename);
1018                 return shaderstring;
1019         }
1020         // fall back to builtinstring
1021         return Mem_strdup(r_main_mempool, modeinfo->builtinstring);
1022 }
1023
1024 static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, uint64_t permutation)
1025 {
1026         int i;
1027         int ubibind;
1028         int sampler;
1029         shadermodeinfo_t *modeinfo = &shadermodeinfo[SHADERLANGUAGE_GLSL][mode];
1030         char *sourcestring;
1031         char permutationname[256];
1032         int vertstrings_count = 0;
1033         int geomstrings_count = 0;
1034         int fragstrings_count = 0;
1035         const char *vertstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1036         const char *geomstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1037         const char *fragstrings_list[32+5+SHADERSTATICPARMS_COUNT+1];
1038
1039         if (p->compiled)
1040                 return;
1041         p->compiled = true;
1042         p->program = 0;
1043
1044         permutationname[0] = 0;
1045         sourcestring = ShaderModeInfo_GetShaderText(modeinfo, true, false);
1046
1047         strlcat(permutationname, modeinfo->filename, sizeof(permutationname));
1048
1049         // we need 140 for r_glsl_skeletal (GL_ARB_uniform_buffer_object)
1050         if(vid.support.glshaderversion >= 140)
1051         {
1052                 vertstrings_list[vertstrings_count++] = "#version 140\n";
1053                 geomstrings_list[geomstrings_count++] = "#version 140\n";
1054                 fragstrings_list[fragstrings_count++] = "#version 140\n";
1055                 vertstrings_list[vertstrings_count++] = "#define GLSL140\n";
1056                 geomstrings_list[geomstrings_count++] = "#define GLSL140\n";
1057                 fragstrings_list[fragstrings_count++] = "#define GLSL140\n";
1058         }
1059         // if we can do #version 130, we should (this improves quality of offset/reliefmapping thanks to textureGrad)
1060         else if(vid.support.glshaderversion >= 130)
1061         {
1062                 vertstrings_list[vertstrings_count++] = "#version 130\n";
1063                 geomstrings_list[geomstrings_count++] = "#version 130\n";
1064                 fragstrings_list[fragstrings_count++] = "#version 130\n";
1065                 vertstrings_list[vertstrings_count++] = "#define GLSL130\n";
1066                 geomstrings_list[geomstrings_count++] = "#define GLSL130\n";
1067                 fragstrings_list[fragstrings_count++] = "#define GLSL130\n";
1068         }
1069         // if we can do #version 120, we should (this adds the invariant keyword)
1070         else if(vid.support.glshaderversion >= 120)
1071         {
1072                 vertstrings_list[vertstrings_count++] = "#version 120\n";
1073                 geomstrings_list[geomstrings_count++] = "#version 120\n";
1074                 fragstrings_list[fragstrings_count++] = "#version 120\n";
1075                 vertstrings_list[vertstrings_count++] = "#define GLSL120\n";
1076                 geomstrings_list[geomstrings_count++] = "#define GLSL120\n";
1077                 fragstrings_list[fragstrings_count++] = "#define GLSL120\n";
1078         }
1079         // GLES also adds several things from GLSL120
1080         switch(vid.renderpath)
1081         {
1082         case RENDERPATH_GLES2:
1083                 vertstrings_list[vertstrings_count++] = "#define GLES\n";
1084                 geomstrings_list[geomstrings_count++] = "#define GLES\n";
1085                 fragstrings_list[fragstrings_count++] = "#define GLES\n";
1086                 break;
1087         default:
1088                 break;
1089         }
1090
1091         // the first pretext is which type of shader to compile as
1092         // (later these will all be bound together as a program object)
1093         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1094         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1095         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1096
1097         // the second pretext is the mode (for example a light source)
1098         vertstrings_list[vertstrings_count++] = modeinfo->pretext;
1099         geomstrings_list[geomstrings_count++] = modeinfo->pretext;
1100         fragstrings_list[fragstrings_count++] = modeinfo->pretext;
1101         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1102
1103         // now add all the permutation pretexts
1104         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1105         {
1106                 if (permutation & (1ll<<i))
1107                 {
1108                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1109                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1110                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1111                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1112                 }
1113                 else
1114                 {
1115                         // keep line numbers correct
1116                         vertstrings_list[vertstrings_count++] = "\n";
1117                         geomstrings_list[geomstrings_count++] = "\n";
1118                         fragstrings_list[fragstrings_count++] = "\n";
1119                 }
1120         }
1121
1122         // add static parms
1123         R_CompileShader_AddStaticParms(mode, permutation);
1124         memcpy((char *)(vertstrings_list + vertstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1125         vertstrings_count += shaderstaticparms_count;
1126         memcpy((char *)(geomstrings_list + geomstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1127         geomstrings_count += shaderstaticparms_count;
1128         memcpy((char *)(fragstrings_list + fragstrings_count), shaderstaticparmstrings_list, sizeof(*vertstrings_list) * shaderstaticparms_count);
1129         fragstrings_count += shaderstaticparms_count;
1130
1131         // now append the shader text itself
1132         vertstrings_list[vertstrings_count++] = sourcestring;
1133         geomstrings_list[geomstrings_count++] = sourcestring;
1134         fragstrings_list[fragstrings_count++] = sourcestring;
1135
1136         // we don't currently use geometry shaders for anything, so just empty the list
1137         geomstrings_count = 0;
1138
1139         // compile the shader program
1140         if (vertstrings_count + geomstrings_count + fragstrings_count)
1141                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1142         if (p->program)
1143         {
1144                 CHECKGLERROR
1145                 qglUseProgram(p->program);CHECKGLERROR
1146                 // look up all the uniform variable names we care about, so we don't
1147                 // have to look them up every time we set them
1148
1149 #if 0
1150                 // debugging aid
1151                 {
1152                         GLint activeuniformindex = 0;
1153                         GLint numactiveuniforms = 0;
1154                         char uniformname[128];
1155                         GLsizei uniformnamelength = 0;
1156                         GLint uniformsize = 0;
1157                         GLenum uniformtype = 0;
1158                         memset(uniformname, 0, sizeof(uniformname));
1159                         qglGetProgramiv(p->program, GL_ACTIVE_UNIFORMS, &numactiveuniforms);
1160                         Con_Printf("Shader has %i uniforms\n", numactiveuniforms);
1161                         for (activeuniformindex = 0;activeuniformindex < numactiveuniforms;activeuniformindex++)
1162                         {
1163                                 qglGetActiveUniform(p->program, activeuniformindex, sizeof(uniformname) - 1, &uniformnamelength, &uniformsize, &uniformtype, uniformname);
1164                                 Con_Printf("Uniform %i name \"%s\" size %i type %i\n", (int)activeuniformindex, uniformname, (int)uniformsize, (int)uniformtype);
1165                         }
1166                 }
1167 #endif
1168
1169                 p->loc_Texture_First              = qglGetUniformLocation(p->program, "Texture_First");
1170                 p->loc_Texture_Second             = qglGetUniformLocation(p->program, "Texture_Second");
1171                 p->loc_Texture_GammaRamps         = qglGetUniformLocation(p->program, "Texture_GammaRamps");
1172                 p->loc_Texture_Normal             = qglGetUniformLocation(p->program, "Texture_Normal");
1173                 p->loc_Texture_Color              = qglGetUniformLocation(p->program, "Texture_Color");
1174                 p->loc_Texture_Gloss              = qglGetUniformLocation(p->program, "Texture_Gloss");
1175                 p->loc_Texture_Glow               = qglGetUniformLocation(p->program, "Texture_Glow");
1176                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocation(p->program, "Texture_SecondaryNormal");
1177                 p->loc_Texture_SecondaryColor     = qglGetUniformLocation(p->program, "Texture_SecondaryColor");
1178                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocation(p->program, "Texture_SecondaryGloss");
1179                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocation(p->program, "Texture_SecondaryGlow");
1180                 p->loc_Texture_Pants              = qglGetUniformLocation(p->program, "Texture_Pants");
1181                 p->loc_Texture_Shirt              = qglGetUniformLocation(p->program, "Texture_Shirt");
1182                 p->loc_Texture_FogHeightTexture   = qglGetUniformLocation(p->program, "Texture_FogHeightTexture");
1183                 p->loc_Texture_FogMask            = qglGetUniformLocation(p->program, "Texture_FogMask");
1184                 p->loc_Texture_LightGrid          = qglGetUniformLocation(p->program, "Texture_LightGrid");
1185                 p->loc_Texture_Lightmap           = qglGetUniformLocation(p->program, "Texture_Lightmap");
1186                 p->loc_Texture_Deluxemap          = qglGetUniformLocation(p->program, "Texture_Deluxemap");
1187                 p->loc_Texture_Attenuation        = qglGetUniformLocation(p->program, "Texture_Attenuation");
1188                 p->loc_Texture_Cube               = qglGetUniformLocation(p->program, "Texture_Cube");
1189                 p->loc_Texture_Refraction         = qglGetUniformLocation(p->program, "Texture_Refraction");
1190                 p->loc_Texture_Reflection         = qglGetUniformLocation(p->program, "Texture_Reflection");
1191                 p->loc_Texture_ShadowMap2D        = qglGetUniformLocation(p->program, "Texture_ShadowMap2D");
1192                 p->loc_Texture_CubeProjection     = qglGetUniformLocation(p->program, "Texture_CubeProjection");
1193                 p->loc_Texture_ScreenNormalMap    = qglGetUniformLocation(p->program, "Texture_ScreenNormalMap");
1194                 p->loc_Texture_ScreenDiffuse      = qglGetUniformLocation(p->program, "Texture_ScreenDiffuse");
1195                 p->loc_Texture_ScreenSpecular     = qglGetUniformLocation(p->program, "Texture_ScreenSpecular");
1196                 p->loc_Texture_ReflectMask        = qglGetUniformLocation(p->program, "Texture_ReflectMask");
1197                 p->loc_Texture_ReflectCube        = qglGetUniformLocation(p->program, "Texture_ReflectCube");
1198                 p->loc_Texture_BounceGrid         = qglGetUniformLocation(p->program, "Texture_BounceGrid");
1199                 p->loc_Alpha                      = qglGetUniformLocation(p->program, "Alpha");
1200                 p->loc_BloomBlur_Parameters       = qglGetUniformLocation(p->program, "BloomBlur_Parameters");
1201                 p->loc_ClientTime                 = qglGetUniformLocation(p->program, "ClientTime");
1202                 p->loc_Color_Ambient              = qglGetUniformLocation(p->program, "Color_Ambient");
1203                 p->loc_Color_Diffuse              = qglGetUniformLocation(p->program, "Color_Diffuse");
1204                 p->loc_Color_Specular             = qglGetUniformLocation(p->program, "Color_Specular");
1205                 p->loc_Color_Glow                 = qglGetUniformLocation(p->program, "Color_Glow");
1206                 p->loc_Color_Pants                = qglGetUniformLocation(p->program, "Color_Pants");
1207                 p->loc_Color_Shirt                = qglGetUniformLocation(p->program, "Color_Shirt");
1208                 p->loc_DeferredColor_Ambient      = qglGetUniformLocation(p->program, "DeferredColor_Ambient");
1209                 p->loc_DeferredColor_Diffuse      = qglGetUniformLocation(p->program, "DeferredColor_Diffuse");
1210                 p->loc_DeferredColor_Specular     = qglGetUniformLocation(p->program, "DeferredColor_Specular");
1211                 p->loc_DeferredMod_Diffuse        = qglGetUniformLocation(p->program, "DeferredMod_Diffuse");
1212                 p->loc_DeferredMod_Specular       = qglGetUniformLocation(p->program, "DeferredMod_Specular");
1213                 p->loc_DistortScaleRefractReflect = qglGetUniformLocation(p->program, "DistortScaleRefractReflect");
1214                 p->loc_EyePosition                = qglGetUniformLocation(p->program, "EyePosition");
1215                 p->loc_FogColor                   = qglGetUniformLocation(p->program, "FogColor");
1216                 p->loc_FogHeightFade              = qglGetUniformLocation(p->program, "FogHeightFade");
1217                 p->loc_FogPlane                   = qglGetUniformLocation(p->program, "FogPlane");
1218                 p->loc_FogPlaneViewDist           = qglGetUniformLocation(p->program, "FogPlaneViewDist");
1219                 p->loc_FogRangeRecip              = qglGetUniformLocation(p->program, "FogRangeRecip");
1220                 p->loc_LightColor                 = qglGetUniformLocation(p->program, "LightColor");
1221                 p->loc_LightGridMatrix            = qglGetUniformLocation(p->program, "LightGridMatrix");
1222                 p->loc_LightGridNormalMatrix      = qglGetUniformLocation(p->program, "LightGridNormalMatrix");
1223                 p->loc_LightDir                   = qglGetUniformLocation(p->program, "LightDir");
1224                 p->loc_LightPosition              = qglGetUniformLocation(p->program, "LightPosition");
1225                 p->loc_OffsetMapping_ScaleSteps   = qglGetUniformLocation(p->program, "OffsetMapping_ScaleSteps");
1226                 p->loc_OffsetMapping_LodDistance  = qglGetUniformLocation(p->program, "OffsetMapping_LodDistance");
1227                 p->loc_OffsetMapping_Bias         = qglGetUniformLocation(p->program, "OffsetMapping_Bias");
1228                 p->loc_PixelSize                  = qglGetUniformLocation(p->program, "PixelSize");
1229                 p->loc_ReflectColor               = qglGetUniformLocation(p->program, "ReflectColor");
1230                 p->loc_ReflectFactor              = qglGetUniformLocation(p->program, "ReflectFactor");
1231                 p->loc_ReflectOffset              = qglGetUniformLocation(p->program, "ReflectOffset");
1232                 p->loc_RefractColor               = qglGetUniformLocation(p->program, "RefractColor");
1233                 p->loc_Saturation                 = qglGetUniformLocation(p->program, "Saturation");
1234                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocation(p->program, "ScreenCenterRefractReflect");
1235                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocation(p->program, "ScreenScaleRefractReflect");
1236                 p->loc_ScreenToDepth              = qglGetUniformLocation(p->program, "ScreenToDepth");
1237                 p->loc_ShadowMap_Parameters       = qglGetUniformLocation(p->program, "ShadowMap_Parameters");
1238                 p->loc_ShadowMap_TextureScale     = qglGetUniformLocation(p->program, "ShadowMap_TextureScale");
1239                 p->loc_SpecularPower              = qglGetUniformLocation(p->program, "SpecularPower");
1240                 p->loc_UserVec1                   = qglGetUniformLocation(p->program, "UserVec1");
1241                 p->loc_UserVec2                   = qglGetUniformLocation(p->program, "UserVec2");
1242                 p->loc_UserVec3                   = qglGetUniformLocation(p->program, "UserVec3");
1243                 p->loc_UserVec4                   = qglGetUniformLocation(p->program, "UserVec4");
1244                 p->loc_ColorFringe                = qglGetUniformLocation(p->program, "ColorFringe");
1245                 p->loc_ViewTintColor              = qglGetUniformLocation(p->program, "ViewTintColor");
1246                 p->loc_ViewToLight                = qglGetUniformLocation(p->program, "ViewToLight");
1247                 p->loc_ModelToLight               = qglGetUniformLocation(p->program, "ModelToLight");
1248                 p->loc_TexMatrix                  = qglGetUniformLocation(p->program, "TexMatrix");
1249                 p->loc_BackgroundTexMatrix        = qglGetUniformLocation(p->program, "BackgroundTexMatrix");
1250                 p->loc_ModelViewMatrix            = qglGetUniformLocation(p->program, "ModelViewMatrix");
1251                 p->loc_ModelViewProjectionMatrix  = qglGetUniformLocation(p->program, "ModelViewProjectionMatrix");
1252                 p->loc_PixelToScreenTexCoord      = qglGetUniformLocation(p->program, "PixelToScreenTexCoord");
1253                 p->loc_ModelToReflectCube         = qglGetUniformLocation(p->program, "ModelToReflectCube");
1254                 p->loc_ShadowMapMatrix            = qglGetUniformLocation(p->program, "ShadowMapMatrix");
1255                 p->loc_BloomColorSubtract         = qglGetUniformLocation(p->program, "BloomColorSubtract");
1256                 p->loc_NormalmapScrollBlend       = qglGetUniformLocation(p->program, "NormalmapScrollBlend");
1257                 p->loc_BounceGridMatrix           = qglGetUniformLocation(p->program, "BounceGridMatrix");
1258                 p->loc_BounceGridIntensity        = qglGetUniformLocation(p->program, "BounceGridIntensity");
1259                 // initialize the samplers to refer to the texture units we use
1260                 p->tex_Texture_First = -1;
1261                 p->tex_Texture_Second = -1;
1262                 p->tex_Texture_GammaRamps = -1;
1263                 p->tex_Texture_Normal = -1;
1264                 p->tex_Texture_Color = -1;
1265                 p->tex_Texture_Gloss = -1;
1266                 p->tex_Texture_Glow = -1;
1267                 p->tex_Texture_SecondaryNormal = -1;
1268                 p->tex_Texture_SecondaryColor = -1;
1269                 p->tex_Texture_SecondaryGloss = -1;
1270                 p->tex_Texture_SecondaryGlow = -1;
1271                 p->tex_Texture_Pants = -1;
1272                 p->tex_Texture_Shirt = -1;
1273                 p->tex_Texture_FogHeightTexture = -1;
1274                 p->tex_Texture_FogMask = -1;
1275                 p->tex_Texture_LightGrid = -1;
1276                 p->tex_Texture_Lightmap = -1;
1277                 p->tex_Texture_Deluxemap = -1;
1278                 p->tex_Texture_Attenuation = -1;
1279                 p->tex_Texture_Cube = -1;
1280                 p->tex_Texture_Refraction = -1;
1281                 p->tex_Texture_Reflection = -1;
1282                 p->tex_Texture_ShadowMap2D = -1;
1283                 p->tex_Texture_CubeProjection = -1;
1284                 p->tex_Texture_ScreenNormalMap = -1;
1285                 p->tex_Texture_ScreenDiffuse = -1;
1286                 p->tex_Texture_ScreenSpecular = -1;
1287                 p->tex_Texture_ReflectMask = -1;
1288                 p->tex_Texture_ReflectCube = -1;
1289                 p->tex_Texture_BounceGrid = -1;
1290                 // bind the texture samplers in use
1291                 sampler = 0;
1292                 if (p->loc_Texture_First           >= 0) {p->tex_Texture_First            = sampler;qglUniform1i(p->loc_Texture_First           , sampler);sampler++;}
1293                 if (p->loc_Texture_Second          >= 0) {p->tex_Texture_Second           = sampler;qglUniform1i(p->loc_Texture_Second          , sampler);sampler++;}
1294                 if (p->loc_Texture_GammaRamps      >= 0) {p->tex_Texture_GammaRamps       = sampler;qglUniform1i(p->loc_Texture_GammaRamps      , sampler);sampler++;}
1295                 if (p->loc_Texture_Normal          >= 0) {p->tex_Texture_Normal           = sampler;qglUniform1i(p->loc_Texture_Normal          , sampler);sampler++;}
1296                 if (p->loc_Texture_Color           >= 0) {p->tex_Texture_Color            = sampler;qglUniform1i(p->loc_Texture_Color           , sampler);sampler++;}
1297                 if (p->loc_Texture_Gloss           >= 0) {p->tex_Texture_Gloss            = sampler;qglUniform1i(p->loc_Texture_Gloss           , sampler);sampler++;}
1298                 if (p->loc_Texture_Glow            >= 0) {p->tex_Texture_Glow             = sampler;qglUniform1i(p->loc_Texture_Glow            , sampler);sampler++;}
1299                 if (p->loc_Texture_SecondaryNormal >= 0) {p->tex_Texture_SecondaryNormal  = sampler;qglUniform1i(p->loc_Texture_SecondaryNormal , sampler);sampler++;}
1300                 if (p->loc_Texture_SecondaryColor  >= 0) {p->tex_Texture_SecondaryColor   = sampler;qglUniform1i(p->loc_Texture_SecondaryColor  , sampler);sampler++;}
1301                 if (p->loc_Texture_SecondaryGloss  >= 0) {p->tex_Texture_SecondaryGloss   = sampler;qglUniform1i(p->loc_Texture_SecondaryGloss  , sampler);sampler++;}
1302                 if (p->loc_Texture_SecondaryGlow   >= 0) {p->tex_Texture_SecondaryGlow    = sampler;qglUniform1i(p->loc_Texture_SecondaryGlow   , sampler);sampler++;}
1303                 if (p->loc_Texture_Pants           >= 0) {p->tex_Texture_Pants            = sampler;qglUniform1i(p->loc_Texture_Pants           , sampler);sampler++;}
1304                 if (p->loc_Texture_Shirt           >= 0) {p->tex_Texture_Shirt            = sampler;qglUniform1i(p->loc_Texture_Shirt           , sampler);sampler++;}
1305                 if (p->loc_Texture_FogHeightTexture>= 0) {p->tex_Texture_FogHeightTexture = sampler;qglUniform1i(p->loc_Texture_FogHeightTexture, sampler);sampler++;}
1306                 if (p->loc_Texture_FogMask         >= 0) {p->tex_Texture_FogMask          = sampler;qglUniform1i(p->loc_Texture_FogMask         , sampler);sampler++;}
1307                 if (p->loc_Texture_LightGrid       >= 0) {p->tex_Texture_LightGrid        = sampler;qglUniform1i(p->loc_Texture_LightGrid       , sampler);sampler++;}
1308                 if (p->loc_Texture_Lightmap        >= 0) {p->tex_Texture_Lightmap         = sampler;qglUniform1i(p->loc_Texture_Lightmap        , sampler);sampler++;}
1309                 if (p->loc_Texture_Deluxemap       >= 0) {p->tex_Texture_Deluxemap        = sampler;qglUniform1i(p->loc_Texture_Deluxemap       , sampler);sampler++;}
1310                 if (p->loc_Texture_Attenuation     >= 0) {p->tex_Texture_Attenuation      = sampler;qglUniform1i(p->loc_Texture_Attenuation     , sampler);sampler++;}
1311                 if (p->loc_Texture_Cube            >= 0) {p->tex_Texture_Cube             = sampler;qglUniform1i(p->loc_Texture_Cube            , sampler);sampler++;}
1312                 if (p->loc_Texture_Refraction      >= 0) {p->tex_Texture_Refraction       = sampler;qglUniform1i(p->loc_Texture_Refraction      , sampler);sampler++;}
1313                 if (p->loc_Texture_Reflection      >= 0) {p->tex_Texture_Reflection       = sampler;qglUniform1i(p->loc_Texture_Reflection      , sampler);sampler++;}
1314                 if (p->loc_Texture_ShadowMap2D     >= 0) {p->tex_Texture_ShadowMap2D      = sampler;qglUniform1i(p->loc_Texture_ShadowMap2D     , sampler);sampler++;}
1315                 if (p->loc_Texture_CubeProjection  >= 0) {p->tex_Texture_CubeProjection   = sampler;qglUniform1i(p->loc_Texture_CubeProjection  , sampler);sampler++;}
1316                 if (p->loc_Texture_ScreenNormalMap >= 0) {p->tex_Texture_ScreenNormalMap  = sampler;qglUniform1i(p->loc_Texture_ScreenNormalMap , sampler);sampler++;}
1317                 if (p->loc_Texture_ScreenDiffuse   >= 0) {p->tex_Texture_ScreenDiffuse    = sampler;qglUniform1i(p->loc_Texture_ScreenDiffuse   , sampler);sampler++;}
1318                 if (p->loc_Texture_ScreenSpecular  >= 0) {p->tex_Texture_ScreenSpecular   = sampler;qglUniform1i(p->loc_Texture_ScreenSpecular  , sampler);sampler++;}
1319                 if (p->loc_Texture_ReflectMask     >= 0) {p->tex_Texture_ReflectMask      = sampler;qglUniform1i(p->loc_Texture_ReflectMask     , sampler);sampler++;}
1320                 if (p->loc_Texture_ReflectCube     >= 0) {p->tex_Texture_ReflectCube      = sampler;qglUniform1i(p->loc_Texture_ReflectCube     , sampler);sampler++;}
1321                 if (p->loc_Texture_BounceGrid      >= 0) {p->tex_Texture_BounceGrid       = sampler;qglUniform1i(p->loc_Texture_BounceGrid      , sampler);sampler++;}
1322                 // get the uniform block indices so we can bind them
1323                 p->ubiloc_Skeletal_Transform12_UniformBlock = -1;
1324 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1325                 p->ubiloc_Skeletal_Transform12_UniformBlock = qglGetUniformBlockIndex(p->program, "Skeletal_Transform12_UniformBlock");
1326 #endif
1327                 // clear the uniform block bindings
1328                 p->ubibind_Skeletal_Transform12_UniformBlock = -1;
1329                 // bind the uniform blocks in use
1330                 ubibind = 0;
1331 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1332                 if (p->ubiloc_Skeletal_Transform12_UniformBlock >= 0) {p->ubibind_Skeletal_Transform12_UniformBlock = ubibind;qglUniformBlockBinding(p->program, p->ubiloc_Skeletal_Transform12_UniformBlock, ubibind);ubibind++;}
1333 #endif
1334                 // we're done compiling and setting up the shader, at least until it is used
1335                 CHECKGLERROR
1336                 Con_DPrintf("^5GLSL shader %s compiled (%i textures).\n", permutationname, sampler);
1337         }
1338         else
1339                 Con_Printf("^1GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1340
1341         // free the strings
1342         if (sourcestring)
1343                 Mem_Free(sourcestring);
1344 }
1345
1346 static void R_SetupShader_SetPermutationGLSL(unsigned int mode, uint64_t permutation)
1347 {
1348         r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation);
1349         if (r_glsl_permutation != perm)
1350         {
1351                 r_glsl_permutation = perm;
1352                 if (!r_glsl_permutation->program)
1353                 {
1354                         if (!r_glsl_permutation->compiled)
1355                         {
1356                                 Con_DPrintf("Compiling shader mode %u permutation %" PRIx64 "\n", mode, permutation);
1357                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1358                         }
1359                         if (!r_glsl_permutation->program)
1360                         {
1361                                 // remove features until we find a valid permutation
1362                                 int i;
1363                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1364                                 {
1365                                         // reduce i more quickly whenever it would not remove any bits
1366                                         uint64_t j = 1ll<<(SHADERPERMUTATION_COUNT-1-i);
1367                                         if (!(permutation & j))
1368                                                 continue;
1369                                         permutation -= j;
1370                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1371                                         if (!r_glsl_permutation->compiled)
1372                                                 R_GLSL_CompilePermutation(perm, mode, permutation);
1373                                         if (r_glsl_permutation->program)
1374                                                 break;
1375                                 }
1376                                 if (i >= SHADERPERMUTATION_COUNT)
1377                                 {
1378                                         //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].filename, shadermodeinfo[mode].pretext);
1379                                         r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation);
1380                                         qglUseProgram(0);CHECKGLERROR
1381                                         return; // no bit left to clear, entire mode is broken
1382                                 }
1383                         }
1384                 }
1385                 CHECKGLERROR
1386                 qglUseProgram(r_glsl_permutation->program);CHECKGLERROR
1387         }
1388         if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
1389         if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
1390         if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1f(r_glsl_permutation->loc_ClientTime, cl.time);
1391         CHECKGLERROR
1392 }
1393
1394 void R_GLSL_Restart_f(cmd_state_t *cmd)
1395 {
1396         unsigned int i, limit;
1397         switch(vid.renderpath)
1398         {
1399         case RENDERPATH_GL32:
1400         case RENDERPATH_GLES2:
1401                 {
1402                         r_glsl_permutation_t *p;
1403                         r_glsl_permutation = NULL;
1404                         limit = (unsigned int)Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray);
1405                         for (i = 0;i < limit;i++)
1406                         {
1407                                 if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i)))
1408                                 {
1409                                         GL_Backend_FreeProgram(p->program);
1410                                         Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p);
1411                                 }
1412                         }
1413                         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
1414                 }
1415                 break;
1416         }
1417 }
1418
1419 static void R_GLSL_DumpShader_f(cmd_state_t *cmd)
1420 {
1421         int i, language, mode, dupe;
1422         char *text;
1423         shadermodeinfo_t *modeinfo;
1424         qfile_t *file;
1425
1426         for (language = 0;language < SHADERLANGUAGE_COUNT;language++)
1427         {
1428                 modeinfo = shadermodeinfo[language];
1429                 for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1430                 {
1431                         // don't dump the same file multiple times (most or all shaders come from the same file)
1432                         for (dupe = mode - 1;dupe >= 0;dupe--)
1433                                 if (!strcmp(modeinfo[mode].filename, modeinfo[dupe].filename))
1434                                         break;
1435                         if (dupe >= 0)
1436                                 continue;
1437                         text = modeinfo[mode].builtinstring;
1438                         if (!text)
1439                                 continue;
1440                         file = FS_OpenRealFile(modeinfo[mode].filename, "w", false);
1441                         if (file)
1442                         {
1443                                 FS_Print(file, "/* The engine may define the following macros:\n");
1444                                 FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n");
1445                                 for (i = 0;i < SHADERMODE_COUNT;i++)
1446                                         FS_Print(file, modeinfo[i].pretext);
1447                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1448                                         FS_Print(file, shaderpermutationinfo[i].pretext);
1449                                 FS_Print(file, "*/\n");
1450                                 FS_Print(file, text);
1451                                 FS_Close(file);
1452                                 Con_Printf("%s written\n", modeinfo[mode].filename);
1453                         }
1454                         else
1455                                 Con_Printf(CON_ERROR "failed to write to %s\n", modeinfo[mode].filename);
1456                 }
1457         }
1458 }
1459
1460 void R_SetupShader_Generic(rtexture_t *t, qbool usegamma, qbool notrippy, qbool suppresstexalpha)
1461 {
1462         uint64_t permutation = 0;
1463         if (r_trippy.integer && !notrippy)
1464                 permutation |= SHADERPERMUTATION_TRIPPY;
1465         permutation |= SHADERPERMUTATION_VIEWTINT;
1466         if (t)
1467                 permutation |= SHADERPERMUTATION_DIFFUSE;
1468         if (usegamma && v_glslgamma_2d.integer && !vid.sRGB2D && r_texture_gammaramps && !vid_gammatables_trivial)
1469                 permutation |= SHADERPERMUTATION_GAMMARAMPS;
1470         if (suppresstexalpha)
1471                 permutation |= SHADERPERMUTATION_REFLECTCUBE;
1472         if (vid.allowalphatocoverage)
1473                 GL_AlphaToCoverage(false);
1474         switch (vid.renderpath)
1475         {
1476         case RENDERPATH_GL32:
1477         case RENDERPATH_GLES2:
1478                 R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, permutation);
1479                 if (r_glsl_permutation->tex_Texture_First >= 0)
1480                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First, t);
1481                 if (r_glsl_permutation->tex_Texture_GammaRamps >= 0)
1482                         R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps);
1483                 break;
1484         }
1485 }
1486
1487 void R_SetupShader_Generic_NoTexture(qbool usegamma, qbool notrippy)
1488 {
1489         R_SetupShader_Generic(NULL, usegamma, notrippy, false);
1490 }
1491
1492 void R_SetupShader_DepthOrShadow(qbool notrippy, qbool depthrgb, qbool skeletal)
1493 {
1494         uint64_t permutation = 0;
1495         if (r_trippy.integer && !notrippy)
1496                 permutation |= SHADERPERMUTATION_TRIPPY;
1497         if (depthrgb)
1498                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1499         if (skeletal)
1500                 permutation |= SHADERPERMUTATION_SKELETAL;
1501
1502         if (vid.allowalphatocoverage)
1503                 GL_AlphaToCoverage(false);
1504         switch (vid.renderpath)
1505         {
1506         case RENDERPATH_GL32:
1507         case RENDERPATH_GLES2:
1508                 R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, permutation);
1509 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1510                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1511 #endif
1512                 break;
1513         }
1514 }
1515
1516 #define BLENDFUNC_ALLOWS_COLORMOD      1
1517 #define BLENDFUNC_ALLOWS_FOG           2
1518 #define BLENDFUNC_ALLOWS_FOG_HACK0     4
1519 #define BLENDFUNC_ALLOWS_FOG_HACKALPHA 8
1520 #define BLENDFUNC_ALLOWS_ANYFOG        (BLENDFUNC_ALLOWS_FOG | BLENDFUNC_ALLOWS_FOG_HACK0 | BLENDFUNC_ALLOWS_FOG_HACKALPHA)
1521 static int R_BlendFuncFlags(int src, int dst)
1522 {
1523         int r = 0;
1524
1525         // a blendfunc allows colormod if:
1526         // a) it can never keep the destination pixel invariant, or
1527         // b) it can keep the destination pixel invariant, and still can do so if colormodded
1528         // this is to prevent unintended side effects from colormod
1529
1530         // a blendfunc allows fog if:
1531         // blend(fog(src), fog(dst)) == fog(blend(src, dst))
1532         // this is to prevent unintended side effects from fog
1533
1534         // these checks are the output of fogeval.pl
1535
1536         r |= BLENDFUNC_ALLOWS_COLORMOD;
1537         if(src == GL_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1538         if(src == GL_DST_ALPHA && dst == GL_ONE_MINUS_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1539         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1540         if(src == GL_DST_COLOR && dst == GL_ONE_MINUS_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1541         if(src == GL_DST_COLOR && dst == GL_SRC_ALPHA) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1542         if(src == GL_DST_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1543         if(src == GL_DST_COLOR && dst == GL_ZERO) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1544         if(src == GL_ONE && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1545         if(src == GL_ONE && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG_HACKALPHA;
1546         if(src == GL_ONE && dst == GL_ZERO) r |= BLENDFUNC_ALLOWS_FOG;
1547         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_DST_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1548         if(src == GL_ONE_MINUS_DST_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1549         if(src == GL_ONE_MINUS_DST_COLOR && dst == GL_SRC_COLOR) r |= BLENDFUNC_ALLOWS_FOG;
1550         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1551         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1552         if(src == GL_ONE_MINUS_SRC_ALPHA && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1553         if(src == GL_ONE_MINUS_SRC_COLOR && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1554         if(src == GL_SRC_ALPHA && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG_HACK0;
1555         if(src == GL_SRC_ALPHA && dst == GL_ONE_MINUS_SRC_ALPHA) r |= BLENDFUNC_ALLOWS_FOG;
1556         if(src == GL_ZERO && dst == GL_ONE) r |= BLENDFUNC_ALLOWS_FOG;
1557         if(src == GL_ZERO && dst == GL_SRC_COLOR) r &= ~BLENDFUNC_ALLOWS_COLORMOD;
1558
1559         return r;
1560 }
1561
1562 void R_SetupShader_Surface(const float rtlightambient[3], const float rtlightdiffuse[3], const float rtlightspecular[3], rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane, qbool notrippy, qbool ui)
1563 {
1564         // select a permutation of the lighting shader appropriate to this
1565         // combination of texture, entity, light source, and fogging, only use the
1566         // minimum features necessary to avoid wasting rendering time in the
1567         // fragment shader on features that are not being used
1568         uint64_t permutation = 0;
1569         unsigned int mode = 0;
1570         int blendfuncflags;
1571         texture_t *t = rsurface.texture;
1572         float m16f[16];
1573         matrix4x4_t tempmatrix;
1574         r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane;
1575         if (r_trippy.integer && !notrippy)
1576                 permutation |= SHADERPERMUTATION_TRIPPY;
1577         if (t->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1578                 permutation |= SHADERPERMUTATION_ALPHAKILL;
1579         if (t->currentmaterialflags & MATERIALFLAG_OCCLUDE)
1580                 permutation |= SHADERPERMUTATION_OCCLUDE;
1581         if (t->r_water_waterscroll[0] && t->r_water_waterscroll[1])
1582                 permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; // todo: make generic
1583         if (rsurfacepass == RSURFPASS_BACKGROUND)
1584         {
1585                 // distorted background
1586                 if (t->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1587                 {
1588                         mode = SHADERMODE_WATER;
1589                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1590                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1591                         if((r_wateralpha.value < 1) && (t->currentmaterialflags & MATERIALFLAG_WATERALPHA))
1592                         {
1593                                 // this is the right thing to do for wateralpha
1594                                 GL_BlendFunc(GL_ONE, GL_ZERO);
1595                                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1596                         }
1597                         else
1598                         {
1599                                 // this is the right thing to do for entity alpha
1600                                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1601                                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1602                         }
1603                 }
1604                 else if (t->currentmaterialflags & MATERIALFLAG_REFRACTION)
1605                 {
1606                         mode = SHADERMODE_REFRACTION;
1607                         if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1608                                 permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1609                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1610                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1611                 }
1612                 else
1613                 {
1614                         mode = SHADERMODE_GENERIC;
1615                         permutation |= SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_ALPHAKILL;
1616                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1617                         blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1618                 }
1619                 if (vid.allowalphatocoverage)
1620                         GL_AlphaToCoverage(false);
1621         }
1622         else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY)
1623         {
1624                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1625                 {
1626                         switch(t->offsetmapping)
1627                         {
1628                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1629                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1630                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1631                         case OFFSETMAPPING_OFF: break;
1632                         }
1633                 }
1634                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1635                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1636                 // normalmap (deferred prepass), may use alpha test on diffuse
1637                 mode = SHADERMODE_DEFERREDGEOMETRY;
1638                 GL_BlendFunc(GL_ONE, GL_ZERO);
1639                 blendfuncflags = R_BlendFuncFlags(GL_ONE, GL_ZERO);
1640                 if (vid.allowalphatocoverage)
1641                         GL_AlphaToCoverage(false);
1642         }
1643         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1644         {
1645                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1646                 {
1647                         switch(t->offsetmapping)
1648                         {
1649                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1650                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1651                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1652                         case OFFSETMAPPING_OFF: break;
1653                         }
1654                 }
1655                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1656                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1657                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1658                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1659                 // light source
1660                 mode = SHADERMODE_LIGHTSOURCE;
1661                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1662                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1663                 if (VectorLength2(rtlightdiffuse) > 0)
1664                         permutation |= SHADERPERMUTATION_DIFFUSE;
1665                 if (VectorLength2(rtlightspecular) > 0)
1666                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1667                 if (r_refdef.fogenabled)
1668                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1669                 if (t->colormapping)
1670                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1671                 if (r_shadow_usingshadowmap2d)
1672                 {
1673                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1674                         if(r_shadow_shadowmapvsdct)
1675                                 permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
1676
1677                         if (r_shadow_shadowmap2ddepthbuffer)
1678                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1679                 }
1680                 if (t->reflectmasktexture)
1681                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1682                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1683                 blendfuncflags = R_BlendFuncFlags(GL_SRC_ALPHA, GL_ONE);
1684                 if (vid.allowalphatocoverage)
1685                         GL_AlphaToCoverage(false);
1686         }
1687         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
1688         {
1689                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1690                 {
1691                         switch(t->offsetmapping)
1692                         {
1693                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1694                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1695                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1696                         case OFFSETMAPPING_OFF: break;
1697                         }
1698                 }
1699                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1700                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1701                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1702                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1703                 // directional model lighting
1704                 mode = SHADERMODE_LIGHTGRID;
1705                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1706                         permutation |= SHADERPERMUTATION_GLOW;
1707                 permutation |= SHADERPERMUTATION_DIFFUSE;
1708                 if (t->glosstexture || t->backgroundglosstexture)
1709                         permutation |= SHADERPERMUTATION_SPECULAR;
1710                 if (r_refdef.fogenabled)
1711                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1712                 if (t->colormapping)
1713                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1714                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1715                 {
1716                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1717                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1718
1719                         if (r_shadow_shadowmap2ddepthbuffer)
1720                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1721                 }
1722                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1723                         permutation |= SHADERPERMUTATION_REFLECTION;
1724                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1725                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1726                 if (t->reflectmasktexture)
1727                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1728                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1729                 {
1730                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1731                         if (r_shadow_bouncegrid_state.directional)
1732                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1733                 }
1734                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1735                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1736                 // when using alphatocoverage, we don't need alphakill
1737                 if (vid.allowalphatocoverage)
1738                 {
1739                         if (r_transparent_alphatocoverage.integer)
1740                         {
1741                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1742                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1743                         }
1744                         else
1745                                 GL_AlphaToCoverage(false);
1746                 }
1747         }
1748         else if (t->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1749         {
1750                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1751                 {
1752                         switch(t->offsetmapping)
1753                         {
1754                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1755                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1756                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1757                         case OFFSETMAPPING_OFF: break;
1758                         }
1759                 }
1760                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1761                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1762                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1763                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1764                 // directional model lighting
1765                 mode = SHADERMODE_LIGHTDIRECTION;
1766                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1767                         permutation |= SHADERPERMUTATION_GLOW;
1768                 if (VectorLength2(t->render_modellight_diffuse))
1769                         permutation |= SHADERPERMUTATION_DIFFUSE;
1770                 if (VectorLength2(t->render_modellight_specular) > 0)
1771                         permutation |= SHADERPERMUTATION_SPECULAR;
1772                 if (r_refdef.fogenabled)
1773                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1774                 if (t->colormapping)
1775                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1776                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1777                 {
1778                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1779                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1780
1781                         if (r_shadow_shadowmap2ddepthbuffer)
1782                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1783                 }
1784                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1785                         permutation |= SHADERPERMUTATION_REFLECTION;
1786                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1787                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1788                 if (t->reflectmasktexture)
1789                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1790                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1791                 {
1792                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1793                         if (r_shadow_bouncegrid_state.directional)
1794                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1795                 }
1796                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1797                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1798                 // when using alphatocoverage, we don't need alphakill
1799                 if (vid.allowalphatocoverage)
1800                 {
1801                         if (r_transparent_alphatocoverage.integer)
1802                         {
1803                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1804                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1805                         }
1806                         else
1807                                 GL_AlphaToCoverage(false);
1808                 }
1809         }
1810         else
1811         {
1812                 if (r_glsl_offsetmapping.integer && ((R_TextureFlags(t->nmaptexture) & TEXF_ALPHA) || t->offsetbias != 0.0f))
1813                 {
1814                         switch(t->offsetmapping)
1815                         {
1816                         case OFFSETMAPPING_LINEAR: permutation |= SHADERPERMUTATION_OFFSETMAPPING;break;
1817                         case OFFSETMAPPING_RELIEF: permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1818                         case OFFSETMAPPING_DEFAULT: permutation |= SHADERPERMUTATION_OFFSETMAPPING;if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;break;
1819                         case OFFSETMAPPING_OFF: break;
1820                         }
1821                 }
1822                 if (t->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1823                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1824                 if (t->currentmaterialflags & MATERIALFLAG_ALPHAGEN_VERTEX)
1825                         permutation |= SHADERPERMUTATION_ALPHAGEN_VERTEX;
1826                 // lightmapped wall
1827                 if ((t->glowtexture || t->backgroundglowtexture) && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1828                         permutation |= SHADERPERMUTATION_GLOW;
1829                 if (r_refdef.fogenabled && !ui)
1830                         permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE);
1831                 if (t->colormapping)
1832                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1833                 if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))
1834                 {
1835                         permutation |= SHADERPERMUTATION_SHADOWMAPORTHO;
1836                         permutation |= SHADERPERMUTATION_SHADOWMAP2D;
1837
1838                         if (r_shadow_shadowmap2ddepthbuffer)
1839                                 permutation |= SHADERPERMUTATION_DEPTHRGB;
1840                 }
1841                 if (t->currentmaterialflags & MATERIALFLAG_REFLECTION)
1842                         permutation |= SHADERPERMUTATION_REFLECTION;
1843                 if (r_shadow_usingdeferredprepass && !(t->currentmaterialflags & MATERIALFLAG_BLENDED))
1844                         permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP;
1845                 if (t->reflectmasktexture)
1846                         permutation |= SHADERPERMUTATION_REFLECTCUBE;
1847                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1848                 {
1849                         // deluxemapping (light direction texture)
1850                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1851                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1852                         else
1853                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1854                         permutation |= SHADERPERMUTATION_DIFFUSE;
1855                         if (VectorLength2(t->render_lightmap_specular) > 0)
1856                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1857                 }
1858                 else if (r_glsl_deluxemapping.integer >= 2)
1859                 {
1860                         // fake deluxemapping (uniform light direction in tangentspace)
1861                         if (rsurface.uselightmaptexture)
1862                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_LIGHTMAP;
1863                         else
1864                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_FORCED_VERTEXCOLOR;
1865                         permutation |= SHADERPERMUTATION_DIFFUSE;
1866                         if (VectorLength2(t->render_lightmap_specular) > 0)
1867                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1868                 }
1869                 else if (rsurface.uselightmaptexture)
1870                 {
1871                         // ordinary lightmapping (q1bsp, q3bsp)
1872                         mode = SHADERMODE_LIGHTMAP;
1873                 }
1874                 else
1875                 {
1876                         // ordinary vertex coloring (q3bsp)
1877                         mode = SHADERMODE_VERTEXCOLOR;
1878                 }
1879                 if (r_shadow_bouncegrid_state.texture && cl.csqc_vidvars.drawworld && !notrippy)
1880                 {
1881                         permutation |= SHADERPERMUTATION_BOUNCEGRID;
1882                         if (r_shadow_bouncegrid_state.directional)
1883                                 permutation |= SHADERPERMUTATION_BOUNCEGRIDDIRECTIONAL;
1884                 }
1885                 GL_BlendFunc(t->currentblendfunc[0], t->currentblendfunc[1]);
1886                 blendfuncflags = R_BlendFuncFlags(t->currentblendfunc[0], t->currentblendfunc[1]);
1887                 // when using alphatocoverage, we don't need alphakill
1888                 if (vid.allowalphatocoverage)
1889                 {
1890                         if (r_transparent_alphatocoverage.integer)
1891                         {
1892                                 GL_AlphaToCoverage((t->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0);
1893                                 permutation &= ~SHADERPERMUTATION_ALPHAKILL;
1894                         }
1895                         else
1896                                 GL_AlphaToCoverage(false);
1897                 }
1898         }
1899         if(!(blendfuncflags & BLENDFUNC_ALLOWS_ANYFOG))
1900                 permutation &= ~(SHADERPERMUTATION_FOGHEIGHTTEXTURE | SHADERPERMUTATION_FOGOUTSIDE | SHADERPERMUTATION_FOGINSIDE);
1901         if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACKALPHA && !ui)
1902                 permutation |= SHADERPERMUTATION_FOGALPHAHACK;
1903         switch(vid.renderpath)
1904         {
1905         case RENDERPATH_GL32:
1906         case RENDERPATH_GLES2:
1907                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
1908                 RSurf_UploadBuffersForBatch();
1909                 // this has to be after RSurf_PrepareVerticesForBatch
1910                 if (rsurface.batchskeletaltransform3x4buffer)
1911                         permutation |= SHADERPERMUTATION_SKELETAL;
1912                 R_SetupShader_SetPermutationGLSL(mode, permutation);
1913 #ifndef USE_GLES2 /* FIXME: GLES3 only */
1914                 if (r_glsl_permutation->ubiloc_Skeletal_Transform12_UniformBlock >= 0 && rsurface.batchskeletaltransform3x4buffer) qglBindBufferRange(GL_UNIFORM_BUFFER, r_glsl_permutation->ubibind_Skeletal_Transform12_UniformBlock, rsurface.batchskeletaltransform3x4buffer->bufferobject, rsurface.batchskeletaltransform3x4offset, rsurface.batchskeletaltransform3x4size);
1915 #endif
1916                 if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);}
1917                 if (mode == SHADERMODE_LIGHTSOURCE)
1918                 {
1919                         if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);}
1920                         if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3f(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1921                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1922                         if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, rtlightambient[0], rtlightambient[1], rtlightambient[2]);
1923                         if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, rtlightdiffuse[0], rtlightdiffuse[1], rtlightdiffuse[2]);
1924                         if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, rtlightspecular[0], rtlightspecular[1], rtlightspecular[2]);
1925         
1926                         // additive passes are only darkened by fog, not tinted
1927                         if (r_glsl_permutation->loc_FogColor >= 0)
1928                                 qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1929                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1930                 }
1931                 else
1932                 {
1933                         if (mode == SHADERMODE_FLATCOLOR)
1934                         {
1935                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1936                         }
1937                         else if (mode == SHADERMODE_LIGHTGRID)
1938                         {
1939                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1940                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1941                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1942                                 // other LightGrid uniforms handled below
1943                         }
1944                         else if (mode == SHADERMODE_LIGHTDIRECTION)
1945                         {
1946                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_modellight_ambient[0], t->render_modellight_ambient[1], t->render_modellight_ambient[2]);
1947                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_modellight_diffuse[0], t->render_modellight_diffuse[1], t->render_modellight_diffuse[2]);
1948                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_modellight_specular[0], t->render_modellight_specular[1], t->render_modellight_specular[2]);
1949                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1950                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1951                                 if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3f(r_glsl_permutation->loc_LightColor, 1, 1, 1); // DEPRECATED
1952                                 if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3f(r_glsl_permutation->loc_LightDir, t->render_modellight_lightdir_local[0], t->render_modellight_lightdir_local[1], t->render_modellight_lightdir_local[2]);
1953                         }
1954                         else
1955                         {
1956                                 if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Ambient, t->render_lightmap_ambient[0], t->render_lightmap_ambient[1], t->render_lightmap_ambient[2]);
1957                                 if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Diffuse, t->render_lightmap_diffuse[0], t->render_lightmap_diffuse[1], t->render_lightmap_diffuse[2]);
1958                                 if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Specular, t->render_lightmap_specular[0], t->render_lightmap_specular[1], t->render_lightmap_specular[2]);
1959                                 if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Diffuse, t->render_rtlight_diffuse[0], t->render_rtlight_diffuse[1], t->render_rtlight_diffuse[2]);
1960                                 if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3f(r_glsl_permutation->loc_DeferredMod_Specular, t->render_rtlight_specular[0], t->render_rtlight_specular[1], t->render_rtlight_specular[2]);
1961                         }
1962                         // additive passes are only darkened by fog, not tinted
1963                         if (r_glsl_permutation->loc_FogColor >= 0 && !ui)
1964                         {
1965                                 if(blendfuncflags & BLENDFUNC_ALLOWS_FOG_HACK0)
1966                                         qglUniform3f(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1967                                 else
1968                                         qglUniform3f(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1969                         }
1970                         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * t->refractfactor, r_water_refractdistort.value * t->refractfactor, r_water_reflectdistort.value * t->reflectfactor, r_water_reflectdistort.value * t->reflectfactor);
1971                         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_fb.water.screenscale[0], r_fb.water.screenscale[1], r_fb.water.screenscale[0], r_fb.water.screenscale[1]);
1972                         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4f(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_fb.water.screencenter[0], r_fb.water.screencenter[1], r_fb.water.screencenter[0], r_fb.water.screencenter[1]);
1973                         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4f(r_glsl_permutation->loc_RefractColor, t->refractcolor4f[0], t->refractcolor4f[1], t->refractcolor4f[2], t->refractcolor4f[3] * t->currentalpha);
1974                         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4f(r_glsl_permutation->loc_ReflectColor, t->reflectcolor4f[0], t->reflectcolor4f[1], t->reflectcolor4f[2], t->reflectcolor4f[3] * t->currentalpha);
1975                         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectFactor, t->reflectmax - t->reflectmin);
1976                         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1f(r_glsl_permutation->loc_ReflectOffset, t->reflectmin);
1977                         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1f(r_glsl_permutation->loc_SpecularPower, t->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
1978                         if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2f(r_glsl_permutation->loc_NormalmapScrollBlend, t->r_water_waterscroll[0], t->r_water_waterscroll[1]);
1979                 }
1980                 if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currenttexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);}
1981                 if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&t->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);}
1982                 if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);}
1983                 if (permutation & SHADERPERMUTATION_SHADOWMAPORTHO)
1984                 {
1985                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_modelshadowmap_texturescale[0], r_shadow_modelshadowmap_texturescale[1], r_shadow_modelshadowmap_texturescale[2], r_shadow_modelshadowmap_texturescale[3]);
1986                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_modelshadowmap_parameters[0], r_shadow_modelshadowmap_parameters[1], r_shadow_modelshadowmap_parameters[2], r_shadow_modelshadowmap_parameters[3]);
1987                 }
1988                 else
1989                 {
1990                         if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
1991                         if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4f(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
1992                 }
1993
1994                 if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3f(r_glsl_permutation->loc_Color_Glow, t->render_glowmod[0], t->render_glowmod[1], t->render_glowmod[2]);
1995                 if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1f(r_glsl_permutation->loc_Alpha, t->currentalpha * ((t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay) ? t->r_water_wateralpha : 1));
1996                 if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3f(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);
1997                 if (r_glsl_permutation->loc_Color_Pants >= 0)
1998                 {
1999                         if (t->pantstexture)
2000                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, t->render_colormap_pants[0], t->render_colormap_pants[1], t->render_colormap_pants[2]);
2001                         else
2002                                 qglUniform3f(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
2003                 }
2004                 if (r_glsl_permutation->loc_Color_Shirt >= 0)
2005                 {
2006                         if (t->shirttexture)
2007                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, t->render_colormap_shirt[0], t->render_colormap_shirt[1], t->render_colormap_shirt[2]);
2008                         else
2009                                 qglUniform3f(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
2010                 }
2011                 if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4f(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);
2012                 if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1f(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist);
2013                 if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1f(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip);
2014                 if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1f(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade);
2015                 if (r_glsl_permutation->loc_OffsetMapping_ScaleSteps >= 0) qglUniform4f(r_glsl_permutation->loc_OffsetMapping_ScaleSteps,
2016                                 r_glsl_offsetmapping_scale.value*t->offsetscale,
2017                                 max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2018                                 1.0 / max(1, (permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) ? r_glsl_offsetmapping_reliefmapping_steps.integer : r_glsl_offsetmapping_steps.integer),
2019                                 max(1, r_glsl_offsetmapping_reliefmapping_refinesteps.integer)
2020                         );
2021                 if (r_glsl_permutation->loc_OffsetMapping_LodDistance >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_LodDistance, r_glsl_offsetmapping_lod_distance.integer * r_refdef.view.quality);
2022                 if (r_glsl_permutation->loc_OffsetMapping_Bias >= 0) qglUniform1f(r_glsl_permutation->loc_OffsetMapping_Bias, t->offsetbias);
2023                 if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2f(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2024                 if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2025                 if (r_glsl_permutation->loc_BounceGridMatrix >= 0) {Matrix4x4_Concat(&tempmatrix, &r_shadow_bouncegrid_state.matrix, &rsurface.matrix);Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);qglUniformMatrix4fv(r_glsl_permutation->loc_BounceGridMatrix, 1, false, m16f);}
2026                 if (r_glsl_permutation->loc_BounceGridIntensity >= 0) qglUniform1f(r_glsl_permutation->loc_BounceGridIntensity, r_shadow_bouncegrid_state.intensity*r_refdef.view.colorscale);
2027                 if (r_glsl_permutation->loc_LightGridMatrix >= 0 && r_refdef.scene.worldmodel)
2028                 {
2029                         float m9f[9];
2030                         Matrix4x4_Concat(&tempmatrix, &r_refdef.scene.worldmodel->brushq3.lightgridworldtotexturematrix, &rsurface.matrix);
2031                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2032                         qglUniformMatrix4fv(r_glsl_permutation->loc_LightGridMatrix, 1, false, m16f);
2033                         Matrix4x4_Normalize3(&tempmatrix, &rsurface.matrix);
2034                         Matrix4x4_ToArrayFloatGL(&tempmatrix, m16f);
2035                         m9f[0] = m16f[0];m9f[1] = m16f[1];m9f[2] = m16f[2];
2036                         m9f[3] = m16f[4];m9f[4] = m16f[5];m9f[5] = m16f[6];
2037                         m9f[6] = m16f[8];m9f[7] = m16f[9];m9f[8] = m16f[10];
2038                         qglUniformMatrix3fv(r_glsl_permutation->loc_LightGridNormalMatrix, 1, false, m9f);
2039                 }
2040
2041                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First            , r_texture_white                                     );
2042                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second           , r_texture_white                                     );
2043                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps       , r_texture_gammaramps                                );
2044                 if (r_glsl_permutation->tex_Texture_Normal          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Normal           , t->nmaptexture                       );
2045                 if (r_glsl_permutation->tex_Texture_Color           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Color            , t->basetexture                       );
2046                 if (r_glsl_permutation->tex_Texture_Gloss           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Gloss            , t->glosstexture                      );
2047                 if (r_glsl_permutation->tex_Texture_Glow            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Glow             , t->glowtexture                       );
2048                 if (r_glsl_permutation->tex_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryNormal  , t->backgroundnmaptexture             );
2049                 if (r_glsl_permutation->tex_Texture_SecondaryColor  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryColor   , t->backgroundbasetexture             );
2050                 if (r_glsl_permutation->tex_Texture_SecondaryGloss  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGloss   , t->backgroundglosstexture            );
2051                 if (r_glsl_permutation->tex_Texture_SecondaryGlow   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_SecondaryGlow    , t->backgroundglowtexture             );
2052                 if (r_glsl_permutation->tex_Texture_Pants           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Pants            , t->pantstexture                      );
2053                 if (r_glsl_permutation->tex_Texture_Shirt           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Shirt            , t->shirttexture                      );
2054                 if (r_glsl_permutation->tex_Texture_ReflectMask     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectMask      , t->reflectmasktexture                );
2055                 if (r_glsl_permutation->tex_Texture_ReflectCube     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ReflectCube      , t->reflectcubetexture ? t->reflectcubetexture : r_texture_whitecube);
2056                 if (r_glsl_permutation->tex_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogHeightTexture , r_texture_fogheighttexture                          );
2057                 if (r_glsl_permutation->tex_Texture_FogMask         >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_FogMask          , r_texture_fogattenuation                            );
2058                 if (r_glsl_permutation->tex_Texture_Lightmap        >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Lightmap         , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);
2059                 if (r_glsl_permutation->tex_Texture_Deluxemap       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Deluxemap        , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);
2060                 if (r_glsl_permutation->tex_Texture_Attenuation     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation      , r_shadow_attenuationgradienttexture                 );
2061                 if (rsurfacepass == RSURFPASS_BACKGROUND)
2062                 {
2063                         if (r_glsl_permutation->tex_Texture_Refraction  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Refraction        , waterplane->rt_refraction ? waterplane->rt_refraction->colortexture[0] : r_texture_black);
2064                         if (r_glsl_permutation->tex_Texture_First       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First             , waterplane->rt_camera ? waterplane->rt_camera->colortexture[0] : r_texture_black);
2065                         if (r_glsl_permutation->tex_Texture_Reflection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2066                 }
2067                 else
2068                 {
2069                         if (r_glsl_permutation->tex_Texture_Reflection >= 0 && waterplane) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Reflection        , waterplane->rt_reflection ? waterplane->rt_reflection->colortexture[0] : r_texture_black);
2070                 }
2071                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap   , r_shadow_prepassgeometrynormalmaptexture            );
2072                 if (r_glsl_permutation->tex_Texture_ScreenDiffuse   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenDiffuse     , r_shadow_prepasslightingdiffusetexture              );
2073                 if (r_glsl_permutation->tex_Texture_ScreenSpecular  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenSpecular    , r_shadow_prepasslightingspeculartexture             );
2074                 if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)))
2075                 {
2076                         if (r_glsl_permutation->tex_Texture_ShadowMap2D     >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D, r_shadow_shadowmap2ddepthtexture                           );
2077                         if (rsurface.rtlight)
2078                         {
2079                                 if (r_glsl_permutation->tex_Texture_Cube            >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube              , rsurface.rtlight->currentcubemap                    );
2080                                 if (r_glsl_permutation->tex_Texture_CubeProjection  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection    , r_shadow_shadowmapvsdcttexture                      );
2081                         }
2082                 }
2083                 if (r_glsl_permutation->tex_Texture_BounceGrid  >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_BounceGrid, r_shadow_bouncegrid_state.texture);
2084                 if (r_glsl_permutation->tex_Texture_LightGrid   >= 0 && r_refdef.scene.worldmodel) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_LightGrid, r_refdef.scene.worldmodel->brushq3.lightgridtexture);
2085                 CHECKGLERROR
2086                 break;
2087         }
2088 }
2089
2090 void R_SetupShader_DeferredLight(const rtlight_t *rtlight)
2091 {
2092         // select a permutation of the lighting shader appropriate to this
2093         // combination of texture, entity, light source, and fogging, only use the
2094         // minimum features necessary to avoid wasting rendering time in the
2095         // fragment shader on features that are not being used
2096         uint64_t permutation = 0;
2097         unsigned int mode = 0;
2098         const float *lightcolorbase = rtlight->currentcolor;
2099         float ambientscale = rtlight->ambientscale;
2100         float diffusescale = rtlight->diffusescale;
2101         float specularscale = rtlight->specularscale;
2102         // this is the location of the light in view space
2103         vec3_t viewlightorigin;
2104         // this transforms from view space (camera) to light space (cubemap)
2105         matrix4x4_t viewtolight;
2106         matrix4x4_t lighttoview;
2107         float viewtolight16f[16];
2108         // light source
2109         mode = SHADERMODE_DEFERREDLIGHTSOURCE;
2110         if (rtlight->currentcubemap != r_texture_whitecube)
2111                 permutation |= SHADERPERMUTATION_CUBEFILTER;
2112         if (diffusescale > 0)
2113                 permutation |= SHADERPERMUTATION_DIFFUSE;
2114         if (specularscale > 0 && r_shadow_gloss.integer > 0)
2115                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
2116         if (r_shadow_usingshadowmap2d)
2117         {
2118                 permutation |= SHADERPERMUTATION_SHADOWMAP2D;
2119                 if (r_shadow_shadowmapvsdct)
2120                         permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT;
2121
2122                 if (r_shadow_shadowmap2ddepthbuffer)
2123                         permutation |= SHADERPERMUTATION_DEPTHRGB;
2124         }
2125         if (vid.allowalphatocoverage)
2126                 GL_AlphaToCoverage(false);
2127         Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin);
2128         Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld);
2129         Matrix4x4_Invert_Full(&viewtolight, &lighttoview);
2130         Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f);
2131         switch(vid.renderpath)
2132         {
2133         case RENDERPATH_GL32:
2134         case RENDERPATH_GLES2:
2135                 R_SetupShader_SetPermutationGLSL(mode, permutation);
2136                 if (r_glsl_permutation->loc_LightPosition             >= 0) qglUniform3f(       r_glsl_permutation->loc_LightPosition            , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);
2137                 if (r_glsl_permutation->loc_ViewToLight               >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ViewToLight              , 1, false, viewtolight16f);
2138                 if (r_glsl_permutation->loc_DeferredColor_Ambient     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Ambient    , lightcolorbase[0] * ambientscale , lightcolorbase[1] * ambientscale , lightcolorbase[2] * ambientscale );
2139                 if (r_glsl_permutation->loc_DeferredColor_Diffuse     >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Diffuse    , lightcolorbase[0] * diffusescale , lightcolorbase[1] * diffusescale , lightcolorbase[2] * diffusescale );
2140                 if (r_glsl_permutation->loc_DeferredColor_Specular    >= 0) qglUniform3f(       r_glsl_permutation->loc_DeferredColor_Specular   , lightcolorbase[0] * specularscale, lightcolorbase[1] * specularscale, lightcolorbase[2] * specularscale);
2141                 if (r_glsl_permutation->loc_ShadowMap_TextureScale    >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_TextureScale   , r_shadow_lightshadowmap_texturescale[0], r_shadow_lightshadowmap_texturescale[1], r_shadow_lightshadowmap_texturescale[2], r_shadow_lightshadowmap_texturescale[3]);
2142                 if (r_glsl_permutation->loc_ShadowMap_Parameters      >= 0) qglUniform4f(       r_glsl_permutation->loc_ShadowMap_Parameters     , r_shadow_lightshadowmap_parameters[0], r_shadow_lightshadowmap_parameters[1], r_shadow_lightshadowmap_parameters[2], r_shadow_lightshadowmap_parameters[3]);
2143                 if (r_glsl_permutation->loc_SpecularPower             >= 0) qglUniform1f(       r_glsl_permutation->loc_SpecularPower            , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f) - 1.0f);
2144                 if (r_glsl_permutation->loc_ScreenToDepth             >= 0) qglUniform2f(       r_glsl_permutation->loc_ScreenToDepth            , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);
2145                 if (r_glsl_permutation->loc_PixelToScreenTexCoord     >= 0) qglUniform2f(       r_glsl_permutation->loc_PixelToScreenTexCoord    , 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
2146
2147                 if (r_glsl_permutation->tex_Texture_Attenuation       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Attenuation        , r_shadow_attenuationgradienttexture                 );
2148                 if (r_glsl_permutation->tex_Texture_ScreenNormalMap   >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ScreenNormalMap    , r_shadow_prepassgeometrynormalmaptexture            );
2149                 if (r_glsl_permutation->tex_Texture_Cube              >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Cube               , rsurface.rtlight->currentcubemap                    );
2150                 if (r_glsl_permutation->tex_Texture_ShadowMap2D       >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_ShadowMap2D        , r_shadow_shadowmap2ddepthtexture                    );
2151                 if (r_glsl_permutation->tex_Texture_CubeProjection    >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_CubeProjection     , r_shadow_shadowmapvsdcttexture                      );
2152                 break;
2153         }
2154 }
2155
2156 #define SKINFRAME_HASH 1024
2157
2158 typedef struct
2159 {
2160         unsigned int loadsequence; // incremented each level change
2161         memexpandablearray_t array;
2162         skinframe_t *hash[SKINFRAME_HASH];
2163 }
2164 r_skinframe_t;
2165 r_skinframe_t r_skinframe;
2166
2167 void R_SkinFrame_PrepareForPurge(void)
2168 {
2169         r_skinframe.loadsequence++;
2170         // wrap it without hitting zero
2171         if (r_skinframe.loadsequence >= 200)
2172                 r_skinframe.loadsequence = 1;
2173 }
2174
2175 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
2176 {
2177         if (!skinframe)
2178                 return;
2179         // mark the skinframe as used for the purging code
2180         skinframe->loadsequence = r_skinframe.loadsequence;
2181 }
2182
2183 void R_SkinFrame_PurgeSkinFrame(skinframe_t *s)
2184 {
2185         if (s == NULL)
2186                 return;
2187         if (s->merged == s->base)
2188                 s->merged = NULL;
2189         R_PurgeTexture(s->stain); s->stain = NULL;
2190         R_PurgeTexture(s->merged); s->merged = NULL;
2191         R_PurgeTexture(s->base); s->base = NULL;
2192         R_PurgeTexture(s->pants); s->pants = NULL;
2193         R_PurgeTexture(s->shirt); s->shirt = NULL;
2194         R_PurgeTexture(s->nmap); s->nmap = NULL;
2195         R_PurgeTexture(s->gloss); s->gloss = NULL;
2196         R_PurgeTexture(s->glow); s->glow = NULL;
2197         R_PurgeTexture(s->fog); s->fog = NULL;
2198         R_PurgeTexture(s->reflect); s->reflect = NULL;
2199         s->loadsequence = 0;
2200 }
2201
2202 void R_SkinFrame_Purge(void)
2203 {
2204         int i;
2205         skinframe_t *s;
2206         for (i = 0;i < SKINFRAME_HASH;i++)
2207         {
2208                 for (s = r_skinframe.hash[i];s;s = s->next)
2209                 {
2210                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
2211                                 R_SkinFrame_PurgeSkinFrame(s);
2212                 }
2213         }
2214 }
2215
2216 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
2217         skinframe_t *item;
2218         char basename[MAX_QPATH];
2219
2220         Image_StripImageExtension(name, basename, sizeof(basename));
2221
2222         if( last == NULL ) {
2223                 int hashindex;
2224                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2225                 item = r_skinframe.hash[hashindex];
2226         } else {
2227                 item = last->next;
2228         }
2229
2230         // linearly search through the hash bucket
2231         for( ; item ; item = item->next ) {
2232                 if( !strcmp( item->basename, basename ) ) {
2233                         return item;
2234                 }
2235         }
2236         return NULL;
2237 }
2238
2239 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qbool add)
2240 {
2241         skinframe_t *item;
2242         int compareflags = textureflags & TEXF_IMPORTANTBITS;
2243         int hashindex;
2244         char basename[MAX_QPATH];
2245
2246         Image_StripImageExtension(name, basename, sizeof(basename));
2247
2248         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
2249         for (item = r_skinframe.hash[hashindex];item;item = item->next)
2250                 if (!strcmp(item->basename, basename) &&
2251                         item->textureflags == compareflags &&
2252                         item->comparewidth == comparewidth &&
2253                         item->compareheight == compareheight &&
2254                         item->comparecrc == comparecrc)
2255                         break;
2256
2257         if (!item)
2258         {
2259                 if (!add)
2260                         return NULL;
2261                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
2262                 memset(item, 0, sizeof(*item));
2263                 strlcpy(item->basename, basename, sizeof(item->basename));
2264                 item->textureflags = compareflags;
2265                 item->comparewidth = comparewidth;
2266                 item->compareheight = compareheight;
2267                 item->comparecrc = comparecrc;
2268                 item->next = r_skinframe.hash[hashindex];
2269                 r_skinframe.hash[hashindex] = item;
2270         }
2271         else if (textureflags & TEXF_FORCE_RELOAD)
2272                 R_SkinFrame_PurgeSkinFrame(item);
2273
2274         R_SkinFrame_MarkUsed(item);
2275         return item;
2276 }
2277
2278 #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \
2279         { \
2280                 unsigned long long avgcolor[5], wsum; \
2281                 int pix, comp, w; \
2282                 avgcolor[0] = 0; \
2283                 avgcolor[1] = 0; \
2284                 avgcolor[2] = 0; \
2285                 avgcolor[3] = 0; \
2286                 avgcolor[4] = 0; \
2287                 wsum = 0; \
2288                 for(pix = 0; pix < cnt; ++pix) \
2289                 { \
2290                         w = 0; \
2291                         for(comp = 0; comp < 3; ++comp) \
2292                                 w += getpixel; \
2293                         if(w) /* ignore perfectly black pixels because that is better for model skins */ \
2294                         { \
2295                                 ++wsum; \
2296                                 /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2297                                 w = getpixel; \
2298                                 for(comp = 0; comp < 3; ++comp) \
2299                                         avgcolor[comp] += getpixel * w; \
2300                                 avgcolor[3] += w; \
2301                         } \
2302                         /* comp = 3; -- not needed, comp is always 3 when we get here */ \
2303                         avgcolor[4] += getpixel; \
2304                 } \
2305                 if(avgcolor[3] == 0) /* no pixels seen? even worse */ \
2306                         avgcolor[3] = 1; \
2307                 skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \
2308                 skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \
2309                 skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \
2310                 skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \
2311         }
2312
2313 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2314 {
2315         skinframe_t *skinframe;
2316
2317         if (cls.state == ca_dedicated)
2318                 return NULL;
2319
2320         // return an existing skinframe if already loaded
2321         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
2322         if (skinframe && skinframe->base)
2323                 return skinframe;
2324
2325         // if the skinframe doesn't exist this will create it
2326         return R_SkinFrame_LoadExternal_SkinFrame(skinframe, name, textureflags, complain, fallbacknotexture);
2327 }
2328
2329 extern cvar_t gl_picmip;
2330 skinframe_t *R_SkinFrame_LoadExternal_SkinFrame(skinframe_t *skinframe, const char *name, int textureflags, qbool complain, qbool fallbacknotexture)
2331 {
2332         int j;
2333         unsigned char *pixels;
2334         unsigned char *bumppixels;
2335         unsigned char *basepixels = NULL;
2336         int basepixels_width = 0;
2337         int basepixels_height = 0;
2338         rtexture_t *ddsbase = NULL;
2339         qbool ddshasalpha = false;
2340         float ddsavgcolor[4];
2341         char basename[MAX_QPATH];
2342         int miplevel = R_PicmipForFlags(textureflags);
2343         int savemiplevel = miplevel;
2344         int mymiplevel;
2345         char vabuf[1024];
2346
2347         if (cls.state == ca_dedicated)
2348                 return NULL;
2349
2350         Image_StripImageExtension(name, basename, sizeof(basename));
2351
2352         // check for DDS texture file first
2353         if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s.dds", basename), vid.sRGB3D, textureflags, &ddshasalpha, ddsavgcolor, miplevel, false)))
2354         {
2355                 basepixels = loadimagepixelsbgra(name, complain, true, false, &miplevel);
2356                 if (basepixels == NULL && fallbacknotexture)
2357                         basepixels = Image_GenerateNoTexture();
2358                 if (basepixels == NULL)
2359                         return NULL;
2360         }
2361
2362         // FIXME handle miplevel
2363
2364         if (developer_loading.integer)
2365                 Con_Printf("loading skin \"%s\"\n", name);
2366
2367         // we've got some pixels to store, so really allocate this new texture now
2368         if (!skinframe)
2369                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
2370         textureflags &= ~TEXF_FORCE_RELOAD;
2371         skinframe->stain = NULL;
2372         skinframe->merged = NULL;
2373         skinframe->base = NULL;
2374         skinframe->pants = NULL;
2375         skinframe->shirt = NULL;
2376         skinframe->nmap = NULL;
2377         skinframe->gloss = NULL;
2378         skinframe->glow = NULL;
2379         skinframe->fog = NULL;
2380         skinframe->reflect = NULL;
2381         skinframe->hasalpha = false;
2382         // we could store the q2animname here too
2383
2384         if (ddsbase)
2385         {
2386                 skinframe->base = ddsbase;
2387                 skinframe->hasalpha = ddshasalpha;
2388                 VectorCopy(ddsavgcolor, skinframe->avgcolor);
2389                 if (r_loadfog && skinframe->hasalpha)
2390                         skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), false, textureflags | TEXF_ALPHA, NULL, NULL, miplevel, true);
2391                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2392         }
2393         else
2394         {
2395                 basepixels_width = image_width;
2396                 basepixels_height = image_height;
2397                 skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2398                 if (textureflags & TEXF_ALPHA)
2399                 {
2400                         for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
2401                         {
2402                                 if (basepixels[j] < 255)
2403                                 {
2404                                         skinframe->hasalpha = true;
2405                                         break;
2406                                 }
2407                         }
2408                         if (r_loadfog && skinframe->hasalpha)
2409                         {
2410                                 // has transparent pixels
2411                                 pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2412                                 for (j = 0;j < image_width * image_height * 4;j += 4)
2413                                 {
2414                                         pixels[j+0] = 255;
2415                                         pixels[j+1] = 255;
2416                                         pixels[j+2] = 255;
2417                                         pixels[j+3] = basepixels[j+3];
2418                                 }
2419                                 skinframe->fog = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL);
2420                                 Mem_Free(pixels);
2421                         }
2422                 }
2423                 R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]);
2424 #ifndef USE_GLES2
2425                 //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2426                 if (r_savedds && skinframe->base)
2427                         R_SaveTextureDDSFile(skinframe->base, va(vabuf, sizeof(vabuf), "dds/%s.dds", skinframe->basename), r_texture_dds_save.integer < 2, skinframe->hasalpha);
2428                 if (r_savedds && skinframe->fog)
2429                         R_SaveTextureDDSFile(skinframe->fog, va(vabuf, sizeof(vabuf), "dds/%s_mask.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2430 #endif
2431         }
2432
2433         if (r_loaddds)
2434         {
2435                 mymiplevel = savemiplevel;
2436                 if (r_loadnormalmap)
2437                         skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), false, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel, true);
2438                 skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2439                 if (r_loadgloss)
2440                         skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2441                 skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2442                 skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2443                 skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), vid.sRGB3D, textureflags, NULL, NULL, mymiplevel, true);
2444         }
2445
2446         // _norm is the name used by tenebrae and has been adopted as standard
2447         if (r_loadnormalmap && skinframe->nmap == NULL)
2448         {
2449                 mymiplevel = savemiplevel;
2450                 if ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2451                 {
2452                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2453                         Mem_Free(pixels);
2454                         pixels = NULL;
2455                 }
2456                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL)
2457                 {
2458                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
2459                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
2460                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2461                         Mem_Free(pixels);
2462                         Mem_Free(bumppixels);
2463                 }
2464                 else if (r_shadow_bumpscale_basetexture.value > 0)
2465                 {
2466                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
2467                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
2468                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2469                         Mem_Free(pixels);
2470                 }
2471 #ifndef USE_GLES2
2472                 if (r_savedds && skinframe->nmap)
2473                         R_SaveTextureDDSFile(skinframe->nmap, va(vabuf, sizeof(vabuf), "dds/%s_norm.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2474 #endif
2475         }
2476
2477         // _luma is supported only for tenebrae compatibility
2478         // _blend and .blend are supported only for Q3 & QL compatibility, this hack can be removed if better Q3 shader support is implemented
2479         // _glow is the preferred name
2480         mymiplevel = savemiplevel;
2481         if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s.blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_blend", skinframe->basename), false, false, false, &mymiplevel)) || (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_luma", skinframe->basename), false, false, false, &mymiplevel))))
2482         {
2483                 skinframe->glow = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2484 #ifndef USE_GLES2
2485                 if (r_savedds && skinframe->glow)
2486                         R_SaveTextureDDSFile(skinframe->glow, va(vabuf, sizeof(vabuf), "dds/%s_glow.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2487 #endif
2488                 Mem_Free(pixels);pixels = NULL;
2489         }
2490
2491         mymiplevel = savemiplevel;
2492         if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), false, false, false, &mymiplevel)))
2493         {
2494                 skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_gloss", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (gl_texturecompression_gloss.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2495 #ifndef USE_GLES2
2496                 if (r_savedds && skinframe->gloss)
2497                         R_SaveTextureDDSFile(skinframe->gloss, va(vabuf, sizeof(vabuf), "dds/%s_gloss.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2498 #endif
2499                 Mem_Free(pixels);
2500                 pixels = NULL;
2501         }
2502
2503         mymiplevel = savemiplevel;
2504         if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), false, false, false, &mymiplevel)))
2505         {
2506                 skinframe->pants = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2507 #ifndef USE_GLES2
2508                 if (r_savedds && skinframe->pants)
2509                         R_SaveTextureDDSFile(skinframe->pants, va(vabuf, sizeof(vabuf), "dds/%s_pants.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2510 #endif
2511                 Mem_Free(pixels);
2512                 pixels = NULL;
2513         }
2514
2515         mymiplevel = savemiplevel;
2516         if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), false, false, false, &mymiplevel)))
2517         {
2518                 skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2519 #ifndef USE_GLES2
2520                 if (r_savedds && skinframe->shirt)
2521                         R_SaveTextureDDSFile(skinframe->shirt, va(vabuf, sizeof(vabuf), "dds/%s_shirt.dds", skinframe->basename), r_texture_dds_save.integer < 2, false);
2522 #endif
2523                 Mem_Free(pixels);
2524                 pixels = NULL;
2525         }
2526
2527         mymiplevel = savemiplevel;
2528         if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), false, false, false, &mymiplevel)))
2529         {
2530                 skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_reflect", skinframe->basename), image_width, image_height, pixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer && gl_texturecompression.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL);
2531 #ifndef USE_GLES2
2532                 if (r_savedds && skinframe->reflect)
2533                         R_SaveTextureDDSFile(skinframe->reflect, va(vabuf, sizeof(vabuf), "dds/%s_reflect.dds", skinframe->basename), r_texture_dds_save.integer < 2, true);
2534 #endif
2535                 Mem_Free(pixels);
2536                 pixels = NULL;
2537         }
2538
2539         if (basepixels)
2540                 Mem_Free(basepixels);
2541
2542         return skinframe;
2543 }
2544
2545 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height, int comparewidth, int compareheight, int comparecrc, qbool sRGB)
2546 {
2547         int i;
2548         skinframe_t *skinframe;
2549         char vabuf[1024];
2550
2551         if (cls.state == ca_dedicated)
2552                 return NULL;
2553
2554         // if already loaded just return it, otherwise make a new skinframe
2555         skinframe = R_SkinFrame_Find(name, textureflags, comparewidth, compareheight, comparecrc, true);
2556         if (skinframe->base)
2557                 return skinframe;
2558         textureflags &= ~TEXF_FORCE_RELOAD;
2559
2560         skinframe->stain = NULL;
2561         skinframe->merged = NULL;
2562         skinframe->base = NULL;
2563         skinframe->pants = NULL;
2564         skinframe->shirt = NULL;
2565         skinframe->nmap = NULL;
2566         skinframe->gloss = NULL;
2567         skinframe->glow = NULL;
2568         skinframe->fog = NULL;
2569         skinframe->reflect = NULL;
2570         skinframe->hasalpha = false;
2571
2572         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2573         if (!skindata)
2574                 return NULL;
2575
2576         if (developer_loading.integer)
2577                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2578
2579         if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0)
2580         {
2581                 unsigned char *a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2582                 unsigned char *b = a + width * height * 4;
2583                 Image_HeightmapToNormalmap_BGRA(skindata, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2584                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2585                 Mem_Free(a);
2586         }
2587         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, textureflags, -1, NULL);
2588         if (textureflags & TEXF_ALPHA)
2589         {
2590                 for (i = 3;i < width * height * 4;i += 4)
2591                 {
2592                         if (skindata[i] < 255)
2593                         {
2594                                 skinframe->hasalpha = true;
2595                                 break;
2596                         }
2597                 }
2598                 if (r_loadfog && skinframe->hasalpha)
2599                 {
2600                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2601                         memcpy(fogpixels, skindata, width * height * 4);
2602                         for (i = 0;i < width * height * 4;i += 4)
2603                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2604                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL);
2605                         Mem_Free(fogpixels);
2606                 }
2607         }
2608
2609         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]);
2610         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2611
2612         return skinframe;
2613 }
2614
2615 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2616 {
2617         int i;
2618         int featuresmask;
2619         skinframe_t *skinframe;
2620
2621         if (cls.state == ca_dedicated)
2622                 return NULL;
2623
2624         // if already loaded just return it, otherwise make a new skinframe
2625         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2626         if (skinframe->base)
2627                 return skinframe;
2628         //textureflags &= ~TEXF_FORCE_RELOAD;
2629
2630         skinframe->stain = NULL;
2631         skinframe->merged = NULL;
2632         skinframe->base = NULL;
2633         skinframe->pants = NULL;
2634         skinframe->shirt = NULL;
2635         skinframe->nmap = NULL;
2636         skinframe->gloss = NULL;
2637         skinframe->glow = NULL;
2638         skinframe->fog = NULL;
2639         skinframe->reflect = NULL;
2640         skinframe->hasalpha = false;
2641
2642         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2643         if (!skindata)
2644                 return NULL;
2645
2646         if (developer_loading.integer)
2647                 Con_Printf("loading quake skin \"%s\"\n", name);
2648
2649         // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped)
2650         skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); // FIXME LEAK
2651         memcpy(skinframe->qpixels, skindata, width*height);
2652         skinframe->qwidth = width;
2653         skinframe->qheight = height;
2654
2655         featuresmask = 0;
2656         for (i = 0;i < width * height;i++)
2657                 featuresmask |= palette_featureflags[skindata[i]];
2658
2659         skinframe->hasalpha = false;
2660         // fence textures
2661         if (name[0] == '{')
2662                 skinframe->hasalpha = true;
2663         skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT));
2664         skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0;
2665         skinframe->qgeneratemerged = true;
2666         skinframe->qgeneratebase = skinframe->qhascolormapping;
2667         skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW);
2668
2669         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]);
2670         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2671
2672         return skinframe;
2673 }
2674
2675 static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qbool colormapped)
2676 {
2677         int width;
2678         int height;
2679         unsigned char *skindata;
2680         char vabuf[1024];
2681
2682         if (!skinframe->qpixels)
2683                 return;
2684
2685         if (!skinframe->qhascolormapping)
2686                 colormapped = false;
2687
2688         if (colormapped)
2689         {
2690                 if (!skinframe->qgeneratebase)
2691                         return;
2692         }
2693         else
2694         {
2695                 if (!skinframe->qgeneratemerged)
2696                         return;
2697         }
2698
2699         width = skinframe->qwidth;
2700         height = skinframe->qheight;
2701         skindata = skinframe->qpixels;
2702
2703         if (skinframe->qgeneratenmap)
2704         {
2705                 unsigned char *a, *b;
2706                 skinframe->qgeneratenmap = false;
2707                 a = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2708                 b = a + width * height * 4;
2709                 // use either a custom palette or the quake palette
2710                 Image_Copy8bitBGRA(skindata, a, width * height, palette_bgra_complete);
2711                 Image_HeightmapToNormalmap_BGRA(a, b, width, height, false, r_shadow_bumpscale_basetexture.value);
2712                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nmap", skinframe->basename), width, height, b, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL);
2713                 Mem_Free(a);
2714         }
2715
2716         if (skinframe->qgenerateglow)
2717         {
2718                 skinframe->qgenerateglow = false;
2719                 if (skinframe->hasalpha) // fence textures
2720                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, palette_bgra_onlyfullbrights_transparent); // glow
2721                 else
2722                         skinframe->glow = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_glow", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow
2723         }
2724
2725         if (colormapped)
2726         {
2727                 skinframe->qgeneratebase = false;
2728                 skinframe->base  = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_nospecial", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap);
2729                 skinframe->pants = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_pants", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite);
2730                 skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_shirt", skinframe->basename), width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite);
2731         }
2732         else
2733         {
2734                 skinframe->qgeneratemerged = false;
2735                 if (skinframe->hasalpha) // fence textures
2736                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags | TEXF_ALPHA, -1, skinframe->glow ? palette_bgra_nofullbrights_transparent : palette_bgra_transparent);
2737                 else
2738                         skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, vid.sRGB3D ? TEXTYPE_SRGB_PALETTE : TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete);
2739         }
2740
2741         if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase)
2742         {
2743                 Mem_Free(skinframe->qpixels);
2744                 skinframe->qpixels = NULL;
2745         }
2746 }
2747
2748 skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette)
2749 {
2750         int i;
2751         skinframe_t *skinframe;
2752         char vabuf[1024];
2753
2754         if (cls.state == ca_dedicated)
2755                 return NULL;
2756
2757         // if already loaded just return it, otherwise make a new skinframe
2758         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2759         if (skinframe->base)
2760                 return skinframe;
2761         textureflags &= ~TEXF_FORCE_RELOAD;
2762
2763         skinframe->stain = NULL;
2764         skinframe->merged = NULL;
2765         skinframe->base = NULL;
2766         skinframe->pants = NULL;
2767         skinframe->shirt = NULL;
2768         skinframe->nmap = NULL;
2769         skinframe->gloss = NULL;
2770         skinframe->glow = NULL;
2771         skinframe->fog = NULL;
2772         skinframe->reflect = NULL;
2773         skinframe->hasalpha = false;
2774
2775         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2776         if (!skindata)
2777                 return NULL;
2778
2779         if (developer_loading.integer)
2780                 Con_Printf("loading embedded 8bit image \"%s\"\n", name);
2781
2782         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette);
2783         if ((textureflags & TEXF_ALPHA) && alphapalette)
2784         {
2785                 for (i = 0;i < width * height;i++)
2786                 {
2787                         if (((unsigned char *)palette)[skindata[i]*4+3] < 255)
2788                         {
2789                                 skinframe->hasalpha = true;
2790                                 break;
2791                         }
2792                 }
2793                 if (r_loadfog && skinframe->hasalpha)
2794                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette);
2795         }
2796
2797         R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]);
2798         //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]);
2799
2800         return skinframe;
2801 }
2802
2803 skinframe_t *R_SkinFrame_LoadMissing(void)
2804 {
2805         skinframe_t *skinframe;
2806
2807         if (cls.state == ca_dedicated)
2808                 return NULL;
2809
2810         skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true);
2811         skinframe->stain = NULL;
2812         skinframe->merged = NULL;
2813         skinframe->base = NULL;
2814         skinframe->pants = NULL;
2815         skinframe->shirt = NULL;
2816         skinframe->nmap = NULL;
2817         skinframe->gloss = NULL;
2818         skinframe->glow = NULL;
2819         skinframe->fog = NULL;
2820         skinframe->reflect = NULL;
2821         skinframe->hasalpha = false;
2822
2823         skinframe->avgcolor[0] = rand() / RAND_MAX;
2824         skinframe->avgcolor[1] = rand() / RAND_MAX;
2825         skinframe->avgcolor[2] = rand() / RAND_MAX;
2826         skinframe->avgcolor[3] = 1;
2827
2828         return skinframe;
2829 }
2830
2831 skinframe_t *R_SkinFrame_LoadNoTexture(void)
2832 {
2833         if (cls.state == ca_dedicated)
2834                 return NULL;
2835
2836         return R_SkinFrame_LoadInternalBGRA("notexture", TEXF_FORCENEAREST, Image_GenerateNoTexture(), 16, 16, 0, 0, 0, false);
2837 }
2838
2839 skinframe_t *R_SkinFrame_LoadInternalUsingTexture(const char *name, int textureflags, rtexture_t *tex, int width, int height, qbool sRGB)
2840 {
2841         skinframe_t *skinframe;
2842         if (cls.state == ca_dedicated)
2843                 return NULL;
2844         // if already loaded just return it, otherwise make a new skinframe
2845         skinframe = R_SkinFrame_Find(name, textureflags, width, height, 0, true);
2846         if (skinframe->base)
2847                 return skinframe;
2848         textureflags &= ~TEXF_FORCE_RELOAD;
2849         skinframe->stain = NULL;
2850         skinframe->merged = NULL;
2851         skinframe->base = NULL;
2852         skinframe->pants = NULL;
2853         skinframe->shirt = NULL;
2854         skinframe->nmap = NULL;
2855         skinframe->gloss = NULL;
2856         skinframe->glow = NULL;
2857         skinframe->fog = NULL;
2858         skinframe->reflect = NULL;
2859         skinframe->hasalpha = (textureflags & TEXF_ALPHA) != 0;
2860         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2861         if (!tex)
2862                 return NULL;
2863         if (developer_loading.integer)
2864                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2865         skinframe->base = skinframe->merged = tex;
2866         Vector4Set(skinframe->avgcolor, 1, 1, 1, 1); // bogus placeholder
2867         return skinframe;
2868 }
2869
2870 //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"};
2871 typedef struct suffixinfo_s
2872 {
2873         const char *suffix;
2874         qbool flipx, flipy, flipdiagonal;
2875 }
2876 suffixinfo_t;
2877 static suffixinfo_t suffix[3][6] =
2878 {
2879         {
2880                 {"px",   false, false, false},
2881                 {"nx",   false, false, false},
2882                 {"py",   false, false, false},
2883                 {"ny",   false, false, false},
2884                 {"pz",   false, false, false},
2885                 {"nz",   false, false, false}
2886         },
2887         {
2888                 {"posx", false, false, false},
2889                 {"negx", false, false, false},
2890                 {"posy", false, false, false},
2891                 {"negy", false, false, false},
2892                 {"posz", false, false, false},
2893                 {"negz", false, false, false}
2894         },
2895         {
2896                 {"rt",    true, false,  true},
2897                 {"lf",   false,  true,  true},
2898                 {"ft",    true,  true, false},
2899                 {"bk",   false, false, false},
2900                 {"up",    true, false,  true},
2901                 {"dn",    true, false,  true}
2902         }
2903 };
2904
2905 static int componentorder[4] = {0, 1, 2, 3};
2906
2907 static rtexture_t *R_LoadCubemap(const char *basename)
2908 {
2909         int i, j, cubemapsize, forcefilter;
2910         unsigned char *cubemappixels, *image_buffer;
2911         rtexture_t *cubemaptexture;
2912         char name[256];
2913
2914         // HACK: if the cubemap name starts with a !, the cubemap is nearest-filtered
2915         forcefilter = TEXF_FORCELINEAR;
2916         if (basename && basename[0] == '!')
2917         {
2918                 basename++;
2919                 forcefilter = TEXF_FORCENEAREST;
2920         }
2921         // must start 0 so the first loadimagepixels has no requested width/height
2922         cubemapsize = 0;
2923         cubemappixels = NULL;
2924         cubemaptexture = NULL;
2925         // keep trying different suffix groups (posx, px, rt) until one loads
2926         for (j = 0;j < 3 && !cubemappixels;j++)
2927         {
2928                 // load the 6 images in the suffix group
2929                 for (i = 0;i < 6;i++)
2930                 {
2931                         // generate an image name based on the base and and suffix
2932                         dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix);
2933                         // load it
2934                         if ((image_buffer = loadimagepixelsbgra(name, false, false, false, NULL)))
2935                         {
2936                                 // an image loaded, make sure width and height are equal
2937                                 if (image_width == image_height && (!cubemappixels || image_width == cubemapsize))
2938                                 {
2939                                         // if this is the first image to load successfully, allocate the cubemap memory
2940                                         if (!cubemappixels && image_width >= 1)
2941                                         {
2942                                                 cubemapsize = image_width;
2943                                                 // note this clears to black, so unavailable sides are black
2944                                                 cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4);
2945                                         }
2946                                         // copy the image with any flipping needed by the suffix (px and posx types don't need flipping)
2947                                         if (cubemappixels)
2948                                                 Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder);
2949                                 }
2950                                 else
2951                                         Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height);
2952                                 // free the image
2953                                 Mem_Free(image_buffer);
2954                         }
2955                 }
2956         }
2957         // if a cubemap loaded, upload it
2958         if (cubemappixels)
2959         {
2960                 if (developer_loading.integer)
2961                         Con_Printf("loading cubemap \"%s\"\n", basename);
2962
2963                 cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, vid.sRGB3D ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer && gl_texturecompression.integer ? TEXF_COMPRESS : 0) | forcefilter | TEXF_CLAMP, -1, NULL);
2964                 Mem_Free(cubemappixels);
2965         }
2966         else
2967         {
2968                 Con_DPrintf("failed to load cubemap \"%s\"\n", basename);
2969                 if (developer_loading.integer)
2970                 {
2971                         Con_Printf("(tried tried images ");
2972                         for (j = 0;j < 3;j++)
2973                                 for (i = 0;i < 6;i++)
2974                                         Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix);
2975                         Con_Print(" and was unable to find any of them).\n");
2976                 }
2977         }
2978         return cubemaptexture;
2979 }
2980
2981 rtexture_t *R_GetCubemap(const char *basename)
2982 {
2983         int i;
2984         for (i = 0;i < r_texture_numcubemaps;i++)
2985                 if (r_texture_cubemaps[i] != NULL)
2986                         if (!strcasecmp(r_texture_cubemaps[i]->basename, basename))
2987                                 return r_texture_cubemaps[i]->texture ? r_texture_cubemaps[i]->texture : r_texture_whitecube;
2988         if (i >= MAX_CUBEMAPS || !r_main_mempool)
2989                 return r_texture_whitecube;
2990         r_texture_numcubemaps++;
2991         r_texture_cubemaps[i] = (cubemapinfo_t *)Mem_Alloc(r_main_mempool, sizeof(cubemapinfo_t));
2992         strlcpy(r_texture_cubemaps[i]->basename, basename, sizeof(r_texture_cubemaps[i]->basename));
2993         r_texture_cubemaps[i]->texture = R_LoadCubemap(r_texture_cubemaps[i]->basename);
2994         return r_texture_cubemaps[i]->texture;
2995 }
2996
2997 static void R_Main_FreeViewCache(void)
2998 {
2999         if (r_refdef.viewcache.entityvisible)
3000                 Mem_Free(r_refdef.viewcache.entityvisible);
3001         if (r_refdef.viewcache.world_pvsbits)
3002                 Mem_Free(r_refdef.viewcache.world_pvsbits);
3003         if (r_refdef.viewcache.world_leafvisible)
3004                 Mem_Free(r_refdef.viewcache.world_leafvisible);
3005         if (r_refdef.viewcache.world_surfacevisible)
3006                 Mem_Free(r_refdef.viewcache.world_surfacevisible);
3007         memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache));
3008 }
3009
3010 static void R_Main_ResizeViewCache(void)
3011 {
3012         int numentities = r_refdef.scene.numentities;
3013         int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1;
3014         int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1;
3015         int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1;
3016         int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1;
3017         if (r_refdef.viewcache.maxentities < numentities)
3018         {
3019                 r_refdef.viewcache.maxentities = numentities;
3020                 if (r_refdef.viewcache.entityvisible)
3021                         Mem_Free(r_refdef.viewcache.entityvisible);
3022                 r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities);
3023         }
3024         if (r_refdef.viewcache.world_numclusters != numclusters)
3025         {
3026                 r_refdef.viewcache.world_numclusters = numclusters;
3027                 r_refdef.viewcache.world_numclusterbytes = numclusterbytes;
3028                 if (r_refdef.viewcache.world_pvsbits)
3029                         Mem_Free(r_refdef.viewcache.world_pvsbits);
3030                 r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes);
3031         }
3032         if (r_refdef.viewcache.world_numleafs != numleafs)
3033         {
3034                 r_refdef.viewcache.world_numleafs = numleafs;
3035                 if (r_refdef.viewcache.world_leafvisible)
3036                         Mem_Free(r_refdef.viewcache.world_leafvisible);
3037                 r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs);
3038         }
3039         if (r_refdef.viewcache.world_numsurfaces != numsurfaces)
3040         {
3041                 r_refdef.viewcache.world_numsurfaces = numsurfaces;
3042                 if (r_refdef.viewcache.world_surfacevisible)
3043                         Mem_Free(r_refdef.viewcache.world_surfacevisible);
3044                 r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces);
3045         }
3046 }
3047
3048 extern rtexture_t *loadingscreentexture;
3049 static void gl_main_start(void)
3050 {
3051         loadingscreentexture = NULL;
3052         r_texture_blanknormalmap = NULL;
3053         r_texture_white = NULL;
3054         r_texture_grey128 = NULL;
3055         r_texture_black = NULL;
3056         r_texture_whitecube = NULL;
3057         r_texture_normalizationcube = NULL;
3058         r_texture_fogattenuation = NULL;
3059         r_texture_fogheighttexture = NULL;
3060         r_texture_gammaramps = NULL;
3061         r_texture_numcubemaps = 0;
3062         r_uniformbufferalignment = 32;
3063
3064         r_loaddds = r_texture_dds_load.integer != 0;
3065         r_savedds = vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer;
3066
3067         switch(vid.renderpath)
3068         {
3069         case RENDERPATH_GL32:
3070         case RENDERPATH_GLES2:
3071                 r_loadnormalmap = true;
3072                 r_loadgloss = true;
3073                 r_loadfog = false;
3074 #ifdef GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT
3075                 qglGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, &r_uniformbufferalignment);
3076 #endif
3077                 break;
3078         }
3079
3080         R_AnimCache_Free();
3081         R_FrameData_Reset();
3082         R_BufferData_Reset();
3083
3084         r_numqueries = 0;
3085         r_maxqueries = 0;
3086         memset(r_queries, 0, sizeof(r_queries));
3087
3088         r_qwskincache = NULL;
3089         r_qwskincache_size = 0;
3090
3091         // due to caching of texture_t references, the collision cache must be reset
3092         Collision_Cache_Reset(true);
3093
3094         // set up r_skinframe loading system for textures
3095         memset(&r_skinframe, 0, sizeof(r_skinframe));
3096         r_skinframe.loadsequence = 1;
3097         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
3098
3099         r_main_texturepool = R_AllocTexturePool();
3100         R_BuildBlankTextures();
3101         R_BuildNoTexture();
3102         R_BuildWhiteCube();
3103 #ifndef USE_GLES2
3104         R_BuildNormalizationCube();
3105 #endif //USE_GLES2
3106         r_texture_fogattenuation = NULL;
3107         r_texture_fogheighttexture = NULL;
3108         r_texture_gammaramps = NULL;
3109         //r_texture_fogintensity = NULL;
3110         memset(&r_fb, 0, sizeof(r_fb));
3111         Mem_ExpandableArray_NewArray(&r_fb.rendertargets, r_main_mempool, sizeof(r_rendertarget_t), 128);
3112         r_glsl_permutation = NULL;
3113         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3114         Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256);
3115         memset(&r_svbsp, 0, sizeof (r_svbsp));
3116
3117         memset(r_texture_cubemaps, 0, sizeof(r_texture_cubemaps));
3118         r_texture_numcubemaps = 0;
3119
3120         r_refdef.fogmasktable_density = 0;
3121
3122 #ifdef __ANDROID__
3123         // For Steelstorm Android
3124         // FIXME CACHE the program and reload
3125         // FIXME see possible combinations for SS:BR android
3126         Con_DPrintf("Compiling most used shaders for SS:BR android... START\n");
3127         R_SetupShader_SetPermutationGLSL(0, 12);
3128         R_SetupShader_SetPermutationGLSL(0, 13);
3129         R_SetupShader_SetPermutationGLSL(0, 8388621);
3130         R_SetupShader_SetPermutationGLSL(3, 0);
3131         R_SetupShader_SetPermutationGLSL(3, 2048);
3132         R_SetupShader_SetPermutationGLSL(5, 0);
3133         R_SetupShader_SetPermutationGLSL(5, 2);
3134         R_SetupShader_SetPermutationGLSL(5, 2048);
3135         R_SetupShader_SetPermutationGLSL(5, 8388608);
3136         R_SetupShader_SetPermutationGLSL(11, 1);
3137         R_SetupShader_SetPermutationGLSL(11, 2049);
3138         R_SetupShader_SetPermutationGLSL(11, 8193);
3139         R_SetupShader_SetPermutationGLSL(11, 10241);
3140         Con_DPrintf("Compiling most used shaders for SS:BR android... END\n");
3141 #endif
3142 }
3143
3144 extern unsigned int r_shadow_occlusion_buf;
3145
3146 static void gl_main_shutdown(void)
3147 {
3148         R_RenderTarget_FreeUnused(true);
3149         Mem_ExpandableArray_FreeArray(&r_fb.rendertargets);
3150         R_AnimCache_Free();
3151         R_FrameData_Reset();
3152         R_BufferData_Reset();
3153
3154         R_Main_FreeViewCache();
3155
3156         switch(vid.renderpath)
3157         {
3158         case RENDERPATH_GL32:
3159         case RENDERPATH_GLES2:
3160 #if defined(GL_SAMPLES_PASSED) && !defined(USE_GLES2)
3161                 if (r_maxqueries)
3162                         qglDeleteQueries(r_maxqueries, r_queries);
3163 #endif
3164                 break;
3165         }
3166         r_shadow_occlusion_buf = 0;
3167         r_numqueries = 0;
3168         r_maxqueries = 0;
3169         memset(r_queries, 0, sizeof(r_queries));
3170
3171         r_qwskincache = NULL;
3172         r_qwskincache_size = 0;
3173
3174         // clear out the r_skinframe state
3175         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
3176         memset(&r_skinframe, 0, sizeof(r_skinframe));
3177
3178         if (r_svbsp.nodes)
3179                 Mem_Free(r_svbsp.nodes);
3180         memset(&r_svbsp, 0, sizeof (r_svbsp));
3181         R_FreeTexturePool(&r_main_texturepool);
3182         loadingscreentexture = NULL;
3183         r_texture_blanknormalmap = NULL;
3184         r_texture_white = NULL;
3185         r_texture_grey128 = NULL;
3186         r_texture_black = NULL;
3187         r_texture_whitecube = NULL;
3188         r_texture_normalizationcube = NULL;
3189         r_texture_fogattenuation = NULL;
3190         r_texture_fogheighttexture = NULL;
3191         r_texture_gammaramps = NULL;
3192         r_texture_numcubemaps = 0;
3193         //r_texture_fogintensity = NULL;
3194         memset(&r_fb, 0, sizeof(r_fb));
3195         R_GLSL_Restart_f(cmd_local);
3196
3197         r_glsl_permutation = NULL;
3198         memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash));
3199         Mem_ExpandableArray_FreeArray(&r_glsl_permutationarray);
3200 }
3201
3202 static void gl_main_newmap(void)
3203 {
3204         // FIXME: move this code to client
3205         char *entities, entname[MAX_QPATH];
3206         if (r_qwskincache)
3207                 Mem_Free(r_qwskincache);
3208         r_qwskincache = NULL;
3209         r_qwskincache_size = 0;
3210         if (cl.worldmodel)
3211         {
3212                 dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension);
3213                 if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
3214                 {
3215                         CL_ParseEntityLump(entities);
3216                         Mem_Free(entities);
3217                         return;
3218                 }
3219                 if (cl.worldmodel->brush.entities)
3220                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
3221         }
3222         R_Main_FreeViewCache();
3223
3224         R_FrameData_Reset();
3225         R_BufferData_Reset();
3226 }
3227
3228 void GL_Main_Init(void)
3229 {
3230         int i;
3231         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
3232         R_InitShaderModeInfo();
3233
3234         Cmd_AddCommand(CF_CLIENT, "r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
3235         Cmd_AddCommand(CF_CLIENT, "r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
3236         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
3237         if (gamemode == GAME_NEHAHRA)
3238         {
3239                 Cvar_RegisterVariable (&gl_fogenable);
3240                 Cvar_RegisterVariable (&gl_fogdensity);
3241                 Cvar_RegisterVariable (&gl_fogred);
3242                 Cvar_RegisterVariable (&gl_foggreen);
3243                 Cvar_RegisterVariable (&gl_fogblue);
3244                 Cvar_RegisterVariable (&gl_fogstart);
3245                 Cvar_RegisterVariable (&gl_fogend);
3246                 Cvar_RegisterVariable (&gl_skyclip);
3247         }
3248         Cvar_RegisterVariable(&r_motionblur);
3249         Cvar_RegisterVariable(&r_damageblur);
3250         Cvar_RegisterVariable(&r_motionblur_averaging);
3251         Cvar_RegisterVariable(&r_motionblur_randomize);
3252         Cvar_RegisterVariable(&r_motionblur_minblur);
3253         Cvar_RegisterVariable(&r_motionblur_maxblur);
3254         Cvar_RegisterVariable(&r_motionblur_velocityfactor);
3255         Cvar_RegisterVariable(&r_motionblur_velocityfactor_minspeed);
3256         Cvar_RegisterVariable(&r_motionblur_velocityfactor_maxspeed);
3257         Cvar_RegisterVariable(&r_motionblur_mousefactor);
3258         Cvar_RegisterVariable(&r_motionblur_mousefactor_minspeed);
3259         Cvar_RegisterVariable(&r_motionblur_mousefactor_maxspeed);
3260         Cvar_RegisterVariable(&r_depthfirst);
3261         Cvar_RegisterVariable(&r_useinfinitefarclip);
3262         Cvar_RegisterVariable(&r_farclip_base);
3263         Cvar_RegisterVariable(&r_farclip_world);
3264         Cvar_RegisterVariable(&r_nearclip);
3265         Cvar_RegisterVariable(&r_deformvertexes);
3266         Cvar_RegisterVariable(&r_transparent);
3267         Cvar_RegisterVariable(&r_transparent_alphatocoverage);
3268         Cvar_RegisterVariable(&r_transparent_sortsurfacesbynearest);
3269         Cvar_RegisterVariable(&r_transparent_useplanardistance);
3270         Cvar_RegisterVariable(&r_showoverdraw);
3271         Cvar_RegisterVariable(&r_showbboxes);
3272         Cvar_RegisterVariable(&r_showbboxes_client);
3273         Cvar_RegisterVariable(&r_showsurfaces);
3274         Cvar_RegisterVariable(&r_showtris);
3275         Cvar_RegisterVariable(&r_shownormals);
3276         Cvar_RegisterVariable(&r_showlighting);
3277         Cvar_RegisterVariable(&r_showcollisionbrushes);
3278         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
3279         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
3280         Cvar_RegisterVariable(&r_showdisabledepthtest);
3281         Cvar_RegisterVariable(&r_showspriteedges);
3282         Cvar_RegisterVariable(&r_showparticleedges);
3283         Cvar_RegisterVariable(&r_drawportals);
3284         Cvar_RegisterVariable(&r_drawentities);
3285         Cvar_RegisterVariable(&r_draw2d);
3286         Cvar_RegisterVariable(&r_drawworld);
3287         Cvar_RegisterVariable(&r_cullentities_trace);
3288         Cvar_RegisterVariable(&r_cullentities_trace_entityocclusion);
3289         Cvar_RegisterVariable(&r_cullentities_trace_samples);
3290         Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples);
3291         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
3292         Cvar_RegisterVariable(&r_cullentities_trace_expand);
3293         Cvar_RegisterVariable(&r_cullentities_trace_pad);
3294         Cvar_RegisterVariable(&r_cullentities_trace_delay);
3295         Cvar_RegisterVariable(&r_cullentities_trace_eyejitter);
3296         Cvar_RegisterVariable(&r_sortentities);
3297         Cvar_RegisterVariable(&r_drawviewmodel);
3298         Cvar_RegisterVariable(&r_drawexteriormodel);
3299         Cvar_RegisterVariable(&r_speeds);
3300         Cvar_RegisterVariable(&r_fullbrights);
3301         Cvar_RegisterVariable(&r_wateralpha);
3302         Cvar_RegisterVariable(&r_dynamic);
3303         Cvar_RegisterVariable(&r_fullbright_directed);
3304         Cvar_RegisterVariable(&r_fullbright_directed_ambient);
3305         Cvar_RegisterVariable(&r_fullbright_directed_diffuse);
3306         Cvar_RegisterVariable(&r_fullbright_directed_pitch);
3307         Cvar_RegisterVariable(&r_fullbright_directed_pitch_relative);
3308         Cvar_RegisterVariable(&r_fullbright);
3309         Cvar_RegisterVariable(&r_shadows);
3310         Cvar_RegisterVariable(&r_shadows_darken);
3311         Cvar_RegisterVariable(&r_shadows_drawafterrtlighting);
3312         Cvar_RegisterVariable(&r_shadows_castfrombmodels);
3313         Cvar_RegisterVariable(&r_shadows_throwdistance);
3314         Cvar_RegisterVariable(&r_shadows_throwdirection);
3315         Cvar_RegisterVariable(&r_shadows_focus);
3316         Cvar_RegisterVariable(&r_shadows_shadowmapscale);
3317         Cvar_RegisterVariable(&r_shadows_shadowmapbias);
3318         Cvar_RegisterVariable(&r_q1bsp_skymasking);
3319         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
3320         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
3321         Cvar_RegisterVariable(&r_polygonoffset_decals_factor);
3322         Cvar_RegisterVariable(&r_polygonoffset_decals_offset);
3323         Cvar_RegisterVariable(&r_fog_exp2);
3324         Cvar_RegisterVariable(&r_fog_clear);
3325         Cvar_RegisterVariable(&r_drawfog);
3326         Cvar_RegisterVariable(&r_transparentdepthmasking);
3327         Cvar_RegisterVariable(&r_transparent_sortmindist);
3328         Cvar_RegisterVariable(&r_transparent_sortmaxdist);
3329         Cvar_RegisterVariable(&r_transparent_sortarraysize);
3330         Cvar_RegisterVariable(&r_texture_dds_load);
3331         Cvar_RegisterVariable(&r_texture_dds_save);
3332         Cvar_RegisterVariable(&r_usedepthtextures);
3333         Cvar_RegisterVariable(&r_viewfbo);
3334         Cvar_RegisterVariable(&r_rendertarget_debug);
3335         Cvar_RegisterVariable(&r_viewscale);
3336         Cvar_RegisterVariable(&r_viewscale_fpsscaling);
3337         Cvar_RegisterVariable(&r_viewscale_fpsscaling_min);
3338         Cvar_RegisterVariable(&r_viewscale_fpsscaling_multiply);
3339         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepsize);
3340         Cvar_RegisterVariable(&r_viewscale_fpsscaling_stepmax);
3341         Cvar_RegisterVariable(&r_viewscale_fpsscaling_target);
3342         Cvar_RegisterVariable(&r_glsl_deluxemapping);
3343         Cvar_RegisterVariable(&r_glsl_offsetmapping);
3344         Cvar_RegisterVariable(&r_glsl_offsetmapping_steps);
3345         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
3346         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_steps);
3347         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping_refinesteps);
3348         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
3349         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod);
3350         Cvar_RegisterVariable(&r_glsl_offsetmapping_lod_distance);
3351         Cvar_RegisterVariable(&r_glsl_postprocess);
3352         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
3353         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
3354         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
3355         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
3356         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable);
3357         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable);
3358         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable);
3359         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable);
3360         Cvar_RegisterVariable(&r_celshading);
3361         Cvar_RegisterVariable(&r_celoutlines);
3362         Cvar_RegisterVariable(&r_fxaa);
3363
3364         Cvar_RegisterVariable(&r_water);
3365         Cvar_RegisterVariable(&r_water_cameraentitiesonly);
3366         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
3367         Cvar_RegisterVariable(&r_water_clippingplanebias);
3368         Cvar_RegisterVariable(&r_water_refractdistort);
3369         Cvar_RegisterVariable(&r_water_reflectdistort);
3370         Cvar_RegisterVariable(&r_water_scissormode);
3371         Cvar_RegisterVariable(&r_water_lowquality);
3372         Cvar_RegisterVariable(&r_water_hideplayer);
3373
3374         Cvar_RegisterVariable(&r_lerpsprites);
3375         Cvar_RegisterVariable(&r_lerpmodels);
3376         Cvar_RegisterVariable(&r_nolerp_list);
3377         Cvar_RegisterVariable(&r_lerplightstyles);
3378         Cvar_RegisterVariable(&r_waterscroll);
3379         Cvar_RegisterVariable(&r_bloom);
3380         Cvar_RegisterVariable(&r_colorfringe);
3381         Cvar_RegisterVariable(&r_bloom_colorscale);
3382         Cvar_RegisterVariable(&r_bloom_brighten);
3383         Cvar_RegisterVariable(&r_bloom_blur);
3384         Cvar_RegisterVariable(&r_bloom_resolution);
3385         Cvar_RegisterVariable(&r_bloom_colorexponent);
3386         Cvar_RegisterVariable(&r_bloom_colorsubtract);
3387         Cvar_RegisterVariable(&r_bloom_scenebrightness);
3388         Cvar_RegisterVariable(&r_hdr_scenebrightness);
3389         Cvar_RegisterVariable(&r_hdr_glowintensity);
3390         Cvar_RegisterVariable(&r_hdr_irisadaptation);
3391         Cvar_RegisterVariable(&r_hdr_irisadaptation_multiplier);
3392         Cvar_RegisterVariable(&r_hdr_irisadaptation_minvalue);
3393         Cvar_RegisterVariable(&r_hdr_irisadaptation_maxvalue);
3394         Cvar_RegisterVariable(&r_hdr_irisadaptation_value);
3395         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_up);
3396         Cvar_RegisterVariable(&r_hdr_irisadaptation_fade_down);
3397         Cvar_RegisterVariable(&r_hdr_irisadaptation_radius);
3398         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
3399         Cvar_RegisterVariable(&developer_texturelogging);
3400         Cvar_RegisterVariable(&gl_lightmaps);
3401         Cvar_RegisterVariable(&r_test);
3402         Cvar_RegisterVariable(&r_batch_multidraw);
3403         Cvar_RegisterVariable(&r_batch_multidraw_mintriangles);
3404         Cvar_RegisterVariable(&r_batch_debugdynamicvertexpath);
3405         Cvar_RegisterVariable(&r_glsl_skeletal);
3406         Cvar_RegisterVariable(&r_glsl_saturation);
3407         Cvar_RegisterVariable(&r_glsl_saturation_redcompensate);
3408         Cvar_RegisterVariable(&r_glsl_vertextextureblend_usebothalphas);
3409         Cvar_RegisterVariable(&r_framedatasize);
3410         for (i = 0;i < R_BUFFERDATA_COUNT;i++)
3411                 Cvar_RegisterVariable(&r_buffermegs[i]);
3412         Cvar_RegisterVariable(&r_batch_dynamicbuffer);
3413         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_enabled);
3414         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_combine);
3415         Cvar_RegisterVariable(&r_q1bsp_lightmap_updates_hidden_surfaces);
3416         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
3417                 Cvar_SetValue(&cvars_all, "r_fullbrights", 0);
3418 #ifdef DP_MOBILETOUCH
3419         // GLES devices have terrible depth precision in general, so...
3420         Cvar_SetValueQuick(&r_nearclip, 4);
3421         Cvar_SetValueQuick(&r_farclip_base, 4096);
3422         Cvar_SetValueQuick(&r_farclip_world, 0);
3423         Cvar_SetValueQuick(&r_useinfinitefarclip, 0);
3424 #endif
3425         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL);
3426 }
3427
3428 void Render_Init(void)
3429 {
3430         gl_backend_init();
3431         R_Textures_Init();
3432         GL_Main_Init();
3433         Font_Init();
3434         GL_Draw_Init();
3435         R_Shadow_Init();
3436         R_Sky_Init();
3437         GL_Surf_Init();
3438         Sbar_Init();
3439         R_Particles_Init();
3440         R_Explosion_Init();
3441         R_LightningBeams_Init();
3442         CL_MeshEntities_Init();
3443         Mod_RenderInit();
3444 }
3445
3446 static void R_GetCornerOfBox(vec3_t out, const vec3_t mins, const vec3_t maxs, int signbits)
3447 {
3448         out[0] = ((signbits & 1) ? mins : maxs)[0];
3449         out[1] = ((signbits & 2) ? mins : maxs)[1];
3450         out[2] = ((signbits & 4) ? mins : maxs)[2];
3451 }
3452
3453 static qbool _R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes, int ignore)
3454 {
3455         int i;
3456         const mplane_t *p;
3457         vec3_t corner;
3458         if (r_trippy.integer)
3459                 return false;
3460         for (i = 0;i < numplanes;i++)
3461         {
3462                 if(i == ignore)
3463                         continue;
3464                 p = planes + i;
3465                 R_GetCornerOfBox(corner, mins, maxs, p->signbits);
3466                 if (DotProduct(p->normal, corner) < p->dist)
3467                         return true;
3468         }
3469         return false;
3470 }
3471
3472 qbool R_CullFrustum(const vec3_t mins, const vec3_t maxs)
3473 {
3474         // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
3475         return _R_CullBox(mins, maxs, r_refdef.view.numfrustumplanes, r_refdef.view.frustum, 4);
3476 }
3477
3478 qbool R_CullBox(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
3479 {
3480         // nothing to ignore
3481         return _R_CullBox(mins, maxs, numplanes, planes, -1);
3482 }
3483
3484 //==================================================================================
3485
3486 // LadyHavoc: this stores temporary data used within the same frame
3487
3488 typedef struct r_framedata_mem_s
3489 {
3490         struct r_framedata_mem_s *purge; // older mem block to free on next frame
3491         size_t size; // how much usable space
3492         size_t current; // how much space in use
3493         size_t mark; // last "mark" location, temporary memory can be freed by returning to this
3494         size_t wantedsize; // how much space was allocated
3495         unsigned char *data; // start of real data (16byte aligned)
3496 }
3497 r_framedata_mem_t;
3498
3499 static r_framedata_mem_t *r_framedata_mem;
3500
3501 void R_FrameData_Reset(void)
3502 {
3503         while (r_framedata_mem)
3504         {
3505                 r_framedata_mem_t *next = r_framedata_mem->purge;
3506                 Mem_Free(r_framedata_mem);
3507                 r_framedata_mem = next;
3508         }
3509 }
3510
3511 static void R_FrameData_Resize(qbool mustgrow)
3512 {
3513         size_t wantedsize;
3514         wantedsize = (size_t)(r_framedatasize.value * 1024*1024);
3515         wantedsize = bound(65536, wantedsize, 1000*1024*1024);
3516         if (!r_framedata_mem || r_framedata_mem->wantedsize != wantedsize || mustgrow)
3517         {
3518                 r_framedata_mem_t *newmem = (r_framedata_mem_t *)Mem_Alloc(r_main_mempool, wantedsize);
3519                 newmem->wantedsize = wantedsize;
3520                 newmem->data = (unsigned char *)(((size_t)(newmem+1) + 15) & ~15);
3521                 newmem->size = (unsigned char *)newmem + wantedsize - newmem->data;
3522                 newmem->current = 0;
3523                 newmem->mark = 0;
3524                 newmem->purge = r_framedata_mem;
3525                 r_framedata_mem = newmem;
3526         }
3527 }
3528
3529 void R_FrameData_NewFrame(void)
3530 {
3531         R_FrameData_Resize(false);
3532         if (!r_framedata_mem)
3533                 return;
3534         // if we ran out of space on the last frame, free the old memory now
3535         while (r_framedata_mem->purge)
3536         {
3537                 // repeatedly remove the second item in the list, leaving only head
3538                 r_framedata_mem_t *next = r_framedata_mem->purge->purge;
3539                 Mem_Free(r_framedata_mem->purge);
3540                 r_framedata_mem->purge = next;
3541         }
3542         // reset the current mem pointer
3543         r_framedata_mem->current = 0;
3544         r_framedata_mem->mark = 0;
3545 }
3546
3547 void *R_FrameData_Alloc(size_t size)
3548 {
3549         void *data;
3550         float newvalue;
3551
3552         // align to 16 byte boundary - the data pointer is already aligned, so we
3553         // only need to ensure the size of every allocation is also aligned
3554         size = (size + 15) & ~15;
3555
3556         while (!r_framedata_mem || r_framedata_mem->current + size > r_framedata_mem->size)
3557         {
3558                 // emergency - we ran out of space, allocate more memory
3559                 // note: this has no upper-bound, we'll fail to allocate memory eventually and just die
3560                 newvalue = r_framedatasize.value * 2.0f;
3561                 // upper bound based on architecture - if we try to allocate more than this we could overflow, better to loop until we error out on allocation failure
3562                 if (sizeof(size_t) >= 8)
3563                         newvalue = bound(0.25f, newvalue, (float)(1ll << 42));
3564                 else
3565                         newvalue = bound(0.25f, newvalue, (float)(1 << 10));
3566                 // this might not be a growing it, but we'll allocate another buffer every time
3567                 Cvar_SetValueQuick(&r_framedatasize, newvalue);
3568                 R_FrameData_Resize(true);
3569         }
3570
3571         data = r_framedata_mem->data + r_framedata_mem->current;
3572         r_framedata_mem->current += size;
3573
3574         // count the usage for stats
3575         r_refdef.stats[r_stat_framedatacurrent] = max(r_refdef.stats[r_stat_framedatacurrent], (int)r_framedata_mem->current);
3576         r_refdef.stats[r_stat_framedatasize] = max(r_refdef.stats[r_stat_framedatasize], (int)r_framedata_mem->size);
3577
3578         return (void *)data;
3579 }
3580
3581 void *R_FrameData_Store(size_t size, void *data)
3582 {
3583         void *d = R_FrameData_Alloc(size);
3584         if (d && data)
3585                 memcpy(d, data, size);
3586         return d;
3587 }
3588
3589 void R_FrameData_SetMark(void)
3590 {
3591         if (!r_framedata_mem)
3592                 return;
3593         r_framedata_mem->mark = r_framedata_mem->current;
3594 }
3595
3596 void R_FrameData_ReturnToMark(void)
3597 {
3598         if (!r_framedata_mem)
3599                 return;
3600         r_framedata_mem->current = r_framedata_mem->mark;
3601 }
3602
3603 //==================================================================================
3604
3605 // avoid reusing the same buffer objects on consecutive frames
3606 #define R_BUFFERDATA_CYCLE 3
3607
3608 typedef struct r_bufferdata_buffer_s
3609 {
3610         struct r_bufferdata_buffer_s *purge; // older buffer to free on next frame
3611         size_t size; // how much usable space
3612         size_t current; // how much space in use
3613         r_meshbuffer_t *buffer; // the buffer itself
3614 }
3615 r_bufferdata_buffer_t;
3616
3617 static int r_bufferdata_cycle = 0; // incremented and wrapped each frame
3618 static r_bufferdata_buffer_t *r_bufferdata_buffer[R_BUFFERDATA_CYCLE][R_BUFFERDATA_COUNT];
3619
3620 /// frees all dynamic buffers
3621 void R_BufferData_Reset(void)
3622 {
3623         int cycle, type;
3624         r_bufferdata_buffer_t **p, *mem;
3625         for (cycle = 0;cycle < R_BUFFERDATA_CYCLE;cycle++)
3626         {
3627                 for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3628                 {
3629                         // free all buffers
3630                         p = &r_bufferdata_buffer[cycle][type];
3631                         while (*p)
3632                         {
3633                                 mem = *p;
3634                                 *p = (*p)->purge;
3635                                 if (mem->buffer)
3636                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3637                                 Mem_Free(mem);
3638                         }
3639                 }
3640         }
3641 }
3642
3643 // resize buffer as needed (this actually makes a new one, the old one will be recycled next frame)
3644 static void R_BufferData_Resize(r_bufferdata_type_t type, qbool mustgrow, size_t minsize)
3645 {
3646         r_bufferdata_buffer_t *mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3647         size_t size;
3648         float newvalue = r_buffermegs[type].value;
3649
3650         // increase the cvar if we have to (but only if we already have a mem)
3651         if (mustgrow && mem)
3652                 newvalue *= 2.0f;
3653         newvalue = bound(0.25f, newvalue, 256.0f);
3654         while (newvalue * 1024*1024 < minsize)
3655                 newvalue *= 2.0f;
3656
3657         // clamp the cvar to valid range
3658         newvalue = bound(0.25f, newvalue, 256.0f);
3659         if (r_buffermegs[type].value != newvalue)
3660                 Cvar_SetValueQuick(&r_buffermegs[type], newvalue);
3661
3662         // calculate size in bytes
3663         size = (size_t)(newvalue * 1024*1024);
3664         size = bound(131072, size, 256*1024*1024);
3665
3666         // allocate a new buffer if the size is different (purge old one later)
3667         // or if we were told we must grow the buffer
3668         if (!mem || mem->size != size || mustgrow)
3669         {
3670                 mem = (r_bufferdata_buffer_t *)Mem_Alloc(r_main_mempool, sizeof(*mem));
3671                 mem->size = size;
3672                 mem->current = 0;
3673                 if (type == R_BUFFERDATA_VERTEX)
3674                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbuffervertex", false, false, true, false);
3675                 else if (type == R_BUFFERDATA_INDEX16)
3676                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex16", true, false, true, true);
3677                 else if (type == R_BUFFERDATA_INDEX32)
3678                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferindex32", true, false, true, false);
3679                 else if (type == R_BUFFERDATA_UNIFORM)
3680                         mem->buffer = R_Mesh_CreateMeshBuffer(NULL, mem->size, "dynamicbufferuniform", false, true, true, false);
3681                 mem->purge = r_bufferdata_buffer[r_bufferdata_cycle][type];
3682                 r_bufferdata_buffer[r_bufferdata_cycle][type] = mem;
3683         }
3684 }
3685
3686 void R_BufferData_NewFrame(void)
3687 {
3688         int type;
3689         r_bufferdata_buffer_t **p, *mem;
3690         // cycle to the next frame's buffers
3691         r_bufferdata_cycle = (r_bufferdata_cycle + 1) % R_BUFFERDATA_CYCLE;
3692         // if we ran out of space on the last time we used these buffers, free the old memory now
3693         for (type = 0;type < R_BUFFERDATA_COUNT;type++)
3694         {
3695                 if (r_bufferdata_buffer[r_bufferdata_cycle][type])
3696                 {
3697                         R_BufferData_Resize((r_bufferdata_type_t)type, false, 131072);
3698                         // free all but the head buffer, this is how we recycle obsolete
3699                         // buffers after they are no longer in use
3700                         p = &r_bufferdata_buffer[r_bufferdata_cycle][type]->purge;
3701                         while (*p)
3702                         {
3703                                 mem = *p;
3704                                 *p = (*p)->purge;
3705                                 if (mem->buffer)
3706                                         R_Mesh_DestroyMeshBuffer(mem->buffer);
3707                                 Mem_Free(mem);
3708                         }
3709                         // reset the current offset
3710                         r_bufferdata_buffer[r_bufferdata_cycle][type]->current = 0;
3711                 }
3712         }
3713 }
3714
3715 r_meshbuffer_t *R_BufferData_Store(size_t datasize, const void *data, r_bufferdata_type_t type, int *returnbufferoffset)
3716 {
3717         r_bufferdata_buffer_t *mem;
3718         int offset = 0;
3719         int padsize;
3720
3721         *returnbufferoffset = 0;
3722
3723         // align size to a byte boundary appropriate for the buffer type, this
3724         // makes all allocations have aligned start offsets
3725         if (type == R_BUFFERDATA_UNIFORM)
3726                 padsize = (datasize + r_uniformbufferalignment - 1) & ~(r_uniformbufferalignment - 1);
3727         else
3728                 padsize = (datasize + 15) & ~15;
3729
3730         // if we ran out of space in this buffer we must allocate a new one
3731         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3732                 R_BufferData_Resize(type, true, padsize);
3733
3734         // if the resize did not give us enough memory, fail
3735         if (!r_bufferdata_buffer[r_bufferdata_cycle][type] || r_bufferdata_buffer[r_bufferdata_cycle][type]->current + padsize > r_bufferdata_buffer[r_bufferdata_cycle][type]->size)
3736                 Sys_Error("R_BufferData_Store: failed to create a new buffer of sufficient size\n");
3737
3738         mem = r_bufferdata_buffer[r_bufferdata_cycle][type];
3739         offset = (int)mem->current;
3740         mem->current += padsize;
3741
3742         // upload the data to the buffer at the chosen offset
3743         if (offset == 0)
3744                 R_Mesh_UpdateMeshBuffer(mem->buffer, NULL, mem->size, false, 0);
3745         R_Mesh_UpdateMeshBuffer(mem->buffer, data, datasize, true, offset);
3746
3747         // count the usage for stats
3748         r_refdef.stats[r_stat_bufferdatacurrent_vertex + type] = max(r_refdef.stats[r_stat_bufferdatacurrent_vertex + type], (int)mem->current);
3749         r_refdef.stats[r_stat_bufferdatasize_vertex + type] = max(r_refdef.stats[r_stat_bufferdatasize_vertex + type], (int)mem->size);
3750
3751         // return the buffer offset
3752         *returnbufferoffset = offset;
3753
3754         return mem->buffer;
3755 }
3756
3757 //==================================================================================
3758
3759 // LadyHavoc: animcache originally written by Echon, rewritten since then
3760
3761 /**
3762  * Animation cache prevents re-generating mesh data for an animated model
3763  * multiple times in one frame for lighting, shadowing, reflections, etc.
3764  */
3765
3766 void R_AnimCache_Free(void)
3767 {
3768 }
3769
3770 void R_AnimCache_ClearCache(void)
3771 {
3772         int i;
3773         entity_render_t *ent;
3774
3775         for (i = 0;i < r_refdef.scene.numentities;i++)
3776         {
3777                 ent = r_refdef.scene.entities[i];
3778                 ent->animcache_vertex3f = NULL;
3779                 ent->animcache_vertex3f_vertexbuffer = NULL;
3780                 ent->animcache_vertex3f_bufferoffset = 0;
3781                 ent->animcache_normal3f = NULL;
3782                 ent->animcache_normal3f_vertexbuffer = NULL;
3783                 ent->animcache_normal3f_bufferoffset = 0;
3784                 ent->animcache_svector3f = NULL;
3785                 ent->animcache_svector3f_vertexbuffer = NULL;
3786                 ent->animcache_svector3f_bufferoffset = 0;
3787                 ent->animcache_tvector3f = NULL;
3788                 ent->animcache_tvector3f_vertexbuffer = NULL;
3789                 ent->animcache_tvector3f_bufferoffset = 0;
3790                 ent->animcache_skeletaltransform3x4 = NULL;
3791                 ent->animcache_skeletaltransform3x4buffer = NULL;
3792                 ent->animcache_skeletaltransform3x4offset = 0;
3793                 ent->animcache_skeletaltransform3x4size = 0;
3794         }
3795 }
3796
3797 qbool R_AnimCache_GetEntity(entity_render_t *ent, qbool wantnormals, qbool wanttangents)
3798 {
3799         model_t *model = ent->model;
3800         int numvertices;
3801
3802         // see if this ent is worth caching
3803         if (!model || !model->Draw || !model->AnimateVertices)
3804                 return false;
3805         // nothing to cache if it contains no animations and has no skeleton
3806         if (!model->surfmesh.isanimated && !(model->num_bones && ent->skeleton && ent->skeleton->relativetransforms))
3807                 return false;
3808         // see if it is already cached for gpuskeletal
3809         if (ent->animcache_skeletaltransform3x4)
3810                 return false;
3811         // see if it is already cached as a mesh
3812         if (ent->animcache_vertex3f)
3813         {
3814                 // check if we need to add normals or tangents
3815                 if (ent->animcache_normal3f)
3816                         wantnormals = false;
3817                 if (ent->animcache_svector3f)
3818                         wanttangents = false;
3819                 if (!wantnormals && !wanttangents)
3820                         return false;
3821         }
3822
3823         // check which kind of cache we need to generate
3824         if (r_gpuskeletal && model->num_bones > 0 && model->surfmesh.data_skeletalindex4ub)
3825         {
3826                 // cache the skeleton so the vertex shader can use it
3827                 r_refdef.stats[r_stat_animcache_skeletal_count] += 1;
3828                 r_refdef.stats[r_stat_animcache_skeletal_bones] += model->num_bones;
3829                 r_refdef.stats[r_stat_animcache_skeletal_maxbones] = max(r_refdef.stats[r_stat_animcache_skeletal_maxbones], model->num_bones);
3830                 ent->animcache_skeletaltransform3x4 = (float *)R_FrameData_Alloc(sizeof(float[3][4]) * model->num_bones);
3831                 Mod_Skeletal_BuildTransforms(model, ent->frameblend, ent->skeleton, NULL, ent->animcache_skeletaltransform3x4); 
3832                 // note: this can fail if the buffer is at the grow limit
3833                 ent->animcache_skeletaltransform3x4size = sizeof(float[3][4]) * model->num_bones;
3834                 ent->animcache_skeletaltransform3x4buffer = R_BufferData_Store(ent->animcache_skeletaltransform3x4size, ent->animcache_skeletaltransform3x4, R_BUFFERDATA_UNIFORM, &ent->animcache_skeletaltransform3x4offset);
3835         }
3836         else if (ent->animcache_vertex3f)
3837         {
3838                 // mesh was already cached but we may need to add normals/tangents
3839                 // (this only happens with multiple views, reflections, cameras, etc)
3840                 if (wantnormals || wanttangents)
3841                 {
3842                         numvertices = model->surfmesh.num_vertices;
3843                         if (wantnormals)
3844                                 ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3845                         if (wanttangents)
3846                         {
3847                                 ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3848                                 ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3849                         }
3850                         model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL);
3851                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3852                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3853                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3854                 }
3855         }
3856         else
3857         {
3858                 // generate mesh cache
3859                 numvertices = model->surfmesh.num_vertices;
3860                 ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3861                 if (wantnormals)
3862                         ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3863                 if (wanttangents)
3864                 {
3865                         ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3866                         ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices);
3867                 }
3868                 model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f);
3869                 if (wantnormals || wanttangents)
3870                 {
3871                         r_refdef.stats[r_stat_animcache_shade_count] += 1;
3872                         r_refdef.stats[r_stat_animcache_shade_vertices] += numvertices;
3873                         r_refdef.stats[r_stat_animcache_shade_maxvertices] = max(r_refdef.stats[r_stat_animcache_shade_maxvertices], numvertices);
3874                 }
3875                 r_refdef.stats[r_stat_animcache_shape_count] += 1;
3876                 r_refdef.stats[r_stat_animcache_shape_vertices] += numvertices;
3877                 r_refdef.stats[r_stat_animcache_shape_maxvertices] = max(r_refdef.stats[r_stat_animcache_shape_maxvertices], numvertices);
3878         }
3879         return true;
3880 }
3881
3882 void R_AnimCache_CacheVisibleEntities(void)
3883 {
3884         int i;
3885
3886         // TODO: thread this
3887         // NOTE: R_PrepareRTLights() also caches entities
3888
3889         for (i = 0;i < r_refdef.scene.numentities;i++)
3890                 if (r_refdef.viewcache.entityvisible[i])
3891                         R_AnimCache_GetEntity(r_refdef.scene.entities[i], true, true);
3892 }
3893
3894 //==================================================================================
3895
3896 qbool R_CanSeeBox(int numsamples, vec_t eyejitter, vec_t entboxenlarge, vec_t entboxexpand, vec_t pad, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs)
3897 {
3898         long unsigned int i;
3899         int j;
3900         vec3_t eyemins, eyemaxs;
3901         vec3_t boxmins, boxmaxs;
3902         vec3_t padmins, padmaxs;
3903         vec3_t start;
3904         vec3_t end;
3905         model_t *model = r_refdef.scene.worldmodel;
3906         static vec3_t positions[] = {
3907                 { 0.5f, 0.5f, 0.5f },
3908                 { 0.0f, 0.0f, 0.0f },
3909                 { 0.0f, 0.0f, 1.0f },
3910                 { 0.0f, 1.0f, 0.0f },
3911                 { 0.0f, 1.0f, 1.0f },
3912                 { 1.0f, 0.0f, 0.0f },
3913                 { 1.0f, 0.0f, 1.0f },
3914                 { 1.0f, 1.0f, 0.0f },
3915                 { 1.0f, 1.0f, 1.0f },
3916         };
3917
3918         // sample count can be set to -1 to skip this logic, for flicker-prone objects
3919         if (numsamples < 0)
3920                 return true;
3921
3922         // view origin is not used for culling in portal/reflection/refraction renders or isometric views
3923         if (!r_refdef.view.usevieworiginculling)
3924                 return true;
3925
3926         if (!r_cullentities_trace_entityocclusion.integer && (!model || !model->brush.TraceLineOfSight))
3927                 return true;
3928
3929         // expand the eye box a little
3930         eyemins[0] = eye[0] - eyejitter;
3931         eyemaxs[0] = eye[0] + eyejitter;
3932         eyemins[1] = eye[1] - eyejitter;
3933         eyemaxs[1] = eye[1] + eyejitter;
3934         eyemins[2] = eye[2] - eyejitter;
3935         eyemaxs[2] = eye[2] + eyejitter;
3936         // expand the box a little
3937         boxmins[0] = (entboxenlarge + 1) * entboxmins[0] - entboxenlarge * entboxmaxs[0] - entboxexpand;
3938         boxmaxs[0] = (entboxenlarge + 1) * entboxmaxs[0] - entboxenlarge * entboxmins[0] + entboxexpand;
3939         boxmins[1] = (entboxenlarge + 1) * entboxmins[1] - entboxenlarge * entboxmaxs[1] - entboxexpand;
3940         boxmaxs[1] = (entboxenlarge + 1) * entboxmaxs[1] - entboxenlarge * entboxmins[1] + entboxexpand;
3941         boxmins[2] = (entboxenlarge + 1) * entboxmins[2] - entboxenlarge * entboxmaxs[2] - entboxexpand;
3942         boxmaxs[2] = (entboxenlarge + 1) * entboxmaxs[2] - entboxenlarge * entboxmins[2] + entboxexpand;
3943         // make an even larger box for the acceptable area
3944         padmins[0] = boxmins[0] - pad;
3945         padmaxs[0] = boxmaxs[0] + pad;
3946         padmins[1] = boxmins[1] - pad;
3947         padmaxs[1] = boxmaxs[1] + pad;
3948         padmins[2] = boxmins[2] - pad;
3949         padmaxs[2] = boxmaxs[2] + pad;
3950
3951         // return true if eye overlaps enlarged box
3952         if (BoxesOverlap(boxmins, boxmaxs, eyemins, eyemaxs))
3953                 return true;
3954
3955         VectorCopy(eye, start);
3956         // try specific positions in the box first - note that these can be cached
3957         if (r_cullentities_trace_entityocclusion.integer)
3958         {
3959                 for (i = 0; i < sizeof(positions) / sizeof(positions[0]); i++)
3960                 {
3961                         trace_t trace;
3962                         end[0] = boxmins[0] + (boxmaxs[0] - boxmins[0]) * positions[i][0];
3963                         end[1] = boxmins[1] + (boxmaxs[1] - boxmins[1]) * positions[i][1];
3964                         end[2] = boxmins[2] + (boxmaxs[2] - boxmins[2]) * positions[i][2];
3965                         //trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3966                         trace = CL_Cache_TraceLineSurfaces(start, end, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT);
3967                         // not picky - if the trace ended anywhere in the box we're good
3968                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3969                                 return true;
3970                 }
3971         }
3972         else
3973         {
3974                 // try center
3975                 VectorMAM(0.5f, boxmins, 0.5f, boxmaxs, end);
3976                 if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3977                         return true;
3978         }
3979
3980         // try various random positions
3981         for (j = 0; j < numsamples; j++)
3982         {
3983                 VectorSet(start, lhrandom(eyemins[0], eyemaxs[0]), lhrandom(eyemins[1], eyemaxs[1]), lhrandom(eyemins[2], eyemaxs[2]));
3984                 VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2]));
3985                 if (r_cullentities_trace_entityocclusion.integer)
3986                 {
3987                         trace_t trace = CL_TraceLine(start, end, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, SUPERCONTENTS_SKY, MATERIALFLAGMASK_TRANSLUCENT, 0.0f, true, false, NULL, true, true);
3988                         // not picky - if the trace ended anywhere in the box we're good
3989                         if (BoxesOverlap(trace.endpos, trace.endpos, padmins, padmaxs))
3990                                 return true;
3991                 }
3992                 else if (model->brush.TraceLineOfSight(model, start, end, padmins, padmaxs))
3993                         return true;
3994         }
3995
3996         return false;
3997 }
3998
3999
4000 static void R_View_UpdateEntityVisible (void)
4001 {
4002         int i;
4003         int renderimask;
4004         int samples;
4005         entity_render_t *ent;
4006
4007         if (r_refdef.envmap || r_fb.water.hideplayer)
4008                 renderimask = RENDER_EXTERIORMODEL | RENDER_VIEWMODEL;
4009         else if (chase_active.integer || r_fb.water.renderingscene)
4010                 renderimask = RENDER_VIEWMODEL;
4011         else
4012                 renderimask = RENDER_EXTERIORMODEL;
4013         if (!r_drawviewmodel.integer)
4014                 renderimask |= RENDER_VIEWMODEL;
4015         if (!r_drawexteriormodel.integer)
4016                 renderimask |= RENDER_EXTERIORMODEL;
4017         memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities);
4018         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
4019         {
4020                 // worldmodel can check visibility
4021                 for (i = 0;i < r_refdef.scene.numentities;i++)
4022                 {
4023                         ent = r_refdef.scene.entities[i];
4024                         if (r_refdef.viewcache.world_novis && !(ent->flags & RENDER_VIEWMODEL))
4025                         {
4026                                 r_refdef.viewcache.entityvisible[i] = false;
4027                                 continue;
4028                         }
4029                         if (!(ent->flags & renderimask))
4030                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4031                         if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_WORLDOBJECT | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs))
4032                                 r_refdef.viewcache.entityvisible[i] = true;
4033                 }
4034         }
4035         else
4036         {
4037                 // no worldmodel or it can't check visibility
4038                 for (i = 0;i < r_refdef.scene.numentities;i++)
4039                 {
4040                         ent = r_refdef.scene.entities[i];
4041                         if (!(ent->flags & renderimask))
4042                         if (!R_CullFrustum(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)))
4043                                 r_refdef.viewcache.entityvisible[i] = true;
4044                 }
4045         }
4046         if (r_cullentities_trace.integer)
4047         {
4048                 for (i = 0;i < r_refdef.scene.numentities;i++)
4049                 {
4050                         if (!r_refdef.viewcache.entityvisible[i])
4051                                 continue;
4052                         ent = r_refdef.scene.entities[i];
4053                         if (!(ent->flags & (RENDER_VIEWMODEL | RENDER_WORLDOBJECT | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*')))
4054                         {
4055                                 samples = ent->last_trace_visibility == 0 ? r_cullentities_trace_tempentitysamples.integer : r_cullentities_trace_samples.integer;
4056                                 if (R_CanSeeBox(samples, r_cullentities_trace_eyejitter.value, r_cullentities_trace_enlarge.value, r_cullentities_trace_expand.value, r_cullentities_trace_pad.value, r_refdef.view.origin, ent->mins, ent->maxs))
4057                                         ent->last_trace_visibility = host.realtime;
4058                                 if (ent->last_trace_visibility < host.realtime - r_cullentities_trace_delay.value)
4059                                         r_refdef.viewcache.entityvisible[i] = 0;
4060                         }
4061                 }
4062         }
4063 }
4064
4065 /// only used if skyrendermasked, and normally returns false
4066 static int R_DrawBrushModelsSky (void)
4067 {
4068         int i, sky;
4069         entity_render_t *ent;
4070
4071         sky = false;
4072         for (i = 0;i < r_refdef.scene.numentities;i++)
4073         {
4074                 if (!r_refdef.viewcache.entityvisible[i])
4075                         continue;
4076                 ent = r_refdef.scene.entities[i];
4077                 if (!ent->model || !ent->model->DrawSky)
4078                         continue;
4079                 ent->model->DrawSky(ent);
4080                 sky = true;
4081         }
4082         return sky;
4083 }
4084
4085 static void R_DrawNoModel(entity_render_t *ent);
4086 static void R_DrawModels(void)
4087 {
4088         int i;
4089         entity_render_t *ent;
4090
4091         for (i = 0;i < r_refdef.scene.numentities;i++)
4092         {
4093                 if (!r_refdef.viewcache.entityvisible[i])
4094                         continue;
4095                 ent = r_refdef.scene.entities[i];
4096                 r_refdef.stats[r_stat_entities]++;
4097
4098                 if (ent->model && ent->model->Draw != NULL)
4099                         ent->model->Draw(ent);
4100                 else
4101                         R_DrawNoModel(ent);
4102         }
4103 }
4104
4105 static void R_DrawModelsDepth(void)
4106 {
4107         int i;
4108         entity_render_t *ent;
4109
4110         for (i = 0;i < r_refdef.scene.numentities;i++)
4111         {
4112                 if (!r_refdef.viewcache.entityvisible[i])
4113                         continue;
4114                 ent = r_refdef.scene.entities[i];
4115                 if (ent->model && ent->model->DrawDepth != NULL)
4116                         ent->model->DrawDepth(ent);
4117         }
4118 }
4119
4120 static void R_DrawModelsDebug(void)
4121 {
4122         int i;
4123         entity_render_t *ent;
4124
4125         for (i = 0;i < r_refdef.scene.numentities;i++)
4126         {
4127                 if (!r_refdef.viewcache.entityvisible[i])
4128                         continue;
4129                 ent = r_refdef.scene.entities[i];
4130                 if (ent->model && ent->model->DrawDebug != NULL)
4131                         ent->model->DrawDebug(ent);
4132         }
4133 }
4134
4135 static void R_DrawModelsAddWaterPlanes(void)
4136 {
4137         int i;
4138         entity_render_t *ent;
4139
4140         for (i = 0;i < r_refdef.scene.numentities;i++)
4141         {
4142                 if (!r_refdef.viewcache.entityvisible[i])
4143                         continue;
4144                 ent = r_refdef.scene.entities[i];
4145                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
4146                         ent->model->DrawAddWaterPlanes(ent);
4147         }
4148 }
4149
4150 static float irisvecs[7][3] = {{0, 0, 0}, {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1}};
4151
4152 void R_HDR_UpdateIrisAdaptation(const vec3_t point)
4153 {
4154         if (r_hdr_irisadaptation.integer)
4155         {
4156                 vec3_t p;
4157                 vec3_t ambient;
4158                 vec3_t diffuse;
4159                 vec3_t diffusenormal;
4160                 vec3_t forward;
4161                 vec_t brightness = 0.0f;
4162                 vec_t goal;
4163                 vec_t current;
4164                 vec_t d;
4165                 int c;
4166                 VectorCopy(r_refdef.view.forward, forward);
4167                 for (c = 0;c < (int)(sizeof(irisvecs)/sizeof(irisvecs[0]));c++)
4168                 {
4169                         p[0] = point[0] + irisvecs[c][0] * r_hdr_irisadaptation_radius.value;
4170                         p[1] = point[1] + irisvecs[c][1] * r_hdr_irisadaptation_radius.value;
4171                         p[2] = point[2] + irisvecs[c][2] * r_hdr_irisadaptation_radius.value;
4172                         R_CompleteLightPoint(ambient, diffuse, diffusenormal, p, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT, r_refdef.scene.lightmapintensity, r_refdef.scene.ambientintensity);
4173                         d = DotProduct(forward, diffusenormal);
4174                         brightness += VectorLength(ambient);
4175                         if (d > 0)
4176                                 brightness += d * VectorLength(diffuse);
4177                 }
4178                 brightness *= 1.0f / c;
4179                 brightness += 0.00001f; // make sure it's never zero
4180                 goal = r_hdr_irisadaptation_multiplier.value / brightness;
4181                 goal = bound(r_hdr_irisadaptation_minvalue.value, goal, r_hdr_irisadaptation_maxvalue.value);
4182                 current = r_hdr_irisadaptation_value.value;
4183                 if (current < goal)
4184                         current = min(current + r_hdr_irisadaptation_fade_up.value * cl.realframetime, goal);
4185                 else if (current > goal)
4186                         current = max(current - r_hdr_irisadaptation_fade_down.value * cl.realframetime, goal);
4187                 if (fabs(r_hdr_irisadaptation_value.value - current) > 0.0001f)
4188                         Cvar_SetValueQuick(&r_hdr_irisadaptation_value, current);
4189         }
4190         else if (r_hdr_irisadaptation_value.value != 1.0f)
4191                 Cvar_SetValueQuick(&r_hdr_irisadaptation_value, 1.0f);
4192 }
4193
4194 extern cvar_t r_lockvisibility;
4195 extern cvar_t r_lockpvs;
4196
4197 static void R_View_SetFrustum(const int *scissor)
4198 {
4199         int i;
4200         double fpx = +1, fnx = -1, fpy = +1, fny = -1;
4201         vec3_t forward, left, up, origin, v;
4202         if(r_lockvisibility.integer)
4203                 return;
4204         if(scissor)
4205         {
4206                 // flipped x coordinates (because x points left here)
4207                 fpx =  1.0 - 2.0 * (scissor[0]              - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4208                 fnx =  1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width);
4209                 // non-flipped y coordinates
4210                 fny = -1.0 + 2.0 * (scissor[1]              - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4211                 fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height);
4212         }
4213
4214         // we can't trust r_refdef.view.forward and friends in reflected scenes
4215         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
4216
4217 #if 0
4218         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
4219         r_refdef.view.frustum[0].normal[1] = 0 - 0;
4220         r_refdef.view.frustum[0].normal[2] = -1 - 0;
4221         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
4222         r_refdef.view.frustum[1].normal[1] = 0 + 0;
4223         r_refdef.view.frustum[1].normal[2] = -1 + 0;
4224         r_refdef.view.frustum[2].normal[0] = 0 - 0;
4225         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
4226         r_refdef.view.frustum[2].normal[2] = -1 - 0;
4227         r_refdef.view.frustum[3].normal[0] = 0 + 0;
4228         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
4229         r_refdef.view.frustum[3].normal[2] = -1 + 0;
4230 #endif
4231
4232 #if 0
4233         zNear = r_refdef.nearclip;
4234         nudge = 1.0 - 1.0 / (1<<23);
4235         r_refdef.view.frustum[4].normal[0] = 0 - 0;
4236         r_refdef.view.frustum[4].normal[1] = 0 - 0;
4237         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
4238         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
4239         r_refdef.view.frustum[5].normal[0] = 0 + 0;
4240         r_refdef.view.frustum[5].normal[1] = 0 + 0;
4241         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
4242         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
4243 #endif
4244
4245
4246
4247 #if 0
4248         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
4249         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
4250         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
4251         r_refdef.view.frustum[0].dist = m[15] - m[12];
4252
4253         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
4254         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
4255         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
4256         r_refdef.view.frustum[1].dist = m[15] + m[12];
4257
4258         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
4259         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
4260         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
4261         r_refdef.view.frustum[2].dist = m[15] - m[13];
4262
4263         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
4264         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
4265         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
4266         r_refdef.view.frustum[3].dist = m[15] + m[13];
4267
4268         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
4269         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
4270         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
4271         r_refdef.view.frustum[4].dist = m[15] - m[14];
4272
4273         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
4274         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
4275         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
4276         r_refdef.view.frustum[5].dist = m[15] + m[14];
4277 #endif
4278
4279         if (r_refdef.view.useperspective)
4280         {
4281                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
4282                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]);
4283                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]);
4284                 VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]);
4285                 VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]);
4286
4287                 // then the normals from the corners relative to origin
4288                 CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal);
4289                 CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal);
4290                 CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal);
4291                 CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal);
4292
4293                 // in a NORMAL view, forward cross left == up
4294                 // in a REFLECTED view, forward cross left == down
4295                 // so our cross products above need to be adjusted for a left handed coordinate system
4296                 CrossProduct(forward, left, v);
4297                 if(DotProduct(v, up) < 0)
4298                 {
4299                         VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal);
4300                         VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal);
4301                         VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal);
4302                         VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal);
4303                 }
4304
4305                 // Leaving those out was a mistake, those were in the old code, and they
4306                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
4307                 // I couldn't reproduce it after adding those normalizations. --blub
4308                 VectorNormalize(r_refdef.view.frustum[0].normal);
4309                 VectorNormalize(r_refdef.view.frustum[1].normal);
4310                 VectorNormalize(r_refdef.view.frustum[2].normal);
4311                 VectorNormalize(r_refdef.view.frustum[3].normal);
4312
4313                 // make the corners absolute
4314                 VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]);
4315                 VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]);
4316                 VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]);
4317                 VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]);
4318
4319                 // one more normal
4320                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
4321
4322                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
4323                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
4324                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
4325                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
4326                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
4327         }
4328         else
4329         {
4330                 VectorScale(left, -1.0f, r_refdef.view.frustum[0].normal);
4331                 VectorScale(left,  1.0f, r_refdef.view.frustum[1].normal);
4332                 VectorScale(up, -1.0f, r_refdef.view.frustum[2].normal);
4333                 VectorScale(up,  1.0f, r_refdef.view.frustum[3].normal);
4334                 VectorScale(forward, -1.0f, r_refdef.view.frustum[4].normal);
4335                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) - r_refdef.view.ortho_x;
4336                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) - r_refdef.view.ortho_x;
4337                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) - r_refdef.view.ortho_y;
4338                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) - r_refdef.view.ortho_y;
4339                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) - r_refdef.farclip;
4340         }
4341         r_refdef.view.numfrustumplanes = 5;
4342
4343         if (r_refdef.view.useclipplane)
4344         {
4345                 r_refdef.view.numfrustumplanes = 6;
4346                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
4347         }
4348
4349         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
4350                 PlaneClassify(r_refdef.view.frustum + i);
4351
4352         // LadyHavoc: note to all quake engine coders, Quake had a special case
4353         // for 90 degrees which assumed a square view (wrong), so I removed it,
4354         // Quake2 has it disabled as well.
4355
4356         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
4357         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
4358         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
4359         //PlaneClassify(&frustum[0]);
4360
4361         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
4362         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
4363         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
4364         //PlaneClassify(&frustum[1]);
4365
4366         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
4367         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
4368         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
4369         //PlaneClassify(&frustum[2]);
4370
4371         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
4372         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
4373         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
4374         //PlaneClassify(&frustum[3]);
4375
4376         // nearclip plane
4377         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
4378         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
4379         //PlaneClassify(&frustum[4]);
4380 }
4381
4382 static void R_View_UpdateWithScissor(const int *myscissor)
4383 {
4384         R_Main_ResizeViewCache();
4385         R_View_SetFrustum(myscissor);
4386         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4387         R_View_UpdateEntityVisible();
4388 }
4389
4390 static void R_View_Update(void)
4391 {
4392         R_Main_ResizeViewCache();
4393         R_View_SetFrustum(NULL);
4394         R_View_WorldVisibility(!r_refdef.view.usevieworiginculling);
4395         R_View_UpdateEntityVisible();
4396 }
4397
4398 float viewscalefpsadjusted = 1.0f;
4399
4400 void R_SetupView(qbool allowwaterclippingplane, int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4401 {
4402         const float *customclipplane = NULL;
4403         float plane[4];
4404         int /*rtwidth,*/ rtheight;
4405         if (r_refdef.view.useclipplane && allowwaterclippingplane)
4406         {
4407                 // LadyHavoc: couldn't figure out how to make this approach work the same in DPSOFTRAST
4408                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
4409                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
4410                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
4411                         dist = r_refdef.view.clipplane.dist;
4412                 plane[0] = r_refdef.view.clipplane.normal[0];
4413                 plane[1] = r_refdef.view.clipplane.normal[1];
4414                 plane[2] = r_refdef.view.clipplane.normal[2];
4415                 plane[3] = -dist;
4416                 customclipplane = plane;
4417         }
4418
4419         //rtwidth = viewfbo ? R_TextureWidth(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.width;
4420         rtheight = viewfbo ? R_TextureHeight(viewdepthtexture ? viewdepthtexture : viewcolortexture) : vid.height;
4421
4422         if (!r_refdef.view.useperspective)
4423                 R_Viewport_InitOrtho3D(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane);
4424         else if (vid.stencil && r_useinfinitefarclip.integer)
4425                 R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane);
4426         else
4427                 R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, viewx, rtheight - viewheight - viewy, viewwidth, viewheight, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane);
4428         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4429         R_SetViewport(&r_refdef.view.viewport);
4430 }
4431
4432 void R_EntityMatrix(const matrix4x4_t *matrix)
4433 {
4434         if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t)))
4435         {
4436                 gl_modelmatrixchanged = false;
4437                 gl_modelmatrix = *matrix;
4438                 Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix);
4439                 Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix);
4440                 Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f);
4441                 Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f);
4442                 CHECKGLERROR
4443                 switch(vid.renderpath)
4444                 {
4445                 case RENDERPATH_GL32:
4446                 case RENDERPATH_GLES2:
4447                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f);
4448                         if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fv(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f);
4449                         break;
4450                 }
4451         }
4452 }
4453
4454 void R_ResetViewRendering2D_Common(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight, float x2, float y2)
4455 {
4456         r_viewport_t viewport;
4457
4458         CHECKGLERROR
4459
4460         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
4461         R_Viewport_InitOrtho(&viewport, &identitymatrix, viewx, vid.height - viewheight - viewy, viewwidth, viewheight, 0, 0, x2, y2, -10, 100, NULL);
4462         R_Mesh_SetRenderTargets(viewfbo, viewdepthtexture, viewcolortexture, NULL, NULL, NULL);
4463         R_SetViewport(&viewport);
4464         GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
4465         GL_Color(1, 1, 1, 1);
4466         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4467         GL_BlendFunc(GL_ONE, GL_ZERO);
4468         GL_ScissorTest(false);
4469         GL_DepthMask(false);
4470         GL_DepthRange(0, 1);
4471         GL_DepthTest(false);
4472         GL_DepthFunc(GL_LEQUAL);
4473         R_EntityMatrix(&identitymatrix);
4474         R_Mesh_ResetTextureState();
4475         GL_PolygonOffset(0, 0);
4476         switch(vid.renderpath)
4477         {
4478         case RENDERPATH_GL32:
4479         case RENDERPATH_GLES2:
4480                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4481                 break;
4482         }
4483         GL_CullFace(GL_NONE);
4484
4485         CHECKGLERROR
4486 }
4487
4488 void R_ResetViewRendering2D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4489 {
4490         R_ResetViewRendering2D_Common(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight, 1.0f, 1.0f);
4491 }
4492
4493 void R_ResetViewRendering3D(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
4494 {
4495         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
4496         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
4497         GL_Color(1, 1, 1, 1);
4498         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
4499         GL_BlendFunc(GL_ONE, GL_ZERO);
4500         GL_ScissorTest(true);
4501         GL_DepthMask(true);
4502         GL_DepthRange(0, 1);
4503         GL_DepthTest(true);
4504         GL_DepthFunc(GL_LEQUAL);
4505         R_EntityMatrix(&identitymatrix);
4506         R_Mesh_ResetTextureState();
4507         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
4508         switch(vid.renderpath)
4509         {
4510         case RENDERPATH_GL32:
4511         case RENDERPATH_GLES2:
4512                 qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
4513                 break;
4514         }
4515         GL_CullFace(r_refdef.view.cullface_back);
4516 }
4517
4518 /*
4519 ================
4520 R_RenderView_UpdateViewVectors
4521 ================
4522 */
4523 void R_RenderView_UpdateViewVectors(void)
4524 {
4525         // break apart the view matrix into vectors for various purposes
4526         // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong
4527         // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc
4528         Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin);
4529         VectorNegate(r_refdef.view.left, r_refdef.view.right);
4530         // make an inverted copy of the view matrix for tracking sprites
4531         Matrix4x4_Invert_Full(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix);
4532 }
4533
4534 void R_RenderTarget_FreeUnused(qbool force)
4535 {
4536         unsigned int i, j, end;
4537         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4538         for (i = 0; i < end; i++)
4539         {
4540                 r_rendertarget_t *r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4541                 // free resources for rendertargets that have not been used for a while
4542                 // (note: this check is run after the frame render, so any targets used
4543                 // this frame will not be affected even at low framerates)
4544                 if (r && (host.realtime - r->lastusetime > 0.2 || force))
4545                 {
4546                         if (r->fbo)
4547                                 R_Mesh_DestroyFramebufferObject(r->fbo);
4548                         for (j = 0; j < sizeof(r->colortexture) / sizeof(r->colortexture[0]); j++)
4549                                 if (r->colortexture[j])
4550                                         R_FreeTexture(r->colortexture[j]);
4551                         if (r->depthtexture)
4552                                 R_FreeTexture(r->depthtexture);
4553                         Mem_ExpandableArray_FreeRecord(&r_fb.rendertargets, r);
4554                 }
4555         }
4556 }
4557
4558 static void R_CalcTexCoordsForView(float x, float y, float w, float h, float tw, float th, float *texcoord2f)
4559 {
4560         float iw = 1.0f / tw, ih = 1.0f / th, x1, y1, x2, y2;
4561         x1 = x * iw;
4562         x2 = (x + w) * iw;
4563         y1 = (th - y) * ih;
4564         y2 = (th - y - h) * ih;
4565         texcoord2f[0] = x1;
4566         texcoord2f[2] = x2;
4567         texcoord2f[4] = x2;
4568         texcoord2f[6] = x1;
4569         texcoord2f[1] = y1;
4570         texcoord2f[3] = y1;
4571         texcoord2f[5] = y2;
4572         texcoord2f[7] = y2;
4573 }
4574
4575 r_rendertarget_t *R_RenderTarget_Get(int texturewidth, int textureheight, textype_t depthtextype, qbool depthisrenderbuffer, textype_t colortextype0, textype_t colortextype1, textype_t colortextype2, textype_t colortextype3)
4576 {
4577         unsigned int i, j, end;
4578         r_rendertarget_t *r = NULL;
4579         char vabuf[256];
4580         // first try to reuse an existing slot if possible
4581         end = (unsigned int)Mem_ExpandableArray_IndexRange(&r_fb.rendertargets); // checked
4582         for (i = 0; i < end; i++)
4583         {
4584                 r = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, i);
4585                 if (r && r->lastusetime != host.realtime && r->texturewidth == texturewidth && r->textureheight == textureheight && r->depthtextype == depthtextype && r->colortextype[0] == colortextype0 && r->colortextype[1] == colortextype1 && r->colortextype[2] == colortextype2 && r->colortextype[3] == colortextype3)
4586                         break;
4587         }
4588         if (i == end)
4589         {
4590                 // no unused exact match found, so we have to make one in the first unused slot
4591                 r = (r_rendertarget_t *)Mem_ExpandableArray_AllocRecord(&r_fb.rendertargets);
4592                 r->texturewidth = texturewidth;
4593                 r->textureheight = textureheight;
4594                 r->colortextype[0] = colortextype0;
4595                 r->colortextype[1] = colortextype1;
4596                 r->colortextype[2] = colortextype2;
4597                 r->colortextype[3] = colortextype3;
4598                 r->depthtextype = depthtextype;
4599                 r->depthisrenderbuffer = depthisrenderbuffer;
4600                 for (j = 0; j < 4; j++)
4601                         if (r->colortextype[j])
4602                                 r->colortexture[j] = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_%i_type%i", i, j, (int)r->colortextype[j]), r->texturewidth, r->textureheight, NULL, r->colortextype[j], TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4603                 if (r->depthtextype)
4604                 {
4605                         if (r->depthisrenderbuffer)
4606                                 r->depthtexture = R_LoadTextureRenderBuffer(r_main_texturepool, va(vabuf, sizeof(vabuf), "renderbuffer%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, r->depthtextype);
4607                         else
4608                                 r->depthtexture = R_LoadTexture2D(r_main_texturepool, va(vabuf, sizeof(vabuf), "rendertarget%i_depth_type%i", i, (int)r->depthtextype), r->texturewidth, r->textureheight, NULL, r->depthtextype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
4609                 }
4610                 r->fbo = R_Mesh_CreateFramebufferObject(r->depthtexture, r->colortexture[0], r->colortexture[1], r->colortexture[2], r->colortexture[3]);
4611         }
4612         r_refdef.stats[r_stat_rendertargets_used]++;
4613         r_refdef.stats[r_stat_rendertargets_pixels] += r->texturewidth * r->textureheight;
4614         r->lastusetime = host.realtime;
4615         R_CalcTexCoordsForView(0, 0, r->texturewidth, r->textureheight, r->texturewidth, r->textureheight, r->texcoord2f);
4616         return r;
4617 }
4618
4619 static void R_Water_StartFrame(int viewwidth, int viewheight)
4620 {
4621         int waterwidth, waterheight;
4622
4623         if (viewwidth > (int)vid.maxtexturesize_2d || viewheight > (int)vid.maxtexturesize_2d)
4624                 return;
4625
4626         // set waterwidth and waterheight to the water resolution that will be
4627         // used (often less than the screen resolution for faster rendering)
4628         waterwidth = (int)bound(16, viewwidth * r_water_resolutionmultiplier.value, viewwidth);
4629         waterheight = (int)bound(16, viewheight * r_water_resolutionmultiplier.value, viewheight);
4630
4631         if (!r_water.integer || r_showsurfaces.integer || r_lockvisibility.integer || r_lockpvs.integer)
4632                 waterwidth = waterheight = 0;
4633
4634         // set up variables that will be used in shader setup
4635         r_fb.water.waterwidth = waterwidth;
4636         r_fb.water.waterheight = waterheight;
4637         r_fb.water.texturewidth = waterwidth;
4638         r_fb.water.textureheight = waterheight;
4639         r_fb.water.camerawidth = waterwidth;
4640         r_fb.water.cameraheight = waterheight;
4641         r_fb.water.screenscale[0] = 0.5f;
4642         r_fb.water.screenscale[1] = 0.5f;
4643         r_fb.water.screencenter[0] = 0.5f;
4644         r_fb.water.screencenter[1] = 0.5f;
4645         r_fb.water.enabled = waterwidth != 0;
4646
4647         r_fb.water.maxwaterplanes = MAX_WATERPLANES;
4648         r_fb.water.numwaterplanes = 0;
4649 }
4650
4651 void R_Water_AddWaterPlane(msurface_t *surface, int entno)
4652 {
4653         int planeindex, bestplaneindex, vertexindex;
4654         vec3_t mins, maxs, normal, center, v, n;
4655         vec_t planescore, bestplanescore;
4656         mplane_t plane;
4657         r_waterstate_waterplane_t *p;
4658         texture_t *t = R_GetCurrentTexture(surface->texture);
4659
4660         rsurface.texture = t;
4661         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, 1, ((const msurface_t **)&surface));
4662         // if the model has no normals, it's probably off-screen and they were not generated, so don't add it anyway
4663         if (!rsurface.batchnormal3f || rsurface.batchnumvertices < 1)
4664                 return;
4665         // average the vertex normals, find the surface bounds (after deformvertexes)
4666         Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f, v);
4667         Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f, n);
4668         VectorCopy(n, normal);
4669         VectorCopy(v, mins);
4670         VectorCopy(v, maxs);
4671         for (vertexindex = 1;vertexindex < rsurface.batchnumvertices;vertexindex++)
4672         {
4673                 Matrix4x4_Transform(&rsurface.matrix, rsurface.batchvertex3f + vertexindex*3, v);
4674                 Matrix4x4_Transform3x3(&rsurface.matrix, rsurface.batchnormal3f + vertexindex*3, n);
4675                 VectorAdd(normal, n, normal);
4676                 mins[0] = min(mins[0], v[0]);
4677                 mins[1] = min(mins[1], v[1]);
4678                 mins[2] = min(mins[2], v[2]);
4679                 maxs[0] = max(maxs[0], v[0]);
4680                 maxs[1] = max(maxs[1], v[1]);
4681                 maxs[2] = max(maxs[2], v[2]);
4682         }
4683         VectorNormalize(normal);
4684         VectorMAM(0.5f, mins, 0.5f, maxs, center);
4685
4686         VectorCopy(normal, plane.normal);
4687         VectorNormalize(plane.normal);
4688         plane.dist = DotProduct(center, plane.normal);
4689         PlaneClassify(&plane);
4690         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
4691         {
4692                 // skip backfaces (except if nocullface is set)
4693 //              if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
4694 //                      return;
4695                 VectorNegate(plane.normal, plane.normal);
4696                 plane.dist *= -1;
4697                 PlaneClassify(&plane);
4698         }
4699
4700
4701         // find a matching plane if there is one
4702         bestplaneindex = -1;
4703         bestplanescore = 1048576.0f;
4704         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4705         {
4706                 if(p->camera_entity == t->camera_entity)
4707                 {
4708                         planescore = 1.0f - DotProduct(plane.normal, p->plane.normal) + fabs(plane.dist - p->plane.dist) * 0.001f;
4709                         if (bestplaneindex < 0 || bestplanescore > planescore)
4710                         {
4711                                 bestplaneindex = planeindex;
4712                                 bestplanescore = planescore;
4713                         }
4714                 }
4715         }
4716         planeindex = bestplaneindex;
4717
4718         // if this surface does not fit any known plane rendered this frame, add one
4719         if (planeindex < 0 || bestplanescore > 0.001f)
4720         {
4721                 if (r_fb.water.numwaterplanes < r_fb.water.maxwaterplanes)
4722                 {
4723                         // store the new plane
4724                         planeindex = r_fb.water.numwaterplanes++;
4725                         p = r_fb.water.waterplanes + planeindex;
4726                         p->plane = plane;
4727                         // clear materialflags and pvs
4728                         p->materialflags = 0;
4729                         p->pvsvalid = false;
4730                         p->camera_entity = t->camera_entity;
4731                         VectorCopy(mins, p->mins);
4732                         VectorCopy(maxs, p->maxs);
4733                 }
4734                 else
4735                 {
4736                         // We're totally screwed.
4737                         return;
4738                 }
4739         }
4740         else
4741         {
4742                 // merge mins/maxs when we're adding this surface to the plane
4743                 p = r_fb.water.waterplanes + planeindex;
4744                 p->mins[0] = min(p->mins[0], mins[0]);
4745                 p->mins[1] = min(p->mins[1], mins[1]);
4746                 p->mins[2] = min(p->mins[2], mins[2]);
4747                 p->maxs[0] = max(p->maxs[0], maxs[0]);
4748                 p->maxs[1] = max(p->maxs[1], maxs[1]);
4749                 p->maxs[2] = max(p->maxs[2], maxs[2]);
4750         }
4751         // merge this surface's materialflags into the waterplane
4752         p->materialflags |= t->currentmaterialflags;
4753         if(!(p->materialflags & MATERIALFLAG_CAMERA))
4754         {
4755                 // merge this surface's PVS into the waterplane
4756                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
4757                  && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
4758                 {
4759                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
4760                         p->pvsvalid = true;
4761                 }
4762         }
4763 }
4764
4765 extern cvar_t r_drawparticles;
4766 extern cvar_t r_drawdecals;
4767
4768 static void R_Water_ProcessPlanes(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int viewx, int viewy, int viewwidth, int viewheight)
4769 {
4770         int myscissor[4];
4771         r_refdef_view_t originalview;
4772         r_refdef_view_t myview;
4773         int planeindex, qualityreduction = 0, old_r_dynamic = 0, old_r_shadows = 0, old_r_worldrtlight = 0, old_r_dlight = 0, old_r_particles = 0, old_r_decals = 0;
4774         r_waterstate_waterplane_t *p;
4775         vec3_t visorigin;
4776         r_rendertarget_t *rt;
4777
4778         originalview = r_refdef.view;
4779
4780         // lowquality hack, temporarily shut down some cvars and restore afterwards
4781         qualityreduction = r_water_lowquality.integer;
4782         if (qualityreduction > 0)
4783         {
4784                 if (qualityreduction >= 1)
4785                 {
4786                         old_r_shadows = r_shadows.integer;
4787                         old_r_worldrtlight = r_shadow_realtime_world.integer;
4788                         old_r_dlight = r_shadow_realtime_dlight.integer;
4789                         Cvar_SetValueQuick(&r_shadows, 0);
4790                         Cvar_SetValueQuick(&r_shadow_realtime_world, 0);
4791                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, 0);
4792                 }
4793                 if (qualityreduction >= 2)
4794                 {
4795                         old_r_dynamic = r_dynamic.integer;
4796                         old_r_particles = r_drawparticles.integer;
4797                         old_r_decals = r_drawdecals.integer;
4798                         Cvar_SetValueQuick(&r_dynamic, 0);
4799                         Cvar_SetValueQuick(&r_drawparticles, 0);
4800                         Cvar_SetValueQuick(&r_drawdecals, 0);
4801                 }
4802         }
4803
4804         for (planeindex = 0, p = r_fb.water.waterplanes; planeindex < r_fb.water.numwaterplanes; planeindex++, p++)
4805         {
4806                 p->rt_reflection = NULL;
4807                 p->rt_refraction = NULL;
4808                 p->rt_camera = NULL;
4809         }
4810
4811         // render views
4812         r_refdef.view = originalview;
4813         r_refdef.view.showdebug = false;
4814         r_refdef.view.width = r_fb.water.waterwidth;
4815         r_refdef.view.height = r_fb.water.waterheight;
4816         r_refdef.view.useclipplane = true;
4817         myview = r_refdef.view;
4818         r_fb.water.renderingscene = true;
4819         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
4820         {
4821                 if (r_water_cameraentitiesonly.value != 0 && !p->camera_entity)
4822                         continue;
4823
4824                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
4825                 {
4826                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4827                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4828                                 goto error;
4829                         r_refdef.view = myview;
4830                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
4831                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
4832                         if(r_water_scissormode.integer)
4833                         {
4834                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4835                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4836                                 {
4837                                         p->rt_reflection = NULL;
4838                                         p->rt_refraction = NULL;
4839                                         p->rt_camera = NULL;
4840                                         continue;
4841                                 }
4842                         }
4843
4844                         r_refdef.view.clipplane = p->plane;
4845                         // reflected view origin may be in solid, so don't cull with it
4846                         r_refdef.view.usevieworiginculling = false;
4847                         // reverse the cullface settings for this render
4848                         r_refdef.view.cullface_front = GL_FRONT;
4849                         r_refdef.view.cullface_back = GL_BACK;
4850                         // combined pvs (based on what can be seen from each surface center)
4851                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4852                         {
4853                                 r_refdef.view.usecustompvs = true;
4854                                 if (p->pvsvalid)
4855                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4856                                 else
4857                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4858                         }
4859
4860                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 2) && !chase_active.integer);
4861                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4862                         GL_ScissorTest(false);
4863                         R_ClearScreen(r_refdef.fogenabled);
4864                         GL_ScissorTest(true);
4865                         if(r_water_scissormode.integer & 2)
4866                                 R_View_UpdateWithScissor(myscissor);
4867                         else
4868                                 R_View_Update();
4869                         R_AnimCache_CacheVisibleEntities();
4870                         if(r_water_scissormode.integer & 1)
4871                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4872                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4873
4874                         r_fb.water.hideplayer = false;
4875                         p->rt_reflection = rt;
4876                 }
4877
4878                 // render the normal view scene and copy into texture
4879                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
4880                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
4881                 {
4882                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4883                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4884                                 goto error;
4885                         r_refdef.view = myview;
4886                         if(r_water_scissormode.integer)
4887                         {
4888                                 R_SetupView(true, rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, r_fb.water.waterwidth, r_fb.water.waterheight);
4889                                 if (R_ScissorForBBox(p->mins, p->maxs, myscissor))
4890                                 {
4891                                         p->rt_reflection = NULL;
4892                                         p->rt_refraction = NULL;
4893                                         p->rt_camera = NULL;
4894                                         continue;
4895                                 }
4896                         }
4897
4898                         // combined pvs (based on what can be seen from each surface center)
4899                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
4900                         {
4901                                 r_refdef.view.usecustompvs = true;
4902                                 if (p->pvsvalid)
4903                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4904                                 else
4905                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
4906                         }
4907
4908                         r_fb.water.hideplayer = ((r_water_hideplayer.integer >= 1) && !chase_active.integer);
4909
4910                         r_refdef.view.clipplane = p->plane;
4911                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4912                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4913
4914                         if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity)
4915                         {
4916                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4917                                 r_fb.water.hideplayer = false; // we don't want to hide the player model from these ones
4918                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4919                                 R_RenderView_UpdateViewVectors();
4920                                 if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4921                                 {
4922                                         r_refdef.view.usecustompvs = true;
4923                                         r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4924                                 }
4925                         }
4926
4927                         PlaneClassify(&r_refdef.view.clipplane);
4928
4929                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4930                         GL_ScissorTest(false);
4931                         R_ClearScreen(r_refdef.fogenabled);
4932                         GL_ScissorTest(true);
4933                         if(r_water_scissormode.integer & 2)
4934                                 R_View_UpdateWithScissor(myscissor);
4935                         else
4936                                 R_View_Update();
4937                         R_AnimCache_CacheVisibleEntities();
4938                         if(r_water_scissormode.integer & 1)
4939                                 GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]);
4940                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4941
4942                         r_fb.water.hideplayer = false;
4943                         p->rt_refraction = rt;
4944                 }
4945                 else if (p->materialflags & MATERIALFLAG_CAMERA)
4946                 {
4947                         rt = R_RenderTarget_Get(r_fb.water.waterwidth, r_fb.water.waterheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, r_fb.rt_screen->colortextype[0], TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
4948                         if (rt->colortexture[0] == NULL || rt->depthtexture == NULL)
4949                                 goto error;
4950                         r_refdef.view = myview;
4951
4952                         r_refdef.view.clipplane = p->plane;
4953                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
4954                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
4955
4956                         r_refdef.view.width = r_fb.water.camerawidth;
4957                         r_refdef.view.height = r_fb.water.cameraheight;
4958                         r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0);
4959                         r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0);
4960                         r_refdef.view.ortho_x = 90; // abused as angle by VM_CL_R_SetView
4961                         r_refdef.view.ortho_y = 90; // abused as angle by VM_CL_R_SetView
4962
4963                         if(p->camera_entity)
4964                         {
4965                                 // we need to perform a matrix transform to render the view... so let's get the transformation matrix
4966                                 CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin);
4967                         }
4968
4969                         // note: all of the view is used for displaying... so
4970                         // there is no use in scissoring
4971
4972                         // reverse the cullface settings for this render
4973                         r_refdef.view.cullface_front = GL_FRONT;
4974                         r_refdef.view.cullface_back = GL_BACK;
4975                         // also reverse the view matrix
4976                         Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round
4977                         R_RenderView_UpdateViewVectors();
4978                         if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS)
4979                         {
4980                                 r_refdef.view.usecustompvs = true;
4981                                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
4982                         }
4983                         
4984                         // camera needs no clipplane
4985                         r_refdef.view.useclipplane = false;
4986                         // TODO: is the camera origin always valid?  if so we don't need to clear this
4987                         r_refdef.view.usevieworiginculling = false;
4988
4989                         PlaneClassify(&r_refdef.view.clipplane);
4990
4991                         r_fb.water.hideplayer = false;
4992
4993                         R_ResetViewRendering3D(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
4994                         GL_ScissorTest(false);
4995                         R_ClearScreen(r_refdef.fogenabled);
4996                         GL_ScissorTest(true);
4997                         R_View_Update();
4998                         R_AnimCache_CacheVisibleEntities();
4999                         R_RenderScene(rt->fbo, rt->depthtexture, rt->colortexture[0], 0, 0, rt->texturewidth, rt->textureheight);
5000
5001                         r_fb.water.hideplayer = false;
5002                         p->rt_camera = rt;
5003                 }
5004
5005         }
5006         r_fb.water.renderingscene = false;
5007         r_refdef.view = originalview;
5008         R_ResetViewRendering3D(fbo, depthtexture, colortexture, viewx, viewy, viewwidth, viewheight);
5009         R_View_Update();
5010         R_AnimCache_CacheVisibleEntities();
5011         goto finish;
5012 error:
5013         r_refdef.view = originalview;
5014         r_fb.water.renderingscene = false;
5015         Cvar_SetValueQuick(&r_water, 0);
5016         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
5017 finish:
5018         // lowquality hack, restore cvars
5019         if (qualityreduction > 0)
5020         {
5021                 if (qualityreduction >= 1)
5022                 {
5023                         Cvar_SetValueQuick(&r_shadows, old_r_shadows);
5024                         Cvar_SetValueQuick(&r_shadow_realtime_world, old_r_worldrtlight);
5025                         Cvar_SetValueQuick(&r_shadow_realtime_dlight, old_r_dlight);
5026                 }
5027                 if (qualityreduction >= 2)
5028                 {
5029                         Cvar_SetValueQuick(&r_dynamic, old_r_dynamic);
5030                         Cvar_SetValueQuick(&r_drawparticles, old_r_particles);
5031                         Cvar_SetValueQuick(&r_drawdecals, old_r_decals);
5032                 }
5033         }
5034 }
5035
5036 static void R_Bloom_StartFrame(void)
5037 {
5038         int screentexturewidth, screentextureheight;
5039         textype_t textype = TEXTYPE_COLORBUFFER;
5040         double scale;
5041
5042         // clear the pointers to rendertargets from last frame as they're stale
5043         r_fb.rt_screen = NULL;
5044         r_fb.rt_bloom = NULL;
5045
5046         switch (vid.renderpath)
5047         {
5048         case RENDERPATH_GL32:
5049                 r_fb.usedepthtextures = r_usedepthtextures.integer != 0;
5050                 if (r_viewfbo.integer == 2) textype = TEXTYPE_COLORBUFFER16F;
5051                 if (r_viewfbo.integer == 3) textype = TEXTYPE_COLORBUFFER32F;
5052                 break;
5053         case RENDERPATH_GLES2:
5054                 r_fb.usedepthtextures = false;
5055                 break;
5056         }
5057
5058         if (r_viewscale_fpsscaling.integer)
5059         {
5060                 double actualframetime;
5061                 double targetframetime;
5062                 double adjust;
5063                 actualframetime = r_refdef.lastdrawscreentime;
5064                 targetframetime = (1.0 / r_viewscale_fpsscaling_target.value);
5065                 adjust = (targetframetime - actualframetime) * r_viewscale_fpsscaling_multiply.value;
5066                 adjust = bound(-r_viewscale_fpsscaling_stepmax.value, adjust, r_viewscale_fpsscaling_stepmax.value);
5067                 if (r_viewscale_fpsscaling_stepsize.value > 0)
5068                 {
5069                         if (adjust > 0)
5070                                 adjust = floor(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5071                         else
5072                                 adjust = ceil(adjust / r_viewscale_fpsscaling_stepsize.value) * r_viewscale_fpsscaling_stepsize.value;
5073                 }
5074                 viewscalefpsadjusted += adjust;
5075                 viewscalefpsadjusted = bound(r_viewscale_fpsscaling_min.value, viewscalefpsadjusted, 1.0f);
5076         }
5077         else
5078                 viewscalefpsadjusted = 1.0f;
5079
5080         scale = r_viewscale.value * sqrt(viewscalefpsadjusted);
5081         if (vid.samples)
5082                 scale *= sqrt(vid.samples); // supersampling
5083         scale = bound(0.03125f, scale, 4.0f);
5084         screentexturewidth = (int)ceil(r_refdef.view.width * scale);
5085         screentextureheight = (int)ceil(r_refdef.view.height * scale);
5086         screentexturewidth = bound(1, screentexturewidth, (int)vid.maxtexturesize_2d);
5087         screentextureheight = bound(1, screentextureheight, (int)vid.maxtexturesize_2d);
5088
5089         // set bloomwidth and bloomheight to the bloom resolution that will be
5090         // used (often less than the screen resolution for faster rendering)
5091         r_fb.bloomheight = bound(1, r_bloom_resolution.value * 0.75f, screentextureheight);
5092         r_fb.bloomwidth = r_fb.bloomheight * screentexturewidth / screentextureheight;
5093         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, screentexturewidth);
5094         r_fb.bloomwidth = bound(1, r_fb.bloomwidth, (int)vid.maxtexturesize_2d);
5095         r_fb.bloomheight = bound(1, r_fb.bloomheight, (int)vid.maxtexturesize_2d);
5096
5097         if ((r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d))
5098         {
5099                 Cvar_SetValueQuick(&r_bloom, 0);
5100                 Cvar_SetValueQuick(&r_motionblur, 0);
5101                 Cvar_SetValueQuick(&r_damageblur, 0);
5102         }
5103         if (!r_bloom.integer)
5104                 r_fb.bloomwidth = r_fb.bloomheight = 0;
5105
5106         // allocate motionblur ghost texture if needed - this is the only persistent texture and is only useful on the main view
5107         if (r_refdef.view.ismain && (r_fb.screentexturewidth != screentexturewidth || r_fb.screentextureheight != screentextureheight || r_fb.textype != textype))
5108         {
5109                 if (r_fb.ghosttexture)
5110                         R_FreeTexture(r_fb.ghosttexture);
5111                 r_fb.ghosttexture = NULL;
5112
5113                 r_fb.screentexturewidth = screentexturewidth;
5114                 r_fb.screentextureheight = screentextureheight;
5115                 r_fb.textype = textype;
5116
5117                 if (r_fb.screentexturewidth && r_fb.screentextureheight)
5118                 {
5119                         if (r_motionblur.value > 0 || r_damageblur.value > 0)
5120                                 r_fb.ghosttexture = R_LoadTexture2D(r_main_texturepool, "framebuffermotionblur", r_fb.screentexturewidth, r_fb.screentextureheight, NULL, r_fb.textype, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL);
5121                         r_fb.ghosttexture_valid = false;
5122                 }
5123         }
5124
5125         r_fb.rt_screen = R_RenderTarget_Get(screentexturewidth, screentextureheight, TEXTYPE_DEPTHBUFFER24STENCIL8, true, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5126
5127         r_refdef.view.clear = true;
5128 }
5129
5130 static void R_Bloom_MakeTexture(void)
5131 {
5132         int x, range, dir;
5133         float xoffset, yoffset, r, brighten;
5134         float colorscale = r_bloom_colorscale.value;
5135         r_viewport_t bloomviewport;
5136         r_rendertarget_t *prev, *cur;
5137         textype_t textype = r_fb.rt_screen->colortextype[0];
5138
5139         r_refdef.stats[r_stat_bloom]++;
5140
5141         R_Viewport_InitOrtho(&bloomviewport, &identitymatrix, 0, 0, r_fb.bloomwidth, r_fb.bloomheight, 0, 0, 1, 1, -10, 100, NULL);
5142
5143         // scale down screen texture to the bloom texture size
5144         CHECKGLERROR
5145         prev = r_fb.rt_screen;
5146         cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5147         R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5148         R_SetViewport(&bloomviewport);
5149         GL_CullFace(GL_NONE);
5150         GL_DepthTest(false);
5151         GL_BlendFunc(GL_ONE, GL_ZERO);
5152         GL_Color(colorscale, colorscale, colorscale, 1);
5153         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5154         // TODO: do boxfilter scale-down in shader?
5155         R_SetupShader_Generic(prev->colortexture[0], false, true, true);
5156         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5157         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5158         // we now have a properly scaled bloom image
5159
5160         // multiply bloom image by itself as many times as desired to darken it
5161         // TODO: if people actually use this it could be done more quickly in the previous shader pass
5162         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
5163         {
5164                 prev = cur;
5165                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5166                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5167                 x *= 2;
5168                 r = bound(0, r_bloom_colorexponent.value / x, 1); // always 0.5 to 1
5169                 if(x <= 2)
5170                         GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 0);
5171                 GL_BlendFunc(GL_SRC_COLOR, GL_ZERO); // square it
5172                 GL_Color(1,1,1,1); // no fix factor supported here
5173                 R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, prev->texcoord2f);
5174                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5175                 R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5176                 r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5177         }
5178         CHECKGLERROR
5179
5180         range = r_bloom_blur.integer * r_fb.bloomwidth / 320;
5181         brighten = r_bloom_brighten.value;
5182         brighten = sqrt(brighten);
5183         if(range >= 1)
5184                 brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle"
5185
5186         for (dir = 0;dir < 2;dir++)
5187         {
5188                 prev = cur;
5189                 cur = R_RenderTarget_Get(r_fb.bloomwidth, r_fb.bloomheight, TEXTYPE_UNUSED, false, textype, TEXTYPE_UNUSED, TEXTYPE_UNUSED, TEXTYPE_UNUSED);
5190                 R_Mesh_SetRenderTargets(cur->fbo, NULL, cur->colortexture[0], NULL, NULL, NULL);
5191                 // blend on at multiple vertical offsets to achieve a vertical blur
5192                 // TODO: do offset blends using GLSL
5193                 // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges
5194                 CHECKGLERROR
5195                 GL_BlendFunc(GL_ONE, GL_ZERO);
5196                 CHECKGLERROR
5197                 R_SetupShader_Generic(prev->colortexture[0], false, true, false);
5198                 CHECKGLERROR
5199                 for (x = -range;x <= range;x++)
5200                 {
5201                         if (!dir){xoffset = 0;yoffset = x;}
5202                         else {xoffset = x;yoffset = 0;}
5203                         xoffset /= (float)prev->texturewidth;
5204                         yoffset /= (float)prev->textureheight;
5205                         // compute a texcoord array with the specified x and y offset
5206                         r_fb.offsettexcoord2f[0] = xoffset+prev->texcoord2f[0];
5207                         r_fb.offsettexcoord2f[1] = yoffset+prev->texcoord2f[1];
5208                         r_fb.offsettexcoord2f[2] = xoffset+prev->texcoord2f[2];
5209                         r_fb.offsettexcoord2f[3] = yoffset+prev->texcoord2f[3];
5210                         r_fb.offsettexcoord2f[4] = xoffset+prev->texcoord2f[4];
5211                         r_fb.offsettexcoord2f[5] = yoffset+prev->texcoord2f[5];
5212                         r_fb.offsettexcoord2f[6] = xoffset+prev->texcoord2f[6];
5213                         r_fb.offsettexcoord2f[7] = yoffset+prev->texcoord2f[7];
5214                         // this r value looks like a 'dot' particle, fading sharply to
5215                         // black at the edges
5216                         // (probably not realistic but looks good enough)
5217                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
5218                         //r = brighten/(range*2+1);
5219                         r = brighten / (range * 2 + 1);
5220                         if(range >= 1)
5221                                 r *= (1 - x*x/(float)((range+1)*(range+1)));
5222                         if (r <= 0)
5223                                 continue;
5224                         CHECKGLERROR
5225                         GL_Color(r, r, r, 1);
5226                         CHECKGLERROR
5227                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.offsettexcoord2f);
5228                         CHECKGLERROR
5229                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5230                         r_refdef.stats[r_stat_bloom_drawpixels] += r_fb.bloomwidth * r_fb.bloomheight;
5231                         CHECKGLERROR
5232                         GL_BlendFunc(GL_ONE, GL_ONE);
5233                         CHECKGLERROR
5234                 }
5235         }
5236
5237         // now we have the bloom image, so keep track of it
5238         r_fb.rt_bloom = cur;
5239 }
5240
5241 static void R_BlendView(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5242 {
5243         uint64_t permutation;
5244         float uservecs[4][4];
5245         rtexture_t *viewtexture;
5246         rtexture_t *bloomtexture;
5247
5248         R_EntityMatrix(&identitymatrix);
5249
5250         if(r_refdef.view.ismain && !R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0) && r_fb.ghosttexture)
5251         {
5252                 // declare variables
5253                 float blur_factor, blur_mouseaccel, blur_velocity;
5254                 static float blur_average; 
5255                 static vec3_t blur_oldangles; // used to see how quickly the mouse is moving
5256
5257                 // set a goal for the factoring
5258                 blur_velocity = bound(0, (VectorLength(cl.movement_velocity) - r_motionblur_velocityfactor_minspeed.value) 
5259                         / max(1, r_motionblur_velocityfactor_maxspeed.value - r_motionblur_velocityfactor_minspeed.value), 1);
5260                 blur_mouseaccel = bound(0, ((fabs(VectorLength(cl.viewangles) - VectorLength(blur_oldangles)) * 10) - r_motionblur_mousefactor_minspeed.value) 
5261                         / max(1, r_motionblur_mousefactor_maxspeed.value - r_motionblur_mousefactor_minspeed.value), 1);
5262                 blur_factor = ((blur_velocity * r_motionblur_velocityfactor.value) 
5263                         + (blur_mouseaccel * r_motionblur_mousefactor.value));
5264
5265                 // from the goal, pick an averaged value between goal and last value
5266                 cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_averaging.value), 1);
5267                 blur_average = blur_average * (1 - cl.motionbluralpha) + blur_factor * cl.motionbluralpha;
5268
5269                 // enforce minimum amount of blur 
5270                 blur_factor = blur_average * (1 - r_motionblur_minblur.value) + r_motionblur_minblur.value;
5271
5272                 //Con_Printf("motionblur: direct factor: %f, averaged factor: %f, velocity: %f, mouse accel: %f \n", blur_factor, blur_average, blur_velocity, blur_mouseaccel);
5273
5274                 // calculate values into a standard alpha
5275                 cl.motionbluralpha = 1 - exp(-
5276                                 (
5277                                         (r_motionblur.value * blur_factor / 80)
5278                                         +
5279                                         (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600))
5280                                 )
5281                                 /
5282                                 max(0.0001, cl.time - cl.oldtime) // fps independent
5283                                 );
5284
5285                 // randomization for the blur value to combat persistent ghosting
5286                 cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value);
5287                 cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value);
5288
5289                 // apply the blur
5290                 R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5291                 if (cl.motionbluralpha > 0 && !r_refdef.envmap && r_fb.ghosttexture_valid)
5292                 {
5293                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
5294                         GL_Color(1, 1, 1, cl.motionbluralpha);
5295                         R_CalcTexCoordsForView(0, 0, viewwidth, viewheight, viewwidth, viewheight, r_fb.ghosttexcoord2f);
5296                         R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_fb.ghosttexcoord2f);
5297                         R_SetupShader_Generic(r_fb.ghosttexture, false, true, true);
5298                         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5299                         r_refdef.stats[r_stat_bloom_drawpixels] += viewwidth * viewheight;
5300                 }
5301
5302                 // updates old view angles for next pass
5303                 VectorCopy(cl.viewangles, blur_oldangles);
5304
5305                 // copy view into the ghost texture
5306                 R_Mesh_CopyToTexture(r_fb.ghosttexture, 0, 0, viewx, viewy, viewwidth, viewheight);
5307                 r_refdef.stats[r_stat_bloom_copypixels] += viewwidth * viewheight;
5308                 r_fb.ghosttexture_valid = true;
5309         }
5310
5311         if (r_fb.bloomwidth)
5312         {
5313                 // make the bloom texture
5314                 R_Bloom_MakeTexture();
5315         }
5316
5317 #if _MSC_VER >= 1400
5318 #define sscanf sscanf_s
5319 #endif
5320         memset(uservecs, 0, sizeof(uservecs));
5321         if (r_glsl_postprocess_uservec1_enable.integer)
5322                 sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]);
5323         if (r_glsl_postprocess_uservec2_enable.integer)
5324                 sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]);
5325         if (r_glsl_postprocess_uservec3_enable.integer)
5326                 sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]);
5327         if (r_glsl_postprocess_uservec4_enable.integer)
5328                 sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]);
5329
5330         // render to the screen fbo
5331         R_ResetViewRendering2D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5332         GL_Color(1, 1, 1, 1);
5333         GL_BlendFunc(GL_ONE, GL_ZERO);
5334
5335         viewtexture = r_fb.rt_screen->colortexture[0];
5336         bloomtexture = r_fb.rt_bloom ? r_fb.rt_bloom->colortexture[0] : NULL;
5337
5338         if (r_rendertarget_debug.integer >= 0)
5339         {
5340                 r_rendertarget_t *rt = (r_rendertarget_t *)Mem_ExpandableArray_RecordAtIndex(&r_fb.rendertargets, r_rendertarget_debug.integer);
5341                 if (rt && rt->colortexture[0])
5342                 {
5343                         viewtexture = rt->colortexture[0];
5344                         bloomtexture = NULL;
5345                 }
5346         }
5347
5348         R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_fb.rt_screen->texcoord2f, bloomtexture ? r_fb.rt_bloom->texcoord2f : NULL);
5349         switch(vid.renderpath)
5350         {
5351         case RENDERPATH_GL32:
5352         case RENDERPATH_GLES2:
5353                 permutation =
5354                         (r_fb.bloomwidth ? SHADERPERMUTATION_BLOOM : 0)
5355                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0)
5356                         | (!vid_gammatables_trivial ? SHADERPERMUTATION_GAMMARAMPS : 0)
5357                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0)
5358                         | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0);
5359                 R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation);
5360                 if (r_glsl_permutation->tex_Texture_First           >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_First     , viewtexture);
5361                 if (r_glsl_permutation->tex_Texture_Second          >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_Second    , bloomtexture);
5362                 if (r_glsl_permutation->tex_Texture_GammaRamps      >= 0) R_Mesh_TexBind(r_glsl_permutation->tex_Texture_GammaRamps, r_texture_gammaramps       );
5363                 if (r_glsl_permutation->loc_ViewTintColor           >= 0) qglUniform4f(r_glsl_permutation->loc_ViewTintColor     , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
5364                 if (r_glsl_permutation->loc_PixelSize               >= 0) qglUniform2f(r_glsl_permutation->loc_PixelSize         , 1.0/r_fb.screentexturewidth, 1.0/r_fb.screentextureheight);
5365                 if (r_glsl_permutation->loc_UserVec1                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec1          , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);
5366                 if (r_glsl_permutation->loc_UserVec2                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec2          , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);
5367                 if (r_glsl_permutation->loc_UserVec3                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec3          , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);
5368                 if (r_glsl_permutation->loc_UserVec4                >= 0) qglUniform4f(r_glsl_permutation->loc_UserVec4          , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);
5369                 if (r_glsl_permutation->loc_Saturation              >= 0) qglUniform1f(r_glsl_permutation->loc_Saturation        , r_glsl_saturation.value);
5370                 if (r_glsl_permutation->loc_PixelToScreenTexCoord   >= 0) qglUniform2f(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/r_fb.screentexturewidth, 1.0f/r_fb.screentextureheight);
5371                 if (r_glsl_permutation->loc_BloomColorSubtract      >= 0) qglUniform4f(r_glsl_permutation->loc_BloomColorSubtract   , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f);
5372                 if (r_glsl_permutation->loc_ColorFringe             >= 0) qglUniform1f(r_glsl_permutation->loc_ColorFringe, r_colorfringe.value );
5373                 break;
5374         }
5375         R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
5376         r_refdef.stats[r_stat_bloom_drawpixels] += r_refdef.view.width * r_refdef.view.height;
5377 }
5378
5379 matrix4x4_t r_waterscrollmatrix;
5380
5381 void R_UpdateFog(void)
5382 {
5383         // Nehahra fog
5384         if (gamemode == GAME_NEHAHRA)
5385         {
5386                 if (gl_fogenable.integer)
5387                 {
5388                         r_refdef.oldgl_fogenable = true;
5389                         r_refdef.fog_density = gl_fogdensity.value;
5390                         r_refdef.fog_red = gl_fogred.value;
5391                         r_refdef.fog_green = gl_foggreen.value;
5392                         r_refdef.fog_blue = gl_fogblue.value;
5393                         r_refdef.fog_alpha = 1;
5394                         r_refdef.fog_start = 0;
5395                         r_refdef.fog_end = gl_skyclip.value;
5396                         r_refdef.fog_height = 1<<30;
5397                         r_refdef.fog_fadedepth = 128;
5398                 }
5399                 else if (r_refdef.oldgl_fogenable)
5400                 {
5401                         r_refdef.oldgl_fogenable = false;
5402                         r_refdef.fog_density = 0;
5403                         r_refdef.fog_red = 0;
5404                         r_refdef.fog_green = 0;
5405                         r_refdef.fog_blue = 0;
5406                         r_refdef.fog_alpha = 0;
5407                         r_refdef.fog_start = 0;
5408                         r_refdef.fog_end = 0;
5409                         r_refdef.fog_height = 1<<30;
5410                         r_refdef.fog_fadedepth = 128;
5411                 }
5412         }
5413
5414         // fog parms
5415         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
5416         r_refdef.fog_start = max(0, r_refdef.fog_start);
5417         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
5418
5419         if (r_refdef.fog_density && r_drawfog.integer)
5420         {
5421                 r_refdef.fogenabled = true;
5422                 // this is the point where the fog reaches 0.9986 alpha, which we
5423                 // consider a good enough cutoff point for the texture
5424                 // (0.9986 * 256 == 255.6)
5425                 if (r_fog_exp2.integer)
5426                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
5427                 else
5428                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
5429                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
5430                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
5431                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
5432                 if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename))
5433                         R_BuildFogHeightTexture();
5434                 // fog color was already set
5435                 // update the fog texture
5436                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
5437                         R_BuildFogTexture();
5438                 r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth);
5439                 r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale;
5440         }
5441         else
5442                 r_refdef.fogenabled = false;
5443
5444         // fog color
5445         if (r_refdef.fog_density)
5446         {
5447                 r_refdef.fogcolor[0] = r_refdef.fog_red;
5448                 r_refdef.fogcolor[1] = r_refdef.fog_green;
5449                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
5450
5451                 Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height);
5452                 r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3];
5453                 r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0;
5454                 r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth);
5455
5456                 {
5457                         vec3_t fogvec;
5458                         VectorCopy(r_refdef.fogcolor, fogvec);
5459                         //   color.rgb *= ContrastBoost * SceneBrightness;
5460                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
5461                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
5462                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
5463                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
5464                 }
5465         }
5466 }
5467
5468 void R_UpdateVariables(void)
5469 {
5470         R_Textures_Frame();
5471
5472         r_refdef.scene.ambientintensity = r_ambient.value * (1.0f / 64.0f);
5473
5474         r_refdef.farclip = r_farclip_base.value;
5475         if (r_refdef.scene.worldmodel)
5476                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2;
5477         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
5478
5479         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
5480                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
5481         r_refdef.polygonfactor = 0;
5482         r_refdef.polygonoffset = 0;
5483
5484         r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0;
5485         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil;
5486         r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer;
5487         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil;
5488         r_refdef.scene.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
5489         if (r_refdef.scene.worldmodel)
5490         {
5491                 r_refdef.scene.lightmapintensity *= r_refdef.scene.worldmodel->lightmapscale;
5492
5493                 // Apply the default lightstyle to the lightmap even on q3bsp
5494                 if (cl.worldmodel && cl.worldmodel->type == mod_brushq3) {
5495                         r_refdef.scene.lightmapintensity *= r_refdef.scene.rtlightstylevalue[0];
5496                 }
5497         }
5498         if (r_showsurfaces.integer)
5499         {
5500                 r_refdef.scene.rtworld = false;
5501                 r_refdef.scene.rtworldshadows = false;
5502                 r_refdef.scene.rtdlight = false;
5503                 r_refdef.scene.rtdlightshadows = false;
5504                 r_refdef.scene.lightmapintensity = 0;
5505         }
5506
5507         r_gpuskeletal = false;
5508         switch(vid.renderpath)
5509         {
5510         case RENDERPATH_GL32:
5511                 r_gpuskeletal = r_glsl_skeletal.integer && !r_showsurfaces.integer;
5512         case RENDERPATH_GLES2:
5513                 if(!vid_gammatables_trivial)
5514                 {
5515                         if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
5516                         {
5517                                 // build GLSL gamma texture
5518 #define RAMPWIDTH 256
5519                                 unsigned short ramp[RAMPWIDTH * 3];
5520                                 unsigned char rampbgr[RAMPWIDTH][4];
5521                                 int i;
5522
5523                                 r_texture_gammaramps_serial = vid_gammatables_serial;
5524
5525                                 VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
5526                                 for(i = 0; i < RAMPWIDTH; ++i)
5527                                 {
5528                                         rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5529                                         rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5);
5530                                         rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5);
5531                                         rampbgr[i][3] = 0;
5532                                 }
5533                                 if (r_texture_gammaramps)
5534                                 {
5535                                         R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, 0, RAMPWIDTH, 1, 1, 0);
5536                                 }
5537                                 else
5538                                 {
5539                                         r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL);
5540                                 }
5541                         }
5542                 }
5543                 else
5544                 {
5545                         // remove GLSL gamma texture
5546                 }
5547                 break;
5548         }
5549 }
5550
5551 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
5552 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
5553 /*
5554 ================
5555 R_SelectScene
5556 ================
5557 */
5558 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
5559         if( scenetype != r_currentscenetype ) {
5560                 // store the old scenetype
5561                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
5562                 r_currentscenetype = scenetype;
5563                 // move in the new scene
5564                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
5565         }
5566 }
5567
5568 /*
5569 ================
5570 R_GetScenePointer
5571 ================
5572 */
5573 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
5574 {
5575         // of course, we could also add a qbool that provides a lock state and a ReleaseScenePointer function..
5576         if( scenetype == r_currentscenetype ) {
5577                 return &r_refdef.scene;
5578         } else {
5579                 return &r_scenes_store[ scenetype ];
5580         }
5581 }
5582
5583 static int R_SortEntities_Compare(const void *ap, const void *bp)
5584 {
5585         const entity_render_t *a = *(const entity_render_t **)ap;
5586         const entity_render_t *b = *(const entity_render_t **)bp;
5587
5588         // 1. compare model
5589         if(a->model < b->model)
5590                 return -1;
5591         if(a->model > b->model)
5592                 return +1;
5593
5594         // 2. compare skin
5595         // TODO possibly calculate the REAL skinnum here first using
5596         // skinscenes?
5597         if(a->skinnum < b->skinnum)
5598                 return -1;
5599         if(a->skinnum > b->skinnum)
5600                 return +1;
5601
5602         // everything we compared is equal
5603         return 0;
5604 }
5605 static void R_SortEntities(void)
5606 {
5607         // below or equal 2 ents, sorting never gains anything
5608         if(r_refdef.scene.numentities <= 2)
5609                 return;
5610         // sort
5611         qsort(r_refdef.scene.entities, r_refdef.scene.numentities, sizeof(*r_refdef.scene.entities), R_SortEntities_Compare);
5612 }
5613
5614 /*
5615 ================
5616 R_RenderView
5617 ================
5618 */
5619 extern cvar_t r_shadow_bouncegrid;
5620 extern cvar_t v_isometric;
5621 extern void V_MakeViewIsometric(void);
5622 void R_RenderView(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, int x, int y, int width, int height)
5623 {
5624         matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix;
5625         int viewfbo = 0;
5626         rtexture_t *viewdepthtexture = NULL;
5627         rtexture_t *viewcolortexture = NULL;
5628         int viewx = r_refdef.view.x, viewy = r_refdef.view.y, viewwidth = r_refdef.view.width, viewheight = r_refdef.view.height;
5629
5630         // finish any 2D rendering that was queued
5631         DrawQ_Finish();
5632
5633         if (r_timereport_active)
5634                 R_TimeReport("start");
5635         r_textureframe++; // used only by R_GetCurrentTexture
5636         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
5637
5638         if(R_CompileShader_CheckStaticParms())
5639                 R_GLSL_Restart_f(cmd_local);
5640
5641         if (!r_drawentities.integer)
5642                 r_refdef.scene.numentities = 0;
5643         else if (r_sortentities.integer)
5644                 R_SortEntities();
5645
5646         R_AnimCache_ClearCache();
5647
5648         /* adjust for stereo display */
5649         if(R_Stereo_Active())
5650         {
5651                 Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1);
5652                 Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix);
5653         }
5654
5655         if (r_refdef.view.isoverlay)
5656         {
5657                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
5658                 R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
5659                 GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
5660                 R_TimeReport("depthclear");
5661
5662                 r_refdef.view.showdebug = false;
5663
5664                 r_fb.water.enabled = false;
5665                 r_fb.water.numwaterplanes = 0;
5666
5667                 R_RenderScene(0, NULL, NULL, r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
5668
5669                 r_refdef.view.matrix = originalmatrix;
5670
5671                 CHECKGLERROR
5672                 return;
5673         }
5674
5675         if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/)
5676         {
5677                 r_refdef.view.matrix = originalmatrix;
5678                 return;
5679         }
5680
5681         r_refdef.view.usevieworiginculling = !r_trippy.value && r_refdef.view.useperspective;
5682         if (v_isometric.integer && r_refdef.view.ismain)
5683                 V_MakeViewIsometric();
5684
5685         r_refdef.view.colorscale = r_hdr_scenebrightness.value * r_hdr_irisadaptation_value.value;
5686
5687         if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
5688                 // in sRGB fallback, behave similar to true sRGB: convert this
5689                 // value from linear to sRGB
5690                 r_refdef.view.colorscale = Image_sRGBFloatFromLinearFloat(r_refdef.view.colorscale);
5691
5692         R_RenderView_UpdateViewVectors();
5693
5694         R_Shadow_UpdateWorldLightSelection();
5695
5696         // this will set up r_fb.rt_screen
5697         R_Bloom_StartFrame();
5698
5699         // apply bloom brightness offset
5700         if(r_fb.rt_bloom)
5701                 r_refdef.view.colorscale *= r_bloom_scenebrightness.value;
5702
5703         // R_Bloom_StartFrame probably set up an fbo for us to render into, it will be rendered to the window later in R_BlendView
5704         if (r_fb.rt_screen)
5705         {
5706                 viewfbo = r_fb.rt_screen->fbo;
5707                 viewdepthtexture = r_fb.rt_screen->depthtexture;
5708                 viewcolortexture = r_fb.rt_screen->colortexture[0];
5709                 viewx = 0;
5710                 viewy = 0;
5711                 viewwidth = r_fb.rt_screen->texturewidth;
5712                 viewheight = r_fb.rt_screen->textureheight;
5713         }
5714
5715         R_Water_StartFrame(viewwidth, viewheight);
5716
5717         CHECKGLERROR
5718         if (r_timereport_active)
5719                 R_TimeReport("viewsetup");
5720
5721         R_ResetViewRendering3D(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5722
5723         // clear the whole fbo every frame - otherwise the driver will consider
5724         // it to be an inter-frame texture and stall in multi-gpu configurations
5725         if (r_fb.rt_screen)
5726                 GL_ScissorTest(false);
5727         R_ClearScreen(r_refdef.fogenabled);
5728         if (r_timereport_active)
5729                 R_TimeReport("viewclear");
5730
5731         r_refdef.view.clear = true;
5732
5733         r_refdef.view.showdebug = true;
5734
5735         R_View_Update();
5736         if (r_timereport_active)
5737                 R_TimeReport("visibility");
5738
5739         R_AnimCache_CacheVisibleEntities();
5740         if (r_timereport_active)
5741                 R_TimeReport("animcache");
5742
5743         R_Shadow_UpdateBounceGridTexture();
5744         // R_Shadow_UpdateBounceGridTexture called R_TimeReport a few times internally, so we don't need to do that here.
5745
5746         r_fb.water.numwaterplanes = 0;
5747         if (r_fb.water.enabled)
5748                 R_RenderWaterPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5749
5750         // for the actual view render we use scissoring a fair amount, so scissor
5751         // test needs to be on
5752         if (r_fb.rt_screen)
5753                 GL_ScissorTest(true);
5754         GL_Scissor(viewx, viewy, viewwidth, viewheight);
5755         R_RenderScene(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5756         r_fb.water.numwaterplanes = 0;
5757
5758         // postprocess uses textures that are not aligned with the viewport we're rendering, so no scissoring
5759         GL_ScissorTest(false);
5760
5761         R_BlendView(fbo, depthtexture, colortexture, x, y, width, height);
5762         if (r_timereport_active)
5763                 R_TimeReport("blendview");
5764
5765         r_refdef.view.matrix = originalmatrix;
5766
5767         CHECKGLERROR
5768
5769         // go back to 2d rendering
5770         DrawQ_Start();
5771 }
5772
5773 void R_RenderWaterPlanes(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5774 {
5775         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes)
5776         {
5777                 r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity);
5778                 if (r_timereport_active)
5779                         R_TimeReport("waterworld");
5780         }
5781
5782         // don't let sound skip if going slow
5783         if (r_refdef.scene.extraupdate)
5784                 S_ExtraUpdate ();
5785
5786         R_DrawModelsAddWaterPlanes();
5787         if (r_timereport_active)
5788                 R_TimeReport("watermodels");
5789
5790         if (r_fb.water.numwaterplanes)
5791         {
5792                 R_Water_ProcessPlanes(viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5793                 if (r_timereport_active)
5794                         R_TimeReport("waterscenes");
5795         }
5796 }
5797
5798 extern cvar_t cl_locs_show;
5799 static void R_DrawLocs(void);
5800 static void R_DrawEntityBBoxes(prvm_prog_t *prog);
5801 static void R_DrawModelDecals(void);
5802 extern qbool r_shadow_usingdeferredprepass;
5803 extern int r_shadow_shadowmapatlas_modelshadows_size;
5804 void R_RenderScene(int viewfbo, rtexture_t *viewdepthtexture, rtexture_t *viewcolortexture, int viewx, int viewy, int viewwidth, int viewheight)
5805 {
5806         qbool shadowmapping = false;
5807
5808         if (r_timereport_active)
5809                 R_TimeReport("beginscene");
5810
5811         r_refdef.stats[r_stat_renders]++;
5812
5813         R_UpdateFog();
5814
5815         // don't let sound skip if going slow
5816         if (r_refdef.scene.extraupdate)
5817                 S_ExtraUpdate ();
5818
5819         R_MeshQueue_BeginScene();
5820
5821         R_SkyStartFrame();
5822
5823         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
5824
5825         if (r_timereport_active)
5826                 R_TimeReport("skystartframe");
5827
5828         if (cl.csqc_vidvars.drawworld)
5829         {
5830                 // don't let sound skip if going slow
5831                 if (r_refdef.scene.extraupdate)
5832                         S_ExtraUpdate ();
5833
5834                 if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky)
5835                 {
5836                         r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity);
5837                         if (r_timereport_active)
5838                                 R_TimeReport("worldsky");
5839                 }
5840
5841                 if (R_DrawBrushModelsSky() && r_timereport_active)
5842                         R_TimeReport("bmodelsky");
5843
5844                 if (skyrendermasked && skyrenderlater)
5845                 {
5846                         // we have to force off the water clipping plane while rendering sky
5847                         R_SetupView(false, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5848                         R_Sky();
5849                         R_SetupView(true, viewfbo, viewdepthtexture, viewcolortexture, viewx, viewy, viewwidth, viewheight);
5850                         if (r_timereport_active)
5851                                 R_TimeReport("sky");
5852                 }
5853         }
5854
5855         // save the framebuffer info for R_Shadow_RenderMode_Reset during this view render
5856         r_shadow_viewfbo = viewfbo;
5857         r_shadow_viewdepthtexture = viewdepthtexture;
5858         r_shadow_viewcolortexture = viewcolortexture;
5859         r_shadow_viewx = viewx;
5860         r_shadow_viewy = viewy;
5861         r_shadow_viewwidth = viewwidth;
5862         r_shadow_viewheight = viewheight;
5863
5864         R_Shadow_PrepareModelShadows();
5865         R_Shadow_PrepareLights();
5866         if (r_timereport_active)
5867                 R_TimeReport("preparelights");
5868
5869         // render all the shadowmaps that will be used for this view
5870         shadowmapping = R_Shadow_ShadowMappingEnabled();
5871         if (shadowmapping || r_shadow_shadowmapatlas_modelshadows_size)
5872         {
5873                 R_Shadow_DrawShadowMaps();
5874                 if (r_timereport_active)
5875                         R_TimeReport("shadowmaps");
5876         }
5877
5878         // render prepass deferred lighting if r_shadow_deferred is on, this produces light buffers that will be sampled in forward pass
5879         if (r_shadow_usingdeferredprepass)
5880                 R_Shadow_DrawPrepass();
5881
5882         // now we begin the forward pass of the view render
5883         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth)
5884         {
5885                 r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity);
5886                 if (r_timereport_active)
5887                         R_TimeReport("worlddepth");
5888         }
5889         if (r_depthfirst.integer >= 2)
5890         {
5891                 R_DrawModelsDepth();
5892                 if (r_timereport_active)
5893                         R_TimeReport("modeldepth");
5894         }
5895
5896         if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw)
5897         {
5898                 r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity);
5899                 if (r_timereport_active)
5900                         R_TimeReport("world");
5901         }
5902
5903         // don't let sound skip if going slow
5904         if (r_refdef.scene.extraupdate)
5905                 S_ExtraUpdate ();
5906
5907         R_DrawModels();
5908         if (r_timereport_active)
5909                 R_TimeReport("models");
5910
5911         // don't let sound skip if going slow
5912         if (r_refdef.scene.extraupdate)
5913                 S_ExtraUpdate ();
5914
5915         if (!r_shadow_usingdeferredprepass)
5916         {
5917                 R_Shadow_DrawLights();
5918                 if (r_timereport_active)
5919                         R_TimeReport("rtlights");
5920         }
5921
5922         // don't let sound skip if going slow
5923         if (r_refdef.scene.extraupdate)
5924                 S_ExtraUpdate ();
5925
5926         if (cl.csqc_vidvars.drawworld)
5927         {
5928                 R_DrawModelDecals();
5929                 if (r_timereport_active)
5930                         R_TimeReport("modeldecals");
5931
5932                 R_DrawParticles();
5933                 if (r_timereport_active)
5934                         R_TimeReport("particles");
5935
5936                 R_DrawExplosions();
5937                 if (r_timereport_active)
5938                         R_TimeReport("explosions");
5939         }
5940
5941         if (r_refdef.view.showdebug)
5942         {
5943                 if (cl_locs_show.integer)
5944                 {
5945                         R_DrawLocs();
5946                         if (r_timereport_active)
5947                                 R_TimeReport("showlocs");
5948                 }
5949
5950                 if (r_drawportals.integer)
5951                 {
5952                         R_DrawPortals();
5953                         if (r_timereport_active)
5954                                 R_TimeReport("portals");
5955                 }
5956
5957                 if (r_showbboxes_client.value > 0)
5958                 {
5959                         R_DrawEntityBBoxes(CLVM_prog);
5960                         if (r_timereport_active)
5961                                 R_TimeReport("clbboxes");
5962                 }
5963                 if (r_showbboxes.value > 0)
5964                 {
5965                         R_DrawEntityBBoxes(SVVM_prog);
5966                         if (r_timereport_active)
5967                                 R_TimeReport("svbboxes");
5968                 }
5969         }
5970
5971         if (r_transparent.integer)
5972         {
5973                 R_MeshQueue_RenderTransparent();
5974                 if (r_timereport_active)
5975                         R_TimeReport("drawtrans");
5976         }
5977
5978         if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0 || r_showoverdraw.value > 0))
5979         {
5980                 r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity);
5981                 if (r_timereport_active)
5982                         R_TimeReport("worlddebug");
5983                 R_DrawModelsDebug();
5984                 if (r_timereport_active)
5985                         R_TimeReport("modeldebug");
5986         }
5987
5988         if (cl.csqc_vidvars.drawworld)
5989         {
5990                 R_Shadow_DrawCoronas();
5991                 if (r_timereport_active)
5992                         R_TimeReport("coronas");
5993         }
5994
5995         // don't let sound skip if going slow
5996         if (r_refdef.scene.extraupdate)
5997                 S_ExtraUpdate ();
5998 }
5999
6000 static const unsigned short bboxelements[36] =
6001 {
6002         5, 1, 3, 5, 3, 7,
6003         6, 2, 0, 6, 0, 4,
6004         7, 3, 2, 7, 2, 6,
6005         4, 0, 1, 4, 1, 5,
6006         4, 5, 7, 4, 7, 6,
6007         1, 0, 2, 1, 2, 3,
6008 };
6009
6010 #define BBOXEDGES 13
6011 static const float bboxedges[BBOXEDGES][6] = 
6012 {
6013         // whole box
6014         { 0, 0, 0, 1, 1, 1 },
6015         // bottom edges
6016         { 0, 0, 0, 0, 1, 0 },
6017         { 0, 0, 0, 1, 0, 0 },
6018         { 0, 1, 0, 1, 1, 0 },
6019         { 1, 0, 0, 1, 1, 0 },
6020         // top edges
6021         { 0, 0, 1, 0, 1, 1 },
6022         { 0, 0, 1, 1, 0, 1 },
6023         { 0, 1, 1, 1, 1, 1 },
6024         { 1, 0, 1, 1, 1, 1 },
6025         // vertical edges
6026         { 0, 0, 0, 0, 0, 1 },
6027         { 1, 0, 0, 1, 0, 1 },
6028         { 0, 1, 0, 0, 1, 1 },
6029         { 1, 1, 0, 1, 1, 1 },
6030 };
6031
6032 static void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
6033 {
6034         int numvertices = BBOXEDGES * 8;
6035         float vertex3f[BBOXEDGES * 8 * 3], color4f[BBOXEDGES * 8 * 4];
6036         int numtriangles = BBOXEDGES * 12;
6037         unsigned short elements[BBOXEDGES * 36];
6038         int i, edge;
6039         float *v, *c, f1, f2, edgemins[3], edgemaxs[3];
6040
6041         RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
6042
6043         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6044         GL_DepthMask(false);
6045         GL_DepthRange(0, 1);
6046         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
6047
6048         for (edge = 0; edge < BBOXEDGES; edge++)
6049         {
6050                 for (i = 0; i < 3; i++)
6051                 {
6052                         edgemins[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][i] - 0.25f;
6053                         edgemaxs[i] = mins[i] + (maxs[i] - mins[i]) * bboxedges[edge][3 + i] + 0.25f;
6054                 }
6055                 vertex3f[edge * 24 + 0] = edgemins[0]; vertex3f[edge * 24 + 1] = edgemins[1]; vertex3f[edge * 24 + 2] = edgemins[2];
6056                 vertex3f[edge * 24 + 3] = edgemaxs[0]; vertex3f[edge * 24 + 4] = edgemins[1]; vertex3f[edge * 24 + 5] = edgemins[2];
6057                 vertex3f[edge * 24 + 6] = edgemins[0]; vertex3f[edge * 24 + 7] = edgemaxs[1]; vertex3f[edge * 24 + 8] = edgemins[2];
6058                 vertex3f[edge * 24 + 9] = edgemaxs[0]; vertex3f[edge * 24 + 10] = edgemaxs[1]; vertex3f[edge * 24 + 11] = edgemins[2];
6059                 vertex3f[edge * 24 + 12] = edgemins[0]; vertex3f[edge * 24 + 13] = edgemins[1]; vertex3f[edge * 24 + 14] = edgemaxs[2];
6060                 vertex3f[edge * 24 + 15] = edgemaxs[0]; vertex3f[edge * 24 + 16] = edgemins[1]; vertex3f[edge * 24 + 17] = edgemaxs[2];
6061                 vertex3f[edge * 24 + 18] = edgemins[0]; vertex3f[edge * 24 + 19] = edgemaxs[1]; vertex3f[edge * 24 + 20] = edgemaxs[2];
6062                 vertex3f[edge * 24 + 21] = edgemaxs[0]; vertex3f[edge * 24 + 22] = edgemaxs[1]; vertex3f[edge * 24 + 23] = edgemaxs[2];
6063                 for (i = 0; i < 36; i++)
6064                         elements[edge * 36 + i] = edge * 8 + bboxelements[i];
6065         }
6066         R_FillColors(color4f, numvertices, cr, cg, cb, ca);
6067         if (r_refdef.fogenabled)
6068         {
6069                 for (i = 0, v = vertex3f, c = color4f; i < numvertices; i++, v += 3, c += 4)
6070                 {
6071                         f1 = RSurf_FogVertex(v);
6072                         f2 = 1 - f1;
6073                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
6074                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
6075                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
6076                 }
6077         }
6078         R_Mesh_PrepareVertices_Generic_Arrays(numvertices, vertex3f, color4f, NULL);
6079         R_Mesh_ResetTextureState();
6080         R_SetupShader_Generic_NoTexture(false, false);
6081         R_Mesh_Draw(0, numvertices, 0, numtriangles, NULL, NULL, 0, elements, NULL, 0);
6082 }
6083
6084 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6085 {
6086         // hacky overloading of the parameters
6087         prvm_prog_t *prog = (prvm_prog_t *)rtlight;
6088         int i;
6089         float color[4];
6090         prvm_edict_t *edict;
6091
6092         GL_CullFace(GL_NONE);
6093         R_SetupShader_Generic_NoTexture(false, false);
6094
6095         for (i = 0;i < numsurfaces;i++)
6096         {
6097                 edict = PRVM_EDICT_NUM(surfacelist[i]);
6098                 switch ((int)PRVM_serveredictfloat(edict, solid))
6099                 {
6100                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
6101                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
6102                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
6103                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
6104                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
6105                         case SOLID_CORPSE:   Vector4Set(color, 1, 0.5, 0, 0.05);break;
6106                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
6107                 }
6108                 if (prog == CLVM_prog)
6109                         color[3] *= r_showbboxes_client.value;
6110                 else
6111                         color[3] *= r_showbboxes.value;
6112                 color[3] = bound(0, color[3], 1);
6113                 GL_DepthTest(!r_showdisabledepthtest.integer);
6114                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
6115         }
6116 }
6117
6118 static void R_DrawEntityBBoxes(prvm_prog_t *prog)
6119 {
6120         int i;
6121         prvm_edict_t *edict;
6122         vec3_t center;
6123
6124         if (prog == NULL)
6125                 return;
6126
6127         for (i = 0; i < prog->num_edicts; i++)
6128         {
6129                 edict = PRVM_EDICT_NUM(i);
6130                 if (edict->free)
6131                         continue;
6132                 // exclude the following for now, as they don't live in world coordinate space and can't be solid:
6133                 if (PRVM_gameedictedict(edict, tag_entity) != 0)
6134                         continue;
6135                 if (prog == SVVM_prog && PRVM_serveredictedict(edict, viewmodelforclient) != 0)
6136                         continue;
6137                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
6138                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)prog);
6139         }
6140 }
6141
6142 static const int nomodelelement3i[24] =
6143 {
6144         5, 2, 0,
6145         5, 1, 2,
6146         5, 0, 3,
6147         5, 3, 1,
6148         0, 2, 4,
6149         2, 1, 4,
6150         3, 0, 4,
6151         1, 3, 4
6152 };
6153
6154 static const unsigned short nomodelelement3s[24] =
6155 {
6156         5, 2, 0,
6157         5, 1, 2,
6158         5, 0, 3,
6159         5, 3, 1,
6160         0, 2, 4,
6161         2, 1, 4,
6162         3, 0, 4,
6163         1, 3, 4
6164 };
6165
6166 static const float nomodelvertex3f[6*3] =
6167 {
6168         -16,   0,   0,
6169          16,   0,   0,
6170           0, -16,   0,
6171           0,  16,   0,
6172           0,   0, -16,
6173           0,   0,  16
6174 };
6175
6176 static const float nomodelcolor4f[6*4] =
6177 {
6178         0.0f, 0.0f, 0.5f, 1.0f,
6179         0.0f, 0.0f, 0.5f, 1.0f,
6180         0.0f, 0.5f, 0.0f, 1.0f,
6181         0.0f, 0.5f, 0.0f, 1.0f,
6182         0.5f, 0.0f, 0.0f, 1.0f,
6183         0.5f, 0.0f, 0.0f, 1.0f
6184 };
6185
6186 static void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
6187 {
6188         int i;
6189         float f1, f2, *c;
6190         float color4f[6*4];
6191
6192         RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false);
6193
6194         // this is only called once per entity so numsurfaces is always 1, and
6195         // surfacelist is always {0}, so this code does not handle batches
6196
6197         if (rsurface.ent_flags & RENDER_ADDITIVE)
6198         {
6199                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
6200                 GL_DepthMask(false);
6201         }
6202         else if (ent->alpha < 1)
6203         {
6204                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
6205                 GL_DepthMask(false);
6206         }
6207         else
6208         {
6209                 GL_BlendFunc(GL_ONE, GL_ZERO);
6210                 GL_DepthMask(true);
6211         }
6212         GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
6213         GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset);
6214         GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST));
6215         GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back);
6216         memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
6217         for (i = 0, c = color4f;i < 6;i++, c += 4)
6218         {
6219                 c[0] *= ent->render_fullbright[0] * r_refdef.view.colorscale;
6220                 c[1] *= ent->render_fullbright[1] * r_refdef.view.colorscale;
6221                 c[2] *= ent->render_fullbright[2] * r_refdef.view.colorscale;
6222                 c[3] *= ent->alpha;
6223         }
6224         if (r_refdef.fogenabled)
6225         {
6226                 for (i = 0, c = color4f;i < 6;i++, c += 4)
6227                 {
6228                         f1 = RSurf_FogVertex(nomodelvertex3f + 3*i);
6229                         f2 = 1 - f1;
6230                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
6231                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
6232                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
6233                 }
6234         }
6235 //      R_Mesh_ResetTextureState();
6236         R_SetupShader_Generic_NoTexture(false, false);
6237         R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL);
6238         R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0);
6239 }
6240
6241 void R_DrawNoModel(entity_render_t *ent)
6242 {
6243         vec3_t org;
6244         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
6245         if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1))
6246                 R_MeshQueue_AddTransparent((ent->flags & RENDER_NODEPTHTEST) ? TRANSPARENTSORT_HUD : TRANSPARENTSORT_DISTANCE, org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
6247         else
6248                 R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL);
6249 }
6250
6251 void R_CalcBeam_Vertex3f (float *vert, const float *org1, const float *org2, float width)
6252 {
6253         vec3_t right1, right2, diff, normal;
6254
6255         VectorSubtract (org2, org1, normal);
6256
6257         // calculate 'right' vector for start
6258         VectorSubtract (r_refdef.view.origin, org1, diff);
6259         CrossProduct (normal, diff, right1);
6260         VectorNormalize (right1);
6261
6262         // calculate 'right' vector for end
6263         VectorSubtract (r_refdef.view.origin, org2, diff);
6264         CrossProduct (normal, diff, right2);
6265         VectorNormalize (right2);
6266
6267         vert[ 0] = org1[0] + width * right1[0];
6268         vert[ 1] = org1[1] + width * right1[1];
6269         vert[ 2] = org1[2] + width * right1[2];
6270         vert[ 3] = org1[0] - width * right1[0];
6271         vert[ 4] = org1[1] - width * right1[1];
6272         vert[ 5] = org1[2] - width * right1[2];
6273         vert[ 6] = org2[0] - width * right2[0];
6274         vert[ 7] = org2[1] - width * right2[1];
6275         vert[ 8] = org2[2] - width * right2[2];
6276         vert[ 9] = org2[0] + width * right2[0];
6277         vert[10] = org2[1] + width * right2[1];
6278         vert[11] = org2[2] + width * right2[2];
6279 }
6280
6281 void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2)
6282 {
6283         vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1;
6284         vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1;
6285         vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1;
6286         vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2;
6287         vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2;
6288         vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2;
6289         vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2;
6290         vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2;
6291         vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2;
6292         vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1;
6293         vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1;
6294         vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1;
6295 }
6296
6297 static int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z)
6298 {
6299         int i;
6300         float *vertex3f;
6301         float v[3];
6302         VectorSet(v, x, y, z);
6303         for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3)
6304                 if (VectorDistance2(v, vertex3f) < mesh->epsilon2)
6305                         break;
6306         if (i == mesh->numvertices)
6307         {
6308                 if (mesh->numvertices < mesh->maxvertices)
6309                 {
6310                         VectorCopy(v, vertex3f);
6311                         mesh->numvertices++;
6312                 }
6313                 return mesh->numvertices;
6314         }
6315         else
6316                 return i;
6317 }
6318
6319 void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f)
6320 {
6321         int i;
6322         int *e, element[3];
6323         element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6324         element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3;
6325         e = mesh->element3i + mesh->numtriangles * 3;
6326         for (i = 0;i < numvertices - 2;i++, vertex3f += 3)
6327         {
6328                 element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);
6329                 if (mesh->numtriangles < mesh->maxtriangles)
6330                 {
6331                         *e++ = element[0];
6332                         *e++ = element[1];
6333                         *e++ = element[2];
6334                         mesh->numtriangles++;
6335                 }
6336                 element[1] = element[2];
6337         }
6338 }
6339
6340 static void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d)
6341 {
6342         int i;
6343         int *e, element[3];
6344         element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6345         element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3;
6346         e = mesh->element3i + mesh->numtriangles * 3;
6347         for (i = 0;i < numvertices - 2;i++, vertex3d += 3)
6348         {
6349                 element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);
6350                 if (mesh->numtriangles < mesh->maxtriangles)
6351                 {
6352                         *e++ = element[0];
6353                         *e++ = element[1];
6354                         *e++ = element[2];
6355                         mesh->numtriangles++;
6356                 }
6357                 element[1] = element[2];
6358         }
6359 }
6360
6361 #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0)
6362 void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes)
6363 {
6364         int planenum, planenum2;
6365         int w;
6366         int tempnumpoints;
6367         mplane_t *plane, *plane2;
6368         double maxdist;
6369         double temppoints[2][256*3];
6370         // figure out how large a bounding box we need to properly compute this brush
6371         maxdist = 0;
6372         for (w = 0;w < numplanes;w++)
6373                 maxdist = max(maxdist, fabs(planes[w].dist));
6374         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
6375         maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0;
6376         for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++)
6377         {
6378                 w = 0;
6379                 tempnumpoints = 4;
6380                 PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist);
6381                 for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++)
6382                 {
6383                         if (planenum2 == planenum)
6384                                 continue;
6385                         PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL);
6386                         w = !w;
6387                 }
6388                 if (tempnumpoints < 3)
6389                         continue;
6390                 // generate elements forming a triangle fan for this polygon
6391                 R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]);
6392         }
6393 }
6394
6395 static qbool R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms)
6396 {
6397         if(parms[0] == 0 && parms[1] == 0)
6398                 return false;
6399         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6400                 if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)] == 0)
6401                         return false;
6402         return true;
6403 }
6404
6405 static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms)
6406 {
6407         double index, f;
6408         index = parms[2] + rsurface.shadertime * parms[3];
6409         index -= floor(index);
6410         switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1))
6411         {
6412         default:
6413         case Q3WAVEFUNC_NONE:
6414         case Q3WAVEFUNC_NOISE:
6415         case Q3WAVEFUNC_COUNT:
6416                 f = 0;
6417                 break;
6418         case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break;
6419         case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break;
6420         case Q3WAVEFUNC_SAWTOOTH: f = index;break;
6421         case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break;
6422         case Q3WAVEFUNC_TRIANGLE:
6423                 index *= 4;
6424                 f = index - floor(index);
6425                 if (index < 1)
6426                 {
6427                         // f = f;
6428                 }
6429                 else if (index < 2)
6430                         f = 1 - f;
6431                 else if (index < 3)
6432                         f = -f;
6433                 else
6434                         f = -(1 - f);
6435                 break;
6436         }
6437         f = parms[0] + parms[1] * f;
6438         if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set!
6439                 f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT - 1)];
6440         return (float) f;
6441 }
6442
6443 static void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags)
6444 {
6445         int w, h, idx;
6446         float shadertime;
6447         float f;
6448         float offsetd[2];
6449         float tcmat[12];
6450         matrix4x4_t matrix, temp;
6451         // if shadertime exceeds about 9 hours (32768 seconds), just wrap it,
6452         // it's better to have one huge fixup every 9 hours than gradual
6453         // degradation over time which looks consistently bad after many hours.
6454         //
6455         // tcmod scroll in particular suffers from this degradation which can't be
6456         // effectively worked around even with floor() tricks because we don't
6457         // know if tcmod scroll is the last tcmod being applied, and for clampmap
6458         // a workaround involving floor() would be incorrect anyway...
6459         shadertime = rsurface.shadertime;
6460         if (shadertime >= 32768.0f)
6461                 shadertime -= floor(rsurface.shadertime * (1.0f / 32768.0f)) * 32768.0f;
6462         switch(tcmod->tcmod)
6463         {
6464                 case Q3TCMOD_COUNT:
6465                 case Q3TCMOD_NONE:
6466                         if (currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6467                                 matrix = r_waterscrollmatrix;
6468                         else
6469                                 matrix = identitymatrix;
6470                         break;
6471                 case Q3TCMOD_ENTITYTRANSLATE:
6472                         // this is used in Q3 to allow the gamecode to control texcoord
6473                         // scrolling on the entity, which is not supported in darkplaces yet.
6474                         Matrix4x4_CreateTranslate(&matrix, 0, 0, 0);
6475                         break;
6476                 case Q3TCMOD_ROTATE:
6477                         Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0);
6478                         Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * rsurface.shadertime, 0, 0, 1);
6479                         Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0);
6480                         break;
6481                 case Q3TCMOD_SCALE:
6482                         Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1);
6483                         break;
6484                 case Q3TCMOD_SCROLL:
6485                         // this particular tcmod is a "bug for bug" compatible one with regards to
6486                         // Quake3, the wrapping is unnecessary with our shadetime fix but quake3
6487                         // specifically did the wrapping and so we must mimic that...
6488                         offsetd[0] = tcmod->parms[0] * rsurface.shadertime;
6489                         offsetd[1] = tcmod->parms[1] * rsurface.shadertime;
6490                         Matrix4x4_CreateTranslate(&matrix, offsetd[0] - floor(offsetd[0]), offsetd[1] - floor(offsetd[1]), 0);
6491                         break;
6492                 case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures)
6493                         w = (int) tcmod->parms[0];
6494                         h = (int) tcmod->parms[1];
6495                         f = rsurface.shadertime / (tcmod->parms[2] * w * h);
6496                         f = f - floor(f);
6497                         idx = (int) floor(f * w * h);
6498                         Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0);
6499                         break;
6500                 case Q3TCMOD_STRETCH:
6501                         f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms);
6502                         Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f);
6503                         break;
6504                 case Q3TCMOD_TRANSFORM:
6505                         VectorSet(tcmat +  0, tcmod->parms[0], tcmod->parms[1], 0);
6506                         VectorSet(tcmat +  3, tcmod->parms[2], tcmod->parms[3], 0);
6507                         VectorSet(tcmat +  6, 0                   , 0                , 1);
6508                         VectorSet(tcmat +  9, tcmod->parms[4], tcmod->parms[5], 0);
6509                         Matrix4x4_FromArray12FloatGL(&matrix, tcmat);
6510                         break;
6511                 case Q3TCMOD_TURBULENT:
6512                         // this is handled in the RSurf_PrepareVertices function
6513                         matrix = identitymatrix;
6514                         break;
6515         }
6516         temp = *texmatrix;
6517         Matrix4x4_Concat(texmatrix, &matrix, &temp);
6518 }
6519
6520 static void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname)
6521 {
6522         int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP;
6523         char name[MAX_QPATH];
6524         skinframe_t *skinframe;
6525         unsigned char pixels[296*194];
6526         strlcpy(cache->name, skinname, sizeof(cache->name));
6527         dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name);
6528         if (developer_loading.integer)
6529                 Con_Printf("loading %s\n", name);
6530         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
6531         if (!skinframe || !skinframe->base)
6532         {
6533                 unsigned char *f;
6534                 fs_offset_t filesize;
6535                 skinframe = NULL;
6536                 f = FS_LoadFile(name, tempmempool, true, &filesize);
6537                 if (f)
6538                 {
6539                         if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194))
6540                                 skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height);
6541                         Mem_Free(f);
6542                 }
6543         }
6544         cache->skinframe = skinframe;
6545 }
6546
6547 texture_t *R_GetCurrentTexture(texture_t *t)
6548 {
6549         int i, q;
6550         const entity_render_t *ent = rsurface.entity;
6551         model_t *model = ent->model; // when calling this, ent must not be NULL
6552         q3shaderinfo_layer_tcmod_t *tcmod;
6553         float specularscale = 0.0f;
6554
6555         if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent && !rsurface.forcecurrenttextureupdate)
6556                 return t->currentframe;
6557         t->update_lastrenderframe = r_textureframe;
6558         t->update_lastrenderentity = (void *)ent;
6559
6560         if(ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS)
6561                 t->camera_entity = ent->entitynumber;
6562         else
6563                 t->camera_entity = 0;
6564
6565         // switch to an alternate material if this is a q1bsp animated material
6566         {
6567                 texture_t *texture = t;
6568                 int s = rsurface.ent_skinnum;
6569                 if ((unsigned int)s >= (unsigned int)model->numskins)
6570                         s = 0;
6571                 if (model->skinscenes)
6572                 {
6573                         if (model->skinscenes[s].framecount > 1)
6574                                 s = model->skinscenes[s].firstframe + (unsigned int) (rsurface.shadertime * model->skinscenes[s].framerate) % model->skinscenes[s].framecount;
6575                         else
6576                                 s = model->skinscenes[s].firstframe;
6577                 }
6578                 if (s > 0)
6579                         t = t + s * model->num_surfaces;
6580                 if (t->animated)
6581                 {
6582                         // use an alternate animation if the entity's frame is not 0,
6583                         // and only if the texture has an alternate animation
6584                         if (t->animated == 2) // q2bsp
6585                                 t = t->anim_frames[0][ent->framegroupblend[0].frame % t->anim_total[0]];
6586                         else if (rsurface.ent_alttextures && t->anim_total[1])
6587                                 t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[1]) : 0];
6588                         else
6589                                 t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(rsurface.shadertime * 5.0f) % t->anim_total[0]) : 0];
6590                 }
6591                 texture->currentframe = t;
6592         }
6593
6594         // update currentskinframe to be a qw skin or animation frame
6595         if (rsurface.ent_qwskin >= 0)
6596         {
6597                 i = rsurface.ent_qwskin;
6598                 if (!r_qwskincache || r_qwskincache_size != cl.maxclients)
6599                 {
6600                         r_qwskincache_size = cl.maxclients;
6601                         if (r_qwskincache)
6602                                 Mem_Free(r_qwskincache);
6603                         r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size);
6604                 }
6605                 if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin))
6606                         R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin);
6607                 t->currentskinframe = r_qwskincache[i].skinframe;
6608                 if (t->materialshaderpass && t->currentskinframe == NULL)
6609                         t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6610         }
6611         else if (t->materialshaderpass && t->materialshaderpass->numframes >= 2)
6612                 t->currentskinframe = t->materialshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->materialshaderpass->framerate, t->materialshaderpass->numframes)];
6613         if (t->backgroundshaderpass && t->backgroundshaderpass->numframes >= 2)
6614                 t->backgroundcurrentskinframe = t->backgroundshaderpass->skinframes[LoopingFrameNumberFromDouble(rsurface.shadertime * t->backgroundshaderpass->framerate, t->backgroundshaderpass->numframes)];
6615
6616         t->currentmaterialflags = t->basematerialflags;
6617         t->currentalpha = rsurface.entity->alpha * t->basealpha;
6618         if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_water.integer || r_novis.integer || r_trippy.integer))
6619                 t->currentalpha *= r_wateralpha.value;
6620         if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_fb.water.enabled && !r_refdef.view.isoverlay)
6621                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later
6622         if(!r_fb.water.enabled || r_refdef.view.isoverlay)
6623                 t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA);
6624
6625         // decide on which type of lighting to use for this surface
6626         if (rsurface.entity->render_modellight_forced)
6627                 t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT;
6628         if (rsurface.entity->render_rtlight_disabled)
6629                 t->currentmaterialflags |= MATERIALFLAG_NORTLIGHT;
6630         if (rsurface.entity->render_lightgrid)
6631                 t->currentmaterialflags |= MATERIALFLAG_LIGHTGRID;
6632         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND && !(R_BlendFuncFlags(t->customblendfunc[0], t->customblendfunc[1]) & BLENDFUNC_ALLOWS_COLORMOD))
6633         {
6634                 // some CUSTOMBLEND blendfuncs are too weird, we have to ignore colormod and view colorscale
6635                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NORTLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6636                 for (q = 0; q < 3; q++)
6637                 {
6638                         t->render_glowmod[q] = rsurface.entity->glowmod[q];
6639                         t->render_modellight_lightdir_world[q] = q == 2;
6640                         t->render_modellight_lightdir_local[q] = q == 2;
6641                         t->render_modellight_ambient[q] = 1;
6642                         t->render_modellight_diffuse[q] = 0;
6643                         t->render_modellight_specular[q] = 0;
6644                         t->render_lightmap_ambient[q] = 0;
6645                         t->render_lightmap_diffuse[q] = 0;
6646                         t->render_lightmap_specular[q] = 0;
6647                         t->render_rtlight_diffuse[q] = 0;
6648                         t->render_rtlight_specular[q] = 0;
6649                 }
6650         }
6651         else if ((t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) || !(rsurface.ent_flags & RENDER_LIGHT))
6652         {
6653                 // fullbright is basically MATERIALFLAG_MODELLIGHT but with ambient locked to 1,1,1 and no shading
6654                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_NORTLIGHT | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6655                 for (q = 0; q < 3; q++)
6656                 {
6657                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6658                         t->render_modellight_ambient[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6659                         t->render_modellight_lightdir_world[q] = q == 2;
6660                         t->render_modellight_lightdir_local[q] = q == 2;
6661                         t->render_modellight_diffuse[q] = 0;
6662                         t->render_modellight_specular[q] = 0;
6663                         t->render_lightmap_ambient[q] = 0;
6664                         t->render_lightmap_diffuse[q] = 0;
6665                         t->render_lightmap_specular[q] = 0;
6666                         t->render_rtlight_diffuse[q] = 0;
6667                         t->render_rtlight_specular[q] = 0;
6668                 }
6669         }
6670         else if (t->currentmaterialflags & MATERIALFLAG_LIGHTGRID)
6671         {
6672                 t->currentmaterialflags &= ~MATERIALFLAG_MODELLIGHT;
6673                 for (q = 0; q < 3; q++)
6674                 {
6675                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6676                         t->render_modellight_lightdir_world[q] = q == 2;
6677                         t->render_modellight_lightdir_local[q] = q == 2;
6678                         t->render_modellight_ambient[q] = 0;
6679                         t->render_modellight_diffuse[q] = 0;
6680                         t->render_modellight_specular[q] = 0;
6681                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6682                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6683                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6684                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6685                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6686                 }
6687         }
6688         else if ((rsurface.ent_flags & (RENDER_DYNAMICMODELLIGHT | RENDER_CUSTOMIZEDMODELLIGHT)) || rsurface.modeltexcoordlightmap2f == NULL)
6689         {
6690                 // ambient + single direction light (modellight)
6691                 t->currentmaterialflags = (t->currentmaterialflags | MATERIALFLAG_MODELLIGHT) & ~MATERIALFLAG_LIGHTGRID;
6692                 for (q = 0; q < 3; q++)
6693                 {
6694                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6695                         t->render_modellight_lightdir_world[q] = rsurface.entity->render_modellight_lightdir_world[q];
6696                         t->render_modellight_lightdir_local[q] = rsurface.entity->render_modellight_lightdir_local[q];
6697                         t->render_modellight_ambient[q] = rsurface.entity->render_modellight_ambient[q] * r_refdef.view.colorscale;
6698                         t->render_modellight_diffuse[q] = rsurface.entity->render_modellight_diffuse[q] * r_refdef.view.colorscale;
6699                         t->render_modellight_specular[q] = rsurface.entity->render_modellight_specular[q] * r_refdef.view.colorscale;
6700                         t->render_lightmap_ambient[q] = 0;
6701                         t->render_lightmap_diffuse[q] = 0;
6702                         t->render_lightmap_specular[q] = 0;
6703                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6704                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6705                 }
6706         }
6707         else
6708         {
6709                 // lightmap - 2x diffuse and specular brightness because bsp files have 0-2 colors as 0-1
6710                 for (q = 0; q < 3; q++)
6711                 {
6712                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6713                         t->render_modellight_lightdir_world[q] = q == 2;
6714                         t->render_modellight_lightdir_local[q] = q == 2;
6715                         t->render_modellight_ambient[q] = 0;
6716                         t->render_modellight_diffuse[q] = 0;
6717                         t->render_modellight_specular[q] = 0;
6718                         t->render_lightmap_ambient[q] = rsurface.entity->render_lightmap_ambient[q] * r_refdef.view.colorscale;
6719                         t->render_lightmap_diffuse[q] = rsurface.entity->render_lightmap_diffuse[q] * 2 * r_refdef.view.colorscale;
6720                         t->render_lightmap_specular[q] = rsurface.entity->render_lightmap_specular[q] * 2 * r_refdef.view.colorscale;
6721                         t->render_rtlight_diffuse[q] = rsurface.entity->render_rtlight_diffuse[q] * r_refdef.view.colorscale;
6722                         t->render_rtlight_specular[q] = rsurface.entity->render_rtlight_specular[q] * r_refdef.view.colorscale;
6723                 }
6724         }
6725
6726         if (t->currentmaterialflags & MATERIALFLAG_VERTEXCOLOR)
6727         {
6728                 // since MATERIALFLAG_VERTEXCOLOR uses the lightmapcolor4f vertex
6729                 // attribute, we punt it to the lightmap path and hope for the best,
6730                 // but lighting doesn't work.
6731                 //
6732                 // FIXME: this is fine for effects but CSQC polygons should be subject
6733                 // to lighting.
6734                 t->currentmaterialflags &= ~(MATERIALFLAG_MODELLIGHT | MATERIALFLAG_LIGHTGRID);
6735                 for (q = 0; q < 3; q++)
6736                 {
6737                         t->render_glowmod[q] = rsurface.entity->render_glowmod[q] * r_refdef.view.colorscale;
6738                         t->render_modellight_lightdir_world[q] = q == 2;
6739                         t->render_modellight_lightdir_local[q] = q == 2;
6740                         t->render_modellight_ambient[q] = 0;
6741                         t->render_modellight_diffuse[q] = 0;
6742                         t->render_modellight_specular[q] = 0;
6743                         t->render_lightmap_ambient[q] = 0;
6744                         t->render_lightmap_diffuse[q] = rsurface.entity->render_fullbright[q] * r_refdef.view.colorscale;
6745                         t->render_lightmap_specular[q] = 0;
6746                         t->render_rtlight_diffuse[q] = 0;
6747                         t->render_rtlight_specular[q] = 0;
6748                 }
6749         }
6750
6751         for (q = 0; q < 3; q++)
6752         {
6753                 t->render_colormap_pants[q] = rsurface.entity->colormap_pantscolor[q];
6754                 t->render_colormap_shirt[q] = rsurface.entity->colormap_shirtcolor[q];
6755         }
6756
6757         if (rsurface.ent_flags & RENDER_ADDITIVE)
6758                 t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6759         else if (t->currentalpha < 1)
6760                 t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
6761         // LadyHavoc: prevent bugs where code checks add or alpha at higher priority than customblend by clearing these flags
6762         if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6763                 t->currentmaterialflags &= ~(MATERIALFLAG_ADD | MATERIALFLAG_ALPHA);
6764         if (rsurface.ent_flags & RENDER_DOUBLESIDED)
6765                 t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
6766         if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL))
6767                 t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE;
6768         if (t->backgroundshaderpass)
6769                 t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND;
6770         if (t->currentmaterialflags & MATERIALFLAG_BLENDED)
6771         {
6772                 if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA))
6773                         t->currentmaterialflags &= ~MATERIALFLAG_BLENDED;
6774         }
6775         else
6776                 t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA);
6777         if (vid.allowalphatocoverage && r_transparent_alphatocoverage.integer >= 2 && ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA | MATERIALFLAG_ADD | MATERIALFLAG_CUSTOMBLEND)) == (MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)))
6778         {
6779                 // promote alphablend to alphatocoverage (a type of alphatest) if antialiasing is on
6780                 t->currentmaterialflags = (t->currentmaterialflags & ~(MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHA)) | MATERIALFLAG_ALPHATEST;
6781         }
6782         if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED))
6783                 t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH;
6784
6785         // there is no tcmod
6786         if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL)
6787         {
6788                 t->currenttexmatrix = r_waterscrollmatrix;
6789                 t->currentbackgroundtexmatrix = r_waterscrollmatrix;
6790         }
6791         else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE))
6792         {
6793                 Matrix4x4_CreateIdentity(&t->currenttexmatrix);
6794                 Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix);
6795         }
6796
6797         if (t->materialshaderpass)
6798                 for (i = 0, tcmod = t->materialshaderpass->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++)
6799                         R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags);
6800
6801         t->colormapping = VectorLength2(t->render_colormap_pants) + VectorLength2(t->render_colormap_shirt) >= (1.0f / 1048576.0f);
6802         if (t->currentskinframe->qpixels)
6803                 R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping);
6804         t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base;
6805         if (!t->basetexture)
6806                 t->basetexture = r_texture_notexture;
6807         t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL;
6808         t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL;
6809         t->nmaptexture = t->currentskinframe->nmap;
6810         if (!t->nmaptexture)
6811                 t->nmaptexture = r_texture_blanknormalmap;
6812         t->glosstexture = r_texture_black;
6813         t->glowtexture = t->currentskinframe->glow;
6814         t->fogtexture = t->currentskinframe->fog;
6815         t->reflectmasktexture = t->currentskinframe->reflect;
6816         if (t->backgroundshaderpass)
6817         {
6818                 for (i = 0, tcmod = t->backgroundshaderpass->tcmods; i < Q3MAXTCMODS && tcmod->tcmod; i++, tcmod++)
6819                         R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags);
6820                 t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base;
6821                 t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap;
6822                 t->backgroundglosstexture = r_texture_black;
6823                 t->backgroundglowtexture = t->backgroundcurrentskinframe->glow;
6824                 if (!t->backgroundnmaptexture)
6825                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6826                 // make sure that if glow is going to be used, both textures are not NULL
6827                 if (!t->backgroundglowtexture && t->glowtexture)
6828                         t->backgroundglowtexture = r_texture_black;
6829                 if (!t->glowtexture && t->backgroundglowtexture)
6830                         t->glowtexture = r_texture_black;
6831         }
6832         else
6833         {
6834                 t->backgroundbasetexture = r_texture_white;
6835                 t->backgroundnmaptexture = r_texture_blanknormalmap;
6836                 t->backgroundglosstexture = r_texture_black;
6837                 t->backgroundglowtexture = NULL;
6838         }
6839         t->specularpower = r_shadow_glossexponent.value;
6840         // TODO: store reference values for these in the texture?
6841         if (r_shadow_gloss.integer > 0)
6842         {
6843                 if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss))
6844                 {
6845                         if (r_shadow_glossintensity.value > 0)
6846                         {
6847                                 t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white;
6848                                 t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white;
6849                                 specularscale = r_shadow_glossintensity.value;
6850                         }
6851                 }
6852                 else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0)
6853                 {
6854                         t->glosstexture = r_texture_white;
6855                         t->backgroundglosstexture = r_texture_white;
6856                         specularscale = r_shadow_gloss2intensity.value;
6857                         t->specularpower = r_shadow_gloss2exponent.value;
6858                 }
6859         }
6860         specularscale *= t->specularscalemod;
6861         t->specularpower *= t->specularpowermod;
6862
6863         // lightmaps mode looks bad with dlights using actual texturing, so turn
6864         // off the colormap and glossmap, but leave the normalmap on as it still
6865         // accurately represents the shading involved
6866         if (gl_lightmaps.integer && ent != &cl_meshentities[MESH_UI].render)
6867         {
6868                 t->basetexture = r_texture_grey128;
6869                 t->pantstexture = r_texture_black;
6870                 t->shirttexture = r_texture_black;
6871                 if (gl_lightmaps.integer < 2)
6872                         t->nmaptexture = r_texture_blanknormalmap;
6873                 t->glosstexture = r_texture_black;
6874                 t->glowtexture = NULL;
6875                 t->fogtexture = NULL;
6876                 t->reflectmasktexture = NULL;
6877                 t->backgroundbasetexture = NULL;
6878                 if (gl_lightmaps.integer < 2)
6879                         t->backgroundnmaptexture = r_texture_blanknormalmap;
6880                 t->backgroundglosstexture = r_texture_black;
6881                 t->backgroundglowtexture = NULL;
6882                 specularscale = 0;
6883                 t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE));
6884         }
6885
6886         if (specularscale != 1.0f)
6887         {
6888                 for (q = 0; q < 3; q++)
6889                 {
6890                         t->render_modellight_specular[q] *= specularscale;
6891                         t->render_lightmap_specular[q] *= specularscale;
6892                         t->render_rtlight_specular[q] *= specularscale;
6893                 }
6894         }
6895
6896         t->currentblendfunc[0] = GL_ONE;
6897         t->currentblendfunc[1] = GL_ZERO;
6898         if (t->currentmaterialflags & MATERIALFLAG_ADD)
6899         {
6900                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6901                 t->currentblendfunc[1] = GL_ONE;
6902         }
6903         else if (t->currentmaterialflags & MATERIALFLAG_ALPHA)
6904         {
6905                 t->currentblendfunc[0] = GL_SRC_ALPHA;
6906                 t->currentblendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
6907         }
6908         else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND)
6909         {
6910                 t->currentblendfunc[0] = t->customblendfunc[0];
6911                 t->currentblendfunc[1] = t->customblendfunc[1];
6912         }
6913
6914         return t;
6915 }
6916
6917 rsurfacestate_t rsurface;
6918
6919 void RSurf_ActiveModelEntity(const entity_render_t *ent, qbool wantnormals, qbool wanttangents, qbool prepass)
6920 {
6921         model_t *model = ent->model;
6922         //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents)))
6923         //      return;
6924         rsurface.entity = (entity_render_t *)ent;
6925         rsurface.skeleton = ent->skeleton;
6926         memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param));
6927         rsurface.ent_skinnum = ent->skinnum;
6928         rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1;
6929         rsurface.ent_flags = ent->flags;
6930         if (r_fullbright_directed.integer && (r_fullbright.integer || !model->lit))
6931                 rsurface.ent_flags |= RENDER_LIGHT | RENDER_DYNAMICMODELLIGHT;
6932         rsurface.shadertime = r_refdef.scene.time - ent->shadertime;
6933         rsurface.matrix = ent->matrix;
6934         rsurface.inversematrix = ent->inversematrix;
6935         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
6936         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
6937         R_EntityMatrix(&rsurface.matrix);
6938         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
6939         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
6940         rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist * rsurface.inversematrixscale;
6941         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
6942         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
6943         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
6944         memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend));
6945         rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0;
6946         rsurface.basepolygonfactor = r_refdef.polygonfactor;
6947         rsurface.basepolygonoffset = r_refdef.polygonoffset;
6948         if (ent->model->brush.submodel && !prepass)
6949         {
6950                 rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value;
6951                 rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value;
6952         }
6953         // if the animcache code decided it should use the shader path, skip the deform step
6954         rsurface.entityskeletaltransform3x4 = ent->animcache_skeletaltransform3x4;
6955         rsurface.entityskeletaltransform3x4buffer = ent->animcache_skeletaltransform3x4buffer;
6956         rsurface.entityskeletaltransform3x4offset = ent->animcache_skeletaltransform3x4offset;
6957         rsurface.entityskeletaltransform3x4size = ent->animcache_skeletaltransform3x4size;
6958         rsurface.entityskeletalnumtransforms = rsurface.entityskeletaltransform3x4 ? model->num_bones : 0;
6959         if (model->surfmesh.isanimated && model->AnimateVertices && !rsurface.entityskeletaltransform3x4)
6960         {
6961                 if (ent->animcache_vertex3f)
6962                 {
6963                         r_refdef.stats[r_stat_batch_entitycache_count]++;
6964                         r_refdef.stats[r_stat_batch_entitycache_surfaces] += model->num_surfaces;
6965                         r_refdef.stats[r_stat_batch_entitycache_vertices] += model->surfmesh.num_vertices;
6966                         r_refdef.stats[r_stat_batch_entitycache_triangles] += model->surfmesh.num_triangles;
6967                         rsurface.modelvertex3f = ent->animcache_vertex3f;
6968                         rsurface.modelvertex3f_vertexbuffer = ent->animcache_vertex3f_vertexbuffer;
6969                         rsurface.modelvertex3f_bufferoffset = ent->animcache_vertex3f_bufferoffset;
6970                         rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL;
6971                         rsurface.modelsvector3f_vertexbuffer = wanttangents ? ent->animcache_svector3f_vertexbuffer : NULL;
6972                         rsurface.modelsvector3f_bufferoffset = wanttangents ? ent->animcache_svector3f_bufferoffset : 0;
6973                         rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL;
6974                         rsurface.modeltvector3f_vertexbuffer = wanttangents ? ent->animcache_tvector3f_vertexbuffer : NULL;
6975                         rsurface.modeltvector3f_bufferoffset = wanttangents ? ent->animcache_tvector3f_bufferoffset : 0;
6976                         rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL;
6977                         rsurface.modelnormal3f_vertexbuffer = wantnormals ? ent->animcache_normal3f_vertexbuffer : NULL;
6978                         rsurface.modelnormal3f_bufferoffset = wantnormals ? ent->animcache_normal3f_bufferoffset : 0;
6979                 }
6980                 else if (wanttangents)
6981                 {
6982                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
6983                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
6984                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
6985                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
6986                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6987                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6988                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6989                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
6990                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, rsurface.modelsvector3f, rsurface.modeltvector3f);
6991                         rsurface.modelvertex3f_vertexbuffer = NULL;
6992                         rsurface.modelvertex3f_bufferoffset = 0;
6993                         rsurface.modelvertex3f_vertexbuffer = 0;
6994                         rsurface.modelvertex3f_bufferoffset = 0;
6995                         rsurface.modelsvector3f_vertexbuffer = 0;
6996                         rsurface.modelsvector3f_bufferoffset = 0;
6997                         rsurface.modeltvector3f_vertexbuffer = 0;
6998                         rsurface.modeltvector3f_bufferoffset = 0;
6999                         rsurface.modelnormal3f_vertexbuffer = 0;
7000                         rsurface.modelnormal3f_bufferoffset = 0;
7001                 }
7002                 else if (wantnormals)
7003                 {
7004                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7005                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7006                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7007                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7008                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7009                         rsurface.modelsvector3f = NULL;
7010                         rsurface.modeltvector3f = NULL;
7011                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7012                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, rsurface.modelnormal3f, NULL, NULL);
7013                         rsurface.modelvertex3f_vertexbuffer = NULL;
7014                         rsurface.modelvertex3f_bufferoffset = 0;
7015                         rsurface.modelvertex3f_vertexbuffer = 0;
7016                         rsurface.modelvertex3f_bufferoffset = 0;
7017                         rsurface.modelsvector3f_vertexbuffer = 0;
7018                         rsurface.modelsvector3f_bufferoffset = 0;
7019                         rsurface.modeltvector3f_vertexbuffer = 0;
7020                         rsurface.modeltvector3f_bufferoffset = 0;
7021                         rsurface.modelnormal3f_vertexbuffer = 0;
7022                         rsurface.modelnormal3f_bufferoffset = 0;
7023                 }
7024                 else
7025                 {
7026                         r_refdef.stats[r_stat_batch_entityanimate_count]++;
7027                         r_refdef.stats[r_stat_batch_entityanimate_surfaces] += model->num_surfaces;
7028                         r_refdef.stats[r_stat_batch_entityanimate_vertices] += model->surfmesh.num_vertices;
7029                         r_refdef.stats[r_stat_batch_entityanimate_triangles] += model->surfmesh.num_triangles;
7030                         rsurface.modelvertex3f = (float *)R_FrameData_Alloc(model->surfmesh.num_vertices * sizeof(float[3]));
7031                         rsurface.modelsvector3f = NULL;
7032                         rsurface.modeltvector3f = NULL;
7033                         rsurface.modelnormal3f = NULL;
7034                         model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.modelvertex3f, NULL, NULL, NULL);
7035                         rsurface.modelvertex3f_vertexbuffer = NULL;
7036                         rsurface.modelvertex3f_bufferoffset = 0;
7037                         rsurface.modelvertex3f_vertexbuffer = 0;
7038                         rsurface.modelvertex3f_bufferoffset = 0;
7039                         rsurface.modelsvector3f_vertexbuffer = 0;
7040                         rsurface.modelsvector3f_bufferoffset = 0;
7041                         rsurface.modeltvector3f_vertexbuffer = 0;
7042                         rsurface.modeltvector3f_bufferoffset = 0;
7043                         rsurface.modelnormal3f_vertexbuffer = 0;
7044                         rsurface.modelnormal3f_bufferoffset = 0;
7045                 }
7046                 rsurface.modelgeneratedvertex = true;
7047         }
7048         else
7049         {
7050                 if (rsurface.entityskeletaltransform3x4)
7051                 {
7052                         r_refdef.stats[r_stat_batch_entityskeletal_count]++;
7053                         r_refdef.stats[r_stat_batch_entityskeletal_surfaces] += model->num_surfaces;
7054                         r_refdef.stats[r_stat_batch_entityskeletal_vertices] += model->surfmesh.num_vertices;
7055                         r_refdef.stats[r_stat_batch_entityskeletal_triangles] += model->surfmesh.num_triangles;
7056                 }
7057                 else
7058                 {
7059                         r_refdef.stats[r_stat_batch_entitystatic_count]++;
7060                         r_refdef.stats[r_stat_batch_entitystatic_surfaces] += model->num_surfaces;
7061                         r_refdef.stats[r_stat_batch_entitystatic_vertices] += model->surfmesh.num_vertices;
7062                         r_refdef.stats[r_stat_batch_entitystatic_triangles] += model->surfmesh.num_triangles;
7063                 }
7064                 rsurface.modelvertex3f  = model->surfmesh.data_vertex3f;
7065                 rsurface.modelvertex3f_vertexbuffer = model->surfmesh.data_vertex3f_vertexbuffer;
7066                 rsurface.modelvertex3f_bufferoffset = model->surfmesh.data_vertex3f_bufferoffset;
7067                 rsurface.modelsvector3f = model->surfmesh.data_svector3f;
7068                 rsurface.modelsvector3f_vertexbuffer = model->surfmesh.data_svector3f_vertexbuffer;
7069                 rsurface.modelsvector3f_bufferoffset = model->surfmesh.data_svector3f_bufferoffset;
7070                 rsurface.modeltvector3f = model->surfmesh.data_tvector3f;
7071                 rsurface.modeltvector3f_vertexbuffer = model->surfmesh.data_tvector3f_vertexbuffer;
7072                 rsurface.modeltvector3f_bufferoffset = model->surfmesh.data_tvector3f_bufferoffset;
7073                 rsurface.modelnormal3f  = model->surfmesh.data_normal3f;
7074                 rsurface.modelnormal3f_vertexbuffer = model->surfmesh.data_normal3f_vertexbuffer;
7075                 rsurface.modelnormal3f_bufferoffset = model->surfmesh.data_normal3f_bufferoffset;
7076                 rsurface.modelgeneratedvertex = false;
7077         }
7078         rsurface.modellightmapcolor4f  = model->surfmesh.data_lightmapcolor4f;
7079         rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.data_lightmapcolor4f_vertexbuffer;
7080         rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.data_lightmapcolor4f_bufferoffset;
7081         rsurface.modeltexcoordtexture2f  = model->surfmesh.data_texcoordtexture2f;
7082         rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.data_texcoordtexture2f_vertexbuffer;
7083         rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.data_texcoordtexture2f_bufferoffset;
7084         rsurface.modeltexcoordlightmap2f  = model->surfmesh.data_texcoordlightmap2f;
7085         rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.data_texcoordlightmap2f_vertexbuffer;
7086         rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.data_texcoordlightmap2f_bufferoffset;
7087         rsurface.modelskeletalindex4ub = model->surfmesh.data_skeletalindex4ub;
7088         rsurface.modelskeletalindex4ub_vertexbuffer = model->surfmesh.data_skeletalindex4ub_vertexbuffer;
7089         rsurface.modelskeletalindex4ub_bufferoffset = model->surfmesh.data_skeletalindex4ub_bufferoffset;
7090         rsurface.modelskeletalweight4ub = model->surfmesh.data_skeletalweight4ub;
7091         rsurface.modelskeletalweight4ub_vertexbuffer = model->surfmesh.data_skeletalweight4ub_vertexbuffer;
7092         rsurface.modelskeletalweight4ub_bufferoffset = model->surfmesh.data_skeletalweight4ub_bufferoffset;
7093         rsurface.modelelement3i = model->surfmesh.data_element3i;
7094         rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer;
7095         rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset;
7096         rsurface.modelelement3s = model->surfmesh.data_element3s;
7097         rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer;
7098         rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset;
7099         rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets;
7100         rsurface.modelnumvertices = model->surfmesh.num_vertices;
7101         rsurface.modelnumtriangles = model->surfmesh.num_triangles;
7102         rsurface.modelsurfaces = model->data_surfaces;
7103         rsurface.batchgeneratedvertex = false;
7104         rsurface.batchfirstvertex = 0;
7105         rsurface.batchnumvertices = 0;
7106         rsurface.batchfirsttriangle = 0;
7107         rsurface.batchnumtriangles = 0;
7108         rsurface.batchvertex3f  = NULL;
7109         rsurface.batchvertex3f_vertexbuffer = NULL;
7110         rsurface.batchvertex3f_bufferoffset = 0;
7111         rsurface.batchsvector3f = NULL;
7112         rsurface.batchsvector3f_vertexbuffer = NULL;
7113         rsurface.batchsvector3f_bufferoffset = 0;
7114         rsurface.batchtvector3f = NULL;
7115         rsurface.batchtvector3f_vertexbuffer = NULL;
7116         rsurface.batchtvector3f_bufferoffset = 0;
7117         rsurface.batchnormal3f  = NULL;
7118         rsurface.batchnormal3f_vertexbuffer = NULL;
7119         rsurface.batchnormal3f_bufferoffset = 0;
7120         rsurface.batchlightmapcolor4f = NULL;
7121         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7122         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7123         rsurface.batchtexcoordtexture2f = NULL;
7124         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7125         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7126         rsurface.batchtexcoordlightmap2f = NULL;
7127         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7128         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7129         rsurface.batchskeletalindex4ub = NULL;
7130         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7131         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7132         rsurface.batchskeletalweight4ub = NULL;
7133         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7134         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7135         rsurface.batchelement3i = NULL;
7136         rsurface.batchelement3i_indexbuffer = NULL;
7137         rsurface.batchelement3i_bufferoffset = 0;
7138         rsurface.batchelement3s = NULL;
7139         rsurface.batchelement3s_indexbuffer = NULL;
7140         rsurface.batchelement3s_bufferoffset = 0;
7141         rsurface.forcecurrenttextureupdate = false;
7142 }
7143
7144 void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qbool wantnormals, qbool wanttangents)
7145 {
7146         rsurface.entity = r_refdef.scene.worldentity;
7147         if (r != 1.0f || g != 1.0f || b != 1.0f || a != 1.0f) {
7148                 // HACK to provide a valid entity with modded colors to R_GetCurrentTexture.
7149                 // A better approach could be making this copy only once per frame.
7150                 static entity_render_t custom_entity;
7151                 int q;
7152                 custom_entity = *rsurface.entity;
7153                 for (q = 0; q < 3; ++q) {
7154                         float colormod = q == 0 ? r : q == 1 ? g : b;
7155                         custom_entity.render_fullbright[q] *= colormod;
7156                         custom_entity.render_modellight_ambient[q] *= colormod;
7157                         custom_entity.render_modellight_diffuse[q] *= colormod;
7158                         custom_entity.render_lightmap_ambient[q] *= colormod;
7159                         custom_entity.render_lightmap_diffuse[q] *= colormod;
7160                         custom_entity.render_rtlight_diffuse[q] *= colormod;
7161                 }
7162                 custom_entity.alpha *= a;
7163                 rsurface.entity = &custom_entity;
7164         }
7165         rsurface.skeleton = NULL;
7166         rsurface.ent_skinnum = 0;
7167         rsurface.ent_qwskin = -1;
7168         rsurface.ent_flags = entflags;
7169         rsurface.shadertime = r_refdef.scene.time - shadertime;
7170         rsurface.modelnumvertices = numvertices;
7171         rsurface.modelnumtriangles = numtriangles;
7172         rsurface.matrix = *matrix;
7173         rsurface.inversematrix = *inversematrix;
7174         rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix);
7175         rsurface.inversematrixscale = 1.0f / rsurface.matrixscale;
7176         R_EntityMatrix(&rsurface.matrix);
7177         Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin);
7178         Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane);
7179         rsurface.fogplaneviewdist *= rsurface.inversematrixscale;
7180         rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale;
7181         rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale;
7182         rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip;
7183         memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend));
7184         rsurface.frameblend[0].lerp = 1;
7185         rsurface.ent_alttextures = false;
7186         rsurface.basepolygonfactor = r_refdef.polygonfactor;
7187         rsurface.basepolygonoffset = r_refdef.polygonoffset;
7188         rsurface.entityskeletaltransform3x4 = NULL;
7189         rsurface.entityskeletaltransform3x4buffer = NULL;
7190         rsurface.entityskeletaltransform3x4offset = 0;
7191         rsurface.entityskeletaltransform3x4size = 0;
7192         rsurface.entityskeletalnumtransforms = 0;
7193         r_refdef.stats[r_stat_batch_entitycustom_count]++;
7194         r_refdef.stats[r_stat_batch_entitycustom_surfaces] += 1;
7195         r_refdef.stats[r_stat_batch_entitycustom_vertices] += rsurface.modelnumvertices;
7196         r_refdef.stats[r_stat_batch_entitycustom_triangles] += rsurface.modelnumtriangles;
7197         if (wanttangents)
7198         {
7199                 rsurface.modelvertex3f = (float *)vertex3f;
7200                 rsurface.modelsvector3f = svector3f ? (float *)svector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7201                 rsurface.modeltvector3f = tvector3f ? (float *)tvector3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7202                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7203         }
7204         else if (wantnormals)
7205         {
7206                 rsurface.modelvertex3f = (float *)vertex3f;
7207                 rsurface.modelsvector3f = NULL;
7208                 rsurface.modeltvector3f = NULL;
7209                 rsurface.modelnormal3f = normal3f ? (float *)normal3f : (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7210         }
7211         else
7212         {
7213                 rsurface.modelvertex3f = (float *)vertex3f;
7214                 rsurface.modelsvector3f = NULL;
7215                 rsurface.modeltvector3f = NULL;
7216                 rsurface.modelnormal3f = NULL;
7217         }
7218         rsurface.modelvertex3f_vertexbuffer = 0;
7219         rsurface.modelvertex3f_bufferoffset = 0;
7220         rsurface.modelsvector3f_vertexbuffer = 0;
7221         rsurface.modelsvector3f_bufferoffset = 0;
7222         rsurface.modeltvector3f_vertexbuffer = 0;
7223         rsurface.modeltvector3f_bufferoffset = 0;
7224         rsurface.modelnormal3f_vertexbuffer = 0;
7225         rsurface.modelnormal3f_bufferoffset = 0;
7226         rsurface.modelgeneratedvertex = true;
7227         rsurface.modellightmapcolor4f  = (float *)color4f;
7228         rsurface.modellightmapcolor4f_vertexbuffer = 0;
7229         rsurface.modellightmapcolor4f_bufferoffset = 0;
7230         rsurface.modeltexcoordtexture2f  = (float *)texcoord2f;
7231         rsurface.modeltexcoordtexture2f_vertexbuffer = 0;
7232         rsurface.modeltexcoordtexture2f_bufferoffset = 0;
7233         rsurface.modeltexcoordlightmap2f  = NULL;
7234         rsurface.modeltexcoordlightmap2f_vertexbuffer = 0;
7235         rsurface.modeltexcoordlightmap2f_bufferoffset = 0;
7236         rsurface.modelskeletalindex4ub = NULL;
7237         rsurface.modelskeletalindex4ub_vertexbuffer = NULL;
7238         rsurface.modelskeletalindex4ub_bufferoffset = 0;
7239         rsurface.modelskeletalweight4ub = NULL;
7240         rsurface.modelskeletalweight4ub_vertexbuffer = NULL;
7241         rsurface.modelskeletalweight4ub_bufferoffset = 0;
7242         rsurface.modelelement3i = (int *)element3i;
7243         rsurface.modelelement3i_indexbuffer = NULL;
7244         rsurface.modelelement3i_bufferoffset = 0;
7245         rsurface.modelelement3s = (unsigned short *)element3s;
7246         rsurface.modelelement3s_indexbuffer = NULL;
7247         rsurface.modelelement3s_bufferoffset = 0;
7248         rsurface.modellightmapoffsets = NULL;
7249         rsurface.modelsurfaces = NULL;
7250         rsurface.batchgeneratedvertex = false;
7251         rsurface.batchfirstvertex = 0;
7252         rsurface.batchnumvertices = 0;
7253         rsurface.batchfirsttriangle = 0;
7254         rsurface.batchnumtriangles = 0;
7255         rsurface.batchvertex3f  = NULL;
7256         rsurface.batchvertex3f_vertexbuffer = NULL;
7257         rsurface.batchvertex3f_bufferoffset = 0;
7258         rsurface.batchsvector3f = NULL;
7259         rsurface.batchsvector3f_vertexbuffer = NULL;
7260         rsurface.batchsvector3f_bufferoffset = 0;
7261         rsurface.batchtvector3f = NULL;
7262         rsurface.batchtvector3f_vertexbuffer = NULL;
7263         rsurface.batchtvector3f_bufferoffset = 0;
7264         rsurface.batchnormal3f  = NULL;
7265         rsurface.batchnormal3f_vertexbuffer = NULL;
7266         rsurface.batchnormal3f_bufferoffset = 0;
7267         rsurface.batchlightmapcolor4f = NULL;
7268         rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7269         rsurface.batchlightmapcolor4f_bufferoffset = 0;
7270         rsurface.batchtexcoordtexture2f = NULL;
7271         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7272         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7273         rsurface.batchtexcoordlightmap2f = NULL;
7274         rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7275         rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7276         rsurface.batchskeletalindex4ub = NULL;
7277         rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7278         rsurface.batchskeletalindex4ub_bufferoffset = 0;
7279         rsurface.batchskeletalweight4ub = NULL;
7280         rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7281         rsurface.batchskeletalweight4ub_bufferoffset = 0;
7282         rsurface.batchelement3i = NULL;
7283         rsurface.batchelement3i_indexbuffer = NULL;
7284         rsurface.batchelement3i_bufferoffset = 0;
7285         rsurface.batchelement3s = NULL;
7286         rsurface.batchelement3s_indexbuffer = NULL;
7287         rsurface.batchelement3s_bufferoffset = 0;
7288         rsurface.forcecurrenttextureupdate = true;
7289
7290         if (rsurface.modelnumvertices && rsurface.modelelement3i)
7291         {
7292                 if ((wantnormals || wanttangents) && !normal3f)
7293                 {
7294                         rsurface.modelnormal3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7295                         Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.modelnormal3f, r_smoothnormals_areaweighting.integer != 0);
7296                 }
7297                 if (wanttangents && !svector3f)
7298                 {
7299                         rsurface.modelsvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7300                         rsurface.modeltvector3f = (float *)R_FrameData_Alloc(rsurface.modelnumvertices * sizeof(float[3]));
7301                         Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.modelsvector3f, rsurface.modeltvector3f, r_smoothnormals_areaweighting.integer != 0);
7302                 }
7303         }
7304 }
7305
7306 float RSurf_FogPoint(const float *v)
7307 {
7308         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7309         float FogPlaneViewDist = r_refdef.fogplaneviewdist;
7310         float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3];
7311         float FogHeightFade = r_refdef.fogheightfade;
7312         float fogfrac;
7313         unsigned int fogmasktableindex;
7314         if (r_refdef.fogplaneviewabove)
7315                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7316         else
7317                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7318         fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier);
7319         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7320 }
7321
7322 float RSurf_FogVertex(const float *v)
7323 {
7324         // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader
7325         float FogPlaneViewDist = rsurface.fogplaneviewdist;
7326         float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3];
7327         float FogHeightFade = rsurface.fogheightfade;
7328         float fogfrac;
7329         unsigned int fogmasktableindex;
7330         if (r_refdef.fogplaneviewabove)
7331                 fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade);
7332         else
7333                 fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);
7334         fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier);
7335         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
7336 }
7337
7338 void RSurf_UploadBuffersForBatch(void)
7339 {
7340         // upload buffer data for generated vertex data (dynamicvertex case) or index data (copytriangles case) and models that lack it to begin with (e.g. DrawQ_FlushUI)
7341         // note that if rsurface.batchvertex3f_vertexbuffer is NULL, dynamicvertex is forced as we don't account for the proper base vertex here.
7342         if (rsurface.batchvertex3f && !rsurface.batchvertex3f_vertexbuffer)
7343                 rsurface.batchvertex3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f, R_BUFFERDATA_VERTEX, &rsurface.batchvertex3f_bufferoffset);
7344         if (rsurface.batchsvector3f && !rsurface.batchsvector3f_vertexbuffer)
7345                 rsurface.batchsvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchsvector3f_bufferoffset);
7346         if (rsurface.batchtvector3f && !rsurface.batchtvector3f_vertexbuffer)
7347                 rsurface.batchtvector3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f, R_BUFFERDATA_VERTEX, &rsurface.batchtvector3f_bufferoffset);
7348         if (rsurface.batchnormal3f && !rsurface.batchnormal3f_vertexbuffer)
7349                 rsurface.batchnormal3f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f, R_BUFFERDATA_VERTEX, &rsurface.batchnormal3f_bufferoffset);
7350         if (rsurface.batchlightmapcolor4f && !rsurface.batchlightmapcolor4f_vertexbuffer)
7351                 rsurface.batchlightmapcolor4f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[4]), rsurface.batchlightmapcolor4f, R_BUFFERDATA_VERTEX, &rsurface.batchlightmapcolor4f_bufferoffset);
7352         if (rsurface.batchtexcoordtexture2f && !rsurface.batchtexcoordtexture2f_vertexbuffer)
7353                 rsurface.batchtexcoordtexture2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordtexture2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordtexture2f_bufferoffset);
7354         if (rsurface.batchtexcoordlightmap2f && !rsurface.batchtexcoordlightmap2f_vertexbuffer)
7355                 rsurface.batchtexcoordlightmap2f_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(float[2]), rsurface.batchtexcoordlightmap2f, R_BUFFERDATA_VERTEX, &rsurface.batchtexcoordlightmap2f_bufferoffset);
7356         if (rsurface.batchskeletalindex4ub && !rsurface.batchskeletalindex4ub_vertexbuffer)
7357                 rsurface.batchskeletalindex4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalindex4ub_bufferoffset);
7358         if (rsurface.batchskeletalweight4ub && !rsurface.batchskeletalweight4ub_vertexbuffer)
7359                 rsurface.batchskeletalweight4ub_vertexbuffer = R_BufferData_Store(rsurface.batchnumvertices * sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, R_BUFFERDATA_VERTEX, &rsurface.batchskeletalweight4ub_bufferoffset);
7360
7361         if (rsurface.batchelement3s && !rsurface.batchelement3s_indexbuffer)
7362                 rsurface.batchelement3s_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(short[3]), rsurface.batchelement3s, R_BUFFERDATA_INDEX16, &rsurface.batchelement3s_bufferoffset);
7363         else if (rsurface.batchelement3i && !rsurface.batchelement3i_indexbuffer)
7364                 rsurface.batchelement3i_indexbuffer = R_BufferData_Store(rsurface.batchnumtriangles * sizeof(int[3]), rsurface.batchelement3i, R_BUFFERDATA_INDEX32, &rsurface.batchelement3i_bufferoffset);
7365
7366         R_Mesh_VertexPointer(     3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
7367         R_Mesh_ColorPointer(      4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset);
7368         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
7369         R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset);
7370         R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset);
7371         R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset);
7372         R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset);
7373         R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
7374         R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(unsigned char[4]), rsurface.batchskeletalindex4ub, rsurface.batchskeletalindex4ub_vertexbuffer, rsurface.batchskeletalindex4ub_bufferoffset);
7375         R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), rsurface.batchskeletalweight4ub, rsurface.batchskeletalweight4ub_vertexbuffer, rsurface.batchskeletalweight4ub_bufferoffset);
7376 }
7377
7378 static void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust)
7379 {
7380         int i;
7381         for (i = 0;i < numelements;i++)
7382                 outelement3i[i] = inelement3i[i] + adjust;
7383 }
7384
7385 static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}};
7386 void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist)
7387 {
7388         int deformindex;
7389         int firsttriangle;
7390         int numtriangles;
7391         int firstvertex;
7392         int endvertex;
7393         int numvertices;
7394         int surfacefirsttriangle;
7395         int surfacenumtriangles;
7396         int surfacefirstvertex;
7397         int surfaceendvertex;
7398         int surfacenumvertices;
7399         int batchnumsurfaces = texturenumsurfaces;
7400         int batchnumvertices;
7401         int batchnumtriangles;
7402         int i, j;
7403         qbool gaps;
7404         qbool dynamicvertex;
7405         float amplitude;
7406         float animpos;
7407         float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3];
7408         float waveparms[4];
7409         unsigned char *ub;
7410         q3shaderinfo_deform_t *deform;
7411         const msurface_t *surface, *firstsurface;
7412         if (!texturenumsurfaces)
7413                 return;
7414         // find vertex range of this surface batch
7415         gaps = false;
7416         firstsurface = texturesurfacelist[0];
7417         firsttriangle = firstsurface->num_firsttriangle;
7418         batchnumvertices = 0;
7419         batchnumtriangles = 0;
7420         firstvertex = endvertex = firstsurface->num_firstvertex;
7421         for (i = 0;i < texturenumsurfaces;i++)
7422         {
7423                 surface = texturesurfacelist[i];
7424                 if (surface != firstsurface + i)
7425                         gaps = true;
7426                 surfacefirstvertex = surface->num_firstvertex;
7427                 surfaceendvertex = surfacefirstvertex + surface->num_vertices;
7428                 surfacenumvertices = surface->num_vertices;
7429                 surfacenumtriangles = surface->num_triangles;
7430                 if (firstvertex > surfacefirstvertex)
7431                         firstvertex = surfacefirstvertex;
7432                 if (endvertex < surfaceendvertex)
7433                         endvertex = surfaceendvertex;
7434                 batchnumvertices += surfacenumvertices;
7435                 batchnumtriangles += surfacenumtriangles;
7436         }
7437
7438         r_refdef.stats[r_stat_batch_batches]++;
7439         if (gaps)
7440                 r_refdef.stats[r_stat_batch_withgaps]++;
7441         r_refdef.stats[r_stat_batch_surfaces] += batchnumsurfaces;
7442         r_refdef.stats[r_stat_batch_vertices] += batchnumvertices;
7443         r_refdef.stats[r_stat_batch_triangles] += batchnumtriangles;
7444
7445         // we now know the vertex range used, and if there are any gaps in it
7446         rsurface.batchfirstvertex = firstvertex;
7447         rsurface.batchnumvertices = endvertex - firstvertex;
7448         rsurface.batchfirsttriangle = firsttriangle;
7449         rsurface.batchnumtriangles = batchnumtriangles;
7450
7451         // check if any dynamic vertex processing must occur
7452         dynamicvertex = false;
7453
7454         // we must use vertexbuffers for rendering, we can upload vertex buffers
7455         // easily enough but if the basevertex is non-zero it becomes more
7456         // difficult, so force dynamicvertex path in that case - it's suboptimal
7457         // but the most optimal case is to have the geometry sources provide their
7458         // own anyway.
7459         if (!rsurface.modelvertex3f_vertexbuffer && firstvertex != 0)
7460                 dynamicvertex = true;
7461
7462         // a cvar to force the dynamic vertex path to be taken, for debugging
7463         if (r_batch_debugdynamicvertexpath.integer)
7464         {
7465                 if (!dynamicvertex)
7466                 {
7467                         r_refdef.stats[r_stat_batch_dynamic_batches_because_cvar] += 1;
7468                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_cvar] += batchnumsurfaces;
7469                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_cvar] += batchnumvertices;
7470                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_cvar] += batchnumtriangles;
7471                 }
7472                 dynamicvertex = true;
7473         }
7474
7475         // if there is a chance of animated vertex colors, it's a dynamic batch
7476         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
7477         {
7478                 if (!dynamicvertex)
7479                 {
7480                         r_refdef.stats[r_stat_batch_dynamic_batches_because_lightmapvertex] += 1;
7481                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_lightmapvertex] += batchnumsurfaces;
7482                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_lightmapvertex] += batchnumvertices;
7483                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_lightmapvertex] += batchnumtriangles;
7484                 }
7485                 dynamicvertex = true;
7486         }
7487
7488         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
7489         {
7490                 switch (deform->deform)
7491                 {
7492                 default:
7493                 case Q3DEFORM_PROJECTIONSHADOW:
7494                 case Q3DEFORM_TEXT0:
7495                 case Q3DEFORM_TEXT1:
7496                 case Q3DEFORM_TEXT2:
7497                 case Q3DEFORM_TEXT3:
7498                 case Q3DEFORM_TEXT4:
7499                 case Q3DEFORM_TEXT5:
7500                 case Q3DEFORM_TEXT6:
7501                 case Q3DEFORM_TEXT7:
7502                 case Q3DEFORM_NONE:
7503                         break;
7504                 case Q3DEFORM_AUTOSPRITE:
7505                         if (!dynamicvertex)
7506                         {
7507                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite] += 1;
7508                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite] += batchnumsurfaces;
7509                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite] += batchnumvertices;
7510                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite] += batchnumtriangles;
7511                         }
7512                         dynamicvertex = true;
7513                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD;
7514                         break;
7515                 case Q3DEFORM_AUTOSPRITE2:
7516                         if (!dynamicvertex)
7517                         {
7518                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_autosprite2] += 1;
7519                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_autosprite2] += batchnumsurfaces;
7520                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_autosprite2] += batchnumvertices;
7521                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_autosprite2] += batchnumtriangles;
7522                         }
7523                         dynamicvertex = true;
7524                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7525                         break;
7526                 case Q3DEFORM_NORMAL:
7527                         if (!dynamicvertex)
7528                         {
7529                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_normal] += 1;
7530                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_normal] += batchnumsurfaces;
7531                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_normal] += batchnumvertices;
7532                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_normal] += batchnumtriangles;
7533                         }
7534                         dynamicvertex = true;
7535                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7536                         break;
7537                 case Q3DEFORM_WAVE:
7538                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7539                                 break; // if wavefunc is a nop, ignore this transform
7540                         if (!dynamicvertex)
7541                         {
7542                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_wave] += 1;
7543                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_wave] += batchnumsurfaces;
7544                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_wave] += batchnumvertices;
7545                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_wave] += batchnumtriangles;
7546                         }
7547                         dynamicvertex = true;
7548                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7549                         break;
7550                 case Q3DEFORM_BULGE:
7551                         if (!dynamicvertex)
7552                         {
7553                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_bulge] += 1;
7554                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_bulge] += batchnumsurfaces;
7555                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_bulge] += batchnumvertices;
7556                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_bulge] += batchnumtriangles;
7557                         }
7558                         dynamicvertex = true;
7559                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD;
7560                         break;
7561                 case Q3DEFORM_MOVE:
7562                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
7563                                 break; // if wavefunc is a nop, ignore this transform
7564                         if (!dynamicvertex)
7565                         {
7566                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_deformvertexes_move] += 1;
7567                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_deformvertexes_move] += batchnumsurfaces;
7568                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_deformvertexes_move] += batchnumvertices;
7569                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_deformvertexes_move] += batchnumtriangles;
7570                         }
7571                         dynamicvertex = true;
7572                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7573                         break;
7574                 }
7575         }
7576         if (rsurface.texture->materialshaderpass)
7577         {
7578                 switch (rsurface.texture->materialshaderpass->tcgen.tcgen)
7579                 {
7580                 default:
7581                 case Q3TCGEN_TEXTURE:
7582                         break;
7583                 case Q3TCGEN_LIGHTMAP:
7584                         if (!dynamicvertex)
7585                         {
7586                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_lightmap] += 1;
7587                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_lightmap] += batchnumsurfaces;
7588                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_lightmap] += batchnumvertices;
7589                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_lightmap] += batchnumtriangles;
7590                         }
7591                         dynamicvertex = true;
7592                         batchneed |= BATCHNEED_ARRAY_LIGHTMAP;
7593                         break;
7594                 case Q3TCGEN_VECTOR:
7595                         if (!dynamicvertex)
7596                         {
7597                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_vector] += 1;
7598                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_vector] += batchnumsurfaces;
7599                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_vector] += batchnumvertices;
7600                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_vector] += batchnumtriangles;
7601                         }
7602                         dynamicvertex = true;
7603                         batchneed |= BATCHNEED_ARRAY_VERTEX;
7604                         break;
7605                 case Q3TCGEN_ENVIRONMENT:
7606                         if (!dynamicvertex)
7607                         {
7608                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcgen_environment] += 1;
7609                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcgen_environment] += batchnumsurfaces;
7610                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcgen_environment] += batchnumvertices;
7611                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcgen_environment] += batchnumtriangles;
7612                         }
7613                         dynamicvertex = true;
7614                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL;
7615                         break;
7616                 }
7617                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
7618                 {
7619                         if (!dynamicvertex)
7620                         {
7621                                 r_refdef.stats[r_stat_batch_dynamic_batches_because_tcmod_turbulent] += 1;
7622                                 r_refdef.stats[r_stat_batch_dynamic_surfaces_because_tcmod_turbulent] += batchnumsurfaces;
7623                                 r_refdef.stats[r_stat_batch_dynamic_vertices_because_tcmod_turbulent] += batchnumvertices;
7624                                 r_refdef.stats[r_stat_batch_dynamic_triangles_because_tcmod_turbulent] += batchnumtriangles;
7625                         }
7626                         dynamicvertex = true;
7627                         batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD;
7628                 }
7629         }
7630
7631         // the caller can specify BATCHNEED_NOGAPS to force a batch with
7632         // firstvertex = 0 and endvertex = numvertices (no gaps, no firstvertex),
7633         // we ensure this by treating the vertex batch as dynamic...
7634         if ((batchneed & BATCHNEED_ALWAYSCOPY) || ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex > 0)))
7635         {
7636                 if (!dynamicvertex)
7637                 {
7638                         r_refdef.stats[r_stat_batch_dynamic_batches_because_nogaps] += 1;
7639                         r_refdef.stats[r_stat_batch_dynamic_surfaces_because_nogaps] += batchnumsurfaces;
7640                         r_refdef.stats[r_stat_batch_dynamic_vertices_because_nogaps] += batchnumvertices;
7641                         r_refdef.stats[r_stat_batch_dynamic_triangles_because_nogaps] += batchnumtriangles;
7642                 }
7643                 dynamicvertex = true;
7644         }
7645
7646         // if we're going to have to apply the skeletal transform manually, we need to batch the skeletal data
7647         if (dynamicvertex && rsurface.entityskeletaltransform3x4)
7648                 batchneed |= BATCHNEED_ARRAY_SKELETAL;
7649
7650         rsurface.batchvertex3f = rsurface.modelvertex3f;
7651         rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer;
7652         rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset;
7653         rsurface.batchsvector3f = rsurface.modelsvector3f;
7654         rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer;
7655         rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset;
7656         rsurface.batchtvector3f = rsurface.modeltvector3f;
7657         rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer;
7658         rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset;
7659         rsurface.batchnormal3f = rsurface.modelnormal3f;
7660         rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer;
7661         rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset;
7662         rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f;
7663         rsurface.batchlightmapcolor4f_vertexbuffer  = rsurface.modellightmapcolor4f_vertexbuffer;
7664         rsurface.batchlightmapcolor4f_bufferoffset  = rsurface.modellightmapcolor4f_bufferoffset;
7665         rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f;
7666         rsurface.batchtexcoordtexture2f_vertexbuffer  = rsurface.modeltexcoordtexture2f_vertexbuffer;
7667         rsurface.batchtexcoordtexture2f_bufferoffset  = rsurface.modeltexcoordtexture2f_bufferoffset;
7668         rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f;
7669         rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer;
7670         rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset;
7671         rsurface.batchskeletalindex4ub = rsurface.modelskeletalindex4ub;
7672         rsurface.batchskeletalindex4ub_vertexbuffer = rsurface.modelskeletalindex4ub_vertexbuffer;
7673         rsurface.batchskeletalindex4ub_bufferoffset = rsurface.modelskeletalindex4ub_bufferoffset;
7674         rsurface.batchskeletalweight4ub = rsurface.modelskeletalweight4ub;
7675         rsurface.batchskeletalweight4ub_vertexbuffer = rsurface.modelskeletalweight4ub_vertexbuffer;
7676         rsurface.batchskeletalweight4ub_bufferoffset = rsurface.modelskeletalweight4ub_bufferoffset;
7677         rsurface.batchelement3i = rsurface.modelelement3i;
7678         rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer;
7679         rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset;
7680         rsurface.batchelement3s = rsurface.modelelement3s;
7681         rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer;
7682         rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset;
7683         rsurface.batchskeletaltransform3x4 = rsurface.entityskeletaltransform3x4;
7684         rsurface.batchskeletaltransform3x4buffer = rsurface.entityskeletaltransform3x4buffer;
7685         rsurface.batchskeletaltransform3x4offset = rsurface.entityskeletaltransform3x4offset;
7686         rsurface.batchskeletaltransform3x4size = rsurface.entityskeletaltransform3x4size;
7687         rsurface.batchskeletalnumtransforms = rsurface.entityskeletalnumtransforms;
7688
7689         // if any dynamic vertex processing has to occur in software, we copy the
7690         // entire surface list together before processing to rebase the vertices
7691         // to start at 0 (otherwise we waste a lot of room in a vertex buffer).
7692         //
7693         // if any gaps exist and we do not have a static vertex buffer, we have to
7694         // copy the surface list together to avoid wasting upload bandwidth on the
7695         // vertices in the gaps.
7696         //
7697         // if gaps exist and we have a static vertex buffer, we can choose whether
7698         // to combine the index buffer ranges into one dynamic index buffer or
7699         // simply issue multiple glDrawElements calls (BATCHNEED_ALLOWMULTIDRAW).
7700         //
7701         // in many cases the batch is reduced to one draw call.
7702
7703         rsurface.batchmultidraw = false;
7704         rsurface.batchmultidrawnumsurfaces = 0;
7705         rsurface.batchmultidrawsurfacelist = NULL;
7706
7707         if (!dynamicvertex)
7708         {
7709                 // static vertex data, just set pointers...
7710                 rsurface.batchgeneratedvertex = false;
7711                 // if there are gaps, we want to build a combined index buffer,
7712                 // otherwise use the original static buffer with an appropriate offset
7713                 if (gaps)
7714                 {
7715                         r_refdef.stats[r_stat_batch_copytriangles_batches] += 1;
7716                         r_refdef.stats[r_stat_batch_copytriangles_surfaces] += batchnumsurfaces;
7717                         r_refdef.stats[r_stat_batch_copytriangles_vertices] += batchnumvertices;
7718                         r_refdef.stats[r_stat_batch_copytriangles_triangles] += batchnumtriangles;
7719                         if ((batchneed & BATCHNEED_ALLOWMULTIDRAW) && r_batch_multidraw.integer && batchnumtriangles >= r_batch_multidraw_mintriangles.integer)
7720                         {
7721                                 rsurface.batchmultidraw = true;
7722                                 rsurface.batchmultidrawnumsurfaces = texturenumsurfaces;
7723                                 rsurface.batchmultidrawsurfacelist = texturesurfacelist;
7724                                 return;
7725                         }
7726                         // build a new triangle elements array for this batch
7727                         rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7728                         rsurface.batchfirsttriangle = 0;
7729                         numtriangles = 0;
7730                         for (i = 0;i < texturenumsurfaces;i++)
7731                         {
7732                                 surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7733                                 surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7734                                 memcpy(rsurface.batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3]));
7735                                 numtriangles += surfacenumtriangles;
7736                         }
7737                         rsurface.batchelement3i_indexbuffer = NULL;
7738                         rsurface.batchelement3i_bufferoffset = 0;
7739                         rsurface.batchelement3s = NULL;
7740                         rsurface.batchelement3s_indexbuffer = NULL;
7741                         rsurface.batchelement3s_bufferoffset = 0;
7742                         if (endvertex <= 65536)
7743                         {
7744                                 // make a 16bit (unsigned short) index array if possible
7745                                 rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7746                                 for (i = 0;i < numtriangles*3;i++)
7747                                         rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7748                         }
7749                 }
7750                 else
7751                 {
7752                         r_refdef.stats[r_stat_batch_fast_batches] += 1;
7753                         r_refdef.stats[r_stat_batch_fast_surfaces] += batchnumsurfaces;
7754                         r_refdef.stats[r_stat_batch_fast_vertices] += batchnumvertices;
7755                         r_refdef.stats[r_stat_batch_fast_triangles] += batchnumtriangles;
7756                 }
7757                 return;
7758         }
7759
7760         // something needs software processing, do it for real...
7761         // we only directly handle separate array data in this case and then
7762         // generate interleaved data if needed...
7763         rsurface.batchgeneratedvertex = true;
7764         r_refdef.stats[r_stat_batch_dynamic_batches] += 1;
7765         r_refdef.stats[r_stat_batch_dynamic_surfaces] += batchnumsurfaces;
7766         r_refdef.stats[r_stat_batch_dynamic_vertices] += batchnumvertices;
7767         r_refdef.stats[r_stat_batch_dynamic_triangles] += batchnumtriangles;
7768
7769         // now copy the vertex data into a combined array and make an index array
7770         // (this is what Quake3 does all the time)
7771         // we also apply any skeletal animation here that would have been done in
7772         // the vertex shader, because most of the dynamic vertex animation cases
7773         // need actual vertex positions and normals
7774         //if (dynamicvertex)
7775         {
7776                 rsurface.batchvertex3f = NULL;
7777                 rsurface.batchvertex3f_vertexbuffer = NULL;
7778                 rsurface.batchvertex3f_bufferoffset = 0;
7779                 rsurface.batchsvector3f = NULL;
7780                 rsurface.batchsvector3f_vertexbuffer = NULL;
7781                 rsurface.batchsvector3f_bufferoffset = 0;
7782                 rsurface.batchtvector3f = NULL;
7783                 rsurface.batchtvector3f_vertexbuffer = NULL;
7784                 rsurface.batchtvector3f_bufferoffset = 0;
7785                 rsurface.batchnormal3f = NULL;
7786                 rsurface.batchnormal3f_vertexbuffer = NULL;
7787                 rsurface.batchnormal3f_bufferoffset = 0;
7788                 rsurface.batchlightmapcolor4f = NULL;
7789                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
7790                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
7791                 rsurface.batchtexcoordtexture2f = NULL;
7792                 rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
7793                 rsurface.batchtexcoordtexture2f_bufferoffset = 0;
7794                 rsurface.batchtexcoordlightmap2f = NULL;
7795                 rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL;
7796                 rsurface.batchtexcoordlightmap2f_bufferoffset = 0;
7797                 rsurface.batchskeletalindex4ub = NULL;
7798                 rsurface.batchskeletalindex4ub_vertexbuffer = NULL;
7799                 rsurface.batchskeletalindex4ub_bufferoffset = 0;
7800                 rsurface.batchskeletalweight4ub = NULL;
7801                 rsurface.batchskeletalweight4ub_vertexbuffer = NULL;
7802                 rsurface.batchskeletalweight4ub_bufferoffset = 0;
7803                 rsurface.batchelement3i = (int *)R_FrameData_Alloc(batchnumtriangles * sizeof(int[3]));
7804                 rsurface.batchelement3i_indexbuffer = NULL;
7805                 rsurface.batchelement3i_bufferoffset = 0;
7806                 rsurface.batchelement3s = NULL;
7807                 rsurface.batchelement3s_indexbuffer = NULL;
7808                 rsurface.batchelement3s_bufferoffset = 0;
7809                 rsurface.batchskeletaltransform3x4buffer = NULL;
7810                 rsurface.batchskeletaltransform3x4offset = 0;
7811                 rsurface.batchskeletaltransform3x4size = 0;
7812                 // we'll only be setting up certain arrays as needed
7813                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7814                         rsurface.batchvertex3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7815                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7816                         rsurface.batchnormal3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7817                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7818                 {
7819                         rsurface.batchsvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7820                         rsurface.batchtvector3f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
7821                 }
7822                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7823                         rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
7824                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7825                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7826                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7827                         rsurface.batchtexcoordlightmap2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
7828                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7829                 {
7830                         rsurface.batchskeletalindex4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7831                         rsurface.batchskeletalweight4ub = (unsigned char *)R_FrameData_Alloc(batchnumvertices * sizeof(unsigned char[4]));
7832                 }
7833                 numvertices = 0;
7834                 numtriangles = 0;
7835                 for (i = 0;i < texturenumsurfaces;i++)
7836                 {
7837                         surfacefirstvertex = texturesurfacelist[i]->num_firstvertex;
7838                         surfacenumvertices = texturesurfacelist[i]->num_vertices;
7839                         surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle;
7840                         surfacenumtriangles = texturesurfacelist[i]->num_triangles;
7841                         // copy only the data requested
7842                         if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP))
7843                         {
7844                                 if (batchneed & BATCHNEED_ARRAY_VERTEX)
7845                                 {
7846                                         if (rsurface.batchvertex3f)
7847                                                 memcpy(rsurface.batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7848                                         else
7849                                                 memset(rsurface.batchvertex3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7850                                 }
7851                                 if (batchneed & BATCHNEED_ARRAY_NORMAL)
7852                                 {
7853                                         if (rsurface.modelnormal3f)
7854                                                 memcpy(rsurface.batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7855                                         else
7856                                                 memset(rsurface.batchnormal3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7857                                 }
7858                                 if (batchneed & BATCHNEED_ARRAY_VECTOR)
7859                                 {
7860                                         if (rsurface.modelsvector3f)
7861                                         {
7862                                                 memcpy(rsurface.batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7863                                                 memcpy(rsurface.batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3]));
7864                                         }
7865                                         else
7866                                         {
7867                                                 memset(rsurface.batchsvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7868                                                 memset(rsurface.batchtvector3f + 3*numvertices, 0, surfacenumvertices * sizeof(float[3]));
7869                                         }
7870                                 }
7871                                 if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR)
7872                                 {
7873                                         if (rsurface.modellightmapcolor4f)
7874                                                 memcpy(rsurface.batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4]));
7875                                         else
7876                                                 memset(rsurface.batchlightmapcolor4f + 4*numvertices, 0, surfacenumvertices * sizeof(float[4]));
7877                                 }
7878                                 if (batchneed & BATCHNEED_ARRAY_TEXCOORD)
7879                                 {
7880                                         if (rsurface.modeltexcoordtexture2f)
7881                                                 memcpy(rsurface.batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7882                                         else
7883                                                 memset(rsurface.batchtexcoordtexture2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7884                                 }
7885                                 if (batchneed & BATCHNEED_ARRAY_LIGHTMAP)
7886                                 {
7887                                         if (rsurface.modeltexcoordlightmap2f)
7888                                                 memcpy(rsurface.batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2]));
7889                                         else
7890                                                 memset(rsurface.batchtexcoordlightmap2f + 2*numvertices, 0, surfacenumvertices * sizeof(float[2]));
7891                                 }
7892                                 if (batchneed & BATCHNEED_ARRAY_SKELETAL)
7893                                 {
7894                                         if (rsurface.modelskeletalindex4ub)
7895                                         {
7896                                                 memcpy(rsurface.batchskeletalindex4ub + 4*numvertices, rsurface.modelskeletalindex4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7897                                                 memcpy(rsurface.batchskeletalweight4ub + 4*numvertices, rsurface.modelskeletalweight4ub + 4*surfacefirstvertex, surfacenumvertices * sizeof(unsigned char[4]));
7898                                         }
7899                                         else
7900                                         {
7901                                                 memset(rsurface.batchskeletalindex4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7902                                                 memset(rsurface.batchskeletalweight4ub + 4*numvertices, 0, surfacenumvertices * sizeof(unsigned char[4]));
7903                                                 ub = rsurface.batchskeletalweight4ub + 4*numvertices;
7904                                                 for (j = 0;j < surfacenumvertices;j++)
7905                                                         ub[j*4] = 255;
7906                                         }
7907                                 }
7908                         }
7909                         RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex);
7910                         numvertices += surfacenumvertices;
7911                         numtriangles += surfacenumtriangles;
7912                 }
7913
7914                 // generate a 16bit index array as well if possible
7915                 // (in general, dynamic batches fit)
7916                 if (numvertices <= 65536)
7917                 {
7918                         rsurface.batchelement3s = (unsigned short *)R_FrameData_Alloc(batchnumtriangles * sizeof(unsigned short[3]));
7919                         for (i = 0;i < numtriangles*3;i++)
7920                                 rsurface.batchelement3s[i] = rsurface.batchelement3i[i];
7921                 }
7922
7923                 // since we've copied everything, the batch now starts at 0
7924                 rsurface.batchfirstvertex = 0;
7925                 rsurface.batchnumvertices = batchnumvertices;
7926                 rsurface.batchfirsttriangle = 0;
7927                 rsurface.batchnumtriangles = batchnumtriangles;
7928         }
7929
7930         // apply skeletal animation that would have been done in the vertex shader
7931         if (rsurface.batchskeletaltransform3x4)
7932         {
7933                 const unsigned char *si;
7934                 const unsigned char *sw;
7935                 const float *t[4];
7936                 const float *b = rsurface.batchskeletaltransform3x4;
7937                 float *vp, *vs, *vt, *vn;
7938                 float w[4];
7939                 float m[3][4], n[3][4];
7940                 float tp[3], ts[3], tt[3], tn[3];
7941                 r_refdef.stats[r_stat_batch_dynamicskeletal_batches] += 1;
7942                 r_refdef.stats[r_stat_batch_dynamicskeletal_surfaces] += batchnumsurfaces;
7943                 r_refdef.stats[r_stat_batch_dynamicskeletal_vertices] += batchnumvertices;
7944                 r_refdef.stats[r_stat_batch_dynamicskeletal_triangles] += batchnumtriangles;
7945                 si = rsurface.batchskeletalindex4ub;
7946                 sw = rsurface.batchskeletalweight4ub;
7947                 vp = rsurface.batchvertex3f;
7948                 vs = rsurface.batchsvector3f;
7949                 vt = rsurface.batchtvector3f;
7950                 vn = rsurface.batchnormal3f;
7951                 memset(m[0], 0, sizeof(m));
7952                 memset(n[0], 0, sizeof(n));
7953                 for (i = 0;i < batchnumvertices;i++)
7954                 {
7955                         t[0] = b + si[0]*12;
7956                         if (sw[0] == 255)
7957                         {
7958                                 // common case - only one matrix
7959                                 m[0][0] = t[0][ 0];
7960                                 m[0][1] = t[0][ 1];
7961                                 m[0][2] = t[0][ 2];
7962                                 m[0][3] = t[0][ 3];
7963                                 m[1][0] = t[0][ 4];
7964                                 m[1][1] = t[0][ 5];
7965                                 m[1][2] = t[0][ 6];
7966                                 m[1][3] = t[0][ 7];
7967                                 m[2][0] = t[0][ 8];
7968                                 m[2][1] = t[0][ 9];
7969                                 m[2][2] = t[0][10];
7970                                 m[2][3] = t[0][11];
7971                         }
7972                         else if (sw[2] + sw[3])
7973                         {
7974                                 // blend 4 matrices
7975                                 t[1] = b + si[1]*12;
7976                                 t[2] = b + si[2]*12;
7977                                 t[3] = b + si[3]*12;
7978                                 w[0] = sw[0] * (1.0f / 255.0f);
7979                                 w[1] = sw[1] * (1.0f / 255.0f);
7980                                 w[2] = sw[2] * (1.0f / 255.0f);
7981                                 w[3] = sw[3] * (1.0f / 255.0f);
7982                                 // blend the matrices
7983                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1] + t[2][ 0] * w[2] + t[3][ 0] * w[3];
7984                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1] + t[2][ 1] * w[2] + t[3][ 1] * w[3];
7985                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1] + t[2][ 2] * w[2] + t[3][ 2] * w[3];
7986                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1] + t[2][ 3] * w[2] + t[3][ 3] * w[3];
7987                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1] + t[2][ 4] * w[2] + t[3][ 4] * w[3];
7988                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1] + t[2][ 5] * w[2] + t[3][ 5] * w[3];
7989                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1] + t[2][ 6] * w[2] + t[3][ 6] * w[3];
7990                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1] + t[2][ 7] * w[2] + t[3][ 7] * w[3];
7991                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1] + t[2][ 8] * w[2] + t[3][ 8] * w[3];
7992                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1] + t[2][ 9] * w[2] + t[3][ 9] * w[3];
7993                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1] + t[2][10] * w[2] + t[3][10] * w[3];
7994                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1] + t[2][11] * w[2] + t[3][11] * w[3];
7995                         }
7996                         else
7997                         {
7998                                 // blend 2 matrices
7999                                 t[1] = b + si[1]*12;
8000                                 w[0] = sw[0] * (1.0f / 255.0f);
8001                                 w[1] = sw[1] * (1.0f / 255.0f);
8002                                 // blend the matrices
8003                                 m[0][0] = t[0][ 0] * w[0] + t[1][ 0] * w[1];
8004                                 m[0][1] = t[0][ 1] * w[0] + t[1][ 1] * w[1];
8005                                 m[0][2] = t[0][ 2] * w[0] + t[1][ 2] * w[1];
8006                                 m[0][3] = t[0][ 3] * w[0] + t[1][ 3] * w[1];
8007                                 m[1][0] = t[0][ 4] * w[0] + t[1][ 4] * w[1];
8008                                 m[1][1] = t[0][ 5] * w[0] + t[1][ 5] * w[1];
8009                                 m[1][2] = t[0][ 6] * w[0] + t[1][ 6] * w[1];
8010                                 m[1][3] = t[0][ 7] * w[0] + t[1][ 7] * w[1];
8011                                 m[2][0] = t[0][ 8] * w[0] + t[1][ 8] * w[1];
8012                                 m[2][1] = t[0][ 9] * w[0] + t[1][ 9] * w[1];
8013                                 m[2][2] = t[0][10] * w[0] + t[1][10] * w[1];
8014                                 m[2][3] = t[0][11] * w[0] + t[1][11] * w[1];
8015                         }
8016                         si += 4;
8017                         sw += 4;
8018                         // modify the vertex
8019                         VectorCopy(vp, tp);
8020                         vp[0] = tp[0] * m[0][0] + tp[1] * m[0][1] + tp[2] * m[0][2] + m[0][3];
8021                         vp[1] = tp[0] * m[1][0] + tp[1] * m[1][1] + tp[2] * m[1][2] + m[1][3];
8022                         vp[2] = tp[0] * m[2][0] + tp[1] * m[2][1] + tp[2] * m[2][2] + m[2][3];
8023                         vp += 3;
8024                         if (vn)
8025                         {
8026                                 // the normal transformation matrix is a set of cross products...
8027                                 CrossProduct(m[1], m[2], n[0]);
8028                                 CrossProduct(m[2], m[0], n[1]);
8029                                 CrossProduct(m[0], m[1], n[2]); // is actually transpose(inverse(m)) * det(m)
8030                                 VectorCopy(vn, tn);
8031                                 vn[0] = tn[0] * n[0][0] + tn[1] * n[0][1] + tn[2] * n[0][2];
8032                                 vn[1] = tn[0] * n[1][0] + tn[1] * n[1][1] + tn[2] * n[1][2];
8033                                 vn[2] = tn[0] * n[2][0] + tn[1] * n[2][1] + tn[2] * n[2][2];
8034                                 VectorNormalize(vn);
8035                                 vn += 3;
8036                                 if (vs)
8037                                 {
8038                                         VectorCopy(vs, ts);
8039                                         vs[0] = ts[0] * n[0][0] + ts[1] * n[0][1] + ts[2] * n[0][2];
8040                                         vs[1] = ts[0] * n[1][0] + ts[1] * n[1][1] + ts[2] * n[1][2];
8041                                         vs[2] = ts[0] * n[2][0] + ts[1] * n[2][1] + ts[2] * n[2][2];
8042                                         VectorNormalize(vs);
8043                                         vs += 3;
8044                                         VectorCopy(vt, tt);
8045                                         vt[0] = tt[0] * n[0][0] + tt[1] * n[0][1] + tt[2] * n[0][2];
8046                                         vt[1] = tt[0] * n[1][0] + tt[1] * n[1][1] + tt[2] * n[1][2];
8047                                         vt[2] = tt[0] * n[2][0] + tt[1] * n[2][1] + tt[2] * n[2][2];
8048                                         VectorNormalize(vt);
8049                                         vt += 3;
8050                                 }
8051                         }
8052                 }
8053                 rsurface.batchskeletaltransform3x4 = NULL;
8054                 rsurface.batchskeletalnumtransforms = 0;
8055         }
8056
8057         // q1bsp surfaces rendered in vertex color mode have to have colors
8058         // calculated based on lightstyles
8059         if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && texturesurfacelist[0]->lightmapinfo)
8060         {
8061                 // generate color arrays for the surfaces in this list
8062                 int c[4];
8063                 int scale;
8064                 int size3;
8065                 const int *offsets;
8066                 const unsigned char *lm;
8067                 rsurface.batchlightmapcolor4f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[4]));
8068                 rsurface.batchlightmapcolor4f_vertexbuffer = NULL;
8069                 rsurface.batchlightmapcolor4f_bufferoffset = 0;
8070                 numvertices = 0;
8071                 for (i = 0;i < texturenumsurfaces;i++)
8072                 {
8073                         surface = texturesurfacelist[i];
8074                         offsets = rsurface.modellightmapoffsets + surface->num_firstvertex;
8075                         surfacenumvertices = surface->num_vertices;
8076                         if (surface->lightmapinfo->samples)
8077                         {
8078                                 for (j = 0;j < surfacenumvertices;j++)
8079                                 {
8080                                         lm = surface->lightmapinfo->samples + offsets[j];
8081                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]];
8082                                         VectorScale(lm, scale, c);
8083                                         if (surface->lightmapinfo->styles[1] != 255)
8084                                         {
8085                                                 size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3;
8086                                                 lm += size3;
8087                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]];
8088                                                 VectorMA(c, scale, lm, c);
8089                                                 if (surface->lightmapinfo->styles[2] != 255)
8090                                                 {
8091                                                         lm += size3;
8092                                                         scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]];
8093                                                         VectorMA(c, scale, lm, c);
8094                                                         if (surface->lightmapinfo->styles[3] != 255)
8095                                                         {
8096                                                                 lm += size3;
8097                                                                 scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]];
8098                                                                 VectorMA(c, scale, lm, c);
8099                                                         }
8100                                                 }
8101                                         }
8102                                         c[0] >>= 7;
8103                                         c[1] >>= 7;
8104                                         c[2] >>= 7;
8105                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1);
8106                                         numvertices++;
8107                                 }
8108                         }
8109                         else
8110                         {
8111                                 for (j = 0;j < surfacenumvertices;j++)
8112                                 {
8113                                         Vector4Set(rsurface.batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1);
8114                                         numvertices++;
8115                                 }
8116                         }
8117                 }
8118         }
8119
8120         // if vertices are deformed (sprite flares and things in maps, possibly
8121         // water waves, bulges and other deformations), modify the copied vertices
8122         // in place
8123         for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform && r_deformvertexes.integer;deformindex++, deform++)
8124         {
8125                 float scale;
8126                 switch (deform->deform)
8127                 {
8128                 default:
8129                 case Q3DEFORM_PROJECTIONSHADOW:
8130                 case Q3DEFORM_TEXT0:
8131                 case Q3DEFORM_TEXT1:
8132                 case Q3DEFORM_TEXT2:
8133                 case Q3DEFORM_TEXT3:
8134                 case Q3DEFORM_TEXT4:
8135                 case Q3DEFORM_TEXT5:
8136                 case Q3DEFORM_TEXT6:
8137                 case Q3DEFORM_TEXT7:
8138                 case Q3DEFORM_NONE:
8139                         break;
8140                 case Q3DEFORM_AUTOSPRITE:
8141                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8142                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8143                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8144                         VectorNormalize(newforward);
8145                         VectorNormalize(newright);
8146                         VectorNormalize(newup);
8147 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8148 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8149 //                      rsurface.batchvertex3f_bufferoffset = 0;
8150 //                      rsurface.batchsvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchsvector3f);
8151 //                      rsurface.batchsvector3f_vertexbuffer = NULL;
8152 //                      rsurface.batchsvector3f_bufferoffset = 0;
8153 //                      rsurface.batchtvector3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchtvector3f);
8154 //                      rsurface.batchtvector3f_vertexbuffer = NULL;
8155 //                      rsurface.batchtvector3f_bufferoffset = 0;
8156 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8157 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8158 //                      rsurface.batchnormal3f_bufferoffset = 0;
8159                         // sometimes we're on a renderpath that does not use vectors (GL11/GL13/GLES1)
8160                         if (!VectorLength2(rsurface.batchnormal3f + 3*rsurface.batchfirstvertex))
8161                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8162                         if (!VectorLength2(rsurface.batchsvector3f + 3*rsurface.batchfirstvertex))
8163                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8164                         // a single autosprite surface can contain multiple sprites...
8165                         for (j = 0;j < batchnumvertices - 3;j += 4)
8166                         {
8167                                 VectorClear(center);
8168                                 for (i = 0;i < 4;i++)
8169                                         VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8170                                 VectorScale(center, 0.25f, center);
8171                                 VectorCopy(rsurface.batchnormal3f + 3*j, forward);
8172                                 VectorCopy(rsurface.batchsvector3f + 3*j, right);
8173                                 VectorCopy(rsurface.batchtvector3f + 3*j, up);
8174                                 for (i = 0;i < 4;i++)
8175                                 {
8176                                         VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v);
8177                                         VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.batchvertex3f + 3*(j+i));
8178                                 }
8179                         }
8180                         // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check
8181                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8182                         Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8183                         break;
8184                 case Q3DEFORM_AUTOSPRITE2:
8185                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward);
8186                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright);
8187                         Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup);
8188                         VectorNormalize(newforward);
8189                         VectorNormalize(newright);
8190                         VectorNormalize(newup);
8191 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8192 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8193 //                      rsurface.batchvertex3f_bufferoffset = 0;
8194                         {
8195                                 const float *v1, *v2;
8196                                 vec3_t start, end;
8197                                 float f, l;
8198                                 struct
8199                                 {
8200                                         float length2;
8201                                         const float *v1;
8202                                         const float *v2;
8203                                 }
8204                                 shortest[2];
8205                                 memset(shortest, 0, sizeof(shortest));
8206                                 // a single autosprite surface can contain multiple sprites...
8207                                 for (j = 0;j < batchnumvertices - 3;j += 4)
8208                                 {
8209                                         VectorClear(center);
8210                                         for (i = 0;i < 4;i++)
8211                                                 VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center);
8212                                         VectorScale(center, 0.25f, center);
8213                                         // find the two shortest edges, then use them to define the
8214                                         // axis vectors for rotating around the central axis
8215                                         for (i = 0;i < 6;i++)
8216                                         {
8217                                                 v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]);
8218                                                 v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]);
8219                                                 l = VectorDistance2(v1, v2);
8220                                                 // this length bias tries to make sense of square polygons, assuming they are meant to be upright
8221                                                 if (v1[2] != v2[2])
8222                                                         l += (1.0f / 1024.0f);
8223                                                 if (shortest[0].length2 > l || i == 0)
8224                                                 {
8225                                                         shortest[1] = shortest[0];
8226                                                         shortest[0].length2 = l;
8227                                                         shortest[0].v1 = v1;
8228                                                         shortest[0].v2 = v2;
8229                                                 }
8230                                                 else if (shortest[1].length2 > l || i == 1)
8231                                                 {
8232                                                         shortest[1].length2 = l;
8233                                                         shortest[1].v1 = v1;
8234                                                         shortest[1].v2 = v2;
8235                                                 }
8236                                         }
8237                                         VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start);
8238                                         VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end);
8239                                         // this calculates the right vector from the shortest edge
8240                                         // and the up vector from the edge midpoints
8241                                         VectorSubtract(shortest[0].v1, shortest[0].v2, right);
8242                                         VectorNormalize(right);
8243                                         VectorSubtract(end, start, up);
8244                                         VectorNormalize(up);
8245                                         // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector)
8246                                         VectorSubtract(rsurface.localvieworigin, center, forward);
8247                                         //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward);
8248                                         VectorNegate(forward, forward);
8249                                         VectorReflect(forward, 0, up, forward);
8250                                         VectorNormalize(forward);
8251                                         CrossProduct(up, forward, newright);
8252                                         VectorNormalize(newright);
8253                                         // rotate the quad around the up axis vector, this is made
8254                                         // especially easy by the fact we know the quad is flat,
8255                                         // so we only have to subtract the center position and
8256                                         // measure distance along the right vector, and then
8257                                         // multiply that by the newright vector and add back the
8258                                         // center position
8259                                         // we also need to subtract the old position to undo the
8260                                         // displacement from the center, which we do with a
8261                                         // DotProduct, the subtraction/addition of center is also
8262                                         // optimized into DotProducts here
8263                                         l = DotProduct(right, center);
8264                                         for (i = 0;i < 4;i++)
8265                                         {
8266                                                 v1 = rsurface.batchvertex3f + 3*(j+i);
8267                                                 f = DotProduct(right, v1) - l;
8268                                                 VectorMAMAM(1, v1, -f, right, f, newright, rsurface.batchvertex3f + 3*(j+i));
8269                                         }
8270                                 }
8271                         }
8272                         if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL
8273                         {
8274 //                              rsurface.batchnormal3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8275 //                              rsurface.batchnormal3f_vertexbuffer = NULL;
8276 //                              rsurface.batchnormal3f_bufferoffset = 0;
8277                                 Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8278                         }
8279                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8280                         {
8281 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8282 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8283 //                              rsurface.batchsvector3f_bufferoffset = 0;
8284 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8285 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8286 //                              rsurface.batchtvector3f_bufferoffset = 0;
8287                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8288                         }
8289                         break;
8290                 case Q3DEFORM_NORMAL:
8291                         // deform the normals to make reflections wavey
8292                         rsurface.batchnormal3f = (float *)R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8293                         rsurface.batchnormal3f_vertexbuffer = NULL;
8294                         rsurface.batchnormal3f_bufferoffset = 0;
8295                         for (j = 0;j < batchnumvertices;j++)
8296                         {
8297                                 float vertex[3];
8298                                 float *normal = rsurface.batchnormal3f + 3*j;
8299                                 VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex);
8300                                 normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f(      vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8301                                 normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8302                                 normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], rsurface.shadertime * deform->parms[1]);
8303                                 VectorNormalize(normal);
8304                         }
8305                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8306                         {
8307 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8308 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8309 //                              rsurface.batchsvector3f_bufferoffset = 0;
8310 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8311 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8312 //                              rsurface.batchtvector3f_bufferoffset = 0;
8313                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8314                         }
8315                         break;
8316                 case Q3DEFORM_WAVE:
8317                         // deform vertex array to make wavey water and flags and such
8318                         waveparms[0] = deform->waveparms[0];
8319                         waveparms[1] = deform->waveparms[1];
8320                         waveparms[2] = deform->waveparms[2];
8321                         waveparms[3] = deform->waveparms[3];
8322                         if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms))
8323                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8324                         // this is how a divisor of vertex influence on deformation
8325                         animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f;
8326                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8327 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8328 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8329 //                      rsurface.batchvertex3f_bufferoffset = 0;
8330 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8331 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8332 //                      rsurface.batchnormal3f_bufferoffset = 0;
8333                         for (j = 0;j < batchnumvertices;j++)
8334                         {
8335                                 // if the wavefunc depends on time, evaluate it per-vertex
8336                                 if (waveparms[3])
8337                                 {
8338                                         waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos;
8339                                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms);
8340                                 }
8341                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8342                         }
8343                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8344                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8345                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8346                         {
8347 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8348 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8349 //                              rsurface.batchsvector3f_bufferoffset = 0;
8350 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8351 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8352 //                              rsurface.batchtvector3f_bufferoffset = 0;
8353                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8354                         }
8355                         break;
8356                 case Q3DEFORM_BULGE:
8357                         // deform vertex array to make the surface have moving bulges
8358 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8359 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8360 //                      rsurface.batchvertex3f_bufferoffset = 0;
8361 //                      rsurface.batchnormal3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchnormal3f);
8362 //                      rsurface.batchnormal3f_vertexbuffer = NULL;
8363 //                      rsurface.batchnormal3f_bufferoffset = 0;
8364                         for (j = 0;j < batchnumvertices;j++)
8365                         {
8366                                 scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + rsurface.shadertime * deform->parms[2]) * deform->parms[1];
8367                                 VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.batchvertex3f + 3*j);
8368                         }
8369                         // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check
8370                         Mod_BuildNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchnormal3f, r_smoothnormals_areaweighting.integer != 0);
8371                         if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL
8372                         {
8373 //                              rsurface.batchsvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8374 //                              rsurface.batchsvector3f_vertexbuffer = NULL;
8375 //                              rsurface.batchsvector3f_bufferoffset = 0;
8376 //                              rsurface.batchtvector3f = R_FrameData_Alloc(batchnumvertices * sizeof(float[3]));
8377 //                              rsurface.batchtvector3f_vertexbuffer = NULL;
8378 //                              rsurface.batchtvector3f_bufferoffset = 0;
8379                                 Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, batchnumvertices, batchnumtriangles, rsurface.batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.batchsvector3f, rsurface.batchtvector3f, r_smoothnormals_areaweighting.integer != 0);
8380                         }
8381                         break;
8382                 case Q3DEFORM_MOVE:
8383                         // deform vertex array
8384                         if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms))
8385                                 break; // if wavefunc is a nop, don't make a dynamic vertex array
8386                         scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms);
8387                         VectorScale(deform->parms, scale, waveparms);
8388 //                      rsurface.batchvertex3f = R_FrameData_Store(batchnumvertices * sizeof(float[3]), rsurface.batchvertex3f);
8389 //                      rsurface.batchvertex3f_vertexbuffer = NULL;
8390 //                      rsurface.batchvertex3f_bufferoffset = 0;
8391                         for (j = 0;j < batchnumvertices;j++)
8392                                 VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.batchvertex3f + 3*j);
8393                         break;
8394                 }
8395         }
8396
8397         if (rsurface.batchtexcoordtexture2f && rsurface.texture->materialshaderpass)
8398         {
8399         // generate texcoords based on the chosen texcoord source
8400                 switch(rsurface.texture->materialshaderpass->tcgen.tcgen)
8401                 {
8402                 default:
8403                 case Q3TCGEN_TEXTURE:
8404                         break;
8405                 case Q3TCGEN_LIGHTMAP:
8406         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8407         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8408         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8409                         if (rsurface.batchtexcoordlightmap2f)
8410                                 memcpy(rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordlightmap2f, batchnumvertices * sizeof(float[2]));
8411                         break;
8412                 case Q3TCGEN_VECTOR:
8413         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8414         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8415         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8416                         for (j = 0;j < batchnumvertices;j++)
8417                         {
8418                                 rsurface.batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms);
8419                                 rsurface.batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->materialshaderpass->tcgen.parms + 3);
8420                         }
8421                         break;
8422                 case Q3TCGEN_ENVIRONMENT:
8423                         // make environment reflections using a spheremap
8424                         rsurface.batchtexcoordtexture2f = (float *)R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8425                         rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8426                         rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8427                         for (j = 0;j < batchnumvertices;j++)
8428                         {
8429                                 // identical to Q3A's method, but executed in worldspace so
8430                                 // carried models can be shiny too
8431
8432                                 float viewer[3], d, reflected[3], worldreflected[3];
8433
8434                                 VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer);
8435                                 // VectorNormalize(viewer);
8436
8437                                 d = DotProduct(rsurface.batchnormal3f + 3*j, viewer);
8438
8439                                 reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0];
8440                                 reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1];
8441                                 reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2];
8442                                 // note: this is proportinal to viewer, so we can normalize later
8443
8444                                 Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected);
8445                                 VectorNormalize(worldreflected);
8446
8447                                 // note: this sphere map only uses world x and z!
8448                                 // so positive and negative y will LOOK THE SAME.
8449                                 rsurface.batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1];
8450                                 rsurface.batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2];
8451                         }
8452                         break;
8453                 }
8454                 // the only tcmod that needs software vertex processing is turbulent, so
8455                 // check for it here and apply the changes if needed
8456                 // and we only support that as the first one
8457                 // (handling a mixture of turbulent and other tcmods would be problematic
8458                 //  without punting it entirely to a software path)
8459                 if (rsurface.texture->materialshaderpass->tcmods[0].tcmod == Q3TCMOD_TURBULENT)
8460                 {
8461                         amplitude = rsurface.texture->materialshaderpass->tcmods[0].parms[1];
8462                         animpos = rsurface.texture->materialshaderpass->tcmods[0].parms[2] + rsurface.shadertime * rsurface.texture->materialshaderpass->tcmods[0].parms[3];
8463         //              rsurface.batchtexcoordtexture2f = R_FrameData_Alloc(batchnumvertices * sizeof(float[2]));
8464         //              rsurface.batchtexcoordtexture2f_vertexbuffer = NULL;
8465         //              rsurface.batchtexcoordtexture2f_bufferoffset = 0;
8466                         for (j = 0;j < batchnumvertices;j++)
8467                         {
8468                                 rsurface.batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8469                                 rsurface.batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1]                                ) * 1.0 / 1024.0f + animpos) * M_PI * 2);
8470                         }
8471                 }
8472         }
8473 }
8474
8475 void RSurf_DrawBatch(void)
8476 {
8477         // sometimes a zero triangle surface (usually a degenerate patch) makes it
8478         // through the pipeline, killing it earlier in the pipeline would have
8479         // per-surface overhead rather than per-batch overhead, so it's best to
8480         // reject it here, before it hits glDraw.
8481         if (rsurface.batchnumtriangles == 0)
8482                 return;
8483 #if 0
8484         // batch debugging code
8485         if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f)
8486         {
8487                 int i;
8488                 int j;
8489                 int c;
8490                 const int *e;
8491                 e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3;
8492                 for (i = 0;i < rsurface.batchnumtriangles*3;i++)
8493                 {
8494                         c = e[i];
8495                         for (j = 0;j < rsurface.entity->model->num_surfaces;j++)
8496                         {
8497                                 if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices))
8498                                 {
8499                                         if (rsurface.modelsurfaces[j].texture != rsurface.texture)
8500                                                 Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name);
8501                                         break;
8502                                 }
8503                         }
8504                 }
8505         }
8506 #endif
8507         if (rsurface.batchmultidraw)
8508         {
8509                 // issue multiple draws rather than copying index data
8510                 int numsurfaces = rsurface.batchmultidrawnumsurfaces;
8511                 const msurface_t **surfacelist = rsurface.batchmultidrawsurfacelist;
8512                 int i, j, k, firstvertex, endvertex, firsttriangle, endtriangle;
8513                 for (i = 0;i < numsurfaces;)
8514                 {
8515                         // combine consecutive surfaces as one draw
8516                         for (k = i, j = i + 1;j < numsurfaces;k = j, j++)
8517                                 if (surfacelist[j] != surfacelist[k] + 1)
8518                                         break;
8519                         firstvertex = surfacelist[i]->num_firstvertex;
8520                         endvertex = surfacelist[k]->num_firstvertex + surfacelist[k]->num_vertices;
8521                         firsttriangle = surfacelist[i]->num_firsttriangle;
8522                         endtriangle = surfacelist[k]->num_firsttriangle + surfacelist[k]->num_triangles;
8523                         R_Mesh_Draw(firstvertex, endvertex - firstvertex, firsttriangle, endtriangle - firsttriangle, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8524                         i = j;
8525                 }
8526         }
8527         else
8528         {
8529                 // there is only one consecutive run of index data (may have been combined)
8530                 R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset);
8531         }
8532 }
8533
8534 static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface)
8535 {
8536         // pick the closest matching water plane
8537         int planeindex, vertexindex, bestplaneindex = -1;
8538         float d, bestd;
8539         vec3_t vert;
8540         const float *v;
8541         r_waterstate_waterplane_t *p;
8542         qbool prepared = false;
8543         bestd = 0;
8544         for (planeindex = 0, p = r_fb.water.waterplanes;planeindex < r_fb.water.numwaterplanes;planeindex++, p++)
8545         {
8546                 if(p->camera_entity != rsurface.texture->camera_entity)
8547                         continue;
8548                 d = 0;
8549                 if(!prepared)
8550                 {
8551                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface);
8552                         prepared = true;
8553                         if(rsurface.batchnumvertices == 0)
8554                                 break;
8555                 }
8556                 for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3)
8557                 {
8558                         Matrix4x4_Transform(&rsurface.matrix, v, vert);
8559                         d += fabs(PlaneDiff(vert, &p->plane));
8560                 }
8561                 if (bestd > d || bestplaneindex < 0)
8562                 {
8563                         bestd = d;
8564                         bestplaneindex = planeindex;
8565                 }
8566         }
8567         return bestplaneindex;
8568         // NOTE: this MAY return a totally unrelated water plane; we can ignore
8569         // this situation though, as it might be better to render single larger
8570         // batches with useless stuff (backface culled for example) than to
8571         // render multiple smaller batches
8572 }
8573
8574 void RSurf_SetupDepthAndCulling(void)
8575 {
8576         // submodels are biased to avoid z-fighting with world surfaces that they
8577         // may be exactly overlapping (avoids z-fighting artifacts on certain
8578         // doors and things in Quake maps)
8579         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
8580         GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset);
8581         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
8582         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
8583 }
8584
8585 static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8586 {
8587         int j;
8588         const float *v;
8589         float p[3], mins[3], maxs[3];
8590         int scissor[4];
8591         // transparent sky would be ridiculous
8592         if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8593                 return;
8594         R_SetupShader_Generic_NoTexture(false, false);
8595         skyrenderlater = true;
8596         RSurf_SetupDepthAndCulling();
8597         GL_DepthMask(true);
8598
8599         // add the vertices of the surfaces to a world bounding box so we can scissor the sky render later
8600         if (r_sky_scissor.integer)
8601         {
8602                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8603                 for (j = 0, v = rsurface.batchvertex3f + 3 * rsurface.batchfirstvertex; j < rsurface.batchnumvertices; j++, v += 3)
8604                 {
8605                         Matrix4x4_Transform(&rsurface.matrix, v, p);
8606                         if (j > 0)
8607                         {
8608                                 if (mins[0] > p[0]) mins[0] = p[0];
8609                                 if (mins[1] > p[1]) mins[1] = p[1];
8610                                 if (mins[2] > p[2]) mins[2] = p[2];
8611                                 if (maxs[0] < p[0]) maxs[0] = p[0];
8612                                 if (maxs[1] < p[1]) maxs[1] = p[1];
8613                                 if (maxs[2] < p[2]) maxs[2] = p[2];
8614                         }
8615                         else
8616                         {
8617                                 VectorCopy(p, mins);
8618                                 VectorCopy(p, maxs);
8619                         }
8620                 }
8621                 if (!R_ScissorForBBox(mins, maxs, scissor))
8622                 {
8623                         if (skyscissor[2])
8624                         {
8625                                 if (skyscissor[0] > scissor[0])
8626                                 {
8627                                         skyscissor[2] += skyscissor[0] - scissor[0];
8628                                         skyscissor[0] = scissor[0];
8629                                 }
8630                                 if (skyscissor[1] > scissor[1])
8631                                 {
8632                                         skyscissor[3] += skyscissor[1] - scissor[1];
8633                                         skyscissor[1] = scissor[1];
8634                                 }
8635                                 if (skyscissor[0] + skyscissor[2] < scissor[0] + scissor[2])
8636                                         skyscissor[2] = scissor[0] + scissor[2] - skyscissor[0];
8637                                 if (skyscissor[1] + skyscissor[3] < scissor[1] + scissor[3])
8638                                         skyscissor[3] = scissor[1] + scissor[3] - skyscissor[1];
8639                         }
8640                         else
8641                                 Vector4Copy(scissor, skyscissor);
8642                 }
8643         }
8644
8645         // LadyHavoc: HalfLife maps have freaky skypolys so don't use
8646         // skymasking on them, and Quake3 never did sky masking (unlike
8647         // software Quake and software Quake2), so disable the sky masking
8648         // in Quake3 maps as it causes problems with q3map2 sky tricks,
8649         // and skymasking also looks very bad when noclipping outside the
8650         // level, so don't use it then either.
8651         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.skymasking && (r_refdef.scene.worldmodel->brush.isq3bsp ? r_q3bsp_renderskydepth.integer : r_q1bsp_skymasking.integer) && !r_refdef.viewcache.world_novis && !r_trippy.integer)
8652         {
8653                 R_Mesh_ResetTextureState();
8654                 if (skyrendermasked)
8655                 {
8656                         R_SetupShader_DepthOrShadow(false, false, false);
8657                         // depth-only (masking)
8658                         GL_ColorMask(0, 0, 0, 0);
8659                         // just to make sure that braindead drivers don't draw
8660                         // anything despite that colormask...
8661                         GL_BlendFunc(GL_ZERO, GL_ONE);
8662                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8663                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8664                 }
8665                 else
8666                 {
8667                         R_SetupShader_Generic_NoTexture(false, false);
8668                         // fog sky
8669                         GL_BlendFunc(GL_ONE, GL_ZERO);
8670                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
8671                         GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1);
8672                         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
8673                 }
8674                 RSurf_DrawBatch();
8675                 if (skyrendermasked)
8676                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8677         }
8678         R_Mesh_ResetTextureState();
8679         GL_Color(1, 1, 1, 1);
8680 }
8681
8682 extern rtexture_t *r_shadow_prepasslightingdiffusetexture;
8683 extern rtexture_t *r_shadow_prepasslightingspeculartexture;
8684 static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8685 {
8686         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
8687                 return;
8688         if (prepass)
8689         {
8690                 // render screenspace normalmap to texture
8691                 GL_DepthMask(true);
8692                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL, false, false);
8693                 RSurf_DrawBatch();
8694                 return;
8695         }
8696
8697         // bind lightmap texture
8698
8699         // water/refraction/reflection/camera surfaces have to be handled specially
8700         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION)))
8701         {
8702                 int start, end, startplaneindex;
8703                 for (start = 0;start < texturenumsurfaces;start = end)
8704                 {
8705                         startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]);
8706                         if(startplaneindex < 0)
8707                         {
8708                                 // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this.
8709                                 // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags);
8710                                 end = start + 1;
8711                                 continue;
8712                         }
8713                         for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++)
8714                                 ;
8715                         // now that we have a batch using the same planeindex, render it
8716                         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA)))
8717                         {
8718                                 // render water or distortion background
8719                                 GL_DepthMask(true);
8720                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8721                                 RSurf_DrawBatch();
8722                                 // blend surface on top
8723                                 GL_DepthMask(false);
8724                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL, false, false);
8725                                 RSurf_DrawBatch();
8726                         }
8727                         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION))
8728                         {
8729                                 // render surface with reflection texture as input
8730                                 GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8731                                 R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_fb.water.waterplanes + startplaneindex), false, false);
8732                                 RSurf_DrawBatch();
8733                         }
8734                 }
8735                 return;
8736         }
8737
8738         // render surface batch normally
8739         GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED));
8740         R_SetupShader_Surface(vec3_origin, vec3_origin, vec3_origin, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) != 0 || ui, ui);
8741         RSurf_DrawBatch();
8742 }
8743
8744 static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth)
8745 {
8746         int vi;
8747         int j;
8748         int texturesurfaceindex;
8749         int k;
8750         const msurface_t *surface;
8751         float surfacecolor4f[4];
8752
8753 //      R_Mesh_ResetTextureState();
8754         R_SetupShader_Generic_NoTexture(false, false);
8755
8756         GL_BlendFunc(GL_ONE, GL_ZERO);
8757         GL_DepthMask(writedepth);
8758
8759         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ALWAYSCOPY, texturenumsurfaces, texturesurfacelist);
8760         vi = 0;
8761         for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++)
8762         {
8763                 surface = texturesurfacelist[texturesurfaceindex];
8764                 k = (int)(((size_t)surface) / sizeof(msurface_t));
8765                 Vector4Set(surfacecolor4f, (k & 0xF) * (1.0f / 16.0f), (k & 0xF0) * (1.0f / 256.0f), (k & 0xF00) * (1.0f / 4096.0f), 1);
8766                 for (j = 0;j < surface->num_vertices;j++)
8767                 {
8768                         Vector4Copy(surfacecolor4f, rsurface.batchlightmapcolor4f + 4 * vi);
8769                         vi++;
8770                 }
8771         }
8772         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchlightmapcolor4f, rsurface.batchtexcoordtexture2f);
8773         RSurf_DrawBatch();
8774 }
8775
8776 static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool prepass, qbool ui)
8777 {
8778         CHECKGLERROR
8779         RSurf_SetupDepthAndCulling();
8780         if (r_showsurfaces.integer && r_refdef.view.showdebug)
8781         {
8782                 R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth);
8783                 return;
8784         }
8785         switch (vid.renderpath)
8786         {
8787         case RENDERPATH_GL32:
8788         case RENDERPATH_GLES2:
8789                 R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8790                 break;
8791         }
8792         CHECKGLERROR
8793 }
8794
8795 static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
8796 {
8797         int i, j;
8798         int texturenumsurfaces, endsurface;
8799         texture_t *texture;
8800         const msurface_t *surface;
8801         const msurface_t *texturesurfacelist[MESHQUEUE_TRANSPARENT_BATCHSIZE];
8802
8803         RSurf_ActiveModelEntity(ent, true, true, false);
8804
8805         if (r_transparentdepthmasking.integer)
8806         {
8807                 qbool setup = false;
8808                 for (i = 0;i < numsurfaces;i = j)
8809                 {
8810                         j = i + 1;
8811                         surface = rsurface.modelsurfaces + surfacelist[i];
8812                         texture = surface->texture;
8813                         rsurface.texture = R_GetCurrentTexture(texture);
8814                         rsurface.lightmaptexture = NULL;
8815                         rsurface.deluxemaptexture = NULL;
8816                         rsurface.uselightmaptexture = false;
8817                         // scan ahead until we find a different texture
8818                         endsurface = min(i + 1024, numsurfaces);
8819                         texturenumsurfaces = 0;
8820                         texturesurfacelist[texturenumsurfaces++] = surface;
8821                         for (;j < endsurface;j++)
8822                         {
8823                                 surface = rsurface.modelsurfaces + surfacelist[j];
8824                                 if (texture != surface->texture)
8825                                         break;
8826                                 texturesurfacelist[texturenumsurfaces++] = surface;
8827                         }
8828                         if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH))
8829                                 continue;
8830                         // render the range of surfaces as depth
8831                         if (!setup)
8832                         {
8833                                 setup = true;
8834                                 GL_ColorMask(0,0,0,0);
8835                                 GL_Color(1,1,1,1);
8836                                 GL_DepthTest(true);
8837                                 GL_BlendFunc(GL_ONE, GL_ZERO);
8838                                 GL_DepthMask(true);
8839 //                              R_Mesh_ResetTextureState();
8840                         }
8841                         RSurf_SetupDepthAndCulling();
8842                         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8843                         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8844                         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8845                         RSurf_DrawBatch();
8846                 }
8847                 if (setup)
8848                         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
8849         }
8850
8851         for (i = 0;i < numsurfaces;i = j)
8852         {
8853                 j = i + 1;
8854                 surface = rsurface.modelsurfaces + surfacelist[i];
8855                 texture = surface->texture;
8856                 rsurface.texture = R_GetCurrentTexture(texture);
8857                 // scan ahead until we find a different texture
8858                 endsurface = min(i + MESHQUEUE_TRANSPARENT_BATCHSIZE, numsurfaces);
8859                 texturenumsurfaces = 0;
8860                 texturesurfacelist[texturenumsurfaces++] = surface;
8861                         rsurface.lightmaptexture = surface->lightmaptexture;
8862                         rsurface.deluxemaptexture = surface->deluxemaptexture;
8863                         rsurface.uselightmaptexture = surface->lightmaptexture != NULL;
8864                         for (;j < endsurface;j++)
8865                         {
8866                                 surface = rsurface.modelsurfaces + surfacelist[j];
8867                                 if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture)
8868                                         break;
8869                                 texturesurfacelist[texturenumsurfaces++] = surface;
8870                         }
8871                 // render the range of surfaces
8872                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false, false);
8873         }
8874         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
8875 }
8876
8877 static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8878 {
8879         // transparent surfaces get pushed off into the transparent queue
8880         int surfacelistindex;
8881         const msurface_t *surface;
8882         vec3_t tempcenter, center;
8883         for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++)
8884         {
8885                 surface = texturesurfacelist[surfacelistindex];
8886                 if (r_transparent_sortsurfacesbynearest.integer)
8887                 {
8888                         tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
8889                         tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
8890                         tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
8891                 }
8892                 else
8893                 {
8894                         tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
8895                         tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
8896                         tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
8897                 }
8898                 Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
8899                 if (rsurface.entity->transparent_offset) // transparent offset
8900                 {
8901                         center[0] += r_refdef.view.forward[0]*rsurface.entity->transparent_offset;
8902                         center[1] += r_refdef.view.forward[1]*rsurface.entity->transparent_offset;
8903                         center[2] += r_refdef.view.forward[2]*rsurface.entity->transparent_offset;
8904                 }
8905                 R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort, center, R_DrawSurface_TransparentCallback, rsurface.entity, surface - rsurface.modelsurfaces, rsurface.rtlight);
8906         }
8907 }
8908
8909 static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist)
8910 {
8911         if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST)))
8912                 return;
8913         if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)))
8914                 return;
8915         RSurf_SetupDepthAndCulling();
8916         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, texturenumsurfaces, texturesurfacelist);
8917         R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
8918         R_SetupShader_DepthOrShadow(false, false, !!rsurface.batchskeletaltransform3x4);
8919         RSurf_DrawBatch();
8920 }
8921
8922 static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8923 {
8924         CHECKGLERROR
8925         if (ui)
8926                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8927         else if (depthonly)
8928                 R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist);
8929         else if (prepass)
8930         {
8931                 if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8932                         return;
8933                 if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
8934                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8935                 else
8936                         R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass, ui);
8937         }
8938         else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && (!r_showsurfaces.integer || r_showsurfaces.integer == 3))
8939                 R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist);
8940         else if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_WALL))
8941                 return;
8942         else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))))
8943         {
8944                 // in the deferred case, transparent surfaces were queued during prepass
8945                 if (!r_shadow_usingdeferredprepass)
8946                         R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist);
8947         }
8948         else
8949         {
8950                 // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier
8951                 R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass, ui);
8952         }
8953         CHECKGLERROR
8954 }
8955
8956 static void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qbool writedepth, qbool depthonly, qbool prepass, qbool ui)
8957 {
8958         int i, j;
8959         texture_t *texture;
8960         R_FrameData_SetMark();
8961         // break the surface list down into batches by texture and use of lightmapping
8962         for (i = 0;i < numsurfaces;i = j)
8963         {
8964                 j = i + 1;
8965                 // texture is the base texture pointer, rsurface.texture is the
8966                 // current frame/skin the texture is directing us to use (for example
8967                 // if a model has 2 skins and it is on skin 1, then skin 0 tells us to
8968                 // use skin 1 instead)
8969                 texture = surfacelist[i]->texture;
8970                 rsurface.texture = R_GetCurrentTexture(texture);
8971                 if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW))
8972                 {
8973                         // if this texture is not the kind we want, skip ahead to the next one
8974                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8975                                 ;
8976                         continue;
8977                 }
8978                 if(depthonly || prepass)
8979                 {
8980                         rsurface.lightmaptexture = NULL;
8981                         rsurface.deluxemaptexture = NULL;
8982                         rsurface.uselightmaptexture = false;
8983                         // simply scan ahead until we find a different texture or lightmap state
8984                         for (;j < numsurfaces && texture == surfacelist[j]->texture;j++)
8985                                 ;
8986                 }
8987                 else
8988                 {
8989                         rsurface.lightmaptexture = surfacelist[i]->lightmaptexture;
8990                         rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture;
8991                         rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL;
8992                         // simply scan ahead until we find a different texture or lightmap state
8993                         for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++)
8994                                 ;
8995                 }
8996                 // render the range of surfaces
8997                 R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass, ui);
8998         }
8999         R_FrameData_ReturnToMark();
9000 }
9001
9002 float locboxvertex3f[6*4*3] =
9003 {
9004         1,0,1, 1,0,0, 1,1,0, 1,1,1,
9005         0,1,1, 0,1,0, 0,0,0, 0,0,1,
9006         1,1,1, 1,1,0, 0,1,0, 0,1,1,
9007         0,0,1, 0,0,0, 1,0,0, 1,0,1,
9008         0,0,1, 1,0,1, 1,1,1, 0,1,1,
9009         1,0,0, 0,0,0, 0,1,0, 1,1,0
9010 };
9011
9012 unsigned short locboxelements[6*2*3] =
9013 {
9014          0, 1, 2, 0, 2, 3,
9015          4, 5, 6, 4, 6, 7,
9016          8, 9,10, 8,10,11,
9017         12,13,14, 12,14,15,
9018         16,17,18, 16,18,19,
9019         20,21,22, 20,22,23
9020 };
9021
9022 static void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
9023 {
9024         int i, j;
9025         cl_locnode_t *loc = (cl_locnode_t *)ent;
9026         vec3_t mins, size;
9027         float vertex3f[6*4*3];
9028         CHECKGLERROR
9029         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9030         GL_DepthMask(false);
9031         GL_DepthRange(0, 1);
9032         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9033         GL_DepthTest(true);
9034         GL_CullFace(GL_NONE);
9035         R_EntityMatrix(&identitymatrix);
9036
9037 //      R_Mesh_ResetTextureState();
9038
9039         i = surfacelist[0];
9040         GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9041                          ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9042                          ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
9043                         surfacelist[0] < 0 ? 0.5f : 0.125f);
9044
9045         if (VectorCompare(loc->mins, loc->maxs))
9046         {
9047                 VectorSet(size, 2, 2, 2);
9048                 VectorMA(loc->mins, -0.5f, size, mins);
9049         }
9050         else
9051         {
9052                 VectorCopy(loc->mins, mins);
9053                 VectorSubtract(loc->maxs, loc->mins, size);
9054         }
9055
9056         for (i = 0;i < 6*4*3;)
9057                 for (j = 0;j < 3;j++, i++)
9058                         vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i];
9059
9060         R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL);
9061         R_SetupShader_Generic_NoTexture(false, false);
9062         R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0);
9063 }
9064
9065 void R_DrawLocs(void)
9066 {
9067         int index;
9068         cl_locnode_t *loc, *nearestloc;
9069         vec3_t center;
9070         nearestloc = CL_Locs_FindNearest(cl.movement_origin);
9071         for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++)
9072         {
9073                 VectorLerp(loc->mins, 0.5f, loc->maxs, center);
9074                 R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL);
9075         }
9076 }
9077
9078 void R_DecalSystem_Reset(decalsystem_t *decalsystem)
9079 {
9080         if (decalsystem->decals)
9081                 Mem_Free(decalsystem->decals);
9082         memset(decalsystem, 0, sizeof(*decalsystem));
9083 }
9084
9085 static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, unsigned int decalsequence)
9086 {
9087         tridecal_t *decal;
9088         tridecal_t *decals;
9089         int i;
9090
9091         // expand or initialize the system
9092         if (decalsystem->maxdecals <= decalsystem->numdecals)
9093         {
9094                 decalsystem_t old = *decalsystem;
9095                 qbool useshortelements;
9096                 decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2);
9097                 useshortelements = decalsystem->maxdecals * 3 <= 65536;
9098                 decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0)));
9099                 decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals);
9100                 decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12);
9101                 decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6);
9102                 decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9);
9103                 decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL);
9104                 if (decalsystem->numdecals)
9105                         memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t));
9106                 if (old.decals)
9107                         Mem_Free(old.decals);
9108                 for (i = 0;i < decalsystem->maxdecals*3;i++)
9109                         decalsystem->element3i[i] = i;
9110                 if (useshortelements)
9111                         for (i = 0;i < decalsystem->maxdecals*3;i++)
9112                                 decalsystem->element3s[i] = i;
9113         }
9114
9115         // grab a decal and search for another free slot for the next one
9116         decals = decalsystem->decals;
9117         decal = decalsystem->decals + (i = decalsystem->freedecal++);
9118         for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4f[0][3];i++)
9119                 ;
9120         decalsystem->freedecal = i;
9121         if (decalsystem->numdecals <= i)
9122                 decalsystem->numdecals = i + 1;
9123
9124         // initialize the decal
9125         decal->lived = 0;
9126         decal->triangleindex = triangleindex;
9127         decal->surfaceindex = surfaceindex;
9128         decal->decalsequence = decalsequence;
9129         decal->color4f[0][0] = c0[0];
9130         decal->color4f[0][1] = c0[1];
9131         decal->color4f[0][2] = c0[2];
9132         decal->color4f[0][3] = 1;
9133         decal->color4f[1][0] = c1[0];
9134         decal->color4f[1][1] = c1[1];
9135         decal->color4f[1][2] = c1[2];
9136         decal->color4f[1][3] = 1;
9137         decal->color4f[2][0] = c2[0];
9138         decal->color4f[2][1] = c2[1];
9139         decal->color4f[2][2] = c2[2];
9140         decal->color4f[2][3] = 1;
9141         decal->vertex3f[0][0] = v0[0];
9142         decal->vertex3f[0][1] = v0[1];
9143         decal->vertex3f[0][2] = v0[2];
9144         decal->vertex3f[1][0] = v1[0];
9145         decal->vertex3f[1][1] = v1[1];
9146         decal->vertex3f[1][2] = v1[2];
9147         decal->vertex3f[2][0] = v2[0];
9148         decal->vertex3f[2][1] = v2[1];
9149         decal->vertex3f[2][2] = v2[2];
9150         decal->texcoord2f[0][0] = t0[0];
9151         decal->texcoord2f[0][1] = t0[1];
9152         decal->texcoord2f[1][0] = t1[0];
9153         decal->texcoord2f[1][1] = t1[1];
9154         decal->texcoord2f[2][0] = t2[0];
9155         decal->texcoord2f[2][1] = t2[1];
9156         TriangleNormal(v0, v1, v2, decal->plane);
9157         VectorNormalize(decal->plane);
9158         decal->plane[3] = DotProduct(v0, decal->plane);
9159 }
9160
9161 extern cvar_t cl_decals_bias;
9162 extern cvar_t cl_decals_models;
9163 extern cvar_t cl_decals_newsystem_intensitymultiplier;
9164 // baseparms, parms, temps
9165 static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, unsigned int decalsequence, qbool dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex)
9166 {
9167         int cornerindex;
9168         int index;
9169         float v[9][3];
9170         const float *vertex3f;
9171         const float *normal3f;
9172         int numpoints;
9173         float points[2][9][3];
9174         float temp[3];
9175         float tc[9][2];
9176         float f;
9177         float c[9][4];
9178         const int *e;
9179
9180         e = rsurface.modelelement3i + 3*triangleindex;
9181
9182         vertex3f = rsurface.modelvertex3f;
9183         normal3f = rsurface.modelnormal3f;
9184
9185         if (normal3f)
9186         {
9187                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9188                 {
9189                         index = 3*e[cornerindex];
9190                         VectorMA(vertex3f + index, cl_decals_bias.value, normal3f + index, v[cornerindex]);
9191                 }
9192         }
9193         else
9194         {
9195                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9196                 {
9197                         index = 3*e[cornerindex];
9198                         VectorCopy(vertex3f + index, v[cornerindex]);
9199                 }
9200         }
9201
9202         // cull backfaces
9203         //TriangleNormal(v[0], v[1], v[2], normal);
9204         //if (DotProduct(normal, localnormal) < 0.0f)
9205         //      continue;
9206         // clip by each of the box planes formed from the projection matrix
9207         // if anything survives, we emit the decal
9208         numpoints = PolygonF_Clip(3        , v[0]        , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9209         if (numpoints < 3)
9210                 return;
9211         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9212         if (numpoints < 3)
9213                 return;
9214         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9215         if (numpoints < 3)
9216                 return;
9217         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]);
9218         if (numpoints < 3)
9219                 return;
9220         numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]);
9221         if (numpoints < 3)
9222                 return;
9223         numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]);
9224         if (numpoints < 3)
9225                 return;
9226         // some part of the triangle survived, so we have to accept it...
9227         if (dynamic)
9228         {
9229                 // dynamic always uses the original triangle
9230                 numpoints = 3;
9231                 for (cornerindex = 0;cornerindex < 3;cornerindex++)
9232                 {
9233                         index = 3*e[cornerindex];
9234                         VectorCopy(vertex3f + index, v[cornerindex]);
9235                 }
9236         }
9237         for (cornerindex = 0;cornerindex < numpoints;cornerindex++)
9238         {
9239                 // convert vertex positions to texcoords
9240                 Matrix4x4_Transform(projection, v[cornerindex], temp);
9241                 tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1;
9242                 tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1;
9243                 // calculate distance fade from the projection origin
9244                 f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value;
9245                 f = bound(0.0f, f, 1.0f);
9246                 c[cornerindex][0] = r * f;
9247                 c[cornerindex][1] = g * f;
9248                 c[cornerindex][2] = b * f;
9249                 c[cornerindex][3] = 1.0f;
9250                 //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]);
9251         }
9252         if (dynamic)
9253                 R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence);
9254         else
9255                 for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++)
9256                         R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence);
9257 }
9258 static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9259 {
9260         matrix4x4_t projection;
9261         decalsystem_t *decalsystem;
9262         qbool dynamic;
9263         model_t *model;
9264         const msurface_t *surface;
9265         const msurface_t *surfaces;
9266         const texture_t *texture;
9267         int numtriangles;
9268         int surfaceindex;
9269         int triangleindex;
9270         float localorigin[3];
9271         float localnormal[3];
9272         float localmins[3];
9273         float localmaxs[3];
9274         float localsize;
9275         //float normal[3];
9276         float planes[6][4];
9277         float angles[3];
9278         bih_t *bih;
9279         int bih_triangles_count;
9280         int bih_triangles[256];
9281         int bih_surfaces[256];
9282
9283         decalsystem = &ent->decalsystem;
9284         model = ent->model;
9285         if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST)))
9286         {
9287                 R_DecalSystem_Reset(&ent->decalsystem);
9288                 return;
9289         }
9290
9291         if (!model->brush.data_leafs && !cl_decals_models.integer)
9292         {
9293                 if (decalsystem->model)
9294                         R_DecalSystem_Reset(decalsystem);
9295                 return;
9296         }
9297
9298         if (decalsystem->model != model)
9299                 R_DecalSystem_Reset(decalsystem);
9300         decalsystem->model = model;
9301
9302         RSurf_ActiveModelEntity(ent, true, false, false);
9303
9304         Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin);
9305         Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal);
9306         VectorNormalize(localnormal);
9307         localsize = worldsize*rsurface.inversematrixscale;
9308         localmins[0] = localorigin[0] - localsize;
9309         localmins[1] = localorigin[1] - localsize;
9310         localmins[2] = localorigin[2] - localsize;
9311         localmaxs[0] = localorigin[0] + localsize;
9312         localmaxs[1] = localorigin[1] + localsize;
9313         localmaxs[2] = localorigin[2] + localsize;
9314
9315         //VectorCopy(localnormal, planes[4]);
9316         //VectorVectors(planes[4], planes[2], planes[0]);
9317         AnglesFromVectors(angles, localnormal, NULL, false);
9318         AngleVectors(angles, planes[0], planes[2], planes[4]);
9319         VectorNegate(planes[0], planes[1]);
9320         VectorNegate(planes[2], planes[3]);
9321         VectorNegate(planes[4], planes[5]);
9322         planes[0][3] = DotProduct(planes[0], localorigin) - localsize;
9323         planes[1][3] = DotProduct(planes[1], localorigin) - localsize;
9324         planes[2][3] = DotProduct(planes[2], localorigin) - localsize;
9325         planes[3][3] = DotProduct(planes[3], localorigin) - localsize;
9326         planes[4][3] = DotProduct(planes[4], localorigin) - localsize;
9327         planes[5][3] = DotProduct(planes[5], localorigin) - localsize;
9328
9329 #if 1
9330 // works
9331 {
9332         matrix4x4_t forwardprojection;
9333         Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize);
9334         Matrix4x4_Invert_Simple(&projection, &forwardprojection);
9335 }
9336 #else
9337 // broken
9338 {
9339         float projectionvector[4][3];
9340         VectorScale(planes[0], ilocalsize, projectionvector[0]);
9341         VectorScale(planes[2], ilocalsize, projectionvector[1]);
9342         VectorScale(planes[4], ilocalsize, projectionvector[2]);
9343         projectionvector[0][0] = planes[0][0] * ilocalsize;
9344         projectionvector[0][1] = planes[1][0] * ilocalsize;
9345         projectionvector[0][2] = planes[2][0] * ilocalsize;
9346         projectionvector[1][0] = planes[0][1] * ilocalsize;
9347         projectionvector[1][1] = planes[1][1] * ilocalsize;
9348         projectionvector[1][2] = planes[2][1] * ilocalsize;
9349         projectionvector[2][0] = planes[0][2] * ilocalsize;
9350         projectionvector[2][1] = planes[1][2] * ilocalsize;
9351         projectionvector[2][2] = planes[2][2] * ilocalsize;
9352         projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]);
9353         projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]);
9354         projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]);
9355         Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]);
9356 }
9357 #endif
9358
9359         dynamic = model->surfmesh.isanimated;
9360         surfaces = model->data_surfaces;
9361
9362         bih = NULL;
9363         bih_triangles_count = -1;
9364         if(!dynamic)
9365         {
9366                 if(model->render_bih.numleafs)
9367                         bih = &model->render_bih;
9368                 else if(model->collision_bih.numleafs)
9369                         bih = &model->collision_bih;
9370         }
9371         if(bih)
9372                 bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs);
9373         if(bih_triangles_count == 0)
9374                 return;
9375         if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway
9376                 return;
9377         if(bih_triangles_count > 0)
9378         {
9379                 for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex)
9380                 {
9381                         surfaceindex = bih_surfaces[triangleindex];
9382                         surface = surfaces + surfaceindex;
9383                         texture = surface->texture;
9384                         if (!texture)
9385                                 continue;
9386                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9387                                 continue;
9388                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9389                                 continue;
9390                         R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex);
9391                 }
9392         }
9393         else
9394         {
9395                 for (surfaceindex = model->submodelsurfaces_start;surfaceindex < model->submodelsurfaces_end;surfaceindex++)
9396                 {
9397                         surface = surfaces + surfaceindex;
9398                         // check cull box first because it rejects more than any other check
9399                         if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs))
9400                                 continue;
9401                         // skip transparent surfaces
9402                         texture = surface->texture;
9403                         if (!texture)
9404                                 continue;
9405                         if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
9406                                 continue;
9407                         if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS)
9408                                 continue;
9409                         numtriangles = surface->num_triangles;
9410                         for (triangleindex = 0; triangleindex < numtriangles; triangleindex++)
9411                                 R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex);
9412                 }
9413         }
9414 }
9415
9416 // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead
9417 static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, unsigned int decalsequence)
9418 {
9419         int renderentityindex;
9420         float worldmins[3];
9421         float worldmaxs[3];
9422         entity_render_t *ent;
9423
9424         worldmins[0] = worldorigin[0] - worldsize;
9425         worldmins[1] = worldorigin[1] - worldsize;
9426         worldmins[2] = worldorigin[2] - worldsize;
9427         worldmaxs[0] = worldorigin[0] + worldsize;
9428         worldmaxs[1] = worldorigin[1] + worldsize;
9429         worldmaxs[2] = worldorigin[2] + worldsize;
9430
9431         R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9432
9433         for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++)
9434         {
9435                 ent = r_refdef.scene.entities[renderentityindex];
9436                 if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs))
9437                         continue;
9438
9439                 R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence);
9440         }
9441 }
9442
9443 typedef struct r_decalsystem_splatqueue_s
9444 {
9445         vec3_t worldorigin;
9446         vec3_t worldnormal;
9447         float color[4];
9448         float tcrange[4];
9449         float worldsize;
9450         unsigned int decalsequence;
9451 }
9452 r_decalsystem_splatqueue_t;
9453
9454 int r_decalsystem_numqueued = 0;
9455 r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE];
9456
9457 void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize)
9458 {
9459         r_decalsystem_splatqueue_t *queue;
9460
9461         if (r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE)
9462                 return;
9463
9464         queue = &r_decalsystem_queue[r_decalsystem_numqueued++];
9465         VectorCopy(worldorigin, queue->worldorigin);
9466         VectorCopy(worldnormal, queue->worldnormal);
9467         Vector4Set(queue->color, r, g, b, a);
9468         Vector4Set(queue->tcrange, s1, t1, s2, t2);
9469         queue->worldsize = worldsize;
9470         queue->decalsequence = cl.decalsequence++;
9471 }
9472
9473 static void R_DecalSystem_ApplySplatEntitiesQueue(void)
9474 {
9475         int i;
9476         r_decalsystem_splatqueue_t *queue;
9477
9478         for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++)
9479                 R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence);
9480         r_decalsystem_numqueued = 0;
9481 }
9482
9483 extern cvar_t cl_decals_max;
9484 static void R_DrawModelDecals_FadeEntity(entity_render_t *ent)
9485 {
9486         int i;
9487         decalsystem_t *decalsystem = &ent->decalsystem;
9488         int numdecals;
9489         unsigned int killsequence;
9490         tridecal_t *decal;
9491         float frametime;
9492         float lifetime;
9493
9494         if (!decalsystem->numdecals)
9495                 return;
9496
9497         if (r_showsurfaces.integer)
9498                 return;
9499
9500         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9501         {
9502                 R_DecalSystem_Reset(decalsystem);
9503                 return;
9504         }
9505
9506         killsequence = cl.decalsequence - bound(1, (unsigned int) cl_decals_max.integer, cl.decalsequence);
9507         lifetime = cl_decals_time.value + cl_decals_fadetime.value;
9508
9509         if (decalsystem->lastupdatetime)
9510                 frametime = (r_refdef.scene.time - decalsystem->lastupdatetime);
9511         else
9512                 frametime = 0;
9513         decalsystem->lastupdatetime = r_refdef.scene.time;
9514         numdecals = decalsystem->numdecals;
9515
9516         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9517         {
9518                 if (decal->color4f[0][3])
9519                 {
9520                         decal->lived += frametime;
9521                         if (killsequence > decal->decalsequence || decal->lived >= lifetime)
9522                         {
9523                                 memset(decal, 0, sizeof(*decal));
9524                                 if (decalsystem->freedecal > i)
9525                                         decalsystem->freedecal = i;
9526                         }
9527                 }
9528         }
9529         decal = decalsystem->decals;
9530         while (numdecals > 0 && !decal[numdecals-1].color4f[0][3])
9531                 numdecals--;
9532
9533         // collapse the array by shuffling the tail decals into the gaps
9534         for (;;)
9535         {
9536                 while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4f[0][3])
9537                         decalsystem->freedecal++;
9538                 if (decalsystem->freedecal == numdecals)
9539                         break;
9540                 decal[decalsystem->freedecal] = decal[--numdecals];
9541         }
9542
9543         decalsystem->numdecals = numdecals;
9544
9545         if (numdecals <= 0)
9546         {
9547                 // if there are no decals left, reset decalsystem
9548                 R_DecalSystem_Reset(decalsystem);
9549         }
9550 }
9551
9552 extern skinframe_t *decalskinframe;
9553 static void R_DrawModelDecals_Entity(entity_render_t *ent)
9554 {
9555         int i;
9556         decalsystem_t *decalsystem = &ent->decalsystem;
9557         int numdecals;
9558         tridecal_t *decal;
9559         float faderate;
9560         float alpha;
9561         float *v3f;
9562         float *c4f;
9563         float *t2f;
9564         const int *e;
9565         const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL;
9566         int numtris = 0;
9567
9568         numdecals = decalsystem->numdecals;
9569         if (!numdecals)
9570                 return;
9571
9572         if (r_showsurfaces.integer)
9573                 return;
9574
9575         if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE))
9576         {
9577                 R_DecalSystem_Reset(decalsystem);
9578                 return;
9579         }
9580
9581         // if the model is static it doesn't matter what value we give for
9582         // wantnormals and wanttangents, so this logic uses only rules applicable
9583         // to a model, knowing that they are meaningless otherwise
9584         RSurf_ActiveModelEntity(ent, false, false, false);
9585
9586         decalsystem->lastupdatetime = r_refdef.scene.time;
9587
9588         faderate = 1.0f / max(0.001f, cl_decals_fadetime.value);
9589
9590         // update vertex positions for animated models
9591         v3f = decalsystem->vertex3f;
9592         c4f = decalsystem->color4f;
9593         t2f = decalsystem->texcoord2f;
9594         for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++)
9595         {
9596                 if (!decal->color4f[0][3])
9597                         continue;
9598
9599                 if (surfacevisible && !surfacevisible[decal->surfaceindex])
9600                         continue;
9601
9602                 // skip backfaces
9603                 if (decal->triangleindex < 0 && DotProduct(r_refdef.view.origin, decal->plane) < decal->plane[3])
9604                         continue;
9605
9606                 // update color values for fading decals
9607                 if (decal->lived >= cl_decals_time.value)
9608                         alpha = 1 - faderate * (decal->lived - cl_decals_time.value);
9609                 else
9610                         alpha = 1.0f;
9611
9612                 c4f[ 0] = decal->color4f[0][0] * alpha;
9613                 c4f[ 1] = decal->color4f[0][1] * alpha;
9614                 c4f[ 2] = decal->color4f[0][2] * alpha;
9615                 c4f[ 3] = 1;
9616                 c4f[ 4] = decal->color4f[1][0] * alpha;
9617                 c4f[ 5] = decal->color4f[1][1] * alpha;
9618                 c4f[ 6] = decal->color4f[1][2] * alpha;
9619                 c4f[ 7] = 1;
9620                 c4f[ 8] = decal->color4f[2][0] * alpha;
9621                 c4f[ 9] = decal->color4f[2][1] * alpha;
9622                 c4f[10] = decal->color4f[2][2] * alpha;
9623                 c4f[11] = 1;
9624
9625                 t2f[0] = decal->texcoord2f[0][0];
9626                 t2f[1] = decal->texcoord2f[0][1];
9627                 t2f[2] = decal->texcoord2f[1][0];
9628                 t2f[3] = decal->texcoord2f[1][1];
9629                 t2f[4] = decal->texcoord2f[2][0];
9630                 t2f[5] = decal->texcoord2f[2][1];
9631
9632                 // update vertex positions for animated models
9633                 if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles)
9634                 {
9635                         e = rsurface.modelelement3i + 3*decal->triangleindex;
9636                         VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f);
9637                         VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3);
9638                         VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6);
9639                 }
9640                 else
9641                 {
9642                         VectorCopy(decal->vertex3f[0], v3f);
9643                         VectorCopy(decal->vertex3f[1], v3f + 3);
9644                         VectorCopy(decal->vertex3f[2], v3f + 6);
9645                 }
9646
9647                 if (r_refdef.fogenabled)
9648                 {
9649                         alpha = RSurf_FogVertex(v3f);
9650                         VectorScale(c4f, alpha, c4f);
9651                         alpha = RSurf_FogVertex(v3f + 3);
9652                         VectorScale(c4f + 4, alpha, c4f + 4);
9653                         alpha = RSurf_FogVertex(v3f + 6);
9654                         VectorScale(c4f + 8, alpha, c4f + 8);
9655                 }
9656
9657                 v3f += 9;
9658                 c4f += 12;
9659                 t2f += 6;
9660                 numtris++;
9661         }
9662
9663         if (numtris > 0)
9664         {
9665                 r_refdef.stats[r_stat_drawndecals] += numtris;
9666
9667                 // now render the decals all at once
9668                 // (this assumes they all use one particle font texture!)
9669                 RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, ent->shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false);
9670 //              R_Mesh_ResetTextureState();
9671                 R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f);
9672                 GL_DepthMask(false);
9673                 GL_DepthRange(0, 1);
9674                 GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value);
9675                 GL_DepthTest(true);
9676                 GL_CullFace(GL_NONE);
9677                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
9678                 R_SetupShader_Generic(decalskinframe->base, false, false, false);
9679                 R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0);
9680         }
9681 }
9682
9683 static void R_DrawModelDecals(void)
9684 {
9685         int i, numdecals;
9686
9687         // fade faster when there are too many decals
9688         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9689         for (i = 0;i < r_refdef.scene.numentities;i++)
9690                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9691
9692         R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity);
9693         for (i = 0;i < r_refdef.scene.numentities;i++)
9694                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9695                         R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]);
9696
9697         R_DecalSystem_ApplySplatEntitiesQueue();
9698
9699         numdecals = r_refdef.scene.worldentity->decalsystem.numdecals;
9700         for (i = 0;i < r_refdef.scene.numentities;i++)
9701                 numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals;
9702
9703         r_refdef.stats[r_stat_totaldecals] += numdecals;
9704
9705         if (r_showsurfaces.integer || !r_drawdecals.integer)
9706                 return;
9707
9708         R_DrawModelDecals_Entity(r_refdef.scene.worldentity);
9709
9710         for (i = 0;i < r_refdef.scene.numentities;i++)
9711         {
9712                 if (!r_refdef.viewcache.entityvisible[i])
9713                         continue;
9714                 if (r_refdef.scene.entities[i]->decalsystem.numdecals)
9715                         R_DrawModelDecals_Entity(r_refdef.scene.entities[i]);
9716         }
9717 }
9718
9719 static void R_DrawDebugModel(void)
9720 {
9721         entity_render_t *ent = rsurface.entity;
9722         int j, flagsmask;
9723         const msurface_t *surface;
9724         model_t *model = ent->model;
9725
9726         if (!sv.active  && !cls.demoplayback && ent != r_refdef.scene.worldentity)
9727                 return;
9728
9729         if (r_showoverdraw.value > 0)
9730         {
9731                 float c = r_refdef.view.colorscale * r_showoverdraw.value * 0.125f;
9732                 flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9733                 R_SetupShader_Generic_NoTexture(false, false);
9734                 GL_DepthTest(false);
9735                 GL_DepthMask(false);
9736                 GL_DepthRange(0, 1);
9737                 GL_BlendFunc(GL_ONE, GL_ONE);
9738                 for (j = model->submodelsurfaces_start;j < model->submodelsurfaces_end;j++)
9739                 {
9740                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9741                                 continue;
9742                         surface = model->data_surfaces + j;
9743                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9744                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9745                         {
9746                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, 1, &surface);
9747                                 GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back);
9748                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9749                                         GL_Color(c, 0, 0, 1.0f);
9750                                 else if (ent == r_refdef.scene.worldentity)
9751                                         GL_Color(c, c, c, 1.0f);
9752                                 else
9753                                         GL_Color(0, c, 0, 1.0f);
9754                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9755                                 RSurf_DrawBatch();
9756                         }
9757                 }
9758                 rsurface.texture = NULL;
9759         }
9760
9761         flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL;
9762
9763 //      R_Mesh_ResetTextureState();
9764         R_SetupShader_Generic_NoTexture(false, false);
9765         GL_DepthRange(0, 1);
9766         GL_DepthTest(!r_showdisabledepthtest.integer);
9767         GL_DepthMask(false);
9768         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9769
9770         if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs)
9771         {
9772                 int triangleindex;
9773                 int bihleafindex;
9774                 qbool cullbox = false;
9775                 const q3mbrush_t *brush;
9776                 const bih_t *bih = &model->collision_bih;
9777                 const bih_leaf_t *bihleaf;
9778                 float vertex3f[3][3];
9779                 GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value);
9780                 for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++)
9781                 {
9782                         if (cullbox && R_CullFrustum(bihleaf->mins, bihleaf->maxs))
9783                                 continue;
9784                         switch (bihleaf->type)
9785                         {
9786                         case BIH_BRUSH:
9787                                 brush = model->brush.data_brushes + bihleaf->itemindex;
9788                                 if (brush->colbrushf && brush->colbrushf->numtriangles)
9789                                 {
9790                                         GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9791                                         R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL);
9792                                         R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0);
9793                                 }
9794                                 break;
9795                         case BIH_COLLISIONTRIANGLE:
9796                                 triangleindex = bihleaf->itemindex;
9797                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]);
9798                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]);
9799                                 VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]);
9800                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9801                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9802                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9803                                 break;
9804                         case BIH_RENDERTRIANGLE:
9805                                 triangleindex = bihleaf->itemindex;
9806                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]);
9807                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]);
9808                                 VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]);
9809                                 GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value);
9810                                 R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL);
9811                                 R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
9812                                 break;
9813                         }
9814                 }
9815         }
9816
9817         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
9818
9819 #ifndef USE_GLES2
9820         if (r_showtris.value > 0 && qglPolygonMode)
9821         {
9822                 if (r_showdisabledepthtest.integer)
9823                 {
9824                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9825                         GL_DepthMask(false);
9826                 }
9827                 else
9828                 {
9829                         GL_BlendFunc(GL_ONE, GL_ZERO);
9830                         GL_DepthMask(true);
9831                 }
9832                 qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);CHECKGLERROR
9833                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9834                 {
9835                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9836                                 continue;
9837                         surface = model->data_surfaces + j;
9838                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9839                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9840                         {
9841                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9842                                 if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED))
9843                                         GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value);
9844                                 else if (ent == r_refdef.scene.worldentity)
9845                                         GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value);
9846                                 else
9847                                         GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value);
9848                                 R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
9849                                 RSurf_DrawBatch();
9850                         }
9851                 }
9852                 qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);CHECKGLERROR
9853                 rsurface.texture = NULL;
9854         }
9855
9856 # if 0
9857         // FIXME!  implement r_shownormals with just triangles
9858         if (r_shownormals.value != 0 && qglBegin)
9859         {
9860                 int l, k;
9861                 vec3_t v;
9862                 if (r_showdisabledepthtest.integer)
9863                 {
9864                         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
9865                         GL_DepthMask(false);
9866                 }
9867                 else
9868                 {
9869                         GL_BlendFunc(GL_ONE, GL_ZERO);
9870                         GL_DepthMask(true);
9871                 }
9872                 for (j = model->submodelsurfaces_start; j < model->submodelsurfaces_end; j++)
9873                 {
9874                         if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j])
9875                                 continue;
9876                         surface = model->data_surfaces + j;
9877                         rsurface.texture = R_GetCurrentTexture(surface->texture);
9878                         if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles)
9879                         {
9880                                 RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface);
9881                                 qglBegin(GL_LINES);
9882                                 if (r_shownormals.value < 0 && rsurface.batchnormal3f)
9883                                 {
9884                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9885                                         {
9886                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9887                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9888                                                 qglVertex3f(v[0], v[1], v[2]);
9889                                                 VectorMA(v, -r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9890                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9891                                                 qglVertex3f(v[0], v[1], v[2]);
9892                                         }
9893                                 }
9894                                 if (r_shownormals.value > 0 && rsurface.batchsvector3f)
9895                                 {
9896                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9897                                         {
9898                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9899                                                 GL_Color(r_refdef.view.colorscale, 0, 0, 1);
9900                                                 qglVertex3f(v[0], v[1], v[2]);
9901                                                 VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v);
9902                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9903                                                 qglVertex3f(v[0], v[1], v[2]);
9904                                         }
9905                                 }
9906                                 if (r_shownormals.value > 0 && rsurface.batchtvector3f)
9907                                 {
9908                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9909                                         {
9910                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9911                                                 GL_Color(0, r_refdef.view.colorscale, 0, 1);
9912                                                 qglVertex3f(v[0], v[1], v[2]);
9913                                                 VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v);
9914                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9915                                                 qglVertex3f(v[0], v[1], v[2]);
9916                                         }
9917                                 }
9918                                 if (r_shownormals.value > 0 && rsurface.batchnormal3f)
9919                                 {
9920                                         for (k = 0, l = rsurface.batchfirstvertex;k < rsurface.batchnumvertices;k++, l++)
9921                                         {
9922                                                 VectorCopy(rsurface.batchvertex3f + l * 3, v);
9923                                                 GL_Color(0, 0, r_refdef.view.colorscale, 1);
9924                                                 qglVertex3f(v[0], v[1], v[2]);
9925                                                 VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v);
9926                                                 GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, 1);
9927                                                 qglVertex3f(v[0], v[1], v[2]);
9928                                         }
9929                                 }
9930                                 qglEnd();
9931                                 CHECKGLERROR
9932                         }
9933                 }
9934                 rsurface.texture = NULL;
9935         }
9936 # endif
9937 #endif
9938 }
9939
9940 int r_maxsurfacelist = 0;
9941 const msurface_t **r_surfacelist = NULL;
9942 void R_DrawModelSurfaces(entity_render_t *ent, qbool skysurfaces, qbool writedepth, qbool depthonly, qbool debug, qbool prepass, qbool ui)
9943 {
9944         int i, j, flagsmask;
9945         model_t *model = ent->model;
9946         msurface_t *surfaces;
9947         unsigned char *update;
9948         int numsurfacelist = 0;
9949         if (model == NULL)
9950                 return;
9951
9952         if (r_maxsurfacelist < model->num_surfaces)
9953         {
9954                 r_maxsurfacelist = model->num_surfaces;
9955                 if (r_surfacelist)
9956                         Mem_Free((msurface_t **)r_surfacelist);
9957                 r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist));
9958         }
9959
9960         if (r_showsurfaces.integer && r_showsurfaces.integer != 3)
9961                 RSurf_ActiveModelEntity(ent, false, false, false);
9962         else if (prepass)
9963                 RSurf_ActiveModelEntity(ent, true, true, true);
9964         else if (depthonly)
9965                 RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false);
9966         else
9967                 RSurf_ActiveModelEntity(ent, true, true, false);
9968
9969         surfaces = model->data_surfaces;
9970         update = model->brushq1.lightmapupdateflags;
9971
9972         flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL;
9973
9974         if (debug)
9975         {
9976                 R_DrawDebugModel();
9977                 rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
9978                 return;
9979         }
9980
9981         // check if this is an empty model
9982         if (model->submodelsurfaces_start >= model->submodelsurfaces_end)
9983                 return;
9984
9985         rsurface.lightmaptexture = NULL;
9986         rsurface.deluxemaptexture = NULL;
9987         rsurface.uselightmaptexture = false;
9988         rsurface.texture = NULL;
9989         rsurface.rtlight = NULL;
9990         numsurfacelist = 0;
9991
9992         // add visible surfaces to draw list
9993         if (ent == r_refdef.scene.worldentity)
9994         {
9995                 // for the world entity, check surfacevisible
9996                 for (i = model->submodelsurfaces_start;i < model->submodelsurfaces_end;i++)
9997                 {
9998                         j = model->modelsurfaces_sorted[i];
9999                         if (r_refdef.viewcache.world_surfacevisible[j])
10000                                 r_surfacelist[numsurfacelist++] = surfaces + j;
10001                 }
10002
10003                 // don't do anything if there were no surfaces added (none of the world entity is visible)
10004                 if (!numsurfacelist)
10005                 {
10006                         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10007                         return;
10008                 }
10009         }
10010         else if (ui)
10011         {
10012                 // for ui we have to preserve the order of surfaces (not using modelsurfaces_sorted)
10013                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10014                         r_surfacelist[numsurfacelist++] = surfaces + i;
10015         }
10016         else
10017         {
10018                 // add all surfaces
10019                 for (i = model->submodelsurfaces_start; i < model->submodelsurfaces_end; i++)
10020                         r_surfacelist[numsurfacelist++] = surfaces + model->modelsurfaces_sorted[i];
10021         }
10022
10023         /*
10024          * Mark lightmaps as dirty if their lightstyle's value changed. We do this by
10025          * using style chains because most styles do not change on most frames, and most
10026          * surfaces do not have styles on them. Mods like Arcane Dimensions (e.g. ad_necrokeep)
10027          * break this rule and animate most surfaces.
10028          */
10029         if (update && !skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.scene.lightmapintensity > 0 && r_q1bsp_lightmap_updates_enabled.integer)
10030         {
10031                 model_brush_lightstyleinfo_t *style;
10032
10033                 // For each lightstyle, check if its value changed and mark the lightmaps as dirty if so
10034                 for (i = 0, style = model->brushq1.data_lightstyleinfo; i < model->brushq1.num_lightstyles; i++, style++)
10035                 {
10036                         if (style->value != r_refdef.scene.lightstylevalue[style->style])
10037                         {
10038                                 int* list = style->surfacelist;
10039                                 style->value = r_refdef.scene.lightstylevalue[style->style];
10040                                 // Value changed - mark the surfaces belonging to this style chain as dirty
10041                                 for (j = 0; j < style->numsurfaces; j++)
10042                                         update[list[j]] = true;
10043                         }
10044                 }
10045                 // Now check if update flags are set on any surfaces that are visible
10046                 if (r_q1bsp_lightmap_updates_hidden_surfaces.integer)
10047                 {
10048                         /* 
10049                          * We can do less frequent texture uploads (approximately 10hz for animated
10050                          * lightstyles) by rebuilding lightmaps on surfaces that are not currently visible.
10051                          * For optimal efficiency, this includes the submodels of the worldmodel, so we
10052                          * use model->num_surfaces, not nummodelsurfaces.
10053                          */
10054                         for (i = 0; i < model->num_surfaces;i++)
10055                                 if (update[i])
10056                                         R_BuildLightMap(ent, surfaces + i, r_q1bsp_lightmap_updates_combine.integer);
10057                 }
10058                 else
10059                 {
10060                         for (i = 0; i < numsurfacelist; i++)
10061                                 if (update[r_surfacelist[i] - surfaces])
10062                                         R_BuildLightMap(ent, (msurface_t *)r_surfacelist[i], r_q1bsp_lightmap_updates_combine.integer);
10063                 }
10064         }
10065
10066         R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass, ui);
10067
10068         // add to stats if desired
10069         if (r_speeds.integer && !skysurfaces && !depthonly)
10070         {
10071                 r_refdef.stats[r_stat_entities_surfaces] += numsurfacelist;
10072                 for (j = 0;j < numsurfacelist;j++)
10073                         r_refdef.stats[r_stat_entities_triangles] += r_surfacelist[j]->num_triangles;
10074         }
10075
10076         rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
10077 }
10078
10079 void R_DebugLine(vec3_t start, vec3_t end)
10080 {
10081         model_t *mod = CL_Mesh_UI();
10082         msurface_t *surf;
10083         int e0, e1, e2, e3;
10084         float offsetx, offsety, x1, y1, x2, y2, width = 1.0f;
10085         float r1 = 1.0f, g1 = 0.0f, b1 = 0.0f, alpha1 = 0.25f;
10086         float r2 = 1.0f, g2 = 1.0f, b2 = 0.0f, alpha2 = 0.25f;
10087         vec4_t w[2], s[2];
10088
10089         // transform to screen coords first
10090         Vector4Set(w[0], start[0], start[1], start[2], 1);
10091         Vector4Set(w[1], end[0], end[1], end[2], 1);
10092         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[0], s[0]);
10093         R_Viewport_TransformToScreen(&r_refdef.view.viewport, w[1], s[1]);
10094         x1 = s[0][0] * vid_conwidth.value / vid.width;
10095         y1 = (vid.height - s[0][1]) * vid_conheight.value / vid.height;
10096         x2 = s[1][0] * vid_conwidth.value / vid.width;
10097         y2 = (vid.height - s[1][1]) * vid_conheight.value / vid.height;
10098         //Con_DPrintf("R_DebugLine: %.0f,%.0f to %.0f,%.0f\n", x1, y1, x2, y2);
10099
10100         // add the line to the UI mesh for drawing later
10101
10102         // width is measured in real pixels
10103         if (fabs(x2 - x1) > fabs(y2 - y1))
10104         {
10105                 offsetx = 0;
10106                 offsety = 0.5f * width * vid_conheight.value / vid.height;
10107         }
10108         else
10109         {
10110                 offsetx = 0.5f * width * vid_conwidth.value / vid.width;
10111                 offsety = 0;
10112         }
10113         surf = Mod_Mesh_AddSurface(mod, Mod_Mesh_GetTexture(mod, "white", 0, 0, MATERIALFLAG_WALL | MATERIALFLAG_VERTEXCOLOR | MATERIALFLAG_ALPHAGEN_VERTEX | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW), true);
10114         e0 = Mod_Mesh_IndexForVertex(mod, surf, x1 - offsetx, y1 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10115         e1 = Mod_Mesh_IndexForVertex(mod, surf, x2 - offsetx, y2 - offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10116         e2 = Mod_Mesh_IndexForVertex(mod, surf, x2 + offsetx, y2 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r2, g2, b2, alpha2);
10117         e3 = Mod_Mesh_IndexForVertex(mod, surf, x1 + offsetx, y1 + offsety, 10, 0, 0, -1, 0, 0, 0, 0, r1, g1, b1, alpha1);
10118         Mod_Mesh_AddTriangle(mod, surf, e0, e1, e2);
10119         Mod_Mesh_AddTriangle(mod, surf, e0, e2, e3);
10120
10121 }
10122
10123
10124 void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10125 {
10126         static texture_t texture;
10127
10128         // fake enough texture and surface state to render this geometry
10129
10130         texture.update_lastrenderframe = -1; // regenerate this texture
10131         texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL;
10132         texture.basealpha = 1.0f;
10133         texture.currentskinframe = skinframe;
10134         texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE
10135         texture.offsetmapping = OFFSETMAPPING_OFF;
10136         texture.offsetscale = 1;
10137         texture.specularscalemod = 1;
10138         texture.specularpowermod = 1;
10139         texture.transparentsort = TRANSPARENTSORT_DISTANCE;
10140
10141         R_DrawCustomSurface_Texture(&texture, texmatrix, materialflags, firstvertex, numvertices, firsttriangle, numtriangles, writedepth, prepass, ui);
10142 }
10143
10144 void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qbool writedepth, qbool prepass, qbool ui)
10145 {
10146         static msurface_t surface;
10147         const msurface_t *surfacelist = &surface;
10148
10149         // fake enough texture and surface state to render this geometry
10150         surface.texture = texture;
10151         surface.num_triangles = numtriangles;
10152         surface.num_firsttriangle = firsttriangle;
10153         surface.num_vertices = numvertices;
10154         surface.num_firstvertex = firstvertex;
10155
10156         // now render it
10157         rsurface.texture = R_GetCurrentTexture(surface.texture);
10158         rsurface.lightmaptexture = NULL;
10159         rsurface.deluxemaptexture = NULL;
10160         rsurface.uselightmaptexture = false;
10161         R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass, ui);
10162 }