]> git.xonotic.org Git - xonotic/d0_blind_id.git/commitdiff
also use SHA-256 here. Incompatible change.
authorRudolf Polzer <divverent@alientrap.org>
Sat, 17 Jul 2010 15:35:27 +0000 (17:35 +0200)
committerRudolf Polzer <divverent@alientrap.org>
Sat, 17 Jul 2010 15:35:27 +0000 (17:35 +0200)
Makefile.am
d0_blind_id.c
sha1.c [deleted file]
sha1.h [deleted file]
sha2.c [new file with mode: 0644]
sha2.h [new file with mode: 0644]

index 2ec8b3d15560ea49144c825eb04cf5ee4144802d..bbfc2e33df9196a04ec451e9da2213677b4743a1 100644 (file)
@@ -5,7 +5,7 @@ blind_id_SOURCES = main.c
 blind_id_LDADD = libd0_blind_id.la
 
 lib_LTLIBRARIES = libd0_blind_id.la
-libd0_blind_id_la_SOURCES = d0_bignum-gmp.c d0_blind_id.c d0.c d0_iobuf.c sha1.c
+libd0_blind_id_la_SOURCES = d0_bignum-gmp.c d0_blind_id.c d0.c d0_iobuf.c sha2.c
 libd0_blind_id_la_LDFLAGS = -versioninfo 1:0:1
 libd0_blind_id_la_CFLAGS = -fvisibility=hidden -Wold-style-definition -Wstrict-prototypes -Wsign-compare -Wdeclaration-after-statement
 # versioninfo:
index 5479171114d774f5439851cd2af8eb318bd47256..1775fbc294c94b44e60f20290458d2d9746db855 100644 (file)
@@ -22,7 +22,16 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 #include <stdio.h>
 #include <string.h>
 #include "d0_bignum.h"
-#include "sha1.h"
+#include "sha2.h"
+
+// our SHA is SHA-256
+#define SHA_DIGESTSIZE 32
+const char *sha(const char *in, size_t len)
+{
+       static char h[32];
+       sha256(h, in, len);
+       return h;
+}
 
 // for zero knowledge, we need multiple instances of schnorr ID scheme... should normally be sequential
 // parallel schnorr ID is not provably zero knowledge :(
diff --git a/sha1.c b/sha1.c
deleted file mode 100644 (file)
index dfeda6f..0000000
--- a/sha1.c
+++ /dev/null
@@ -1,377 +0,0 @@
-/* sha.c - Implementation of the Secure Hash Algorithm
- *
- * Copyright (C) 1995, A.M. Kuchling
- *
- * Distribute and use freely; there are no restrictions on further 
- * dissemination and usage except those imposed by the laws of your 
- * country of residence.
- *
- * Adapted to pike and some cleanup by Niels Möller.
- */
-
-/* $Id: sha1.c,v 1.6 2006/01/08 09:08:29 imipak Exp $ */
-
-/* SHA: NIST's Secure Hash Algorithm */
-
-/* Based on SHA code originally posted to sci.crypt by Peter Gutmann
-   in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
-   Modified to test for endianness on creation of SHA objects by AMK.
-   Also, the original specification of SHA was found to have a weakness
-   by NSA/NIST.  This code implements the fixed version of SHA.
-*/
-
-/* Here's the first paragraph of Peter Gutmann's posting:
-   
-The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
-SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
-what's changed in the new version.  The fix is a simple change which involves
-adding a single rotate in the initial expansion function.  It is unknown
-whether this is an optimal solution to the problem which was discovered in the
-SHA or whether it's simply a bandaid which fixes the problem with a minimum of
-effort (for example the reengineering of a great many Capstone chips).
-*/
-
-#include <string.h>
-#include "sha1.h"
-
-void sha_copy(struct sha_ctx *dest, struct sha_ctx *src)
-{
-       unsigned int i;
-
-       dest->count_l=src->count_l;
-       dest->count_h=src->count_h;
-       for(i=0; i<SHA_DIGESTLEN; i++)
-       {
-               dest->digest[i]=src->digest[i];
-       }
-       for(i=0; i < src->index; i++)
-       {
-               dest->block[i] = src->block[i];
-       }
-       dest->index = src->index;
-}
-
-
-/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
-   save one boolean operation each - thanks to Rich Schroeppel,
-   rcs@cs.arizona.edu for discovering this */
-
-#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
-#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
-#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
-#define f4(x,y,z)   ( x ^ y ^ z )                       /* Rounds 60-79 */
-
-/* The SHA Mysterious Constants */
-
-#define K1  0x5A827999L                                 /* Rounds  0-19 */
-#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
-#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
-#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */
-
-/* SHA initial values */
-
-#define h0init  0x67452301L
-#define h1init  0xEFCDAB89L
-#define h2init  0x98BADCFEL
-#define h3init  0x10325476L
-#define h4init  0xC3D2E1F0L
-
-/* 32-bit rotate left - kludged with shifts */
-
-#define ROTL(n,X)  ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
-
-/* The initial expanding function.  The hash function is defined over an
-   80-word expanded input array W, where the first 16 are copies of the input
-   data, and the remaining 64 are defined by
-
-        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
-
-   This implementation generates these values on the fly in a circular
-   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
-   optimization.
-
-   The updated SHA changes the expanding function by adding a rotate of 1
-   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
-   for this information */
-
-#define expand(W,i) ( W[ i & 15 ] = \
-                     ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
-                                W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
-
-
-/* The prototype SHA sub-round.  The fundamental sub-round is:
-
-        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
-        b' = a;
-        c' = ROTL( 30, b );
-        d' = c;
-        e' = d;
-
-   but this is implemented by unrolling the loop 5 times and renaming the
-   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
-   This code is then replicated 20 times for each of the 4 functions, using
-   the next 20 values from the W[] array each time */
-
-#define subRound(a, b, c, d, e, f, k, data) \
-    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
-
-/* Initialize the SHA values */
-
-void sha_init(struct sha_ctx *ctx)
-{
-       /* Set the h-vars to their initial values */
-       ctx->digest[ 0 ] = h0init;
-       ctx->digest[ 1 ] = h1init;
-       ctx->digest[ 2 ] = h2init;
-       ctx->digest[ 3 ] = h3init;
-       ctx->digest[ 4 ] = h4init;
-
-       /* Initialize bit count */
-       ctx->count_l = ctx->count_h = 0;
-  
-       /* Initialize buffer */
-       ctx->index = 0;
-}
-
-/* Perform the SHA transformation.  Note that this code, like MD5, seems to
-   break some optimizing compilers due to the complexity of the expressions
-   and the size of the basic block.  It may be necessary to split it into
-   sections, e.g. based on the four subrounds
-
-   Note that this function destroys the data area */
-
-static void sha_transform(struct sha_ctx *ctx, unsigned int *data )
-{
-       register unsigned int A, B, C, D, E;     /* Local vars */
-
-       /* Set up first buffer and local data buffer */
-       A = ctx->digest[0];
-       B = ctx->digest[1];
-       C = ctx->digest[2];
-       D = ctx->digest[3];
-       E = ctx->digest[4];
-
-       /* Heavy mangling, in 4 sub-rounds of 20 interations each. */
-       subRound( A, B, C, D, E, f1, K1, data[ 0] );
-       subRound( E, A, B, C, D, f1, K1, data[ 1] );
-       subRound( D, E, A, B, C, f1, K1, data[ 2] );
-       subRound( C, D, E, A, B, f1, K1, data[ 3] );
-       subRound( B, C, D, E, A, f1, K1, data[ 4] );
-       subRound( A, B, C, D, E, f1, K1, data[ 5] );
-       subRound( E, A, B, C, D, f1, K1, data[ 6] );
-       subRound( D, E, A, B, C, f1, K1, data[ 7] );
-       subRound( C, D, E, A, B, f1, K1, data[ 8] );
-       subRound( B, C, D, E, A, f1, K1, data[ 9] );
-       subRound( A, B, C, D, E, f1, K1, data[10] );
-       subRound( E, A, B, C, D, f1, K1, data[11] );
-       subRound( D, E, A, B, C, f1, K1, data[12] );
-       subRound( C, D, E, A, B, f1, K1, data[13] );
-       subRound( B, C, D, E, A, f1, K1, data[14] );
-       subRound( A, B, C, D, E, f1, K1, data[15] );
-       subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
-       subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
-       subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
-       subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
-
-       subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
-       subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
-       subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
-       subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
-       subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
-       subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
-       subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
-       subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
-       subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
-       subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
-       subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
-       subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
-       subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
-       subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
-       subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
-       subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
-       subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
-       subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
-       subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
-       subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
-
-       subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
-       subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
-       subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
-       subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
-       subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
-       subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
-       subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
-       subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
-       subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
-       subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
-       subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
-       subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
-       subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
-       subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
-       subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
-       subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
-       subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
-       subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
-       subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
-       subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
-
-       subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
-       subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
-       subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
-       subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
-       subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
-       subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
-       subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
-       subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
-       subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
-       subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
-       subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
-       subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
-       subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
-       subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
-       subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
-       subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
-       subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
-       subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
-       subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
-       subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
-
-       /* Build message digest */
-       ctx->digest[0] += A;
-       ctx->digest[1] += B;
-       ctx->digest[2] += C;
-       ctx->digest[3] += D;
-       ctx->digest[4] += E;
-}
-
-
-static void sha_block(struct sha_ctx *ctx, unsigned char *block)
-{
-       unsigned int data[SHA_DATALEN];
-       unsigned int i;
-  
-       /* Update block count */
-       if (!++ctx->count_l)
-       {
-               ++ctx->count_h;
-       }
-
-       /* Endian independent conversion */
-       for (i = 0; i<SHA_DATALEN; i++, block += 4)
-       {
-               data[i] = STRING2INT(block);
-       }
-
-       sha_transform(ctx, data);
-}
-
-void sha_update(struct sha_ctx *ctx, unsigned char *buffer, unsigned int len)
-{
-       if (ctx->index)
-       { /* Try to fill partial block */
-               unsigned int left = SHA_DATASIZE - ctx->index;
-               if (len < left)
-               {
-                       memcpy(ctx->block + ctx->index, buffer, len);
-                       ctx->index += len;
-                       return; /* Finished */
-               }
-               else
-               {
-                       memcpy(ctx->block + ctx->index, buffer, left);
-                       sha_block(ctx, ctx->block);
-                       buffer += left;
-                       len -= left;
-               }
-       }
-       while (len >= SHA_DATASIZE)
-       {
-               sha_block(ctx, buffer);
-               buffer += SHA_DATASIZE;
-               len -= SHA_DATASIZE;
-       }
-       if ((ctx->index = len))     /* This assignment is intended */
-       {
-               /* Buffer leftovers */
-               memcpy(ctx->block, buffer, len);
-       }
-}
-         
-/* Final wrapup - pad to SHA_DATASIZE-byte boundary with the bit pattern
-   1 0* (64-bit count of bits processed, MSB-first) */
-
-void sha_final(struct sha_ctx *ctx)
-{
-       unsigned int data[SHA_DATALEN];
-       unsigned int i;
-       unsigned int words;
-  
-       i = ctx->index;
-       /* Set the first char of padding to 0x80.  This is safe since there is
-          always at least one byte free */
-       ctx->block[i++] = 0x80;
-
-       /* Fill rest of word */
-       for( ; i & 3; i++)
-       {
-               ctx->block[i] = 0;
-       }
-       /* i is now a multiple of the word size 4 */
-       words = i >> 2;
-       for (i = 0; i < words; i++)
-       {
-               data[i] = STRING2INT(ctx->block + 4*i);
-       }
-
-       if (words > (SHA_DATALEN-2))
-       { /* No room for length in this block. Process it and
-          * pad with another one */
-               for (i = words ; i < SHA_DATALEN; i++)
-               {
-                       data[i] = 0;
-               }
-               sha_transform(ctx, data);
-               for (i = 0; i < (SHA_DATALEN-2); i++)
-               {
-                       data[i] = 0;
-               }
-       }
-       else
-       {
-               for (i = words ; i < SHA_DATALEN - 2; i++)
-               {
-                       data[i] = 0;
-               }
-       }
-       /* Theres 512 = 2^9 bits in one block */
-       data[SHA_DATALEN-2] = (ctx->count_h << 9) | (ctx->count_l >> 23);
-       data[SHA_DATALEN-1] = (ctx->count_l << 9) | (ctx->index << 3);
-       sha_transform(ctx, data);
-}
-
-void sha_digest(struct sha_ctx *ctx, unsigned char *s)
-{
-       unsigned int i;
-
-       if (s!=NULL)
-       {
-               for (i = 0; i < SHA_DIGESTLEN; i++)
-               {
-                       *s++ =         ctx->digest[i] >> 24;
-                       *s++ = 0xff & (ctx->digest[i] >> 16);
-                       *s++ = 0xff & (ctx->digest[i] >> 8);
-                       *s++ = 0xff &  ctx->digest[i];
-               }
-       }
-}
-
-unsigned char *sha(unsigned char *buffer, unsigned int len)
-{
-       static unsigned char buf[SHA_DIGESTSIZE];
-       SHA_CTX s;
-       sha_init(&s);
-       sha_update(&s, buffer, len);
-       sha_final(&s);
-       sha_digest(&s, buf);
-       return buf;
-}
diff --git a/sha1.h b/sha1.h
deleted file mode 100644 (file)
index bbff148..0000000
--- a/sha1.h
+++ /dev/null
@@ -1,34 +0,0 @@
-#ifndef __SHA1_H__
-#define __SHA1_H__
-
-#define SHA_DATASIZE    64
-#define SHA_DATALEN     16
-#define SHA_DIGESTSIZE  20
-#define SHA_DIGESTLEN    5
-/* The structure for storing SHA info */
-
-typedef struct sha_ctx {
-  unsigned int digest[SHA_DIGESTLEN];  /* Message digest */
-  unsigned int count_l, count_h;       /* 64-bit block count */
-  unsigned char block[SHA_DATASIZE];     /* SHA data buffer */
-  unsigned int index;                  /* index into buffer */
-} SHA_CTX;
-
-void sha_init(struct sha_ctx *ctx);
-void sha_update(struct sha_ctx *ctx, unsigned char *buffer, unsigned int len);
-void sha_final(struct sha_ctx *ctx);
-void sha_digest(struct sha_ctx *ctx, unsigned char *s);
-void sha_copy(struct sha_ctx *dest, struct sha_ctx *src);
-
-#ifndef EXTRACT_UCHAR
-#define EXTRACT_UCHAR(p)  (*(unsigned char *)(p))
-#endif
-
-#define STRING2INT(s) ((((((EXTRACT_UCHAR(s) << 8)    \
-                        | EXTRACT_UCHAR(s+1)) << 8)  \
-                        | EXTRACT_UCHAR(s+2)) << 8)  \
-                        | EXTRACT_UCHAR(s+3))
-
-unsigned char *sha(unsigned char *buffer, unsigned int len);
-
-#endif
diff --git a/sha2.c b/sha2.c
new file mode 100644 (file)
index 0000000..a7b2afe
--- /dev/null
+++ b/sha2.c
@@ -0,0 +1,1076 @@
+/*
+ * FILE:       sha2.c
+ * AUTHOR:     Aaron D. Gifford - http://www.aarongifford.com/
+ * 
+ * Copyright (c) 2000-2001, Aaron D. Gifford
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holder nor the names of contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
+ */
+
+#include <string.h>    /* memcpy()/memset() or bcopy()/bzero() */
+#include <assert.h>    /* assert() */
+#include "sha2.h"
+
+/*
+ * ASSERT NOTE:
+ * Some sanity checking code is included using assert().  On my FreeBSD
+ * system, this additional code can be removed by compiling with NDEBUG
+ * defined.  Check your own systems manpage on assert() to see how to
+ * compile WITHOUT the sanity checking code on your system.
+ *
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file).  Either define on the command line, for example:
+ *
+ *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ *   #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+
+
+/*** SHA-256/384/512 Machine Architecture Definitions *****************/
+/*
+ * BYTE_ORDER NOTE:
+ *
+ * Please make sure that your system defines BYTE_ORDER.  If your
+ * architecture is little-endian, make sure it also defines
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
+ * equivilent.
+ *
+ * If your system does not define the above, then you can do so by
+ * hand like this:
+ *
+ *   #define LITTLE_ENDIAN 1234
+ *   #define BIG_ENDIAN    4321
+ *
+ * And for little-endian machines, add:
+ *
+ *   #define BYTE_ORDER LITTLE_ENDIAN 
+ *
+ * Or for big-endian machines:
+ *
+ *   #define BYTE_ORDER BIG_ENDIAN
+ *
+ * The FreeBSD machine this was written on defines BYTE_ORDER
+ * appropriately by including <sys/types.h> (which in turn includes
+ * <machine/endian.h> where the appropriate definitions are actually
+ * made).
+ */
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
+#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
+#endif
+
+/*
+ * Define the followingsha2_* types to types of the correct length on
+ * the native archtecture.   Most BSD systems and Linux define u_intXX_t
+ * types.  Machines with very recent ANSI C headers, can use the
+ * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
+ * during compile or in the sha.h header file.
+ *
+ * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
+ * will need to define these three typedefs below (and the appropriate
+ * ones in sha.h too) by hand according to their system architecture.
+ *
+ * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
+ * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
+ */
+#ifdef SHA2_USE_INTTYPES_H
+
+typedef uint8_t  sha2_byte;    /* Exactly 1 byte */
+typedef uint32_t sha2_word32;  /* Exactly 4 bytes */
+typedef uint64_t sha2_word64;  /* Exactly 8 bytes */
+
+#else /* SHA2_USE_INTTYPES_H */
+
+typedef u_int8_t  sha2_byte;   /* Exactly 1 byte */
+typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
+typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
+/* NOTE: Most of these are in sha2.h */
+#define SHA256_SHORT_BLOCK_LENGTH      (SHA256_BLOCK_LENGTH - 8)
+#define SHA384_SHORT_BLOCK_LENGTH      (SHA384_BLOCK_LENGTH - 16)
+#define SHA512_SHORT_BLOCK_LENGTH      (SHA512_BLOCK_LENGTH - 16)
+
+
+/*** ENDIAN REVERSAL MACROS *******************************************/
+#if BYTE_ORDER == LITTLE_ENDIAN
+#define REVERSE32(w,x) { \
+       sha2_word32 tmp = (w); \
+       tmp = (tmp >> 16) | (tmp << 16); \
+       (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
+}
+#define REVERSE64(w,x) { \
+       sha2_word64 tmp = (w); \
+       tmp = (tmp >> 32) | (tmp << 32); \
+       tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
+             ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
+       (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
+             ((tmp & 0x0000ffff0000ffffULL) << 16); \
+}
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+/*
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
+ * unsigned 128-bit integer (represented using a two-element array of
+ * 64-bit words):
+ */
+#define ADDINC128(w,n) { \
+       (w)[0] += (sha2_word64)(n); \
+       if ((w)[0] < (n)) { \
+               (w)[1]++; \
+       } \
+}
+
+/*
+ * Macros for copying blocks of memory and for zeroing out ranges
+ * of memory.  Using these macros makes it easy to switch from
+ * using memset()/memcpy() and using bzero()/bcopy().
+ *
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
+ * choose to use:
+ */
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
+/* Default to memset()/memcpy() if no option is specified */
+#define        SHA2_USE_MEMSET_MEMCPY  1
+#endif
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
+/* Abort with an error if BOTH options are defined */
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
+#endif
+
+#ifdef SHA2_USE_MEMSET_MEMCPY
+#define MEMSET_BZERO(p,l)      memset((p), 0, (l))
+#define MEMCPY_BCOPY(d,s,l)    memcpy((d), (s), (l))
+#endif
+#ifdef SHA2_USE_BZERO_BCOPY
+#define MEMSET_BZERO(p,l)      bzero((p), (l))
+#define MEMCPY_BCOPY(d,s,l)    bcopy((s), (d), (l))
+#endif
+
+
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
+/*
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
+ *
+ *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
+ *   S is a ROTATION) because the SHA-256/384/512 description document
+ *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
+ *   same "backwards" definition.
+ */
+/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
+#define R(b,x)                 ((x) >> (b))
+/* 32-bit Rotate-right (used in SHA-256): */
+#define S32(b,x)       (((x) >> (b)) | ((x) << (32 - (b))))
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
+#define S64(b,x)       (((x) >> (b)) | ((x) << (64 - (b))))
+
+/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
+#define Ch(x,y,z)      (((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z)     (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+/* Four of six logical functions used in SHA-256: */
+#define Sigma0_256(x)  (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
+#define Sigma1_256(x)  (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
+#define sigma0_256(x)  (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
+#define sigma1_256(x)  (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
+
+/* Four of six logical functions used in SHA-384 and SHA-512: */
+#define Sigma0_512(x)  (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
+#define Sigma1_512(x)  (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
+#define sigma0_512(x)  (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
+#define sigma1_512(x)  (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
+
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
+/* NOTE: These should not be accessed directly from outside this
+ * library -- they are intended for private internal visibility/use
+ * only.
+ */
+void SHA512_Last(SHA512_CTX*);
+void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
+void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
+
+
+/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
+/* Hash constant words K for SHA-256: */
+const static sha2_word32 K256[64] = {
+       0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+       0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+       0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+       0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+       0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+       0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+       0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+       0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+       0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+       0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+       0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+       0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+       0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+       0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+       0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+       0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+};
+
+/* Initial hash value H for SHA-256: */
+const static sha2_word32 sha256_initial_hash_value[8] = {
+       0x6a09e667UL,
+       0xbb67ae85UL,
+       0x3c6ef372UL,
+       0xa54ff53aUL,
+       0x510e527fUL,
+       0x9b05688cUL,
+       0x1f83d9abUL,
+       0x5be0cd19UL
+};
+
+/* Hash constant words K for SHA-384 and SHA-512: */
+const static sha2_word64 K512[80] = {
+       0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+       0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+       0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+       0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+       0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+       0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+       0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+       0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+       0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+       0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+       0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+       0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+       0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+       0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+       0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+       0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+       0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+       0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+       0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+       0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+       0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+       0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+       0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+       0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+       0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+       0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+       0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+       0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+       0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+       0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+       0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+       0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+       0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
+       0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+       0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+       0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+       0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+       0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+       0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+       0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
+};
+
+/* Initial hash value H for SHA-384 */
+const static sha2_word64 sha384_initial_hash_value[8] = {
+       0xcbbb9d5dc1059ed8ULL,
+       0x629a292a367cd507ULL,
+       0x9159015a3070dd17ULL,
+       0x152fecd8f70e5939ULL,
+       0x67332667ffc00b31ULL,
+       0x8eb44a8768581511ULL,
+       0xdb0c2e0d64f98fa7ULL,
+       0x47b5481dbefa4fa4ULL
+};
+
+/* Initial hash value H for SHA-512 */
+const static sha2_word64 sha512_initial_hash_value[8] = {
+       0x6a09e667f3bcc908ULL,
+       0xbb67ae8584caa73bULL,
+       0x3c6ef372fe94f82bULL,
+       0xa54ff53a5f1d36f1ULL,
+       0x510e527fade682d1ULL,
+       0x9b05688c2b3e6c1fULL,
+       0x1f83d9abfb41bd6bULL,
+       0x5be0cd19137e2179ULL
+};
+
+/*
+ * Constant used by SHA256/384/512_End() functions for converting the
+ * digest to a readable hexadecimal character string:
+ */
+static const char *sha2_hex_digits = "0123456789abcdef";
+
+
+/*** SHA-256: *********************************************************/
+void SHA256_Init(SHA256_CTX* context) {
+       if (context == (SHA256_CTX*)0) {
+               return;
+       }
+       MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
+       MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
+       context->bitcount = 0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)      \
+       REVERSE32(*data++, W256[j]); \
+       T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+             K256[j] + W256[j]; \
+       (d) += T1; \
+       (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+       j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)      \
+       T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+            K256[j] + (W256[j] = *data++); \
+       (d) += T1; \
+       (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+       j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256(a,b,c,d,e,f,g,h)      \
+       s0 = W256[(j+1)&0x0f]; \
+       s0 = sigma0_256(s0); \
+       s1 = W256[(j+14)&0x0f]; \
+       s1 = sigma1_256(s1); \
+       T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+            (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+       (d) += T1; \
+       (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+       j++
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+       sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
+       sha2_word32     T1, *W256;
+       int             j;
+
+       W256 = (sha2_word32*)context->buffer;
+
+       /* Initialize registers with the prev. intermediate value */
+       a = context->state[0];
+       b = context->state[1];
+       c = context->state[2];
+       d = context->state[3];
+       e = context->state[4];
+       f = context->state[5];
+       g = context->state[6];
+       h = context->state[7];
+
+       j = 0;
+       do {
+               /* Rounds 0 to 15 (unrolled): */
+               ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+               ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+               ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+               ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+               ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+               ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+               ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+               ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+       } while (j < 16);
+
+       /* Now for the remaining rounds to 64: */
+       do {
+               ROUND256(a,b,c,d,e,f,g,h);
+               ROUND256(h,a,b,c,d,e,f,g);
+               ROUND256(g,h,a,b,c,d,e,f);
+               ROUND256(f,g,h,a,b,c,d,e);
+               ROUND256(e,f,g,h,a,b,c,d);
+               ROUND256(d,e,f,g,h,a,b,c);
+               ROUND256(c,d,e,f,g,h,a,b);
+               ROUND256(b,c,d,e,f,g,h,a);
+       } while (j < 64);
+
+       /* Compute the current intermediate hash value */
+       context->state[0] += a;
+       context->state[1] += b;
+       context->state[2] += c;
+       context->state[3] += d;
+       context->state[4] += e;
+       context->state[5] += f;
+       context->state[6] += g;
+       context->state[7] += h;
+
+       /* Clean up */
+       a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+       sha2_word32     a, b, c, d, e, f, g, h, s0, s1;
+       sha2_word32     T1, T2, *W256;
+       int             j;
+
+       W256 = (sha2_word32*)context->buffer;
+
+       /* Initialize registers with the prev. intermediate value */
+       a = context->state[0];
+       b = context->state[1];
+       c = context->state[2];
+       d = context->state[3];
+       e = context->state[4];
+       f = context->state[5];
+       g = context->state[6];
+       h = context->state[7];
+
+       j = 0;
+       do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+               /* Copy data while converting to host byte order */
+               REVERSE32(*data++,W256[j]);
+               /* Apply the SHA-256 compression function to update a..h */
+               T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+               /* Apply the SHA-256 compression function to update a..h with copy */
+               T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+               T2 = Sigma0_256(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+
+               j++;
+       } while (j < 16);
+
+       do {
+               /* Part of the message block expansion: */
+               s0 = W256[(j+1)&0x0f];
+               s0 = sigma0_256(s0);
+               s1 = W256[(j+14)&0x0f]; 
+               s1 = sigma1_256(s1);
+
+               /* Apply the SHA-256 compression function to update a..h */
+               T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
+                    (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+               T2 = Sigma0_256(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+
+               j++;
+       } while (j < 64);
+
+       /* Compute the current intermediate hash value */
+       context->state[0] += a;
+       context->state[1] += b;
+       context->state[2] += c;
+       context->state[3] += d;
+       context->state[4] += e;
+       context->state[5] += f;
+       context->state[6] += g;
+       context->state[7] += h;
+
+       /* Clean up */
+       a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
+       unsigned int    freespace, usedspace;
+
+       if (len == 0) {
+               /* Calling with no data is valid - we do nothing */
+               return;
+       }
+
+       /* Sanity check: */
+       assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
+
+       usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
+       if (usedspace > 0) {
+               /* Calculate how much free space is available in the buffer */
+               freespace = SHA256_BLOCK_LENGTH - usedspace;
+
+               if (len >= freespace) {
+                       /* Fill the buffer completely and process it */
+                       MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+                       context->bitcount += freespace << 3;
+                       len -= freespace;
+                       data += freespace;
+                       SHA256_Transform(context, (sha2_word32*)context->buffer);
+               } else {
+                       /* The buffer is not yet full */
+                       MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+                       context->bitcount += len << 3;
+                       /* Clean up: */
+                       usedspace = freespace = 0;
+                       return;
+               }
+       }
+       while (len >= SHA256_BLOCK_LENGTH) {
+               /* Process as many complete blocks as we can */
+               SHA256_Transform(context, (sha2_word32*)data);
+               context->bitcount += SHA256_BLOCK_LENGTH << 3;
+               len -= SHA256_BLOCK_LENGTH;
+               data += SHA256_BLOCK_LENGTH;
+       }
+       if (len > 0) {
+               /* There's left-overs, so save 'em */
+               MEMCPY_BCOPY(context->buffer, data, len);
+               context->bitcount += len << 3;
+       }
+       /* Clean up: */
+       usedspace = freespace = 0;
+}
+
+void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
+       sha2_word32     *d = (sha2_word32*)digest;
+       unsigned int    usedspace;
+
+       /* Sanity check: */
+       assert(context != (SHA256_CTX*)0);
+
+       /* If no digest buffer is passed, we don't bother doing this: */
+       if (digest != (sha2_byte*)0) {
+               usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
+               /* Convert FROM host byte order */
+               REVERSE64(context->bitcount,context->bitcount);
+#endif
+               if (usedspace > 0) {
+                       /* Begin padding with a 1 bit: */
+                       context->buffer[usedspace++] = 0x80;
+
+                       if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
+                               /* Set-up for the last transform: */
+                               MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
+                       } else {
+                               if (usedspace < SHA256_BLOCK_LENGTH) {
+                                       MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+                               }
+                               /* Do second-to-last transform: */
+                               SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+                               /* And set-up for the last transform: */
+                               MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+                       }
+               } else {
+                       /* Set-up for the last transform: */
+                       MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+
+                       /* Begin padding with a 1 bit: */
+                       *context->buffer = 0x80;
+               }
+               /* Set the bit count: */
+               *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
+
+               /* Final transform: */
+               SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+               {
+                       /* Convert TO host byte order */
+                       int     j;
+                       for (j = 0; j < 8; j++) {
+                               REVERSE32(context->state[j],context->state[j]);
+                               *d++ = context->state[j];
+                       }
+               }
+#else
+               MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
+#endif
+       }
+
+       /* Clean up state data: */
+       MEMSET_BZERO(context, sizeof(context));
+       usedspace = 0;
+}
+
+char *SHA256_End(SHA256_CTX* context, char buffer[]) {
+       sha2_byte       digest[SHA256_DIGEST_LENGTH], *d = digest;
+       int             i;
+
+       /* Sanity check: */
+       assert(context != (SHA256_CTX*)0);
+
+       if (buffer != (char*)0) {
+               SHA256_Final(digest, context);
+
+               for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+                       *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+                       *buffer++ = sha2_hex_digits[*d & 0x0f];
+                       d++;
+               }
+               *buffer = (char)0;
+       } else {
+               MEMSET_BZERO(context, sizeof(context));
+       }
+       MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
+       return buffer;
+}
+
+char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+       SHA256_CTX      context;
+
+       SHA256_Init(&context);
+       SHA256_Update(&context, data, len);
+       return SHA256_End(&context, digest);
+}
+
+
+/*** SHA-512: *********************************************************/
+void SHA512_Init(SHA512_CTX* context) {
+       if (context == (SHA512_CTX*)0) {
+               return;
+       }
+       MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
+       MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
+       context->bitcount[0] = context->bitcount[1] =  0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-512 round macros: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)      \
+       REVERSE64(*data++, W512[j]); \
+       T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+             K512[j] + W512[j]; \
+       (d) += T1, \
+       (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
+       j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)      \
+       T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+             K512[j] + (W512[j] = *data++); \
+       (d) += T1; \
+       (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+       j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512(a,b,c,d,e,f,g,h)      \
+       s0 = W512[(j+1)&0x0f]; \
+       s0 = sigma0_512(s0); \
+       s1 = W512[(j+14)&0x0f]; \
+       s1 = sigma1_512(s1); \
+       T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
+             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
+       (d) += T1; \
+       (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+       j++
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+       sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
+       sha2_word64     T1, *W512 = (sha2_word64*)context->buffer;
+       int             j;
+
+       /* Initialize registers with the prev. intermediate value */
+       a = context->state[0];
+       b = context->state[1];
+       c = context->state[2];
+       d = context->state[3];
+       e = context->state[4];
+       f = context->state[5];
+       g = context->state[6];
+       h = context->state[7];
+
+       j = 0;
+       do {
+               ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+               ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+               ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+               ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+               ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+               ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+               ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+               ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+       } while (j < 16);
+
+       /* Now for the remaining rounds up to 79: */
+       do {
+               ROUND512(a,b,c,d,e,f,g,h);
+               ROUND512(h,a,b,c,d,e,f,g);
+               ROUND512(g,h,a,b,c,d,e,f);
+               ROUND512(f,g,h,a,b,c,d,e);
+               ROUND512(e,f,g,h,a,b,c,d);
+               ROUND512(d,e,f,g,h,a,b,c);
+               ROUND512(c,d,e,f,g,h,a,b);
+               ROUND512(b,c,d,e,f,g,h,a);
+       } while (j < 80);
+
+       /* Compute the current intermediate hash value */
+       context->state[0] += a;
+       context->state[1] += b;
+       context->state[2] += c;
+       context->state[3] += d;
+       context->state[4] += e;
+       context->state[5] += f;
+       context->state[6] += g;
+       context->state[7] += h;
+
+       /* Clean up */
+       a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+       sha2_word64     a, b, c, d, e, f, g, h, s0, s1;
+       sha2_word64     T1, T2, *W512 = (sha2_word64*)context->buffer;
+       int             j;
+
+       /* Initialize registers with the prev. intermediate value */
+       a = context->state[0];
+       b = context->state[1];
+       c = context->state[2];
+       d = context->state[3];
+       e = context->state[4];
+       f = context->state[5];
+       g = context->state[6];
+       h = context->state[7];
+
+       j = 0;
+       do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+               /* Convert TO host byte order */
+               REVERSE64(*data++, W512[j]);
+               /* Apply the SHA-512 compression function to update a..h */
+               T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+               /* Apply the SHA-512 compression function to update a..h with copy */
+               T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+               T2 = Sigma0_512(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+
+               j++;
+       } while (j < 16);
+
+       do {
+               /* Part of the message block expansion: */
+               s0 = W512[(j+1)&0x0f];
+               s0 = sigma0_512(s0);
+               s1 = W512[(j+14)&0x0f];
+               s1 =  sigma1_512(s1);
+
+               /* Apply the SHA-512 compression function to update a..h */
+               T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+                    (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
+               T2 = Sigma0_512(a) + Maj(a, b, c);
+               h = g;
+               g = f;
+               f = e;
+               e = d + T1;
+               d = c;
+               c = b;
+               b = a;
+               a = T1 + T2;
+
+               j++;
+       } while (j < 80);
+
+       /* Compute the current intermediate hash value */
+       context->state[0] += a;
+       context->state[1] += b;
+       context->state[2] += c;
+       context->state[3] += d;
+       context->state[4] += e;
+       context->state[5] += f;
+       context->state[6] += g;
+       context->state[7] += h;
+
+       /* Clean up */
+       a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
+       unsigned int    freespace, usedspace;
+
+       if (len == 0) {
+               /* Calling with no data is valid - we do nothing */
+               return;
+       }
+
+       /* Sanity check: */
+       assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
+
+       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+       if (usedspace > 0) {
+               /* Calculate how much free space is available in the buffer */
+               freespace = SHA512_BLOCK_LENGTH - usedspace;
+
+               if (len >= freespace) {
+                       /* Fill the buffer completely and process it */
+                       MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+                       ADDINC128(context->bitcount, freespace << 3);
+                       len -= freespace;
+                       data += freespace;
+                       SHA512_Transform(context, (sha2_word64*)context->buffer);
+               } else {
+                       /* The buffer is not yet full */
+                       MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+                       ADDINC128(context->bitcount, len << 3);
+                       /* Clean up: */
+                       usedspace = freespace = 0;
+                       return;
+               }
+       }
+       while (len >= SHA512_BLOCK_LENGTH) {
+               /* Process as many complete blocks as we can */
+               SHA512_Transform(context, (sha2_word64*)data);
+               ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
+               len -= SHA512_BLOCK_LENGTH;
+               data += SHA512_BLOCK_LENGTH;
+       }
+       if (len > 0) {
+               /* There's left-overs, so save 'em */
+               MEMCPY_BCOPY(context->buffer, data, len);
+               ADDINC128(context->bitcount, len << 3);
+       }
+       /* Clean up: */
+       usedspace = freespace = 0;
+}
+
+void SHA512_Last(SHA512_CTX* context) {
+       unsigned int    usedspace;
+
+       usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
+       /* Convert FROM host byte order */
+       REVERSE64(context->bitcount[0],context->bitcount[0]);
+       REVERSE64(context->bitcount[1],context->bitcount[1]);
+#endif
+       if (usedspace > 0) {
+               /* Begin padding with a 1 bit: */
+               context->buffer[usedspace++] = 0x80;
+
+               if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
+                       /* Set-up for the last transform: */
+                       MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
+               } else {
+                       if (usedspace < SHA512_BLOCK_LENGTH) {
+                               MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
+                       }
+                       /* Do second-to-last transform: */
+                       SHA512_Transform(context, (sha2_word64*)context->buffer);
+
+                       /* And set-up for the last transform: */
+                       MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
+               }
+       } else {
+               /* Prepare for final transform: */
+               MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
+
+               /* Begin padding with a 1 bit: */
+               *context->buffer = 0x80;
+       }
+       /* Store the length of input data (in bits): */
+       *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
+       *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
+
+       /* Final transform: */
+       SHA512_Transform(context, (sha2_word64*)context->buffer);
+}
+
+void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
+       sha2_word64     *d = (sha2_word64*)digest;
+
+       /* Sanity check: */
+       assert(context != (SHA512_CTX*)0);
+
+       /* If no digest buffer is passed, we don't bother doing this: */
+       if (digest != (sha2_byte*)0) {
+               SHA512_Last(context);
+
+               /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+               {
+                       /* Convert TO host byte order */
+                       int     j;
+                       for (j = 0; j < 8; j++) {
+                               REVERSE64(context->state[j],context->state[j]);
+                               *d++ = context->state[j];
+                       }
+               }
+#else
+               MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
+#endif
+       }
+
+       /* Zero out state data */
+       MEMSET_BZERO(context, sizeof(context));
+}
+
+char *SHA512_End(SHA512_CTX* context, char buffer[]) {
+       sha2_byte       digest[SHA512_DIGEST_LENGTH], *d = digest;
+       int             i;
+
+       /* Sanity check: */
+       assert(context != (SHA512_CTX*)0);
+
+       if (buffer != (char*)0) {
+               SHA512_Final(digest, context);
+
+               for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
+                       *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+                       *buffer++ = sha2_hex_digits[*d & 0x0f];
+                       d++;
+               }
+               *buffer = (char)0;
+       } else {
+               MEMSET_BZERO(context, sizeof(context));
+       }
+       MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
+       return buffer;
+}
+
+char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
+       SHA512_CTX      context;
+
+       SHA512_Init(&context);
+       SHA512_Update(&context, data, len);
+       return SHA512_End(&context, digest);
+}
+
+
+/*** SHA-384: *********************************************************/
+void SHA384_Init(SHA384_CTX* context) {
+       if (context == (SHA384_CTX*)0) {
+               return;
+       }
+       MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
+       MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
+       context->bitcount[0] = context->bitcount[1] = 0;
+}
+
+void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
+       SHA512_Update((SHA512_CTX*)context, data, len);
+}
+
+void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
+       sha2_word64     *d = (sha2_word64*)digest;
+
+       /* Sanity check: */
+       assert(context != (SHA384_CTX*)0);
+
+       /* If no digest buffer is passed, we don't bother doing this: */
+       if (digest != (sha2_byte*)0) {
+               SHA512_Last((SHA512_CTX*)context);
+
+               /* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+               {
+                       /* Convert TO host byte order */
+                       int     j;
+                       for (j = 0; j < 6; j++) {
+                               REVERSE64(context->state[j],context->state[j]);
+                               *d++ = context->state[j];
+                       }
+               }
+#else
+               MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
+#endif
+       }
+
+       /* Zero out state data */
+       MEMSET_BZERO(context, sizeof(context));
+}
+
+char *SHA384_End(SHA384_CTX* context, char buffer[]) {
+       sha2_byte       digest[SHA384_DIGEST_LENGTH], *d = digest;
+       int             i;
+
+       /* Sanity check: */
+       assert(context != (SHA384_CTX*)0);
+
+       if (buffer != (char*)0) {
+               SHA384_Final(digest, context);
+
+               for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
+                       *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+                       *buffer++ = sha2_hex_digits[*d & 0x0f];
+                       d++;
+               }
+               *buffer = (char)0;
+       } else {
+               MEMSET_BZERO(context, sizeof(context));
+       }
+       MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
+       return buffer;
+}
+
+char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
+       SHA384_CTX      context;
+
+       SHA384_Init(&context);
+       SHA384_Update(&context, data, len);
+       return SHA384_End(&context, digest);
+}
+
+
+
+
+
+void sha256(unsigned char *out, const unsigned char *in, int n)
+{
+       SHA256_CTX context;
+       SHA256_Init(&context);
+       SHA256_Update(&context, in, n);
+       return SHA256_Final(out, &context);
+}
diff --git a/sha2.h b/sha2.h
new file mode 100644 (file)
index 0000000..618a6f3
--- /dev/null
+++ b/sha2.h
@@ -0,0 +1,203 @@
+/*
+ * FILE:       sha2.h
+ * AUTHOR:     Aaron D. Gifford - http://www.aarongifford.com/
+ * 
+ * Copyright (c) 2000-2001, Aaron D. Gifford
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holder nor the names of contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $Id: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $
+ */
+
+#ifndef __SHA2_H__
+#define __SHA2_H__
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/*
+ * Import u_intXX_t size_t type definitions from system headers.  You
+ * may need to change this, or define these things yourself in this
+ * file.
+ */
+#include <sys/types.h>
+
+#ifdef SHA2_USE_INTTYPES_H
+
+#include <inttypes.h>
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
+#define SHA256_BLOCK_LENGTH            64
+#define SHA256_DIGEST_LENGTH           32
+#define SHA256_DIGEST_STRING_LENGTH    (SHA256_DIGEST_LENGTH * 2 + 1)
+#define SHA384_BLOCK_LENGTH            128
+#define SHA384_DIGEST_LENGTH           48
+#define SHA384_DIGEST_STRING_LENGTH    (SHA384_DIGEST_LENGTH * 2 + 1)
+#define SHA512_BLOCK_LENGTH            128
+#define SHA512_DIGEST_LENGTH           64
+#define SHA512_DIGEST_STRING_LENGTH    (SHA512_DIGEST_LENGTH * 2 + 1)
+
+
+/*** SHA-256/384/512 Context Structures *******************************/
+/* NOTE: If your architecture does not define either u_intXX_t types or
+ * uintXX_t (from inttypes.h), you may need to define things by hand
+ * for your system:
+ */
+#if 0
+typedef unsigned char u_int8_t;                /* 1-byte  (8-bits)  */
+typedef unsigned int u_int32_t;                /* 4-bytes (32-bits) */
+typedef unsigned long long u_int64_t;  /* 8-bytes (64-bits) */
+#endif
+/*
+ * Most BSD systems already define u_intXX_t types, as does Linux.
+ * Some systems, however, like Compaq's Tru64 Unix instead can use
+ * uintXX_t types defined by very recent ANSI C standards and included
+ * in the file:
+ *
+ *   #include <inttypes.h>
+ *
+ * If you choose to use <inttypes.h> then please define: 
+ *
+ *   #define SHA2_USE_INTTYPES_H
+ *
+ * Or on the command line during compile:
+ *
+ *   cc -DSHA2_USE_INTTYPES_H ...
+ */
+#ifdef SHA2_USE_INTTYPES_H
+
+typedef struct _SHA256_CTX {
+       uint32_t        state[8];
+       uint64_t        bitcount;
+       uint8_t buffer[SHA256_BLOCK_LENGTH];
+} SHA256_CTX;
+typedef struct _SHA512_CTX {
+       uint64_t        state[8];
+       uint64_t        bitcount[2];
+       uint8_t buffer[SHA512_BLOCK_LENGTH];
+} SHA512_CTX;
+
+#else /* SHA2_USE_INTTYPES_H */
+
+typedef struct _SHA256_CTX {
+       u_int32_t       state[8];
+       u_int64_t       bitcount;
+       u_int8_t        buffer[SHA256_BLOCK_LENGTH];
+} SHA256_CTX;
+typedef struct _SHA512_CTX {
+       u_int64_t       state[8];
+       u_int64_t       bitcount[2];
+       u_int8_t        buffer[SHA512_BLOCK_LENGTH];
+} SHA512_CTX;
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+typedef SHA512_CTX SHA384_CTX;
+
+
+/*** SHA-256/384/512 Function Prototypes ******************************/
+#ifndef NOPROTO
+#ifdef SHA2_USE_INTTYPES_H
+
+void SHA256_Init(SHA256_CTX *);
+void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
+void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
+char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
+
+void SHA384_Init(SHA384_CTX*);
+void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
+void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
+char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
+
+void SHA512_Init(SHA512_CTX*);
+void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
+void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
+char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
+
+void sha256(unsigned char *out, const unsigned char *in, int n);
+
+#else /* SHA2_USE_INTTYPES_H */
+
+void SHA256_Init(SHA256_CTX *);
+void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
+void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
+char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
+char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
+
+void SHA384_Init(SHA384_CTX*);
+void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
+void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
+char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
+char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
+
+void SHA512_Init(SHA512_CTX*);
+void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
+void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
+char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
+char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
+
+void sha256(unsigned char *out, const unsigned char *in, int n);
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+#else /* NOPROTO */
+
+void SHA256_Init();
+void SHA256_Update();
+void SHA256_Final();
+char* SHA256_End();
+char* SHA256_Data();
+
+void SHA384_Init();
+void SHA384_Update();
+void SHA384_Final();
+char* SHA384_End();
+char* SHA384_Data();
+
+void SHA512_Init();
+void SHA512_Update();
+void SHA512_Final();
+char* SHA512_End();
+char* SHA512_Data();
+
+void sha256();
+
+#endif /* NOPROTO */
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* __SHA2_H__ */
+