X-Git-Url: https://git.xonotic.org/?p=xonotic%2Fgmqcc.git;a=blobdiff_plain;f=util.c;h=3740429f369803c66b9d1d112b882c2dc74c0518;hp=c744b15d66a6a241ebaa6b25d41ea460b9744474;hb=46752af74b8553b4a0a6d8928a823289308c6f8a;hpb=13003bf6af9cf8c76cd024b0bf11695b92fba093 diff --git a/util.c b/util.c index c744b15..3740429 100644 --- a/util.c +++ b/util.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2012 + * Copyright (C) 2012, 2013 * Dale Weiler * Wolfgang Bumiller * @@ -30,6 +30,8 @@ uint64_t mem_ab = 0; uint64_t mem_db = 0; uint64_t mem_at = 0; uint64_t mem_dt = 0; +uint64_t mem_pk = 0; +uint64_t mem_hw = 0; struct memblock_t { const char *file; @@ -39,10 +41,16 @@ struct memblock_t { struct memblock_t *prev; }; +#define PEAK_MEM \ + do { \ + if (mem_hw > mem_pk) \ + mem_pk = mem_hw; \ + } while (0) + static struct memblock_t *mem_start = NULL; void *util_memory_a(size_t byte, unsigned int line, const char *file) { - struct memblock_t *info = malloc(sizeof(struct memblock_t) + byte); + struct memblock_t *info = (struct memblock_t*)malloc(sizeof(struct memblock_t) + byte); void *data = (void*)(info+1); if (!info) return NULL; info->line = line; @@ -54,21 +62,23 @@ void *util_memory_a(size_t byte, unsigned int line, const char *file) { mem_start->prev = info; mem_start = info; - util_debug("MEM", "allocation: % 8u (bytes) address 0x%08X @ %s:%u\n", byte, data, file, line); mem_at++; mem_ab += info->byte; + mem_hw += info->byte; + + PEAK_MEM; return data; } -void util_memory_d(void *ptrn, unsigned int line, const char *file) { +void util_memory_d(void *ptrn) { struct memblock_t *info = NULL; if (!ptrn) return; info = ((struct memblock_t*)ptrn - 1); - util_debug("MEM", "released: % 8u (bytes) address 0x%08X @ %s:%u\n", info->byte, ptrn, file, line); mem_db += info->byte; + mem_hw -= info->byte; mem_dt++; if (info->prev) @@ -89,18 +99,16 @@ void *util_memory_r(void *ptrn, size_t byte, unsigned int line, const char *file if (!ptrn) return util_memory_a(byte, line, file); if (!byte) { - util_memory_d(ptrn, line, file); + util_memory_d(ptrn); return NULL; } oldinfo = ((struct memblock_t*)ptrn - 1); newinfo = ((struct memblock_t*)malloc(sizeof(struct memblock_t) + byte)); - util_debug("MEM", "reallocation: % 8u -> %u (bytes) address 0x%08X -> 0x%08X @ %s:%u\n", oldinfo->byte, byte, ptrn, (void*)(newinfo+1), file, line); - /* new data */ if (!newinfo) { - util_memory_d(oldinfo+1, line, file); + util_memory_d(oldinfo+1); return NULL; } @@ -126,51 +134,111 @@ void *util_memory_r(void *ptrn, size_t byte, unsigned int line, const char *file mem_start = newinfo; mem_ab -= oldinfo->byte; + mem_hw -= oldinfo->byte; mem_ab += newinfo->byte; + mem_hw += newinfo->byte; + + PEAK_MEM; free(oldinfo); return newinfo+1; } +static void util_dumpmem(struct memblock_t *memory, uint16_t cols) { + uint32_t i, j; + for (i = 0; i < memory->byte + ((memory->byte % cols) ? (cols - memory->byte % cols) : 0); i++) { + if (i % cols == 0) con_out(" 0x%06X: ", i); + if (i < memory->byte) con_out("%02X " , 0xFF & ((char*)(memory + 1))[i]); + else con_out(" "); + + if ((uint16_t)(i % cols) == (cols - 1)) { + for (j = i - (cols - 1); j <= i; j++) { + con_out("%c", + (j >= memory->byte) + ? ' ' + : (isprint(((char*)(memory + 1))[j])) + ? 0xFF & ((char*)(memory + 1)) [j] + : '.' + ); + } + con_out("\n"); + } + } +} + void util_meminfo() { struct memblock_t *info; - if (!opts.memchk) - return; - for (info = mem_start; info; info = info->next) { - util_debug("MEM", "lost: % 8u (bytes) at %s:%u\n", - info->byte, - info->file, - info->line); + if (OPTS_OPTION_BOOL(OPTION_DEBUG)) { + for (info = mem_start; info; info = info->next) { + con_out("lost: %u (bytes) at %s:%u\n", + info->byte, + info->file, + info->line); + + util_dumpmem(info, OPTS_OPTION_U16(OPTION_MEMDUMPCOLS)); + } } - util_debug("MEM", "Memory information:\n\ - Total allocations: %llu\n\ - Total deallocations: %llu\n\ - Total allocated: %llu (bytes)\n\ - Total deallocated: %llu (bytes)\n\ - Leaks found: lost %llu (bytes) in %d allocations\n", - mem_at, mem_dt, - mem_ab, mem_db, - (mem_ab - mem_db), - (mem_at - mem_dt) - ); + if (OPTS_OPTION_BOOL(OPTION_DEBUG) || + OPTS_OPTION_BOOL(OPTION_MEMCHK)) { + con_out("Memory information:\n\ + Total allocations: %llu\n\ + Total deallocations: %llu\n\ + Total allocated: %f (MB)\n\ + Total deallocated: %f (MB)\n\ + Total peak memory: %f (MB)\n\ + Total leaked memory: %f (MB) in %llu allocations\n", + mem_at, + mem_dt, + (float)(mem_ab) / 1048576.0f, + (float)(mem_db) / 1048576.0f, + (float)(mem_pk) / 1048576.0f, + (float)(mem_ab - mem_db) / 1048576.0f, + + /* could be more clever */ + (mem_at - mem_dt) + ); + } } /* * Some string utility functions, because strdup uses malloc, and we want * to track all memory (without replacing malloc). */ -char *util_strdup(const char *s) { +char *_util_Estrdup(const char *s, const char *file, size_t line) { + size_t len = 0; + char *ptr = NULL; + + /* in case of -DNOTRACK */ + (void)file; + (void)line; + + if (!s) + return NULL; + + if ((len = strlen(s)) && (ptr = (char*)mem_af(len+1, line, file))) { + memcpy(ptr, s, len); + ptr[len] = '\0'; + } + return ptr; +} + +char *_util_Estrdup_empty(const char *s, const char *file, size_t line) { size_t len = 0; char *ptr = NULL; + /* in case of -DNOTRACK */ + (void)file; + (void)line; + if (!s) return NULL; - if ((len = strlen(s)) && (ptr = mem_a(len+1))) { + len = strlen(s); + if ((ptr = (char*)mem_af(len+1, line, file))) { memcpy(ptr, s, len); ptr[len] = '\0'; } @@ -179,10 +247,10 @@ char *util_strdup(const char *s) { void util_debug(const char *area, const char *ms, ...) { va_list va; - if (!opts.debug) + if (!OPTS_OPTION_BOOL(OPTION_DEBUG)) return; - if (!strcmp(area, "MEM") && !opts.memchk) + if (!strcmp(area, "MEM") && !OPTS_OPTION_BOOL(OPTION_MEMCHK)) return; va_start(va, ms); @@ -196,13 +264,13 @@ void util_debug(const char *area, const char *ms, ...) { * data. */ #if PLATFORM_BYTE_ORDER == GMQCC_BYTE_ORDER_BIG - static void util_swap16(uint16_t *d, size_t l) { + static GMQCC_INLINE void util_swap16(uint16_t *d, size_t l) { while (l--) { d[l] = (d[l] << 8) | (d[l] >> 8); } } - static void util_swap32(uint32_t *d, size_t l) { + static GMQCC_INLINE void util_swap32(uint32_t *d, size_t l) { while (l--) { uint32_t v; v = ((d[l] << 8) & 0xFF00FF00) | ((d[l] >> 8) & 0x00FF00FF); @@ -213,7 +281,7 @@ void util_debug(const char *area, const char *ms, ...) { /* Some strange system doesn't like constants that big, AND doesn't recognize an ULL suffix * so let's go the safe way */ - static void util_swap64(uint32_t *d, size_t l) { + static GMQCC_INLINE void util_swap64(uint32_t *d, size_t l) { /* while (l--) { uint64_t v; @@ -257,7 +325,7 @@ void util_endianswap(void *_data, size_t length, unsigned int typesize) { util_swap64((uint32_t*)_data, length>>3); return; - default: abort(); /* please blow the fuck up! */ + default: exit(EXIT_FAILURE); /* please blow the fuck up! */ } # endif #endif @@ -366,12 +434,15 @@ size_t util_strtononcmd(const char *in, char *out, size_t outsz) { /* TODO: rewrite ... when I redo the ve cleanup */ void _util_vec_grow(void **a, size_t i, size_t s) { - size_t m = *a ? 2*_vec_beg(*a)+i : i+1; - void *p = mem_r((*a ? _vec_raw(*a) : NULL), s * m + sizeof(size_t)*2); + vector_t *d = vec_meta(*a); + size_t m = *a ? 2 * d->allocated +i : i+1; + void *p = mem_r((*a ? d : NULL), s * m + sizeof(vector_t)); + if (!*a) - ((size_t*)p)[1] = 0; - *a = (void*)((size_t*)p + 2); - _vec_beg(*a) = m; + ((vector_t*)p)->used = 0; + *a = (vector_t*)p + 1; + + vec_meta(*a)->allocated = m; } /* @@ -423,10 +494,10 @@ GMQCC_INLINE size_t util_hthash(hash_table_t *ht, const char *key) { hash_node_t *_util_htnewpair(const char *key, void *value) { hash_node_t *node; - if (!(node = mem_a(sizeof(hash_node_t)))) + if (!(node = (hash_node_t*)mem_a(sizeof(hash_node_t)))) return NULL; - if (!(node->key = util_strdup(key))) { + if (!(node->key = util_strdupe(key))) { mem_d(node); return NULL; } @@ -449,10 +520,10 @@ hash_table_t *util_htnew(size_t size) { if (size < 1) return NULL; - if (!(hashtable = mem_a(sizeof(hash_table_t)))) + if (!(hashtable = (hash_table_t*)mem_a(sizeof(hash_table_t)))) return NULL; - if (!(hashtable->table = mem_a(sizeof(hash_node_t*) * size))) { + if (!(hashtable->table = (hash_node_t**)mem_a(sizeof(hash_node_t*) * size))) { mem_d(hashtable); return NULL; } @@ -511,11 +582,45 @@ void *util_htget(hash_table_t *ht, const char *key) { return util_htgeth(ht, key, util_hthash(ht, key)); } +void *code_util_str_htgeth(hash_table_t *ht, const char *key, size_t bin) { + hash_node_t *pair; + size_t len, keylen; + int cmp; + + keylen = strlen(key); + + pair = ht->table[bin]; + while (pair && pair->key) { + len = strlen(pair->key); + if (len < keylen) { + pair = pair->next; + continue; + } + if (keylen == len) { + cmp = strcmp(key, pair->key); + if (cmp == 0) + return pair->value; + if (cmp < 0) + return NULL; + pair = pair->next; + continue; + } + cmp = strcmp(key, pair->key + len - keylen); + if (cmp == 0) { + uintptr_t up = (uintptr_t)pair->value; + up += len - keylen; + return (void*)up; + } + pair = pair->next; + } + return NULL; +} + /* * Free all allocated data in a hashtable, this is quite the amount * of work. */ -void util_htdel(hash_table_t *ht) { +void util_htrem(hash_table_t *ht, void (*callback)(void *data)) { size_t i = 0; for (; i < ht->size; i++) { hash_node_t *n = ht->table[i]; @@ -525,6 +630,8 @@ void util_htdel(hash_table_t *ht) { while (n) { if (n->key) mem_d(n->key); + if (callback) + callback(n->value); p = n; n = n->next; mem_d(p); @@ -535,3 +642,413 @@ void util_htdel(hash_table_t *ht) { mem_d(ht->table); mem_d(ht); } + +void util_htrmh(hash_table_t *ht, const char *key, size_t bin, void (*cb)(void*)) { + hash_node_t **pair = &ht->table[bin]; + hash_node_t *tmp; + + while (*pair && (*pair)->key && strcmp(key, (*pair)->key) > 0) + pair = &(*pair)->next; + + tmp = *pair; + if (!tmp || !tmp->key || strcmp(key, tmp->key) != 0) + return; + + if (cb) + (*cb)(tmp->value); + + *pair = tmp->next; + mem_d(tmp->key); + mem_d(tmp); +} + +void util_htrm(hash_table_t *ht, const char *key, void (*cb)(void*)) { + util_htrmh(ht, key, util_hthash(ht, key), cb); +} + +void util_htdel(hash_table_t *ht) { + util_htrem(ht, NULL); +} + +/* + * A basic implementation of a hash-set. Unlike a hashtable, a hash + * set doesn't maintain key-value pairs. It simply maintains a key + * that can be set, removed, and checked for. + * + * See EXPOSED interface comment below + */ +#define GMQCC_HASHSET_PRIME0 0x0049 +#define GMQCC_HASHSET_PRIME1 0x1391 + +static int util_hsput(hash_set_t *set, void *item) { + size_t hash = (size_t)item; /* shouldn't drop the bits */ + size_t iter; + + /* a == 0 || a == 1 */ + if (hash >> 1) + return -1; + + iter = set->mask & (GMQCC_HASHSET_PRIME0 * hash); + + /* while (set->items[iter] != 0 && set->items[iter] != 1) */ + while (!(set->items[iter] >> 1)) { + if (set->items[iter] == hash) + return 0; + + iter = set->mask & (iter + GMQCC_HASHSET_PRIME1); + } + + set->total ++; + set->items[iter] = hash; + + return 1; +} + +static void util_hsupdate(hash_set_t *set) { + size_t *old; + size_t end; + size_t itr; + + /* time to rehash? */ + if ((float)set->total >= (size_t)((double)set->capacity * 0.85)) { + old = set->items; + end = set->capacity; + + set->bits ++; + set->capacity = (size_t)(1 << set->bits); + set->mask = set->capacity - 1; + set->items = (size_t*)mem_a(set->capacity * sizeof(size_t)); + set->total = 0; + + /*assert(set->items);*/ + + /* + * this shouldn't be slow? if so unroll it a little perhaps + * (shouldn't be though) + */ + for (itr = 0; itr < end; itr++) + util_hsput(set, (void*)old[itr]); + + mem_d(old); + } +} + +/* + * EXPOSED interface: all of these functions are exposed to the outside + * for use. The stuff above is static because it's the "internal" mechanics + * for syncronizing the set for updating, and putting data into the set. + */ +int util_hsadd(hash_set_t *set, void *item) { + int run = util_hsput(set, item); /* inlined */ + util_hsupdate(set); + + return run; +} + +/* remove item in set */ +int util_hsrem(hash_set_t *set, void *item) { + size_t hash = (size_t)item; + size_t iter = set->mask & (GMQCC_HASHSET_PRIME0 * hash); + + while (set->items[iter]) { + if (set->items[iter] == hash) { + set->items[iter] = 1; + set->total --; + + return 1; + } + iter = set->mask & (iter + GMQCC_HASHSET_PRIME1); + } + + return 0; +} + +/* check if item is set */ +int util_hshas(hash_set_t *set, void *item) { + size_t hash = (size_t)item; + size_t iter = set->mask & (GMQCC_HASHSET_PRIME0 * hash); + + while (set->items[iter]) { + if (set->items[iter] == hash) + return 1; + + iter = set->mask & (iter + GMQCC_HASHSET_PRIME1); + } + + return 0; +} + +hash_set_t *util_hsnew(void) { + hash_set_t *set; + + if (!(set = (hash_set_t*)mem_a(sizeof(hash_set_t)))) + return NULL; + + set->bits = 3; + set->total = 0; + set->capacity = (size_t)(1 << set->bits); + set->mask = set->capacity - 1; + set->items = (size_t*)mem_a(set->capacity * sizeof(size_t)); + + if (!set->items) { + util_hsdel(set); + return NULL; + } + + return set; +} + +void util_hsdel(hash_set_t *set) { + if (!set) return; + + if (set->items) + mem_d(set->items); + + mem_d(set); +} +#undef GMQCC_HASHSET_PRIME0 +#undef GMQCC_HASHSET_PRIME1 + + +/* + * Portable implementation of vasprintf/asprintf. Assumes vsnprintf + * exists, otherwise compiler error. + * + * TODO: fix for MSVC .... + */ +int util_vasprintf(char **dat, const char *fmt, va_list args) { + int ret; + int len; + char *tmp = NULL; + + /* + * For visuals tido _vsnprintf doesn't tell you the length of a + * formatted string if it overflows. However there is a MSVC + * intrinsic (which is documented wrong) called _vcsprintf which + * will return the required amount to allocate. + */ + #ifdef _MSC_VER + char *str; + if ((len = _vscprintf(fmt, args)) < 0) { + *dat = NULL; + return -1; + } + + tmp = mem_a(len + 1); + if ((ret = _vsnprintf(tmp, len+1, fmt, args)) != len) { + mem_d(tmp); + *dat = NULL; + return -1; + } + *dat = tmp; + return len; + #else + /* + * For everything else we have a decent conformint vsnprintf that + * returns the number of bytes needed. We give it a try though on + * a short buffer, since efficently speaking, it could be nice to + * above a second vsnprintf call. + */ + char buf[128]; + va_list cpy; + va_copy(cpy, args); + len = vsnprintf(buf, sizeof(buf), fmt, cpy); + va_end (cpy); + + if (len < (int)sizeof(buf)) { + *dat = util_strdup(buf); + return len; + } + + /* not large enough ... */ + tmp = (char*)mem_a(len + 1); + if ((ret = vsnprintf(tmp, len + 1, fmt, args)) != len) { + mem_d(tmp); + *dat = NULL; + return -1; + } + + *dat = tmp; + return len; + #endif +} +int util_asprintf(char **ret, const char *fmt, ...) { + va_list args; + int read; + va_start(args, fmt); + read = util_vasprintf(ret, fmt, args); + va_end (args); + + return read; +} + +/* + * Implementation of the Mersenne twister PRNG (pseudo random numer + * generator). Implementation of MT19937. Has a period of 2^19937-1 + * which is a Mersenne Prime (hence the name). + * + * Implemented from specification and original paper: + * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf + * + * This code is placed in the public domain by me personally + * (Dale Weiler, a.k.a graphitemaster). + */ + +#define MT_SIZE 624 +#define MT_PERIOD 397 +#define MT_SPACE (MT_SIZE - MT_PERIOD) + +static uint32_t mt_state[MT_SIZE]; +static size_t mt_index = 0; + +static GMQCC_INLINE void mt_generate() { + /* + * The loop has been unrolled here: the original paper and implemenation + * Called for the following code: + * for (register unsigned i = 0; i < MT_SIZE; ++i) { + * register uint32_t load; + * load = (0x80000000 & mt_state[i]) // most significant 32nd bit + * load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit + * + * mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1); + * + * if (load & 1) mt_state[i] ^= 0x9908B0DF; + * } + * + * This essentially is a waste: we have two modulus operations, and + * a branch that is executed every iteration from [0, MT_SIZE). + * + * Please see: http://www.quadibloc.com/crypto/co4814.htm for more + * information on how this clever trick works. + */ + static const uint32_t matrix[2] = { + 0x00000000, + 0x9908B0Df + }; + /* + * This register gives up a little more speed by instructing the compiler + * to force these into CPU registers (they're counters for indexing mt_state + * which we can force the compiler to generate prefetch instructions for) + */ + register uint32_t y; + register uint32_t i; + + /* + * Said loop has been unrolled for MT_SPACE (226 iterations), opposed + * to [0, MT_SIZE) (634 iterations). + */ + for (i = 0; i < MT_SPACE; ++i) { + y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; + + i ++; /* loop unroll */ + + y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; + } + + /* + * collapsing the walls unrolled (evenly dividing 396 [632-227 = 396 + * = 2*2*3*3*11]) + */ + i = MT_SPACE; + while (i < MT_SIZE - 1) { + /* + * We expand this 11 times .. manually, no macros are required + * here. This all fits in the CPU cache. + */ + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); + mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; + ++i; + } + + /* i = mt_state[623] */ + y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]); + mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1]; +} + +void util_seed(uint32_t value) { + /* + * We seed the mt_state with a LCG (linear congruential generator) + * We're operating exactly on exactly m=32, so there is no need to + * use modulus. + * + * The multipler of choice is 0x6C07865, also knows as the Borosh- + * Niederreiter multipler used for modulus 2^32. More can be read + * about this in Knuth's TAOCP Volume 2, page 106. + * + * If you don't own TAOCP something is wrong with you :-) .. so I + * also provided a link to the original paper by Borosh and + * Niederreiter. It's called "Optional Multipliers for PRNG by The + * Linear Congruential Method" (1983). + * http://en.wikipedia.org/wiki/Linear_congruential_generator + * + * From said page, it says the following: + * "A common Mersenne twister implementation, interestingly enough + * used an LCG to generate seed data." + * + * Remarks: + * The data we're operating on is 32-bits for the mt_state array, so + * there is no masking required with 0xFFFFFFFF + */ + register size_t i; + + mt_state[0] = value; + for (i = 1; i < MT_SIZE; ++i) + mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i; +} + +uint32_t util_rand() { + register uint32_t y; + + /* + * This is inlined with any sane compiler (I checked) + * for some reason though, SubC seems to be generating invalid + * code when it inlines this. + */ + if (!mt_index) + mt_generate(); + + y = mt_state[mt_index]; + + /* Standard tempering */ + y ^= y >> 11; /* +7 */ + y ^= y << 7 & 0x9D2C5680; /* +4 */ + y ^= y << 15 & 0xEFC60000; /* -4 */ + y ^= y >> 18; /* -7 */ + + if(++mt_index == MT_SIZE) + mt_index = 0; + + return y; +}