X-Git-Url: https://git.xonotic.org/?p=xonotic%2Fgmqcc.git;a=blobdiff_plain;f=ir.c;h=d007321383bb7298f90a8c4ae3262ce481745ec8;hp=ff50a77bd1d890184c36d8e25112182325b79259;hb=1559dedfd9d417d50bcbbcd809357c06b07d43b2;hpb=2e0feca0409acec706014de6b06d66938c22e22e diff --git a/ir.c b/ir.c index ff50a77..d007321 100644 --- a/ir.c +++ b/ir.c @@ -1,7 +1,81 @@ +/* + * Copyright (C) 2012 + * Wolfgang Bumiller + * + * Permission is hereby granted, free of charge, to any person obtaining a copy of + * this software and associated documentation files (the "Software"), to deal in + * the Software without restriction, including without limitation the rights to + * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies + * of the Software, and to permit persons to whom the Software is furnished to do + * so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ #include #include +#include "gmqcc.h" #include "ir.h" +/*********************************************************************** + * Type sizes used at multiple points in the IR codegen + */ + +size_t type_sizeof[TYPE_COUNT] = { + 1, /* TYPE_VOID */ + 1, /* TYPE_STRING */ + 1, /* TYPE_FLOAT */ + 3, /* TYPE_VECTOR */ + 1, /* TYPE_ENTITY */ + 1, /* TYPE_FIELD */ + 1, /* TYPE_FUNCTION */ + 1, /* TYPE_POINTER */ +#if 0 + 1, /* TYPE_INTEGER */ +#endif + 3, /* TYPE_VARIANT */ +}; + +uint16_t type_store_instr[TYPE_COUNT] = { + INSTR_STORE_F, /* should use I when having integer support */ + INSTR_STORE_S, + INSTR_STORE_F, + INSTR_STORE_V, + INSTR_STORE_ENT, + INSTR_STORE_FLD, + INSTR_STORE_FNC, + INSTR_STORE_ENT, /* should use I */ +#if 0 + INSTR_STORE_ENT, /* integer type */ +#endif + INSTR_STORE_V, /* variant, should never be accessed */ +}; + +uint16_t type_storep_instr[TYPE_COUNT] = { + INSTR_STOREP_F, /* should use I when having integer support */ + INSTR_STOREP_S, + INSTR_STOREP_F, + INSTR_STOREP_V, + INSTR_STOREP_ENT, + INSTR_STOREP_FLD, + INSTR_STOREP_FNC, + INSTR_STOREP_ENT, /* should use I */ +#if 0 + INSTR_STOREP_ENT, /* integer type */ +#endif + INSTR_STOREP_V, /* variant, should never be accessed */ +}; + +MEM_VEC_FUNCTIONS(ir_value_vector, ir_value*, v) + /*********************************************************************** *IR Builder */ @@ -11,21 +85,29 @@ ir_builder* ir_builder_new(const char *modulename) ir_builder* self; self = (ir_builder*)mem_a(sizeof(*self)); + if (!self) + return NULL; + MEM_VECTOR_INIT(self, functions); MEM_VECTOR_INIT(self, globals); + MEM_VECTOR_INIT(self, fields); self->name = NULL; - ir_builder_set_name(self, modulename); + if (!ir_builder_set_name(self, modulename)) { + mem_d(self); + return NULL; + } /* globals which always exist */ /* for now we give it a vector size */ - ir_builder_create_global(self, "OFS_RETURN", qc_variant); + ir_builder_create_global(self, "OFS_RETURN", TYPE_VARIANT); return self; } MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals) -MEM_VECTOR_FUNCTIONS(ir_builder, ir_function*, functions) +MEM_VEC_FUNCTIONS(ir_builder, ir_value*, fields) +MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions) void ir_builder_delete(ir_builder* self) { @@ -38,15 +120,20 @@ void ir_builder_delete(ir_builder* self) for (i = 0; i != self->globals_count; ++i) { ir_value_delete(self->globals[i]); } - MEM_VECTOR_CLEAR(self, globals); + MEM_VECTOR_CLEAR(self, fields); + for (i = 0; i != self->fields_count; ++i) { + ir_value_delete(self->fields[i]); + } + MEM_VECTOR_CLEAR(self, fields); mem_d(self); } -void ir_builder_set_name(ir_builder *self, const char *name) +bool ir_builder_set_name(ir_builder *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); + return !!self->name; } ir_function* ir_builder_get_function(ir_builder *self, const char *name) @@ -59,16 +146,32 @@ ir_function* ir_builder_get_function(ir_builder *self, const char *name) return NULL; } -ir_function* ir_builder_create_function(ir_builder *self, const char *name) +ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype) { ir_function *fn = ir_builder_get_function(self, name); if (fn) { return NULL; } - fn = ir_function_new(self); - ir_function_set_name(fn, name); - ir_builder_functions_add(self, fn); + fn = ir_function_new(self, outtype); + if (!ir_function_set_name(fn, name) || + !ir_builder_functions_add(self, fn) ) + { + ir_function_delete(fn); + return NULL; + } + + fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION); + if (!fn->value) { + ir_function_delete(fn); + return NULL; + } + + fn->value->isconst = true; + fn->value->outtype = outtype; + fn->value->constval.vfunc = fn; + fn->value->context = fn->context; + return fn; } @@ -82,15 +185,45 @@ ir_value* ir_builder_get_global(ir_builder *self, const char *name) return NULL; } -ir_value* ir_builder_create_global(ir_builder *self, const char *name, ir_type_t vtype) +ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype) { ir_value *ve = ir_builder_get_global(self, name); if (ve) { return NULL; } - ve = ir_value_var(name, qc_global, vtype); - ir_builder_globals_add(self, ve); + ve = ir_value_var(name, store_global, vtype); + if (!ir_builder_globals_add(self, ve)) { + ir_value_delete(ve); + return NULL; + } + return ve; +} + +ir_value* ir_builder_get_field(ir_builder *self, const char *name) +{ + size_t i; + for (i = 0; i < self->fields_count; ++i) { + if (!strcmp(self->fields[i]->name, name)) + return self->fields[i]; + } + return NULL; +} + + +ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype) +{ + ir_value *ve = ir_builder_get_field(self, name); + if (ve) { + return NULL; + } + + ve = ir_value_var(name, store_global, TYPE_FIELD); + ve->fieldtype = vtype; + if (!ir_builder_fields_add(self, ve)) { + ir_value_delete(ve); + return NULL; + } return ve; } @@ -98,36 +231,49 @@ ir_value* ir_builder_create_global(ir_builder *self, const char *name, ir_type_t *IR Function */ -void ir_function_naive_phi(ir_function*); +bool ir_function_naive_phi(ir_function*); void ir_function_enumerate(ir_function*); -void ir_function_calculate_liferanges(ir_function*); +bool ir_function_calculate_liferanges(ir_function*); +bool ir_function_allocate_locals(ir_function*); -ir_function* ir_function_new(ir_builder* owner) +ir_function* ir_function_new(ir_builder* owner, int outtype) { ir_function *self; self = (ir_function*)mem_a(sizeof(*self)); + + if (!self) + return NULL; + + self->name = NULL; + if (!ir_function_set_name(self, "<@unnamed>")) { + mem_d(self); + return NULL; + } self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; - self->retype = qc_void; + self->outtype = outtype; + self->value = NULL; + self->builtin = 0; MEM_VECTOR_INIT(self, params); MEM_VECTOR_INIT(self, blocks); MEM_VECTOR_INIT(self, values); MEM_VECTOR_INIT(self, locals); - ir_function_set_name(self, "<@unnamed>"); self->run_id = 0; return self; } -MEM_VECTOR_FUNCTIONS(ir_function, ir_value*, values) -MEM_VECTOR_FUNCTIONS(ir_function, ir_block*, blocks) -MEM_VECTOR_FUNCTIONS(ir_function, ir_value*, locals) +MEM_VEC_FUNCTIONS(ir_function, ir_value*, values) +MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks) +MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals) +MEM_VEC_FUNCTIONS(ir_function, int, params) -void ir_function_set_name(ir_function *self, const char *name) +bool ir_function_set_name(ir_function *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); + return !!self->name; } void ir_function_delete(ir_function *self) @@ -149,27 +295,43 @@ void ir_function_delete(ir_function *self) ir_value_delete(self->locals[i]); MEM_VECTOR_CLEAR(self, locals); + /* self->value is deleted by the builder */ + mem_d(self); } -void ir_function_collect_value(ir_function *self, ir_value *v) +bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v) { - ir_function_values_add(self, v); + return ir_function_values_add(self, v); } ir_block* ir_function_create_block(ir_function *self, const char *label) { ir_block* bn = ir_block_new(self, label); memcpy(&bn->context, &self->context, sizeof(self->context)); - ir_function_blocks_add(self, bn); + if (!ir_function_blocks_add(self, bn)) { + ir_block_delete(bn); + return NULL; + } return bn; } -void ir_function_finalize(ir_function *self) +bool ir_function_finalize(ir_function *self) { - ir_function_naive_phi(self); + if (self->builtin) + return true; + + if (!ir_function_naive_phi(self)) + return false; + ir_function_enumerate(self); - ir_function_calculate_liferanges(self); + + if (!ir_function_calculate_liferanges(self)) + return false; + + if (!ir_function_allocate_locals(self)) + return false; + return true; } ir_value* ir_function_get_local(ir_function *self, const char *name) @@ -182,15 +344,25 @@ ir_value* ir_function_get_local(ir_function *self, const char *name) return NULL; } -ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype) +ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param) { ir_value *ve = ir_function_get_local(self, name); if (ve) { return NULL; } - ve = ir_value_var(name, qc_localvar, vtype); - ir_function_locals_add(self, ve); + if (param && + self->locals_count && + self->locals[self->locals_count-1]->store != store_param) { + printf("cannot add parameters after adding locals\n"); + return NULL; + } + + ve = ir_value_var(name, (param ? store_param : store_local), vtype); + if (!ir_function_locals_add(self, ve)) { + ir_value_delete(ve); + return NULL; + } return ve; } @@ -200,50 +372,2442 @@ ir_value* ir_function_create_local(ir_function *self, const char *name, int vtyp ir_block* ir_block_new(ir_function* owner, const char *name) { - ir_block *self; - self = (ir_block*)malloc(sizeof(*self)); - self->owner = owner; - self->context.file = "<@no context>"; - self->context.line = 0; - self->final = ifalse; - VEC_INIT(self, instr); - VEC_INIT(self, entries); - VEC_INIT(self, exits); - self->_label = NULL; - ir_block_set_label(self, name); - - self->eid = 0; - self->is_return = ifalse; - self->run_id = 0; - VEC_INIT(self, living); - return self; -} -MAKE_VEC_ADD(ir_block, ir_instr*, instr) -MAKE_VEC_REMOVE(ir_block, ir_instr*, instr) -MAKE_VEC_ADD(ir_block, ir_block*, entries) -MAKE_VEC_FIND(ir_block, ir_block*, entries) -MAKE_VEC_ADD(ir_block, ir_block*, exits) - -MAKE_VEC_ADD(ir_block, ir_value*, living) -MAKE_VEC_REMOVE(ir_block, ir_value*, living) -MAKE_VEC_FIND(ir_block, ir_value*, living) + ir_block *self; + self = (ir_block*)mem_a(sizeof(*self)); + if (!self) + return NULL; + + memset(self, 0, sizeof(*self)); + + self->label = NULL; + if (!ir_block_set_label(self, name)) { + mem_d(self); + return NULL; + } + self->owner = owner; + self->context.file = "<@no context>"; + self->context.line = 0; + self->final = false; + MEM_VECTOR_INIT(self, instr); + MEM_VECTOR_INIT(self, entries); + MEM_VECTOR_INIT(self, exits); + + self->eid = 0; + self->is_return = false; + self->run_id = 0; + MEM_VECTOR_INIT(self, living); + + self->generated = false; + + return self; +} +MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr) +MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries) +MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits) +MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living) void ir_block_delete(ir_block* self) { - size_t i; - free((void*)self->_label); - for (i = 0; i != self->instr_count; ++i) - ir_instr_delete(self->instr[i]); - VEC_CLEAR(self, instr); - VEC_CLEAR(self, entries); - VEC_CLEAR(self, exits); - VEC_CLEAR(self, living); - free(self); + size_t i; + mem_d(self->label); + for (i = 0; i != self->instr_count; ++i) + ir_instr_delete(self->instr[i]); + MEM_VECTOR_CLEAR(self, instr); + MEM_VECTOR_CLEAR(self, entries); + MEM_VECTOR_CLEAR(self, exits); + MEM_VECTOR_CLEAR(self, living); + mem_d(self); +} + +bool ir_block_set_label(ir_block *self, const char *name) +{ + if (self->label) + mem_d((void*)self->label); + self->label = util_strdup(name); + return !!self->label; +} + +/*********************************************************************** + *IR Instructions + */ + +ir_instr* ir_instr_new(ir_block* owner, int op) +{ + ir_instr *self; + self = (ir_instr*)mem_a(sizeof(*self)); + if (!self) + return NULL; + + self->owner = owner; + self->context.file = "<@no context>"; + self->context.line = 0; + self->opcode = op; + self->_ops[0] = NULL; + self->_ops[1] = NULL; + self->_ops[2] = NULL; + self->bops[0] = NULL; + self->bops[1] = NULL; + MEM_VECTOR_INIT(self, phi); + MEM_VECTOR_INIT(self, params); + + self->eid = 0; + return self; +} +MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi) +MEM_VEC_FUNCTIONS(ir_instr, ir_value*, params) + +void ir_instr_delete(ir_instr *self) +{ + size_t i; + /* The following calls can only delete from + * vectors, we still want to delete this instruction + * so ignore the return value. Since with the warn_unused_result attribute + * gcc doesn't care about an explicit: (void)foo(); to ignore the result, + * I have to improvise here and use if(foo()); + */ + for (i = 0; i < self->phi_count; ++i) { + size_t idx; + if (ir_value_writes_find(self->phi[i].value, self, &idx)) + if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY; + if (ir_value_reads_find(self->phi[i].value, self, &idx)) + if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY; + } + MEM_VECTOR_CLEAR(self, phi); + for (i = 0; i < self->params_count; ++i) { + size_t idx; + if (ir_value_writes_find(self->params[i], self, &idx)) + if (ir_value_writes_remove(self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY; + if (ir_value_reads_find(self->params[i], self, &idx)) + if (ir_value_reads_remove (self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY; + } + MEM_VECTOR_CLEAR(self, params); + if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; + if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; + if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; + mem_d(self); +} + +bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing) +{ + if (self->_ops[op]) { + size_t idx; + if (writing && ir_value_writes_find(self->_ops[op], self, &idx)) + { + if (!ir_value_writes_remove(self->_ops[op], idx)) + return false; + } + else if (ir_value_reads_find(self->_ops[op], self, &idx)) + { + if (!ir_value_reads_remove(self->_ops[op], idx)) + return false; + } + } + if (v) { + if (writing) { + if (!ir_value_writes_add(v, self)) + return false; + } else { + if (!ir_value_reads_add(v, self)) + return false; + } + } + self->_ops[op] = v; + return true; +} + +/*********************************************************************** + *IR Value + */ + +void ir_value_code_setaddr(ir_value *self, int32_t gaddr) +{ + self->code.globaladdr = gaddr; + if (self->members[0]) self->members[0]->code.globaladdr = gaddr; + if (self->members[1]) self->members[1]->code.globaladdr = gaddr; + if (self->members[2]) self->members[2]->code.globaladdr = gaddr; +} + +int32_t ir_value_code_addr(const ir_value *self) +{ + return self->code.globaladdr + self->code.addroffset; +} + +ir_value* ir_value_var(const char *name, int storetype, int vtype) +{ + ir_value *self; + self = (ir_value*)mem_a(sizeof(*self)); + self->vtype = vtype; + self->fieldtype = TYPE_VOID; + self->outtype = TYPE_VOID; + self->store = storetype; + MEM_VECTOR_INIT(self, reads); + MEM_VECTOR_INIT(self, writes); + self->isconst = false; + self->context.file = "<@no context>"; + self->context.line = 0; + self->name = NULL; + ir_value_set_name(self, name); + + memset(&self->constval, 0, sizeof(self->constval)); + memset(&self->code, 0, sizeof(self->code)); + + MEM_VECTOR_INIT(self, life); + return self; +} + +ir_value* ir_value_vector_member(ir_value *self, unsigned int member) +{ + ir_value *m; + if (member >= 3) + return NULL; + + if (self->members[member]) + return self->members[member]; + + m = ir_value_var(self->name, self->store, TYPE_FLOAT); + if (!m) + return NULL; + m->context = self->context; + + self->members[member] = m; + m->code.addroffset = member; + + return m; +} + +MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life) +MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads) +MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes) + +ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype) +{ + ir_value *v = ir_value_var(name, storetype, vtype); + if (!v) + return NULL; + if (!ir_function_collect_value(owner, v)) + { + ir_value_delete(v); + return NULL; + } + return v; +} + +void ir_value_delete(ir_value* self) +{ + size_t i; + if (self->name) + mem_d((void*)self->name); + if (self->isconst) + { + if (self->vtype == TYPE_STRING) + mem_d((void*)self->constval.vstring); + } + for (i = 0; i < 3; ++i) { + if (self->members[i]) + ir_value_delete(self->members[i]); + } + MEM_VECTOR_CLEAR(self, reads); + MEM_VECTOR_CLEAR(self, writes); + MEM_VECTOR_CLEAR(self, life); + mem_d(self); +} + +void ir_value_set_name(ir_value *self, const char *name) +{ + if (self->name) + mem_d((void*)self->name); + self->name = util_strdup(name); +} + +bool ir_value_set_float(ir_value *self, float f) +{ + if (self->vtype != TYPE_FLOAT) + return false; + self->constval.vfloat = f; + self->isconst = true; + return true; +} + +bool ir_value_set_func(ir_value *self, int f) +{ + if (self->vtype != TYPE_FUNCTION) + return false; + self->constval.vint = f; + self->isconst = true; + return true; +} + +bool ir_value_set_vector(ir_value *self, vector v) +{ + if (self->vtype != TYPE_VECTOR) + return false; + self->constval.vvec = v; + self->isconst = true; + return true; +} + +bool ir_value_set_field(ir_value *self, ir_value *fld) +{ + if (self->vtype != TYPE_FIELD) + return false; + self->constval.vpointer = fld; + self->isconst = true; + return true; +} + +bool ir_value_set_string(ir_value *self, const char *str) +{ + if (self->vtype != TYPE_STRING) + return false; + self->constval.vstring = util_strdup(str); + self->isconst = true; + return true; +} + +#if 0 +bool ir_value_set_int(ir_value *self, int i) +{ + if (self->vtype != TYPE_INTEGER) + return false; + self->constval.vint = i; + self->isconst = true; + return true; +} +#endif + +bool ir_value_lives(ir_value *self, size_t at) +{ + size_t i; + for (i = 0; i < self->life_count; ++i) + { + ir_life_entry_t *life = &self->life[i]; + if (life->start <= at && at <= life->end) + return true; + if (life->start > at) /* since it's ordered */ + return false; + } + return false; +} + +bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e) +{ + size_t k; + if (!ir_value_life_add(self, e)) /* naive... */ + return false; + for (k = self->life_count-1; k > idx; --k) + self->life[k] = self->life[k-1]; + self->life[idx] = e; + return true; +} + +bool ir_value_life_merge(ir_value *self, size_t s) +{ + size_t i; + ir_life_entry_t *life = NULL; + ir_life_entry_t *before = NULL; + ir_life_entry_t new_entry; + + /* Find the first range >= s */ + for (i = 0; i < self->life_count; ++i) + { + before = life; + life = &self->life[i]; + if (life->start > s) + break; + } + /* nothing found? append */ + if (i == self->life_count) { + ir_life_entry_t e; + if (life && life->end+1 == s) + { + /* previous life range can be merged in */ + life->end++; + return true; + } + if (life && life->end >= s) + return false; + e.start = e.end = s; + if (!ir_value_life_add(self, e)) + return false; /* failing */ + return true; + } + /* found */ + if (before) + { + if (before->end + 1 == s && + life->start - 1 == s) + { + /* merge */ + before->end = life->end; + if (!ir_value_life_remove(self, i)) + return false; /* failing */ + return true; + } + if (before->end + 1 == s) + { + /* extend before */ + before->end++; + return true; + } + /* already contained */ + if (before->end >= s) + return false; + } + /* extend */ + if (life->start - 1 == s) + { + life->start--; + return true; + } + /* insert a new entry */ + new_entry.start = new_entry.end = s; + return ir_value_life_insert(self, i, new_entry); +} + +bool ir_value_life_merge_into(ir_value *self, const ir_value *other) +{ + size_t i, myi; + + if (!other->life_count) + return true; + + if (!self->life_count) { + for (i = 0; i < other->life_count; ++i) { + if (!ir_value_life_add(self, other->life[i])) + return false; + } + return true; + } + + myi = 0; + for (i = 0; i < other->life_count; ++i) + { + const ir_life_entry_t *life = &other->life[i]; + while (true) + { + ir_life_entry_t *entry = &self->life[myi]; + + if (life->end+1 < entry->start) + { + /* adding an interval before entry */ + if (!ir_value_life_insert(self, myi, *life)) + return false; + ++myi; + break; + } + + if (life->start < entry->start && + life->end >= entry->start) + { + /* starts earlier and overlaps */ + entry->start = life->start; + } + + if (life->end > entry->end && + life->start-1 <= entry->end) + { + /* ends later and overlaps */ + entry->end = life->end; + } + + /* see if our change combines it with the next ranges */ + while (myi+1 < self->life_count && + entry->end+1 >= self->life[1+myi].start) + { + /* overlaps with (myi+1) */ + if (entry->end < self->life[1+myi].end) + entry->end = self->life[1+myi].end; + if (!ir_value_life_remove(self, myi+1)) + return false; + entry = &self->life[myi]; + } + + /* see if we're after the entry */ + if (life->start > entry->end) + { + ++myi; + /* append if we're at the end */ + if (myi >= self->life_count) { + if (!ir_value_life_add(self, *life)) + return false; + break; + } + /* otherweise check the next range */ + continue; + } + break; + } + } + return true; +} + +bool ir_values_overlap(const ir_value *a, const ir_value *b) +{ + /* For any life entry in A see if it overlaps with + * any life entry in B. + * Note that the life entries are orderes, so we can make a + * more efficient algorithm there than naively translating the + * statement above. + */ + + ir_life_entry_t *la, *lb, *enda, *endb; + + /* first of all, if either has no life range, they cannot clash */ + if (!a->life_count || !b->life_count) + return false; + + la = a->life; + lb = b->life; + enda = la + a->life_count; + endb = lb + b->life_count; + while (true) + { + /* check if the entries overlap, for that, + * both must start before the other one ends. + */ +#if defined(LIFE_RANGE_WITHOUT_LAST_READ) + if (la->start <= lb->end && + lb->start <= la->end) +#else + if (la->start < lb->end && + lb->start < la->end) +#endif + { + return true; + } + + /* entries are ordered + * one entry is earlier than the other + * that earlier entry will be moved forward + */ + if (la->start < lb->start) + { + /* order: A B, move A forward + * check if we hit the end with A + */ + if (++la == enda) + break; + } + else if (lb->start < la->start) + { + /* order: B A, move B forward + * check if we hit the end with B + */ + if (++lb == endb) + break; + } + } + return false; +} + +/*********************************************************************** + *IR main operations + */ + +bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what) +{ + if (target->store == store_value) { + fprintf(stderr, "cannot store to an SSA value\n"); + fprintf(stderr, "trying to store: %s <- %s\n", target->name, what->name); + return false; + } else { + ir_instr *in = ir_instr_new(self, op); + if (!in) + return false; + if (!ir_instr_op(in, 0, target, true) || + !ir_instr_op(in, 1, what, false) || + !ir_block_instr_add(self, in) ) + { + return false; + } + return true; + } +} + +bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what) +{ + int op = 0; + int vtype; + if (target->vtype == TYPE_VARIANT) + vtype = what->vtype; + else + vtype = target->vtype; + +#if 0 + if (vtype == TYPE_FLOAT && what->vtype == TYPE_INTEGER) + op = INSTR_CONV_ITOF; + else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT) + op = INSTR_CONV_FTOI; +#endif + op = type_store_instr[vtype]; + + return ir_block_create_store_op(self, op, target, what); +} + +bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what) +{ + int op = 0; + int vtype; + + if (target->vtype != TYPE_POINTER) + return false; + + /* storing using pointer - target is a pointer, type must be + * inferred from source + */ + vtype = what->vtype; + + op = type_storep_instr[vtype]; + + return ir_block_create_store_op(self, op, target, what); +} + +bool ir_block_create_return(ir_block *self, ir_value *v) +{ + ir_instr *in; + if (self->final) { + fprintf(stderr, "block already ended (%s)\n", self->label); + return false; + } + self->final = true; + self->is_return = true; + in = ir_instr_new(self, INSTR_RETURN); + if (!in) + return false; + + if (!ir_instr_op(in, 0, v, false) || + !ir_block_instr_add(self, in) ) + { + return false; + } + return true; +} + +bool ir_block_create_if(ir_block *self, ir_value *v, + ir_block *ontrue, ir_block *onfalse) +{ + ir_instr *in; + if (self->final) { + fprintf(stderr, "block already ended (%s)\n", self->label); + return false; + } + self->final = true; + /*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/ + in = ir_instr_new(self, VINSTR_COND); + if (!in) + return false; + + if (!ir_instr_op(in, 0, v, false)) { + ir_instr_delete(in); + return false; + } + + in->bops[0] = ontrue; + in->bops[1] = onfalse; + + if (!ir_block_instr_add(self, in)) + return false; + + if (!ir_block_exits_add(self, ontrue) || + !ir_block_exits_add(self, onfalse) || + !ir_block_entries_add(ontrue, self) || + !ir_block_entries_add(onfalse, self) ) + { + return false; + } + return true; +} + +bool ir_block_create_jump(ir_block *self, ir_block *to) +{ + ir_instr *in; + if (self->final) { + fprintf(stderr, "block already ended (%s)\n", self->label); + return false; + } + self->final = true; + in = ir_instr_new(self, VINSTR_JUMP); + if (!in) + return false; + + in->bops[0] = to; + if (!ir_block_instr_add(self, in)) + return false; + + if (!ir_block_exits_add(self, to) || + !ir_block_entries_add(to, self) ) + { + return false; + } + return true; } -void ir_block_set_label(ir_block *self, const char *name) +bool ir_block_create_goto(ir_block *self, ir_block *to) { - if (self->_label) - free((void*)self->_label); - self->_label = strdup(name); + ir_instr *in; + if (self->final) { + fprintf(stderr, "block already ended (%s)\n", self->label); + return false; + } + self->final = true; + in = ir_instr_new(self, INSTR_GOTO); + if (!in) + return false; + + in->bops[0] = to; + if (!ir_block_instr_add(self, in)) + return false; + + if (!ir_block_exits_add(self, to) || + !ir_block_entries_add(to, self) ) + { + return false; + } + return true; +} + +ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot) +{ + ir_value *out; + ir_instr *in; + in = ir_instr_new(self, VINSTR_PHI); + if (!in) + return NULL; + out = ir_value_out(self->owner, label, store_value, ot); + if (!out) { + ir_instr_delete(in); + return NULL; + } + if (!ir_instr_op(in, 0, out, true)) { + ir_instr_delete(in); + ir_value_delete(out); + return NULL; + } + if (!ir_block_instr_add(self, in)) { + ir_instr_delete(in); + ir_value_delete(out); + return NULL; + } + return in; +} + +ir_value* ir_phi_value(ir_instr *self) +{ + return self->_ops[0]; +} + +bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v) +{ + ir_phi_entry_t pe; + + if (!ir_block_entries_find(self->owner, b, NULL)) { + /* Must not be possible to cause this, otherwise the AST + * is doing something wrong. + */ + fprintf(stderr, "Invalid entry block for PHI\n"); + abort(); + } + + pe.value = v; + pe.from = b; + if (!ir_value_reads_add(v, self)) + return false; + return ir_instr_phi_add(self, pe); +} + +/* call related code */ +ir_instr* ir_block_create_call(ir_block *self, const char *label, ir_value *func) +{ + ir_value *out; + ir_instr *in; + in = ir_instr_new(self, INSTR_CALL0); + if (!in) + return NULL; + out = ir_value_out(self->owner, label, store_return, func->outtype); + if (!out) { + ir_instr_delete(in); + return NULL; + } + if (!ir_instr_op(in, 0, out, true) || + !ir_instr_op(in, 1, func, false) || + !ir_block_instr_add(self, in)) + { + ir_instr_delete(in); + ir_value_delete(out); + return NULL; + } + return in; +} + +ir_value* ir_call_value(ir_instr *self) +{ + return self->_ops[0]; +} + +bool ir_call_param(ir_instr* self, ir_value *v) +{ + if (!ir_instr_params_add(self, v)) + return false; + if (!ir_value_reads_add(v, self)) { + if (!ir_instr_params_remove(self, self->params_count-1)) + GMQCC_SUPPRESS_EMPTY_BODY; + return false; + } + return true; +} + +/* binary op related code */ + +ir_value* ir_block_create_binop(ir_block *self, + const char *label, int opcode, + ir_value *left, ir_value *right) +{ + int ot = TYPE_VOID; + switch (opcode) { + case INSTR_ADD_F: + case INSTR_SUB_F: + case INSTR_DIV_F: + case INSTR_MUL_F: + case INSTR_MUL_V: + case INSTR_AND: + case INSTR_OR: +#if 0 + case INSTR_AND_I: + case INSTR_AND_IF: + case INSTR_AND_FI: + case INSTR_OR_I: + case INSTR_OR_IF: + case INSTR_OR_FI: +#endif + case INSTR_BITAND: + case INSTR_BITOR: +#if 0 + case INSTR_SUB_S: /* -- offset of string as float */ + case INSTR_MUL_IF: + case INSTR_MUL_FI: + case INSTR_DIV_IF: + case INSTR_DIV_FI: + case INSTR_BITOR_IF: + case INSTR_BITOR_FI: + case INSTR_BITAND_FI: + case INSTR_BITAND_IF: + case INSTR_EQ_I: + case INSTR_NE_I: +#endif + ot = TYPE_FLOAT; + break; +#if 0 + case INSTR_ADD_I: + case INSTR_ADD_IF: + case INSTR_ADD_FI: + case INSTR_SUB_I: + case INSTR_SUB_FI: + case INSTR_SUB_IF: + case INSTR_MUL_I: + case INSTR_DIV_I: + case INSTR_BITAND_I: + case INSTR_BITOR_I: + case INSTR_XOR_I: + case INSTR_RSHIFT_I: + case INSTR_LSHIFT_I: + ot = TYPE_INTEGER; + break; +#endif + case INSTR_ADD_V: + case INSTR_SUB_V: + case INSTR_MUL_VF: + case INSTR_MUL_FV: +#if 0 + case INSTR_DIV_VF: + case INSTR_MUL_IV: + case INSTR_MUL_VI: +#endif + ot = TYPE_VECTOR; + break; +#if 0 + case INSTR_ADD_SF: + ot = TYPE_POINTER; + break; +#endif + default: + /* ranges: */ + /* boolean operations result in floats */ + if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT) + ot = TYPE_FLOAT; + else if (opcode >= INSTR_LE && opcode <= INSTR_GT) + ot = TYPE_FLOAT; +#if 0 + else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI) + ot = TYPE_FLOAT; +#endif + break; + }; + if (ot == TYPE_VOID) { + /* The AST or parser were supposed to check this! */ + return NULL; + } + + return ir_block_create_general_instr(self, label, opcode, left, right, ot); +} + +ir_value* ir_block_create_unary(ir_block *self, + const char *label, int opcode, + ir_value *operand) +{ + int ot = TYPE_FLOAT; + switch (opcode) { + case INSTR_NOT_F: + case INSTR_NOT_V: + case INSTR_NOT_S: + case INSTR_NOT_ENT: + case INSTR_NOT_FNC: +#if 0 + case INSTR_NOT_I: +#endif + ot = TYPE_FLOAT; + break; + /* QC doesn't have other unary operations. We expect extensions to fill + * the above list, otherwise we assume out-type = in-type, eg for an + * unary minus + */ + default: + ot = operand->vtype; + break; + }; + if (ot == TYPE_VOID) { + /* The AST or parser were supposed to check this! */ + return NULL; + } + + /* let's use the general instruction creator and pass NULL for OPB */ + return ir_block_create_general_instr(self, label, opcode, operand, NULL, ot); +} + +ir_value* ir_block_create_general_instr(ir_block *self, const char *label, + int op, ir_value *a, ir_value *b, int outype) +{ + ir_instr *instr; + ir_value *out; + + out = ir_value_out(self->owner, label, store_value, outype); + if (!out) + return NULL; + + instr = ir_instr_new(self, op); + if (!instr) { + ir_value_delete(out); + return NULL; + } + + if (!ir_instr_op(instr, 0, out, true) || + !ir_instr_op(instr, 1, a, false) || + !ir_instr_op(instr, 2, b, false) ) + { + goto on_error; + } + + if (!ir_block_instr_add(self, instr)) + goto on_error; + + return out; +on_error: + ir_instr_delete(instr); + ir_value_delete(out); + return NULL; +} + +ir_value* ir_block_create_fieldaddress(ir_block *self, const char *label, ir_value *ent, ir_value *field) +{ + ir_value *v; + + /* Support for various pointer types todo if so desired */ + if (ent->vtype != TYPE_ENTITY) + return NULL; + + if (field->vtype != TYPE_FIELD) + return NULL; + + v = ir_block_create_general_instr(self, label, INSTR_ADDRESS, ent, field, TYPE_POINTER); + v->fieldtype = field->fieldtype; + return v; +} + +ir_value* ir_block_create_load_from_ent(ir_block *self, const char *label, ir_value *ent, ir_value *field, int outype) +{ + int op; + if (ent->vtype != TYPE_ENTITY) + return NULL; + + /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */ + if (field->vtype != TYPE_FIELD) + return NULL; + + switch (outype) + { + case TYPE_FLOAT: op = INSTR_LOAD_F; break; + case TYPE_VECTOR: op = INSTR_LOAD_V; break; + case TYPE_STRING: op = INSTR_LOAD_S; break; + case TYPE_FIELD: op = INSTR_LOAD_FLD; break; + case TYPE_ENTITY: op = INSTR_LOAD_ENT; break; +#if 0 + case TYPE_POINTER: op = INSTR_LOAD_I; break; + case TYPE_INTEGER: op = INSTR_LOAD_I; break; +#endif + default: + return NULL; + } + + return ir_block_create_general_instr(self, label, op, ent, field, outype); +} + +ir_value* ir_block_create_add(ir_block *self, + const char *label, + ir_value *left, ir_value *right) +{ + int op = 0; + int l = left->vtype; + int r = right->vtype; + if (l == r) { + switch (l) { + default: + return NULL; + case TYPE_FLOAT: + op = INSTR_ADD_F; + break; +#if 0 + case TYPE_INTEGER: + op = INSTR_ADD_I; + break; +#endif + case TYPE_VECTOR: + op = INSTR_ADD_V; + break; + } + } else { +#if 0 + if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) + op = INSTR_ADD_FI; + else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) + op = INSTR_ADD_IF; + else +#endif + return NULL; + } + return ir_block_create_binop(self, label, op, left, right); +} + +ir_value* ir_block_create_sub(ir_block *self, + const char *label, + ir_value *left, ir_value *right) +{ + int op = 0; + int l = left->vtype; + int r = right->vtype; + if (l == r) { + + switch (l) { + default: + return NULL; + case TYPE_FLOAT: + op = INSTR_SUB_F; + break; +#if 0 + case TYPE_INTEGER: + op = INSTR_SUB_I; + break; +#endif + case TYPE_VECTOR: + op = INSTR_SUB_V; + break; + } + } else { +#if 0 + if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) + op = INSTR_SUB_FI; + else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) + op = INSTR_SUB_IF; + else +#endif + return NULL; + } + return ir_block_create_binop(self, label, op, left, right); +} + +ir_value* ir_block_create_mul(ir_block *self, + const char *label, + ir_value *left, ir_value *right) +{ + int op = 0; + int l = left->vtype; + int r = right->vtype; + if (l == r) { + + switch (l) { + default: + return NULL; + case TYPE_FLOAT: + op = INSTR_MUL_F; + break; +#if 0 + case TYPE_INTEGER: + op = INSTR_MUL_I; + break; +#endif + case TYPE_VECTOR: + op = INSTR_MUL_V; + break; + } + } else { + if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) + op = INSTR_MUL_VF; + else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) ) + op = INSTR_MUL_FV; +#if 0 + else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) ) + op = INSTR_MUL_VI; + else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) ) + op = INSTR_MUL_IV; + else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) + op = INSTR_MUL_FI; + else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) + op = INSTR_MUL_IF; +#endif + else + return NULL; + } + return ir_block_create_binop(self, label, op, left, right); +} + +ir_value* ir_block_create_div(ir_block *self, + const char *label, + ir_value *left, ir_value *right) +{ + int op = 0; + int l = left->vtype; + int r = right->vtype; + if (l == r) { + + switch (l) { + default: + return NULL; + case TYPE_FLOAT: + op = INSTR_DIV_F; + break; +#if 0 + case TYPE_INTEGER: + op = INSTR_DIV_I; + break; +#endif + } + } else { +#if 0 + if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) + op = INSTR_DIV_VF; + else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) + op = INSTR_DIV_FI; + else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) + op = INSTR_DIV_IF; + else +#endif + return NULL; + } + return ir_block_create_binop(self, label, op, left, right); +} + +/* PHI resolving breaks the SSA, and must thus be the last + * step before life-range calculation. + */ + +static bool ir_block_naive_phi(ir_block *self); +bool ir_function_naive_phi(ir_function *self) +{ + size_t i; + + for (i = 0; i < self->blocks_count; ++i) + { + if (!ir_block_naive_phi(self->blocks[i])) + return false; + } + return true; +} + +static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what) +{ + ir_instr *instr; + size_t i; + + /* create a store */ + if (!ir_block_create_store(block, old, what)) + return false; + + /* we now move it up */ + instr = block->instr[block->instr_count-1]; + for (i = block->instr_count; i > iid; --i) + block->instr[i] = block->instr[i-1]; + block->instr[i] = instr; + + return true; +} + +static bool ir_block_naive_phi(ir_block *self) +{ + size_t i, p, w; + /* FIXME: optionally, create_phi can add the phis + * to a list so we don't need to loop through blocks + * - anyway: "don't optimize YET" + */ + for (i = 0; i < self->instr_count; ++i) + { + ir_instr *instr = self->instr[i]; + if (instr->opcode != VINSTR_PHI) + continue; + + if (!ir_block_instr_remove(self, i)) + return false; + --i; /* NOTE: i+1 below */ + + for (p = 0; p < instr->phi_count; ++p) + { + ir_value *v = instr->phi[p].value; + for (w = 0; w < v->writes_count; ++w) { + ir_value *old; + + if (!v->writes[w]->_ops[0]) + continue; + + /* When the write was to a global, we have to emit a mov */ + old = v->writes[w]->_ops[0]; + + /* The original instruction now writes to the PHI target local */ + if (v->writes[w]->_ops[0] == v) + v->writes[w]->_ops[0] = instr->_ops[0]; + + if (old->store != store_value && old->store != store_local && old->store != store_param) + { + /* If it originally wrote to a global we need to store the value + * there as welli + */ + if (!ir_naive_phi_emit_store(self, i+1, old, v)) + return false; + if (i+1 < self->instr_count) + instr = self->instr[i+1]; + else + instr = NULL; + /* In case I forget and access instr later, it'll be NULL + * when it's a problem, to make sure we crash, rather than accessing + * invalid data. + */ + } + else + { + /* If it didn't, we can replace all reads by the phi target now. */ + size_t r; + for (r = 0; r < old->reads_count; ++r) + { + size_t op; + ir_instr *ri = old->reads[r]; + for (op = 0; op < ri->phi_count; ++op) { + if (ri->phi[op].value == old) + ri->phi[op].value = v; + } + for (op = 0; op < 3; ++op) { + if (ri->_ops[op] == old) + ri->_ops[op] = v; + } + } + } + } + } + ir_instr_delete(instr); + } + return true; +} + +/*********************************************************************** + *IR Temp allocation code + * Propagating value life ranges by walking through the function backwards + * until no more changes are made. + * In theory this should happen once more than once for every nested loop + * level. + * Though this implementation might run an additional time for if nests. + */ + +typedef struct +{ + ir_value* *v; + size_t v_count; + size_t v_alloc; +} new_reads_t; +MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v) + +/* Enumerate instructions used by value's life-ranges + */ +static void ir_block_enumerate(ir_block *self, size_t *_eid) +{ + size_t i; + size_t eid = *_eid; + for (i = 0; i < self->instr_count; ++i) + { + self->instr[i]->eid = eid++; + } + *_eid = eid; +} + +/* Enumerate blocks and instructions. + * The block-enumeration is unordered! + * We do not really use the block enumreation, however + * the instruction enumeration is important for life-ranges. + */ +void ir_function_enumerate(ir_function *self) +{ + size_t i; + size_t instruction_id = 0; + for (i = 0; i < self->blocks_count; ++i) + { + self->blocks[i]->eid = i; + self->blocks[i]->run_id = 0; + ir_block_enumerate(self->blocks[i], &instruction_id); + } +} + +static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed); +bool ir_function_calculate_liferanges(ir_function *self) +{ + size_t i; + bool changed; + + do { + self->run_id++; + changed = false; + for (i = 0; i != self->blocks_count; ++i) + { + if (self->blocks[i]->is_return) + { + if (!ir_block_life_propagate(self->blocks[i], NULL, &changed)) + return false; + } + } + } while (changed); + return true; +} + +/* Local-value allocator + * After finishing creating the liferange of all values used in a function + * we can allocate their global-positions. + * This is the counterpart to register-allocation in register machines. + */ +typedef struct { + MEM_VECTOR_MAKE(ir_value*, locals); + MEM_VECTOR_MAKE(size_t, sizes); + MEM_VECTOR_MAKE(size_t, positions); +} function_allocator; +MEM_VEC_FUNCTIONS(function_allocator, ir_value*, locals) +MEM_VEC_FUNCTIONS(function_allocator, size_t, sizes) +MEM_VEC_FUNCTIONS(function_allocator, size_t, positions) + +static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var) +{ + ir_value *slot; + size_t vsize = type_sizeof[var->vtype]; + + slot = ir_value_var("reg", store_global, var->vtype); + if (!slot) + return false; + + if (!ir_value_life_merge_into(slot, var)) + goto localerror; + + if (!function_allocator_locals_add(alloc, slot)) + goto localerror; + + if (!function_allocator_sizes_add(alloc, vsize)) + goto localerror; + + return true; + +localerror: + ir_value_delete(slot); + return false; +} + +bool ir_function_allocate_locals(ir_function *self) +{ + size_t i, a; + bool retval = true; + size_t pos; + + ir_value *slot; + const ir_value *v; + + function_allocator alloc; + + if (!self->locals_count) + return true; + + MEM_VECTOR_INIT(&alloc, locals); + MEM_VECTOR_INIT(&alloc, sizes); + MEM_VECTOR_INIT(&alloc, positions); + + for (i = 0; i < self->locals_count; ++i) + { + if (!function_allocator_alloc(&alloc, self->locals[i])) + goto error; + } + + /* Allocate a slot for any value that still exists */ + for (i = 0; i < self->values_count; ++i) + { + v = self->values[i]; + + if (!v->life_count) + continue; + + for (a = 0; a < alloc.locals_count; ++a) + { + slot = alloc.locals[a]; + + if (ir_values_overlap(v, slot)) + continue; + + if (!ir_value_life_merge_into(slot, v)) + goto error; + + /* adjust size for this slot */ + if (alloc.sizes[a] < type_sizeof[v->vtype]) + alloc.sizes[a] = type_sizeof[v->vtype]; + + self->values[i]->code.local = a; + break; + } + if (a >= alloc.locals_count) { + self->values[i]->code.local = alloc.locals_count; + if (!function_allocator_alloc(&alloc, v)) + goto error; + } + } + + /* Adjust slot positions based on sizes */ + if (!function_allocator_positions_add(&alloc, 0)) + goto error; + + if (alloc.sizes_count) + pos = alloc.positions[0] + alloc.sizes[0]; + else + pos = 0; + for (i = 1; i < alloc.sizes_count; ++i) + { + pos = alloc.positions[i-1] + alloc.sizes[i-1]; + if (!function_allocator_positions_add(&alloc, pos)) + goto error; + } + + self->allocated_locals = pos + alloc.sizes[alloc.sizes_count-1]; + + /* Take over the actual slot positions */ + for (i = 0; i < self->values_count; ++i) + self->values[i]->code.local = alloc.positions[self->values[i]->code.local]; + + goto cleanup; + +error: + retval = false; +cleanup: + for (i = 0; i < alloc.locals_count; ++i) + ir_value_delete(alloc.locals[i]); + MEM_VECTOR_CLEAR(&alloc, locals); + MEM_VECTOR_CLEAR(&alloc, sizes); + MEM_VECTOR_CLEAR(&alloc, positions); + return retval; +} + +/* Get information about which operand + * is read from, or written to. + */ +static void ir_op_read_write(int op, size_t *read, size_t *write) +{ + switch (op) + { + case VINSTR_JUMP: + case INSTR_GOTO: + *write = 0; + *read = 0; + break; + case INSTR_IF: + case INSTR_IFNOT: +#if 0 + case INSTR_IF_S: + case INSTR_IFNOT_S: +#endif + case INSTR_RETURN: + case VINSTR_COND: + *write = 0; + *read = 1; + break; + default: + *write = 1; + *read = 6; + break; + }; +} + +static bool ir_block_living_add_instr(ir_block *self, size_t eid) +{ + size_t i; + bool changed = false; + bool tempbool; + for (i = 0; i != self->living_count; ++i) + { + tempbool = ir_value_life_merge(self->living[i], eid); + /* debug + if (tempbool) + fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid); + */ + changed = changed || tempbool; + } + return changed; +} + +static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed) +{ + size_t i; + /* values which have been read in a previous iteration are now + * in the "living" array even if the previous block doesn't use them. + * So we have to remove whatever does not exist in the previous block. + * They will be re-added on-read, but the liferange merge won't cause + * a change. + */ + for (i = 0; i < self->living_count; ++i) + { + if (!ir_block_living_find(prev, self->living[i], NULL)) { + if (!ir_block_living_remove(self, i)) + return false; + --i; + } + } + + /* Whatever the previous block still has in its living set + * must now be added to ours as well. + */ + for (i = 0; i < prev->living_count; ++i) + { + if (ir_block_living_find(self, prev->living[i], NULL)) + continue; + if (!ir_block_living_add(self, prev->living[i])) + return false; + /* + printf("%s got from prev: %s\n", self->label, prev->living[i]->_name); + */ + } + return true; +} + +static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed) +{ + ir_instr *instr; + ir_value *value; + bool tempbool; + size_t i, o, p; + /* bitmasks which operands are read from or written to */ + size_t read, write; +#if defined(LIFE_RANGE_WITHOUT_LAST_READ) + size_t rd; + new_reads_t new_reads; +#endif + char dbg_ind[16] = { '#', '0' }; + (void)dbg_ind; + +#if defined(LIFE_RANGE_WITHOUT_LAST_READ) + MEM_VECTOR_INIT(&new_reads, v); +#endif + + if (prev) + { + if (!ir_block_life_prop_previous(self, prev, changed)) + return false; + } + + i = self->instr_count; + while (i) + { --i; + instr = self->instr[i]; + + /* PHI operands are always read operands */ + for (p = 0; p < instr->phi_count; ++p) + { + value = instr->phi[p].value; +#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ) + if (!ir_block_living_find(self, value, NULL) && + !ir_block_living_add(self, value)) + { + goto on_error; + } +#else + if (!new_reads_t_v_find(&new_reads, value, NULL)) + { + if (!new_reads_t_v_add(&new_reads, value)) + goto on_error; + } +#endif + } + + /* See which operands are read and write operands */ + ir_op_read_write(instr->opcode, &read, &write); + + /* Go through the 3 main operands */ + for (o = 0; o < 3; ++o) + { + if (!instr->_ops[o]) /* no such operand */ + continue; + + value = instr->_ops[o]; + + /* We only care about locals */ + /* we also calculate parameter liferanges so that locals + * can take up parameter slots */ + if (value->store != store_value && + value->store != store_local && + value->store != store_param) + continue; + + /* read operands */ + if (read & (1<_name); */ + if (!new_reads_t_v_find(&new_reads, value, NULL)) + { + if (!new_reads_t_v_add(&new_reads, value)) + goto on_error; + } +#endif + } + + /* write operands */ + /* When we write to a local, we consider it "dead" for the + * remaining upper part of the function, since in SSA a value + * can only be written once (== created) + */ + if (write & (1<name); + tempbool = ir_value_life_merge(value, instr->eid); + *changed = *changed || tempbool; + /* + ir_instr_dump(instr, dbg_ind, printf); + abort(); + */ + } else { + /* since 'living' won't contain it + * anymore, merge the value, since + * (A) doesn't. + */ + tempbool = ir_value_life_merge(value, instr->eid); + /* + if (tempbool) + fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid); + */ + *changed = *changed || tempbool; + /* Then remove */ +#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ) + if (!ir_block_living_remove(self, idx)) + goto on_error; +#else + if (in_reads) + { + if (!new_reads_t_v_remove(&new_reads, readidx)) + goto on_error; + } +#endif + } + } + } + /* (A) */ + tempbool = ir_block_living_add_instr(self, instr->eid); + /*fprintf(stderr, "living added values\n");*/ + *changed = *changed || tempbool; + +#if defined(LIFE_RANGE_WITHOUT_LAST_READ) + /* new reads: */ + for (rd = 0; rd < new_reads.v_count; ++rd) + { + if (!ir_block_living_find(self, new_reads.v[rd], NULL)) { + if (!ir_block_living_add(self, new_reads.v[rd])) + goto on_error; + } + if (!i && !self->entries_count) { + /* fix the top */ + *changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid); + } + } + MEM_VECTOR_CLEAR(&new_reads, v); +#endif + } + + if (self->run_id == self->owner->run_id) + return true; + + self->run_id = self->owner->run_id; + + for (i = 0; i < self->entries_count; ++i) + { + ir_block *entry = self->entries[i]; + ir_block_life_propagate(entry, self, changed); + } + + return true; +on_error: +#if defined(LIFE_RANGE_WITHOUT_LAST_READ) + MEM_VECTOR_CLEAR(&new_reads, v); +#endif + return false; +} + +/*********************************************************************** + *IR Code-Generation + * + * Since the IR has the convention of putting 'write' operands + * at the beginning, we have to rotate the operands of instructions + * properly in order to generate valid QCVM code. + * + * Having destinations at a fixed position is more convenient. In QC + * this is *mostly* OPC, but FTE adds at least 2 instructions which + * read from from OPA, and store to OPB rather than OPC. Which is + * partially the reason why the implementation of these instructions + * in darkplaces has been delayed for so long. + * + * Breaking conventions is annoying... + */ +static bool ir_builder_gen_global(ir_builder *self, ir_value *global); + +static bool gen_global_field(ir_value *global) +{ + if (global->isconst) + { + ir_value *fld = global->constval.vpointer; + if (!fld) { + printf("Invalid field constant with no field: %s\n", global->name); + return false; + } + + /* Now, in this case, a relocation would be impossible to code + * since it looks like this: + * .vector v = origin; <- parse error, wtf is 'origin'? + * .vector origin; + * + * But we will need a general relocation support later anyway + * for functions... might as well support that here. + */ + if (!fld->code.globaladdr) { + printf("FIXME: Relocation support\n"); + return false; + } + + /* copy the field's value */ + ir_value_code_setaddr(global, code_globals_add(code_globals_data[fld->code.globaladdr])); + } + else + { + ir_value_code_setaddr(global, code_globals_add(0)); + } + if (global->code.globaladdr < 0) + return false; + return true; +} + +static bool gen_global_pointer(ir_value *global) +{ + if (global->isconst) + { + ir_value *target = global->constval.vpointer; + if (!target) { + printf("Invalid pointer constant: %s\n", global->name); + /* NULL pointers are pointing to the NULL constant, which also + * sits at address 0, but still has an ir_value for itself. + */ + return false; + } + + /* Here, relocations ARE possible - in fteqcc-enhanced-qc: + * void() foo; <- proto + * void() *fooptr = &foo; + * void() foo = { code } + */ + if (!target->code.globaladdr) { + /* FIXME: Check for the constant nullptr ir_value! + * because then code.globaladdr being 0 is valid. + */ + printf("FIXME: Relocation support\n"); + return false; + } + + ir_value_code_setaddr(global, code_globals_add(target->code.globaladdr)); + } + else + { + ir_value_code_setaddr(global, code_globals_add(0)); + } + if (global->code.globaladdr < 0) + return false; + return true; +} + +static bool gen_blocks_recursive(ir_function *func, ir_block *block) +{ + prog_section_statement stmt; + ir_instr *instr; + ir_block *target; + ir_block *ontrue; + ir_block *onfalse; + size_t stidx; + size_t i; + +tailcall: + block->generated = true; + block->code_start = code_statements_elements; + for (i = 0; i < block->instr_count; ++i) + { + instr = block->instr[i]; + + if (instr->opcode == VINSTR_PHI) { + printf("cannot generate virtual instruction (phi)\n"); + return false; + } + + if (instr->opcode == VINSTR_JUMP) { + target = instr->bops[0]; + /* for uncoditional jumps, if the target hasn't been generated + * yet, we generate them right here. + */ + if (!target->generated) { + block = target; + goto tailcall; + } + + /* otherwise we generate a jump instruction */ + stmt.opcode = INSTR_GOTO; + stmt.o1.s1 = (target->code_start) - code_statements_elements; + stmt.o2.s1 = 0; + stmt.o3.s1 = 0; + if (code_statements_add(stmt) < 0) + return false; + + /* no further instructions can be in this block */ + return true; + } + + if (instr->opcode == VINSTR_COND) { + ontrue = instr->bops[0]; + onfalse = instr->bops[1]; + /* TODO: have the AST signal which block should + * come first: eg. optimize IFs without ELSE... + */ + + stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]); + stmt.o2.u1 = 0; + stmt.o3.s1 = 0; + + if (ontrue->generated) { + stmt.opcode = INSTR_IF; + stmt.o2.s1 = (ontrue->code_start-1) - code_statements_elements; + if (code_statements_add(stmt) < 0) + return false; + } + if (onfalse->generated) { + stmt.opcode = INSTR_IFNOT; + stmt.o2.s1 = (onfalse->code_start-1) - code_statements_elements; + if (code_statements_add(stmt) < 0) + return false; + } + if (!ontrue->generated) { + if (onfalse->generated) { + block = ontrue; + goto tailcall; + } + } + if (!onfalse->generated) { + if (ontrue->generated) { + block = onfalse; + goto tailcall; + } + } + /* neither ontrue nor onfalse exist */ + stmt.opcode = INSTR_IFNOT; + stidx = code_statements_elements; + if (code_statements_add(stmt) < 0) + return false; + /* on false we jump, so add ontrue-path */ + if (!gen_blocks_recursive(func, ontrue)) + return false; + /* fixup the jump address */ + code_statements_data[stidx].o2.s1 = code_statements_elements - stidx; + /* generate onfalse path */ + if (onfalse->generated) { + /* fixup the jump address */ + code_statements_data[stidx].o2.s1 = (onfalse->code_start) - (stidx); + /* may have been generated in the previous recursive call */ + stmt.opcode = INSTR_GOTO; + stmt.o1.s1 = (onfalse->code_start) - code_statements_elements; + stmt.o2.s1 = 0; + stmt.o3.s1 = 0; + return (code_statements_add(stmt) >= 0); + } + /* if not, generate now */ + block = onfalse; + goto tailcall; + } + + if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) { + /* Trivial call translation: + * copy all params to OFS_PARM* + * if the output's storetype is not store_return, + * add append a STORE instruction! + * + * NOTES on how to do it better without much trouble: + * -) The liferanges! + * Simply check the liferange of all parameters for + * other CALLs. For each param with no CALL in its + * liferange, we can store it in an OFS_PARM at + * generation already. This would even include later + * reuse.... probably... :) + */ + size_t p; + ir_value *retvalue; + + for (p = 0; p < instr->params_count; ++p) + { + ir_value *param = instr->params[p]; + + stmt.opcode = INSTR_STORE_F; + stmt.o3.u1 = 0; + + stmt.opcode = type_store_instr[param->vtype]; + stmt.o1.u1 = ir_value_code_addr(param); + stmt.o2.u1 = OFS_PARM0 + 3 * p; + if (code_statements_add(stmt) < 0) + return false; + } + stmt.opcode = INSTR_CALL0 + instr->params_count; + if (stmt.opcode > INSTR_CALL8) + stmt.opcode = INSTR_CALL8; + stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); + stmt.o2.u1 = 0; + stmt.o3.u1 = 0; + if (code_statements_add(stmt) < 0) + return false; + + retvalue = instr->_ops[0]; + if (retvalue && retvalue->store != store_return && retvalue->life_count) + { + /* not to be kept in OFS_RETURN */ + stmt.opcode = type_store_instr[retvalue->vtype]; + stmt.o1.u1 = OFS_RETURN; + stmt.o2.u1 = ir_value_code_addr(retvalue); + stmt.o3.u1 = 0; + if (code_statements_add(stmt) < 0) + return false; + } + continue; + } + + if (instr->opcode == INSTR_STATE) { + printf("TODO: state instruction\n"); + return false; + } + + stmt.opcode = instr->opcode; + stmt.o1.u1 = 0; + stmt.o2.u1 = 0; + stmt.o3.u1 = 0; + + /* This is the general order of operands */ + if (instr->_ops[0]) + stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]); + + if (instr->_ops[1]) + stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); + + if (instr->_ops[2]) + stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]); + + if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) + { + stmt.o1.u1 = stmt.o3.u1; + stmt.o3.u1 = 0; + } + else if (stmt.opcode >= INSTR_STORE_F && + stmt.opcode <= INSTR_STORE_FNC) + { + /* 2-operand instructions with A -> B */ + stmt.o2.u1 = stmt.o3.u1; + stmt.o3.u1 = 0; + } + + if (code_statements_add(stmt) < 0) + return false; + } + return true; +} + +static bool gen_function_code(ir_function *self) +{ + ir_block *block; + prog_section_statement stmt; + + /* Starting from entry point, we generate blocks "as they come" + * for now. Dead blocks will not be translated obviously. + */ + if (!self->blocks_count) { + printf("Function '%s' declared without body.\n", self->name); + return false; + } + + block = self->blocks[0]; + if (block->generated) + return true; + + if (!gen_blocks_recursive(self, block)) { + printf("failed to generate blocks for '%s'\n", self->name); + return false; + } + + /* otherwise code_write crashes since it debug-prints functions until AINSTR_END */ + stmt.opcode = AINSTR_END; + stmt.o1.u1 = 0; + stmt.o2.u1 = 0; + stmt.o3.u1 = 0; + if (code_statements_add(stmt) < 0) + return false; + return true; +} + +static bool gen_global_function(ir_builder *ir, ir_value *global) +{ + prog_section_function fun; + ir_function *irfun; + + size_t i; + size_t local_var_end; + + if (!global->isconst || (!global->constval.vfunc)) + { + printf("Invalid state of function-global: not constant: %s\n", global->name); + return false; + } + + irfun = global->constval.vfunc; + + fun.name = global->code.name; + fun.file = code_cachedstring(global->context.file); + fun.profile = 0; /* always 0 */ + fun.nargs = irfun->params_count; + + for (i = 0;i < 8; ++i) { + if (i >= fun.nargs) + fun.argsize[i] = 0; + else + fun.argsize[i] = type_sizeof[irfun->params[i]]; + } + + fun.firstlocal = code_globals_elements; + fun.locals = irfun->allocated_locals + irfun->locals_count; + + local_var_end = 0; + for (i = 0; i < irfun->locals_count; ++i) { + if (!ir_builder_gen_global(ir, irfun->locals[i])) { + printf("Failed to generate global %s\n", irfun->locals[i]->name); + return false; + } + } + if (irfun->locals_count) { + ir_value *last = irfun->locals[irfun->locals_count-1]; + local_var_end = last->code.globaladdr; + local_var_end += type_sizeof[last->vtype]; + } + for (i = 0; i < irfun->values_count; ++i) + { + /* generate code.globaladdr for ssa values */ + ir_value *v = irfun->values[i]; + ir_value_code_setaddr(v, local_var_end + v->code.local); + } + for (i = 0; i < irfun->locals_count; ++i) { + /* fill the locals with zeros */ + code_globals_add(0); + } + + if (irfun->builtin) + fun.entry = irfun->builtin; + else { + fun.entry = code_statements_elements; + if (!gen_function_code(irfun)) { + printf("Failed to generate code for function %s\n", irfun->name); + return false; + } + } + + return (code_functions_add(fun) >= 0); +} + +static bool ir_builder_gen_global(ir_builder *self, ir_value *global) +{ + size_t i; + int32_t *iptr; + prog_section_def def; + + def.type = global->vtype; + def.offset = code_globals_elements; + def.name = global->code.name = code_genstring(global->name); + + switch (global->vtype) + { + case TYPE_POINTER: + if (code_defs_add(def) < 0) + return false; + return gen_global_pointer(global); + case TYPE_FIELD: + if (code_defs_add(def) < 0) + return false; + return gen_global_field(global); + case TYPE_ENTITY: + /* fall through */ + case TYPE_FLOAT: + { + if (code_defs_add(def) < 0) + return false; + + if (global->isconst) { + iptr = (int32_t*)&global->constval.vfloat; + ir_value_code_setaddr(global, code_globals_add(*iptr)); + } else + ir_value_code_setaddr(global, code_globals_add(0)); + + return global->code.globaladdr >= 0; + } + case TYPE_STRING: + { + if (code_defs_add(def) < 0) + return false; + if (global->isconst) + ir_value_code_setaddr(global, code_globals_add(code_cachedstring(global->constval.vstring))); + else + ir_value_code_setaddr(global, code_globals_add(0)); + return global->code.globaladdr >= 0; + } + case TYPE_VECTOR: + { + size_t d; + if (code_defs_add(def) < 0) + return false; + + if (global->isconst) { + iptr = (int32_t*)&global->constval.vvec; + ir_value_code_setaddr(global, code_globals_add(iptr[0])); + if (global->code.globaladdr < 0) + return false; + for (d = 1; d < type_sizeof[global->vtype]; ++d) + { + if (code_globals_add(iptr[d]) < 0) + return false; + } + } else { + ir_value_code_setaddr(global, code_globals_add(0)); + if (global->code.globaladdr < 0) + return false; + for (d = 1; d < type_sizeof[global->vtype]; ++d) + { + if (code_globals_add(0) < 0) + return false; + } + } + return global->code.globaladdr >= 0; + } + case TYPE_FUNCTION: + if (code_defs_add(def) < 0) + return false; + ir_value_code_setaddr(global, code_globals_elements); + code_globals_add(code_functions_elements); + return gen_global_function(self, global); + case TYPE_VARIANT: + /* assume biggest type */ + ir_value_code_setaddr(global, code_globals_add(0)); + for (i = 1; i < type_sizeof[TYPE_VARIANT]; ++i) + code_globals_add(0); + return true; + default: + /* refuse to create 'void' type or any other fancy business. */ + printf("Invalid type for global variable %s\n", global->name); + return false; + } +} + +static bool ir_builder_gen_field(ir_builder *self, ir_value *field) +{ + prog_section_def def; + prog_section_field fld; + + def.type = field->vtype; + def.offset = code_globals_elements; + def.name = field->code.name = code_genstring(field->name); + + if (code_defs_add(def) < 0) + return false; + + fld.name = def.name; + fld.offset = code_fields_elements; + fld.type = field->fieldtype; + + if (fld.type == TYPE_VOID) { + printf("field is missing a type: %s - don't know its size\n", field->name); + return false; + } + + if (code_fields_add(fld) < 0) + return false; + + if (!code_globals_add(code_alloc_field(type_sizeof[field->fieldtype]))) + return false; + + ir_value_code_setaddr(field, code_globals_add(fld.offset)); + return field->code.globaladdr >= 0; +} + +bool ir_builder_generate(ir_builder *self, const char *filename) +{ + size_t i; + + code_init(); + + for (i = 0; i < self->fields_count; ++i) + { + if (!ir_builder_gen_field(self, self->fields[i])) { + return false; + } + } + + for (i = 0; i < self->globals_count; ++i) + { + if (!ir_builder_gen_global(self, self->globals[i])) { + return false; + } + } + + printf("writing '%s'...\n", filename); + return code_write(filename); +} + +/*********************************************************************** + *IR DEBUG Dump functions... + */ + +#define IND_BUFSZ 1024 + +const char *qc_opname(int op) +{ + if (op < 0) return ""; + if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) )) + return asm_instr[op].m; + switch (op) { + case VINSTR_PHI: return "PHI"; + case VINSTR_JUMP: return "JUMP"; + case VINSTR_COND: return "COND"; + default: return ""; + } +} + +void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...)) +{ + size_t i; + char indent[IND_BUFSZ]; + indent[0] = '\t'; + indent[1] = 0; + + oprintf("module %s\n", b->name); + for (i = 0; i < b->globals_count; ++i) + { + oprintf("global "); + if (b->globals[i]->isconst) + oprintf("%s = ", b->globals[i]->name); + ir_value_dump(b->globals[i], oprintf); + oprintf("\n"); + } + for (i = 0; i < b->functions_count; ++i) + ir_function_dump(b->functions[i], indent, oprintf); + oprintf("endmodule %s\n", b->name); +} + +void ir_function_dump(ir_function *f, char *ind, + int (*oprintf)(const char*, ...)) +{ + size_t i; + if (f->builtin != 0) { + oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin); + return; + } + oprintf("%sfunction %s\n", ind, f->name); + strncat(ind, "\t", IND_BUFSZ); + if (f->locals_count) + { + oprintf("%s%i locals:\n", ind, (int)f->locals_count); + for (i = 0; i < f->locals_count; ++i) { + oprintf("%s\t", ind); + ir_value_dump(f->locals[i], oprintf); + oprintf("\n"); + } + } + if (f->blocks_count) + { + oprintf("%slife passes (check): %i\n", ind, (int)f->run_id); + for (i = 0; i < f->blocks_count; ++i) { + if (f->blocks[i]->run_id != f->run_id) { + oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id); + } + ir_block_dump(f->blocks[i], ind, oprintf); + } + + } + ind[strlen(ind)-1] = 0; + oprintf("%sendfunction %s\n", ind, f->name); +} + +void ir_block_dump(ir_block* b, char *ind, + int (*oprintf)(const char*, ...)) +{ + size_t i; + oprintf("%s:%s\n", ind, b->label); + strncat(ind, "\t", IND_BUFSZ); + + for (i = 0; i < b->instr_count; ++i) + ir_instr_dump(b->instr[i], ind, oprintf); + ind[strlen(ind)-1] = 0; +} + +void dump_phi(ir_instr *in, char *ind, + int (*oprintf)(const char*, ...)) +{ + size_t i; + oprintf("%s <- phi ", in->_ops[0]->name); + for (i = 0; i < in->phi_count; ++i) + { + oprintf("([%s] : %s) ", in->phi[i].from->label, + in->phi[i].value->name); + } + oprintf("\n"); +} + +void ir_instr_dump(ir_instr *in, char *ind, + int (*oprintf)(const char*, ...)) +{ + size_t i; + const char *comma = NULL; + + oprintf("%s (%i) ", ind, (int)in->eid); + + if (in->opcode == VINSTR_PHI) { + dump_phi(in, ind, oprintf); + return; + } + + strncat(ind, "\t", IND_BUFSZ); + + if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) { + ir_value_dump(in->_ops[0], oprintf); + if (in->_ops[1] || in->_ops[2]) + oprintf(" <- "); + } + oprintf("%s\t", qc_opname(in->opcode)); + if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) { + ir_value_dump(in->_ops[0], oprintf); + comma = ",\t"; + } + else + { + for (i = 1; i != 3; ++i) { + if (in->_ops[i]) { + if (comma) + oprintf(comma); + ir_value_dump(in->_ops[i], oprintf); + comma = ",\t"; + } + } + } + if (in->bops[0]) { + if (comma) + oprintf(comma); + oprintf("[%s]", in->bops[0]->label); + comma = ",\t"; + } + if (in->bops[1]) + oprintf("%s[%s]", comma, in->bops[1]->label); + oprintf("\n"); + ind[strlen(ind)-1] = 0; +} + +void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...)) +{ + if (v->isconst) { + switch (v->vtype) { + case TYPE_VOID: + oprintf("(void)"); + break; + case TYPE_FLOAT: + oprintf("%g", v->constval.vfloat); + break; + case TYPE_VECTOR: + oprintf("'%g %g %g'", + v->constval.vvec.x, + v->constval.vvec.y, + v->constval.vvec.z); + break; + case TYPE_ENTITY: + oprintf("(entity)"); + break; + case TYPE_STRING: + oprintf("\"%s\"", v->constval.vstring); + break; +#if 0 + case TYPE_INTEGER: + oprintf("%i", v->constval.vint); + break; +#endif + case TYPE_POINTER: + oprintf("&%s", + v->constval.vpointer->name); + break; + } + } else { + oprintf("%s", v->name); + } +} + +void ir_value_dump_life(ir_value *self, int (*oprintf)(const char*,...)) +{ + size_t i; + oprintf("Life of %s:\n", self->name); + for (i = 0; i < self->life_count; ++i) + { + oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end); + } }