X-Git-Url: https://git.xonotic.org/?p=xonotic%2Fgmqcc.git;a=blobdiff_plain;f=fold.c;h=8227537bc68f20793b45fcf199c7f35146966341;hp=403b6f51b6d2a180438f08d4e7138d55387c9379;hb=edb38ce70e86acde9530af5861cfcf8f396b5e75;hpb=c3da9b237b064af6920bdb742083807945ed65a9 diff --git a/fold.c b/fold.c index 403b6f5..8227537 100644 --- a/fold.c +++ b/fold.c @@ -1,5 +1,5 @@ /* - * Copyright (C) 2012, 2013 + * Copyright (C) 2012, 2013, 2014 * Dale Weiler * * Permission is hereby granted, free of charge, to any person obtaining a copy of @@ -29,36 +29,427 @@ #define FOLD_STRING_UNTRANSLATE_HTSIZE 1024 #define FOLD_STRING_DOTRANSLATE_HTSIZE 1024 +/* + * The constant folder is also responsible for validating if the constant + * expressions produce valid results. We cannot trust the FPU control + * unit for these exceptions because setting FPU control words might not + * work. Systems can set and enforce FPU modes of operation. It's also valid + * for libc's to simply ignore FPU exceptions. For instance ARM CPUs in + * glibc. We implement some trivial and IEE 754 conformant functions which + * emulate those operations. This is an entierly optional compiler feature + * which shouldn't be enabled for anything other than performing strict + * passes on constant expressions since it's quite slow. + */ +typedef uint32_t sfloat_t; + +typedef union { + qcfloat_t f; + sfloat_t s; +} sfloat_cast_t; + +typedef enum { + SFLOAT_INVALID = 1, + SFLOAT_DIVBYZERO = 4, + SFLOAT_OVERFLOW = 8, + SFLOAT_UNDERFLOW = 16, + SFLOAT_INEXACT = 32 +} sfloat_exceptionflags_t; + +typedef enum { + SFLOAT_ROUND_NEAREST_EVEN, + SFLOAT_ROUND_DOWN, + SFLOAT_ROUND_UP, + SFLOAT_ROUND_TO_ZERO +} sfloat_roundingmode_t; + +typedef enum { + SFLOAT_TAFTER, + SFLOAT_TBEFORE +} sfloat_tdetect_t; + +typedef struct { + sfloat_roundingmode_t roundingmode; + sfloat_exceptionflags_t exceptionflags; + sfloat_tdetect_t tiny; +} sfloat_state_t; + +/* The value of a NaN */ +#define SFLOAT_NAN 0xFFC00000 +/* Count of leading zero bits before the most-significand 1 bit. */ +#define SFLOAT_CLZ(X, SUB) \ + (__builtin_clz((X)) - (SUB)) +/* Test if NaN */ +#define SFLOAT_ISNAN(A) \ + (0xFF000000 < (uint32_t)((A) << 1)) +/* Test if signaling NaN */ +#define SFLOAT_ISSNAN(A) \ + (((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF)) +/* Raise exception */ +#define SFLOAT_RAISE(STATE, FLAGS) \ + ((STATE)->exceptionflags |= (FLAGS)) +/* + * Shifts `A' right `COUNT' bits. Non-zero bits are stored in LSB. Size + * sets the arbitrarly-large limit. + */ +#define SFLOAT_SHIFT(SIZE, A, COUNT, Z) \ + *(Z) = ((COUNT) == 0) \ + ? 1 \ + : (((COUNT) < (SIZE)) \ + ? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \ + : ((A) != 0)) +/* Extract fractional component */ +#define SFLOAT_EXTRACT_FRAC(X) \ + ((uint32_t)((X) & 0x007FFFFF)) +/* Extract exponent component */ +#define SFLOAT_EXTRACT_EXP(X) \ + ((int16_t)((X) >> 23) & 0xFF) +/* Extract sign bit */ +#define SFLOAT_EXTRACT_SIGN(X) \ + ((X) >> 31) +/* Normalize a subnormal */ +#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \ + (void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(SZ) = 1 - SFLOAT_CLZ((SA), 8)) +/* + * Pack sign, exponent and significand and produce a float. + * + * Integer portions of the significand are added to the exponent. The + * exponent input should be one less than the result exponent whenever + * the significand is normalized since normalized significand will + * always have an integer portion of value one. + */ +#define SFLOAT_PACK(SIGN, EXP, SIG) \ + (sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG)) + +/* Calculate NaN. If either operands are signaling then raise invalid */ +static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool isnan_a = SFLOAT_ISNAN(a); + bool issnan_a = SFLOAT_ISSNAN(a); + bool isnan_b = SFLOAT_ISNAN(b); + bool issnan_b = SFLOAT_ISSNAN(b); + + a |= 0x00400000; + b |= 0x00400000; + + if (issnan_a | issnan_b) + SFLOAT_RAISE(state, SFLOAT_INEXACT); + if (issnan_a) { + if (issnan_b) + goto larger; + return isnan_b ? b : a; + } else if (isnan_a) { + if (issnan_b | !isnan_b) + return a; +larger: + if ((uint32_t)(a << 1) < (uint32_t)(b << 1)) return b; + if ((uint32_t)(b << 1) < (uint32_t)(a << 1)) return a; + return (a < b) ? a : b; + } + return b; +} + +/* Round and pack */ +static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) { + sfloat_roundingmode_t mode = state->roundingmode; + bool even = !!(mode == SFLOAT_ROUND_NEAREST_EVEN); + unsigned char increment = 0x40; + unsigned char bits = sig_z & 0x7F; + + if (!even) { + if (mode == SFLOAT_ROUND_TO_ZERO) + increment = 0; + else { + increment = 0x7F; + if (sign_z) { + if (mode == SFLOAT_ROUND_UP) + increment = 0; + } else { + if (mode == SFLOAT_ROUND_DOWN) + increment = 0; + } + } + } + + if (0xFD <= (uint16_t)exp_z) { + if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) { + SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT); + return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0); + } + if (exp_z < 0) { + /* Check for underflow */ + bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000); + SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z); + exp_z = 0; + bits = sig_z & 0x7F; + if (tiny && bits) + SFLOAT_RAISE(state, SFLOAT_UNDERFLOW); + } + } + + /* + * Significand has point between bits 30 and 29, 7 bits to the left of + * the usual place. This shifted significand has to be normalized + * or smaller, if it isn't the exponent must be zero, in which case + * no rounding occurs since the result will be a subnormal. + */ + if (bits) + SFLOAT_RAISE(state, SFLOAT_INEXACT); + sig_z = (sig_z + increment) >> 7; + sig_z &= ~(((bits ^ 0x40) == 0) & even); + if (sig_z == 0) + exp_z = 0; + return SFLOAT_PACK(sign_z, exp_z, sig_z); +} + +/* Normalized round and pack */ +static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) { + unsigned char c = SFLOAT_CLZ(sig_z, 1); + return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c); +} + +static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + int16_t exp_d = exp_a - exp_b; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6; + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6; + uint32_t sig_z = 0; + + if (0 < exp_d) { + if (exp_a == 0xFF) + return sig_a ? sfloat_propagate_nan(state, a, b) : a; + if (exp_b == 0) + --exp_d; + else + sig_b |= 0x20000000; + SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b); + exp_z = exp_a; + } else if (exp_d < 0) { + if (exp_b == 0xFF) + return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0); + if (exp_a == 0) + ++exp_d; + else + sig_a |= 0x20000000; + SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a); + exp_z = exp_b; + } else { + if (exp_a == 0xFF) + return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a; + if (exp_a == 0) + return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6); + sig_z = 0x40000000 + sig_a + sig_b; + exp_z = exp_a; + goto end; + } + sig_a |= 0x20000000; + sig_z = (sig_a + sig_b) << 1; + --exp_z; + if ((int32_t)sig_z < 0) { + sig_z = sig_a + sig_b; + ++exp_z; + } +end: + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + +static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + int16_t exp_d = exp_a - exp_b; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7; + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7; + uint32_t sig_z = 0; + + if (0 < exp_d) goto exp_greater_a; + if (exp_d < 0) goto exp_greater_b; + + if (exp_a == 0xFF) { + if (sig_a | sig_b) + return sfloat_propagate_nan(state, a, b); + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + + if (exp_a == 0) + exp_a = exp_b = 1; + + if (sig_b < sig_a) goto greater_a; + if (sig_a < sig_b) goto greater_b; + + return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0); + +exp_greater_b: + if (exp_b == 0xFF) + return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0); + if (exp_a == 0) + ++exp_d; + else + sig_a |= 0x40000000; + SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a); + sig_b |= 0x40000000; +greater_b: + sig_z = sig_b - sig_a; + exp_z = exp_b; + sign_z ^= 1; + goto end; + +exp_greater_a: + if (exp_a == 0xFF) + return (sig_a) ? sfloat_propagate_nan(state, a, b) : a; + if (exp_b == 0) + --exp_d; + else + sig_b |= 0x40000000; + SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b); + sig_a |= 0x40000000; +greater_a: + sig_z = sig_a - sig_b; + exp_z = exp_a; + +end: + --exp_z; + return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z); +} + +static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a) + : sfloat_sub_impl(state, a, b, sign_a); +} + +static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a) + : sfloat_add_impl(state, a, b, sign_a); +} + +static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a); + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b); + uint32_t sig_z = 0; + uint64_t sig_z64 = 0; + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + bool sign_z = sign_a ^ sign_b; + + if (exp_a == 0xFF) { + if (sig_a || ((exp_b == 0xFF) && sig_b)) + return sfloat_propagate_nan(state, a, b); + if ((exp_b | sig_b) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_b == 0xFF) { + if (sig_b) + return sfloat_propagate_nan(state, a, b); + if ((exp_a | sig_a) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_a == 0) { + if (sig_a == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a); + } + if (exp_b == 0) { + if (sig_b == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b); + } + exp_z = exp_a + exp_b - 0x7F; + sig_a = (sig_a | 0x00800000) << 7; + sig_b = (sig_b | 0x00800000) << 8; + SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64); + sig_z = sig_z64; + if (0 <= (int32_t)(sig_z << 1)) { + sig_z <<= 1; + --exp_z; + } + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + +static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a); + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b); + uint32_t sig_z = 0; + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + bool sign_z = sign_a ^ sign_b; + + if (exp_a == 0xFF) { + if (sig_a) + return sfloat_propagate_nan(state, a, b); + if (exp_b == 0xFF) { + if (sig_b) + return sfloat_propagate_nan(state, a, b); + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_b == 0xFF) + return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0); + if (exp_b == 0) { + if (sig_b == 0) { + if ((exp_a | sig_a) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + SFLOAT_RAISE(state, SFLOAT_DIVBYZERO); + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b); + } + if (exp_a == 0) { + if (sig_a == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a); + } + exp_z = exp_a - exp_b + 0x7D; + sig_a = (sig_a | 0x00800000) << 7; + sig_b = (sig_b | 0x00800000) << 8; + if (sig_b <= (sig_a + sig_a)) { + sig_a >>= 1; + ++exp_z; + } + sig_z = (((uint64_t)sig_a) << 32) / sig_b; + if ((sig_z & 0x3F) == 0) + sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32); + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + /* * There is two stages to constant folding in GMQCC: there is the parse * stage constant folding, where, witht he help of the AST, operator * usages can be constant folded. Then there is the constant folding * in the IR for things like eliding if statements, can occur. - * + * * This file is thus, split into two parts. */ -ast_expression **fold_const_values = NULL; -static GMQCC_INLINE bool fold_possible(const ast_value *val) { - return ast_istype((ast_expression*)val, ast_value) && - val->hasvalue && (val->cvq == CV_CONST) && - ((ast_expression*)val)->vtype != TYPE_FUNCTION; /* why not for functions? */ -} - -#define isfloatonly(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) -#define isvectoronly(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) -#define isstringonly(X) (((ast_expression*)(X))->vtype == TYPE_STRING) -#define isfloat(X) (isfloatonly (X) && fold_possible(X)) -#define isvector(X) (isvectoronly(X) && fold_possible(X)) -#define isstring(X) (isstringonly(X) && fold_possible(X)) -#define isfloats(X,Y) (isfloat (X) && isfloat (Y)) -#define isvectors(X,Y) (isvector (X) && isvector(Y)) -#define isstrings(X,Y) (isstring (X) && isstring(Y)) +#define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) +#define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) +#define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING) +#define isfloats(X,Y) (isfloat (X) && isfloat (Y)) /* * Implementation of basic vector math for vec3_t, for trivial constant * folding. - * + * * TODO: gcc/clang hinting for autovectorization */ static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) { @@ -71,17 +462,9 @@ static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) { static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) { vec3_t out; - out.x = a.x + b.x; - out.y = a.y + b.y; - out.z = a.z + b.z; - return out; -} - -static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { - vec3_t out; - out.x = !a.x; - out.y = !a.y; - out.z = !a.z; + out.x = a.x - b.x; + out.y = a.y - b.y; + out.z = a.z - b.z; return out; } @@ -93,19 +476,59 @@ static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) { return out; } +static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b)); + return out; +} + static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) { vec3_t out; - out.x = (qcfloat_t)((qcint_t)a.x ^ (qcint_t)b.x); - out.y = (qcfloat_t)((qcint_t)a.y ^ (qcint_t)b.y); - out.z = (qcfloat_t)((qcint_t)a.z ^ (qcint_t)b.z); + out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z)); return out; } static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) { vec3_t out; - out.x = (qcfloat_t)((qcint_t)a.x ^ (qcint_t)b); - out.y = (qcfloat_t)((qcint_t)a.y ^ (qcint_t)b); - out.z = (qcfloat_t)((qcint_t)a.z ^ (qcint_t)b); + out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { + vec3_t out; + out.x = -1-a.x; + out.y = -1-a.y; + out.z = -1-a.z; return out; } @@ -135,21 +558,64 @@ static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) { return out; } -static GMQCC_INLINE bool vec3_pbool(vec3_t a) { - return (a.x && a.y && a.z); +static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) { + return (!a.x && !a.y && !a.z); } +static GMQCC_INLINE bool vec3_pbool(vec3_t a) { + return (a.x || a.y || a.z); +} -static GMQCC_INLINE float fold_immvalue_float(ast_value *expr) { - return expr->constval.vfloat; +static GMQCC_INLINE vec3_t vec3_cross(vec3_t a, vec3_t b) { + vec3_t out; + out.x = a.y * b.z - a.z * b.y; + out.y = a.z * b.x - a.x * b.z; + out.z = a.x * b.y - a.y * b.x; + return out; } -static GMQCC_INLINE vec3_t fold_immvalue_vector(ast_value *expr) { - return expr->constval.vvec; + +static lex_ctx_t fold_ctx(fold_t *fold) { + lex_ctx_t ctx; + if (fold->parser->lex) + return parser_ctx(fold->parser); + + memset(&ctx, 0, sizeof(ctx)); + return ctx; } -static GMQCC_INLINE const char *fold_immvalue_string(ast_value *expr) { - return expr->constval.vstring; + +static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) { + switch (v->expression.vtype) { + case TYPE_FLOAT: + return !!v->constval.vfloat; + case TYPE_INTEGER: + return !!v->constval.vint; + case TYPE_VECTOR: + if (OPTS_FLAG(CORRECT_LOGIC)) + return vec3_pbool(v->constval.vvec); + return !!(v->constval.vvec.x); + case TYPE_STRING: + if (!v->constval.vstring) + return false; + if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) + return true; + return !!v->constval.vstring[0]; + default: + compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type"); + break; + } + return !!v->constval.vfunc; } +/* Handy macros to determine if an ast_value can be constant folded. */ +#define fold_can_1(X) \ + (ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \ + ((ast_expression*)(X))->vtype != TYPE_FUNCTION) + +#define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y)) + +#define fold_immvalue_float(E) ((E)->constval.vfloat) +#define fold_immvalue_vector(E) ((E)->constval.vvec) +#define fold_immvalue_string(E) ((E)->constval.vstring) fold_t *fold_init(parser_t *parser) { fold_t *fold = (fold_t*)mem_a(sizeof(fold_t)); @@ -164,11 +630,13 @@ fold_t *fold_init(parser_t *parser) { * prime the tables with common constant values at constant * locations. */ - (void)fold_constgen_float (fold, 0.0f); - (void)fold_constgen_float (fold, 1.0f); - (void)fold_constgen_float (fold, -1.0f); + (void)fold_constgen_float (fold, 0.0f, false); + (void)fold_constgen_float (fold, 1.0f, false); + (void)fold_constgen_float (fold, -1.0f, false); + (void)fold_constgen_float (fold, 2.0f, false); (void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f)); + (void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f)); return fold; } @@ -210,27 +678,19 @@ void fold_cleanup(fold_t *fold) { mem_d(fold); } -static lex_ctx_t fold_ctx(fold_t *fold) { - lex_ctx_t ctx; - if (fold->parser->lex) - return parser_ctx(fold->parser); - - memset(&ctx, 0, sizeof(ctx)); - return ctx; -} - -ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) { +ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value, bool inexact) { ast_value *out = NULL; size_t i; for (i = 0; i < vec_size(fold->imm_float); i++) { - if (fold->imm_float[i]->constval.vfloat == value) + if (!memcmp(&fold->imm_float[i]->constval.vfloat, &value, sizeof(qcfloat_t))) return (ast_expression*)fold->imm_float[i]; } out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT); out->cvq = CV_CONST; out->hasvalue = true; + out->inexact = inexact; out->constval.vfloat = value; vec_push(fold->imm_float, out); @@ -284,29 +744,30 @@ ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool transla return (ast_expression*)out; } -static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t *vec, ast_value *sel, const char *set) { + +static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) { /* * vector-component constant folding works by matching the component sets * to eliminate expensive operations on whole-vectors (3 components at runtime). - * to achive this effect in a clean manner this function generalizes the + * to achive this effect in a clean manner this function generalizes the * values through the use of a set paramater, which is used as an indexing method * for creating the elided ast binary expression. * * Consider 'n 0 0' where y, and z need to be tested for 0, and x is - * used as the value in a binary operation generating an INSTR_MUL instruction + * used as the value in a binary operation generating an INSTR_MUL instruction, * to acomplish the indexing of the correct component value we use set[0], set[1], set[2] * as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because * of how ASCII works we can easily deliniate: * vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a * literal value of 2, using this 2, we know that taking the address of vec->x (float) * and indxing it with this literal will yeild the immediate address of that component - * + * * Of course more work needs to be done to generate the correct index for the ast_member_new * call, which is no problem: set[0]-'x' suffices that job. */ - qcfloat_t x = (&vec->x)[set[0]-'x']; - qcfloat_t y = (&vec->x)[set[1]-'x']; - qcfloat_t z = (&vec->x)[set[2]-'x']; + qcfloat_t x = (&vec.x)[set[0]-'x']; + qcfloat_t y = (&vec.x)[set[1]-'x']; + qcfloat_t z = (&vec.x)[set[2]-'x']; if (!y && !z) { ast_expression *out; @@ -314,105 +775,344 @@ static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t *vec, a out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL); out->node.keep = false; ((ast_member*)out)->rvalue = true; - if (!x != -1) - return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out); + if (x != -1.0f) + return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x, false), out); + } + return NULL; +} + + +static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, -fold_immvalue_float(a), false); + } else if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))); } + return NULL; +} +static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, !fold_immvalue_float(a), false); + } else if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a)), false); + } else if (isstring(a)) { + if (fold_can_1(a)) { + if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) + return fold_constgen_float(fold, !fold_immvalue_string(a), false); + else + return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a), false); + } + } return NULL; } +static bool fold_check_except_float(sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t), + fold_t *fold, + ast_value *a, + ast_value *b) +{ + sfloat_state_t s; + sfloat_cast_t ca; + sfloat_cast_t cb; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES)) + return false; + + s.roundingmode = SFLOAT_ROUND_NEAREST_EVEN; + s.tiny = SFLOAT_TBEFORE; + s.exceptionflags = 0; + ca.f = fold_immvalue_float(a); + cb.f = fold_immvalue_float(b); + + callback(&s, ca.s, cb.s); + if (s.exceptionflags == 0) + return false; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto inexact_possible; + + if (s.exceptionflags & SFLOAT_DIVBYZERO) + compile_error(fold_ctx(fold), "division by zero"); + if (s.exceptionflags & SFLOAT_INVALID) + compile_error(fold_ctx(fold), "undefined (inf)"); + if (s.exceptionflags & SFLOAT_OVERFLOW) + compile_error(fold_ctx(fold), "arithmetic overflow"); + if (s.exceptionflags & SFLOAT_UNDERFLOW) + compile_error(fold_ctx(fold), "arithmetic underflow"); + +inexact_possible: + return s.exceptionflags & SFLOAT_INEXACT; +} + +static bool fold_check_inexact_float(fold_t *fold, ast_value *a, ast_value *b) { + lex_ctx_t ctx = fold_ctx(fold); + if (!OPTS_WARN(WARN_INEXACT_COMPARES)) + return false; + if (!a->inexact && !b->inexact) + return false; + return compile_warning(ctx, WARN_INEXACT_COMPARES, "inexact value in comparison"); +} + +static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_add, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b), inexact); + } + } else if (isvector(a)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_sub, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b), inexact); + } + } else if (isvector(a)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } + return NULL; +} static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) { - if (isfloatonly(a)) { - return (fold_possible(a) && fold_possible(b)) - ? fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))) /* a=float, b=vector */ - : NULL; /* cannot fold them */ - } else if (isfloats(a, b)) { - return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); /* a=float, b=float */ - } else if (isvectoronly(a)) { - if (isfloat(b) && fold_possible(a)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); /* a=vector, b=float */ - else if (isvector(b)) { - /* - * if we made it here the two ast values are both vectors. However because vectors are represented as - * three float values, constant folding can still occur within reason of the individual const-qualification - * of the components the vector is composed of. - */ - if (fold_possible(a) && fold_possible(b)) - return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b))); - else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(a)) { - vec3_t vec = fold_immvalue_vector(a); + if (isfloat(a)) { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))); + } else { + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_mul, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b), inexact); + } + } + } else if (isvector(a)) { + if (isfloat(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } else { + if (fold_can_2(a, b)) { + return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b)), false); + } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) { ast_expression *out; - if ((out = fold_op_mul_vec(fold, &vec, b, "xyz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, b, "yxz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, b, "zxy"))) return out; - return NULL; - } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_possible(b)) { - vec3_t vec = fold_immvalue_vector(b); + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out; + } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) { ast_expression *out; - if ((out = fold_op_mul_vec(fold, &vec, a, "xyz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, a, "yxz"))) return out; - if ((out = fold_op_mul_vec(fold, &vec, a, "zxy"))) return out; - return NULL; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out; + if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out; } } } return NULL; } -static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) { - switch (v->expression.vtype) { - case TYPE_FLOAT: return !!v->constval.vfloat; - case TYPE_INTEGER: return !!v->constval.vint; - case TYPE_VECTOR: return OPTS_FLAG(CORRECT_LOGIC) ? vec3_pbool(v->constval.vvec) : !!v->constval.vvec.x; - case TYPE_STRING: - if (!v->constval.vstring) - return false; - if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) - return true; - return !!v->constval.vstring[0]; - default: - compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type"); - break; +static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_div, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b), inexact); + } else if (fold_can_1(b)) { + return (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_MUL_F, + (ast_expression*)a, + fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false) + ); + } + } else if (isvector(a)) { + if (fold_can_2(a, b)) { + return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); + } else { + return (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_MUL_VF, + (ast_expression*)a, + (fold_can_1(b)) + ? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false) + : (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_DIV_F, + (ast_expression*)fold->imm_float[1], + (ast_expression*)b + ) + ); + } } - return !!v->constval.vfunc; + return NULL; } -static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) { - if (isfloatonly(a)) { - return (fold_possible(a) && fold_possible(b)) - ? fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b)) - : NULL; +static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) { + return (fold_can_2(a, b)) + ? fold_constgen_float(fold, fmod(fold_immvalue_float(a), fold_immvalue_float(b)), false) + : NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b))), false); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } } + return NULL; +} - if (isvectoronly(a)) { - if (fold_possible(a) && fold_possible(b)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); - else if (fold_possible(b)) - return fold_constgen_float (fold, 1.0f / fold_immvalue_float(b)); +static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b))), false); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } } return NULL; } -static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, bool isor) { - if (fold_possible(a) && fold_possible(b)) { +static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) { + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b))), false); + } else { + if (fold_can_2(a, b)) { + if (isvector(b)) + return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b))); + else + return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b) && isfloats(a, b)) + return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) * powf(2.0f, fold_immvalue_float(b))), false); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b) && isfloats(a, b)) + return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) / powf(2.0f, fold_immvalue_float(b))), false); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) { + if (fold_can_2(a, b)) { if (OPTS_FLAG(PERL_LOGIC)) { - if (fold_immediate_true(fold, b)) - return (ast_expression*)b; + if (expr) + return (fold_immediate_true(fold, a)) ? (ast_expression*)a : (ast_expression*)b; + else + return (fold_immediate_true(fold, a)) ? (ast_expression*)b : (ast_expression*)a; } else { - return ((isor) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) - : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) - ? (ast_expression*)fold->imm_float[1] /* 1.0f */ - : (ast_expression*)fold->imm_float[0]; /* 0.0f */ + return fold_constgen_float ( + fold, + ((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) + : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) + ? 1 + : 0, + false + ); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) { + if (fold_can_1(a)) { + return fold_immediate_true(fold, a) + ? (ast_expression*)b + : (ast_expression*)c; + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b)), false); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a,b)) { + fold_check_inexact_float(fold, a, b); + if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2]; + if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0]; + if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1]; + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_ltgt(fold_t *fold, ast_value *a, ast_value *b, bool lt) { + if (fold_can_2(a, b)) { + fold_check_inexact_float(fold, a, b); + return (lt) ? (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) < fold_immvalue_float(b))] + : (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) > fold_immvalue_float(b))]; + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) { + if (fold_can_2(a, b)) { + if (isfloat(a) && isfloat(b)) { + float la = fold_immvalue_float(a); + float lb = fold_immvalue_float(b); + fold_check_inexact_float(fold, a, b); + return (ast_expression*)fold->imm_float[!(ne ? la == lb : la != lb)]; + } if (isvector(a) && isvector(b)) { + vec3_t la = fold_immvalue_vector(a); + vec3_t lb = fold_immvalue_vector(b); + return (ast_expression*)fold->imm_float[!(ne ? vec3_cmp(la, lb) : !vec3_cmp(la, lb))]; } } return NULL; } +static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) { + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, -1-fold_immvalue_float(a), false); + } else { + if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_cross(fold_immvalue_vector(a), fold_immvalue_vector(b))); + return NULL; +} + ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) { - ast_value *a = (ast_value*)opexprs[0]; - ast_value *b = (ast_value*)opexprs[1]; - ast_value *c = (ast_value*)opexprs[2]; + ast_value *a = (ast_value*)opexprs[0]; + ast_value *b = (ast_value*)opexprs[1]; + ast_value *c = (ast_value*)opexprs[2]; + ast_expression *e = NULL; /* can a fold operation be applied to this operator usage? */ if (!info->folds) @@ -421,69 +1121,265 @@ ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **op switch(info->operands) { case 3: if(!c) return NULL; case 2: if(!b) return NULL; + case 1: + if(!a) { + compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n"); + return NULL; + } } + /* + * we could use a boolean and default case but ironically gcc produces + * invalid broken assembly from that operation. clang/tcc get it right, + * but interestingly ignore compiling this to a jump-table when I do that, + * this happens to be the most efficent method, since you have per-level + * granularity on the pointer check happening only for the case you check + * it in. Opposed to the default method which would involve a boolean and + * pointer check after wards. + */ + #define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \ + case opid##ARGS ARGS_OPID: \ + if ((e = fold_op_##OP ARGS_FOLD)) { \ + ++opts_optimizationcount[OPTIM_CONST_FOLD]; \ + } \ + return e + switch(info->id) { - case opid2('-', 'P'): - return isfloat (a) ? fold_constgen_float (fold, fold_immvalue_float(a)) - : isvector(a) ? fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))) - : NULL; - case opid2('!', 'P'): - return isfloat (a) ? fold_constgen_float (fold, !fold_immvalue_float(a)) - : isvector(a) ? fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))) - : isstring(a) ? fold_constgen_float (fold, !fold_immvalue_string(a) || OPTS_FLAG(TRUE_EMPTY_STRINGS) ? 0 : !*fold_immvalue_string(a)) - : NULL; - case opid1('+'): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) + fold_immvalue_float(b)) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))) - : NULL; - case opid1('-'): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) - fold_immvalue_float(b)) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))) - : NULL; - case opid1('%'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) % ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('|'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('&'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b)))) - : NULL; - case opid1('^'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b)))) - : isvectors(a,b) ? fold_constgen_vector(fold, vec3_xor (fold_immvalue_vector(a), fold_immvalue_vector(b))) - : isvector(a)&&isfloat(b) ? fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float (b))) - : NULL; - case opid2('<','<'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcuint_t)(fold_immvalue_float(a)) << ((qcuint_t)fold_immvalue_float(b))))) - : NULL; - case opid2('>','>'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)(((qcuint_t)(fold_immvalue_float(a)) >> ((qcuint_t)fold_immvalue_float(b))))) - : NULL; - case opid2('*','*'): - return isfloats(a,b) ? fold_constgen_float (fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b))) - : NULL; - case opid2('!','='): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) != fold_immvalue_float(b)) - : NULL; - case opid2('=','='): - return isfloats(a,b) ? fold_constgen_float (fold, fold_immvalue_float(a) == fold_immvalue_float(b)) - : NULL; - case opid2('~','P'): - return isfloat(a) ? fold_constgen_float (fold, ~(qcint_t)fold_immvalue_float(a)) - : NULL; - - case opid1('*'): return fold_op_mul (fold, a, b); - case opid1('/'): return fold_op_div (fold, a, b); - case opid2('|','|'): return fold_op_andor(fold, a, b, true); - case opid2('&','&'): return fold_op_andor(fold, a, b, false); - case opid2('?',':'): - /* TODO: seperate function for this case */ - return NULL; - case opid3('<','=','>'): - /* TODO: seperate function for this case */ - return NULL; + fold_op_case(2, ('-', 'P'), neg, (fold, a)); + fold_op_case(2, ('!', 'P'), not, (fold, a)); + fold_op_case(1, ('+'), add, (fold, a, b)); + fold_op_case(1, ('-'), sub, (fold, a, b)); + fold_op_case(1, ('*'), mul, (fold, a, b)); + fold_op_case(1, ('/'), div, (fold, a, b)); + fold_op_case(1, ('%'), mod, (fold, a, b)); + fold_op_case(1, ('|'), bor, (fold, a, b)); + fold_op_case(1, ('&'), band, (fold, a, b)); + fold_op_case(1, ('^'), xor, (fold, a, b)); + fold_op_case(1, ('<'), ltgt, (fold, a, b, true)); + fold_op_case(1, ('>'), ltgt, (fold, a, b, false)); + fold_op_case(2, ('<', '<'), lshift, (fold, a, b)); + fold_op_case(2, ('>', '>'), rshift, (fold, a, b)); + fold_op_case(2, ('|', '|'), andor, (fold, a, b, true)); + fold_op_case(2, ('&', '&'), andor, (fold, a, b, false)); + fold_op_case(2, ('?', ':'), tern, (fold, a, b, c)); + fold_op_case(2, ('*', '*'), exp, (fold, a, b)); + fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b)); + fold_op_case(2, ('!', '='), cmp, (fold, a, b, true)); + fold_op_case(2, ('=', '='), cmp, (fold, a, b, false)); + fold_op_case(2, ('~', 'P'), bnot, (fold, a)); + fold_op_case(2, ('>', '<'), cross, (fold, a, b)); + } + #undef fold_op_case + compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator"); + return NULL; +} + +/* + * Constant folding for compiler intrinsics, simaler approach to operator + * folding, primarly: individual functions for each intrinsics to fold, + * and a generic selection function. + */ +static GMQCC_INLINE ast_expression *fold_intrin_isfinite(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isfinite(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isinf(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isinf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isnan(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isnormal(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isnormal(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_signbit(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, signbit(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intirn_acosh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, acoshf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_asinh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, asinhf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_atanh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, (float)atanh(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, expf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_exp2(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, exp2f(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_expm1(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, expm1f(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float(fold, fmodf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float(fold, powf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, fabsf(fold_immvalue_float(a)), false); +} + + +ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) { + ast_expression *ret = NULL; + ast_value *a = (ast_value*)arg[0]; + ast_value *b = (ast_value*)arg[1]; + + if (!strcmp(intrin, "isfinite")) ret = fold_intrin_isfinite(fold, a); + if (!strcmp(intrin, "isinf")) ret = fold_intrin_isinf(fold, a); + if (!strcmp(intrin, "isnan")) ret = fold_intrin_isnan(fold, a); + if (!strcmp(intrin, "isnormal")) ret = fold_intrin_isnormal(fold, a); + if (!strcmp(intrin, "signbit")) ret = fold_intrin_signbit(fold, a); + if (!strcmp(intrin, "acosh")) ret = fold_intirn_acosh(fold, a); + if (!strcmp(intrin, "asinh")) ret = fold_intrin_asinh(fold, a); + if (!strcmp(intrin, "atanh")) ret = fold_intrin_atanh(fold, a); + if (!strcmp(intrin, "exp")) ret = fold_intrin_exp(fold, a); + if (!strcmp(intrin, "exp2")) ret = fold_intrin_exp2(fold, a); + if (!strcmp(intrin, "expm1")) ret = fold_intrin_expm1(fold, a); + if (!strcmp(intrin, "mod")) ret = fold_intrin_mod(fold, a, b); + if (!strcmp(intrin, "pow")) ret = fold_intrin_pow(fold, a, b); + if (!strcmp(intrin, "fabs")) ret = fold_intrin_fabs(fold, a); + + if (ret) + ++opts_optimizationcount[OPTIM_CONST_FOLD]; + + return ret; +} + +/* + * These are all the actual constant folding methods that happen in between + * the AST/IR stage of the compiler , i.e eliminating branches for const + * expressions, which is the only supported thing so far. We undefine the + * testing macros here because an ir_value is differant than an ast_value. + */ +#undef expect +#undef isfloat +#undef isstring +#undef isvector +#undef fold_immvalue_float +#undef fold_immvalue_string +#undef fold_immvalue_vector +#undef fold_can_1 +#undef fold_can_2 + +#define isfloat(X) ((X)->vtype == TYPE_FLOAT) +/*#define isstring(X) ((X)->vtype == TYPE_STRING)*/ +/*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/ +#define fold_immvalue_float(X) ((X)->constval.vfloat) +#define fold_immvalue_vector(X) ((X)->constval.vvec) +/*#define fold_immvalue_string(X) ((X)->constval.vstring)*/ +#define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST) +/*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/ + +static ast_expression *fold_superfluous(ast_expression *left, ast_expression *right, int op) { + ast_expression *swapped = NULL; /* using this as bool */ + ast_value *load; + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) { + swapped = left; + left = right; + right = swapped; + } + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) + return NULL; + + switch (op) { + case INSTR_DIV_F: + if (swapped) + return NULL; + case INSTR_MUL_F: + if (fold_immvalue_float(load) == 1.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + + case INSTR_SUB_F: + if (swapped) + return NULL; + case INSTR_ADD_F: + if (fold_immvalue_float(load) == 0.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + case INSTR_MUL_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(1, 1, 1))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + case INSTR_SUB_V: + if (swapped) + return NULL; + case INSTR_ADD_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(0, 0, 0))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; } + return NULL; } + +ast_expression *fold_binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) { + ast_expression *ret = fold_superfluous(left, right, op); + if (ret) + return ret; + return (ast_expression*)ast_binary_new(ctx, op, left, right); +} + +static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { + if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) { + ast_expression_codegen *cgen; + ir_block *elide; + ir_value *dummy; + bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true); + bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false); + ast_expression *path = (istrue) ? branch->on_true : + (isfalse) ? branch->on_false : NULL; + if (!path) { + /* + * no path to take implies that the evaluation is if(0) and there + * is no else block. so eliminate all the code. + */ + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; + return true; + } + + if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse"))))) + return false; + if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy)) + return false; + if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide)) + return false; + /* + * now the branch has been eliminated and the correct block for the constant evaluation + * is expanded into the current block for the function. + */ + func->curblock = elide; + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; + return true; + } + return -1; /* nothing done */ +} + +int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) { + return fold_cond(condval, func, (ast_ifthen*)branch); +} + +int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) { + return fold_cond(condval, func, branch); +}