X-Git-Url: https://git.xonotic.org/?p=xonotic%2Fgmqcc.git;a=blobdiff_plain;f=fold.c;h=64b20d94e7662f7d1802293c39ebe670e2803da1;hp=52bedaeae467a3a456256460d386f0dc87b19852;hb=9d89a059aa6d2a03d3a08de4db295e08e45458d9;hpb=db69d14995fef917871f606692f172588571940a diff --git a/fold.c b/fold.c index 52bedae..64b20d9 100644 --- a/fold.c +++ b/fold.c @@ -1,25 +1,3 @@ -/* - * Copyright (C) 2012, 2013 - * Dale Weiler - * - * Permission is hereby granted, free of charge, to any person obtaining a copy of - * this software and associated documentation files (the "Software"), to deal in - * the Software without restriction, including without limitation the rights to - * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies - * of the Software, and to permit persons to whom the Software is furnished to do - * so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in all - * copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE - * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ #include #include @@ -29,50 +7,693 @@ #define FOLD_STRING_UNTRANSLATE_HTSIZE 1024 #define FOLD_STRING_DOTRANSLATE_HTSIZE 1024 +/* The options to use for inexact and arithmetic exceptions */ +#define FOLD_ROUNDING SFLOAT_ROUND_NEAREST_EVEN +#define FOLD_TINYNESS SFLOAT_TBEFORE + +/* + * Comparing float values is an unsafe operation when the operands to the + * comparison are floating point values that are inexact. For instance 1/3 is an + * inexact value. The FPU is meant to raise exceptions when these sorts of things + * happen, including division by zero, underflows and overflows. The C standard + * library provides us with the header to gain access to the floating- + * point environment and lets us set the rounding mode and check for these exceptions. + * The problem is the standard C library allows an implementation to leave these + * stubbed out and does not require they be implemented. Furthermore, depending + * on implementations there is no control over the FPU. This is an IEE 754 + * conforming implementation in software to compensate. + */ +typedef uint32_t sfloat_t; + +typedef union { + qcfloat_t f; + sfloat_t s; +} sfloat_cast_t; + +/* Exception flags */ +typedef enum { + SFLOAT_NOEXCEPT = 0, + SFLOAT_INVALID = 1, + SFLOAT_DIVBYZERO = 4, + SFLOAT_OVERFLOW = 8, + SFLOAT_UNDERFLOW = 16, + SFLOAT_INEXACT = 32 +} sfloat_exceptionflags_t; + +/* Rounding modes */ +typedef enum { + SFLOAT_ROUND_NEAREST_EVEN, + SFLOAT_ROUND_DOWN, + SFLOAT_ROUND_UP, + SFLOAT_ROUND_TO_ZERO +} sfloat_roundingmode_t; + +/* Underflow tininess-detection mode */ +typedef enum { + SFLOAT_TAFTER, + SFLOAT_TBEFORE +} sfloat_tdetect_t; + +typedef struct { + sfloat_roundingmode_t roundingmode; + sfloat_exceptionflags_t exceptionflags; + sfloat_tdetect_t tiny; +} sfloat_state_t; + +/* Counts the number of leading zero bits before the most-significand one bit. */ +#ifdef _MSC_VER +/* MSVC has an intrinsic for this */ + static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) { + int r = 0; + _BitScanForward(&r, x); + return r; + } +# define SFLOAT_CLZ(X, SUB) \ + (sfloat_clz((X)) - (SUB)) +#elif defined(__GNUC__) || defined(__CLANG__) +/* Clang and GCC have a builtin for this */ +# define SFLOAT_CLZ(X, SUB) \ + (__builtin_clz((X)) - (SUB)) +#else +/* Native fallback */ + static GMQCC_INLINE uint32_t sfloat_popcnt(uint32_t x) { + x -= ((x >> 1) & 0x55555555); + x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); + x = (((x >> 4) + x) & 0x0F0F0F0F); + x += x >> 8; + x += x >> 16; + return x & 0x0000003F; + } + static GMQCC_INLINE uint32_t sfloat_clz(uint32_t x) { + x |= (x >> 1); + x |= (x >> 2); + x |= (x >> 4); + x |= (x >> 8); + x |= (x >> 16); + return 32 - sfloat_popcnt(x); + } +# define SFLOAT_CLZ(X, SUB) \ + (sfloat_clz((X) - (SUB))) +#endif + +/* The value of a NaN */ +#define SFLOAT_NAN 0xFFFFFFFF +/* Test if NaN */ +#define SFLOAT_ISNAN(A) \ + (0xFF000000 < (uint32_t)((A) << 1)) +/* Test if signaling NaN */ +#define SFLOAT_ISSNAN(A) \ + (((((A) >> 22) & 0x1FF) == 0x1FE) && ((A) & 0x003FFFFF)) +/* Raise exception */ +#define SFLOAT_RAISE(STATE, FLAGS) \ + ((STATE)->exceptionflags = (sfloat_exceptionflags_t)((STATE)->exceptionflags | (FLAGS))) +/* + * Shifts `A' right by the number of bits given in `COUNT'. If any non-zero bits + * are shifted off they are forced into the least significand bit of the result + * by setting it to one. As a result of this, the value of `COUNT' can be + * arbitrarily large; if `COUNT' is greater than 32, the result will be either + * zero or one, depending on whether `A' is a zero or non-zero. The result is + * stored into the value pointed by `Z'. + */ +#define SFLOAT_SHIFT(SIZE, A, COUNT, Z) \ + *(Z) = ((COUNT) == 0) \ + ? 1 \ + : (((COUNT) < (SIZE)) \ + ? ((A) >> (COUNT)) | (((A) << ((-(COUNT)) & ((SIZE) - 1))) != 0) \ + : ((A) != 0)) + +/* Extract fractional component */ +#define SFLOAT_EXTRACT_FRAC(X) \ + ((uint32_t)((X) & 0x007FFFFF)) +/* Extract exponent component */ +#define SFLOAT_EXTRACT_EXP(X) \ + ((int16_t)((X) >> 23) & 0xFF) +/* Extract sign bit */ +#define SFLOAT_EXTRACT_SIGN(X) \ + ((X) >> 31) +/* + * Normalizes the subnormal value represented by the denormalized significand + * `SA'. The normalized exponent and significand are stored at the locations + * pointed by `Z' and `SZ' respectively. + */ +#define SFLOAT_SUBNORMALIZE(SA, Z, SZ) \ + (void)(*(SZ) = (SA) << SFLOAT_CLZ((SA), 8), *(Z) = 1 - SFLOAT_CLZ((SA), 8)) +/* + * Packs the sign `SIGN', exponent `EXP' and significand `SIG' into the value + * giving the result. + * + * After the shifting into their proper positions, the fields are added together + * to form the result. This means any integer portion of `SIG' will be added + * to the exponent. Similarly, because a properly normalized significand will + * always have an integer portion equal to one, the exponent input `EXP' should + * be one less than the desired result exponent whenever the significant input + * `SIG' is a complete, normalized significand. + */ +#define SFLOAT_PACK(SIGN, EXP, SIG) \ + (sfloat_t)((((uint32_t)(SIGN)) << 31) + (((uint32_t)(EXP)) << 23) + (SIG)) + +/* + * Takes two values `a' and `b', one of which is a NaN, and returns the appropriate + * NaN result. If either `a' or `b' is a signaling NaN than an invalid exception is + * raised. + */ +static sfloat_t sfloat_propagate_nan(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool isnan_a = SFLOAT_ISNAN(a); + bool issnan_a = SFLOAT_ISSNAN(a); + bool isnan_b = SFLOAT_ISNAN(b); + bool issnan_b = SFLOAT_ISSNAN(b); + + a |= 0x00400000; + b |= 0x00400000; + + if (issnan_a | issnan_b) + SFLOAT_RAISE(state, SFLOAT_INVALID); + if (isnan_a) + return (issnan_a & isnan_b) ? b : a; + return b; +} + +/* + * Takes an abstract value having sign `sign_z', exponent `exp_z', and significand + * `sig_z' and returns the appropriate value corresponding to the abstract input. + * + * The abstract value is simply rounded and packed into the format. If the abstract + * input cannot be represented exactly an inexact exception is raised. If the + * abstract input is too large, the overflow and inexact exceptions are both raised + * and an infinity or maximal finite value is returned. If the abstract value is + * too small, the value is rounded to a subnormal and the underflow and inexact + * exceptions are only raised if the value cannot be represented exactly with + * a subnormal. + * + * The input significand `sig_z' has it's binary point between bits 30 and 29, + * this is seven bits to the left of its usual location. The shifted significand + * must be normalized or smaller than this. If it's not normalized then the exponent + * `exp_z' must be zero; in that case, the result returned is a subnormal number + * which must not require rounding. In the more usual case where the significand + * is normalized, the exponent must be one less than the *true* exponent. + * + * The handling of underflow and overflow is otherwise in alignment with IEC/IEEE. + */ +static sfloat_t SFLOAT_PACK_round(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) { + sfloat_roundingmode_t mode = state->roundingmode; + bool even = !!(mode == SFLOAT_ROUND_NEAREST_EVEN); + unsigned char increment = 0x40; + unsigned char bits = sig_z & 0x7F; + + if (!even) { + if (mode == SFLOAT_ROUND_TO_ZERO) + increment = 0; + else { + increment = 0x7F; + if (sign_z) { + if (mode == SFLOAT_ROUND_UP) + increment = 0; + } else { + if (mode == SFLOAT_ROUND_DOWN) + increment = 0; + } + } + } + + if (0xFD <= (uint16_t)exp_z) { + if ((0xFD < exp_z) || ((exp_z == 0xFD) && ((int32_t)(sig_z + increment) < 0))) { + SFLOAT_RAISE(state, SFLOAT_OVERFLOW | SFLOAT_INEXACT); + return SFLOAT_PACK(sign_z, 0xFF, 0) - (increment == 0); + } + if (exp_z < 0) { + /* Check for underflow */ + bool tiny = (state->tiny == SFLOAT_TBEFORE) || (exp_z < -1) || (sig_z + increment < 0x80000000); + SFLOAT_SHIFT(32, sig_z, -exp_z, &sig_z); + exp_z = 0; + bits = sig_z & 0x7F; + if (tiny && bits) + SFLOAT_RAISE(state, SFLOAT_UNDERFLOW); + } + } + if (bits) + SFLOAT_RAISE(state, SFLOAT_INEXACT); + sig_z = (sig_z + increment) >> 7; + sig_z &= ~(((bits ^ 0x40) == 0) & even); + if (sig_z == 0) + exp_z = 0; + return SFLOAT_PACK(sign_z, exp_z, sig_z); +} + +/* + * Takes an abstract value having sign `sign_z', exponent `exp_z' and significand + * `sig_z' and returns the appropriate value corresponding to the abstract input. + * This function is exactly like `PACK_round' except the significand does not have + * to be normalized. + * + * Bit 31 of the significand must be zero and the exponent must be one less than + * the *true* exponent. + */ +static sfloat_t SFLOAT_PACK_normal(sfloat_state_t *state, bool sign_z, int16_t exp_z, uint32_t sig_z) { + unsigned char c = SFLOAT_CLZ(sig_z, 1); + return SFLOAT_PACK_round(state, sign_z, exp_z - c, sig_z << c); +} + +/* + * Returns the result of adding the absolute values of `a' and `b'. The sign + * `sign_z' is ignored if the result is a NaN. + */ +static sfloat_t sfloat_add_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + int16_t exp_d = exp_a - exp_b; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 6; + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 6; + uint32_t sig_z = 0; + + if (0 < exp_d) { + if (exp_a == 0xFF) + return sig_a ? sfloat_propagate_nan(state, a, b) : a; + if (exp_b == 0) + --exp_d; + else + sig_b |= 0x20000000; + SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b); + exp_z = exp_a; + } else if (exp_d < 0) { + if (exp_b == 0xFF) + return sig_b ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0xFF, 0); + if (exp_a == 0) + ++exp_d; + else + sig_a |= 0x20000000; + SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a); + exp_z = exp_b; + } else { + if (exp_a == 0xFF) + return (sig_a | sig_b) ? sfloat_propagate_nan(state, a, b) : a; + if (exp_a == 0) + return SFLOAT_PACK(sign_z, 0, (sig_a + sig_b) >> 6); + sig_z = 0x40000000 + sig_a + sig_b; + exp_z = exp_a; + goto end; + } + sig_a |= 0x20000000; + sig_z = (sig_a + sig_b) << 1; + --exp_z; + if ((int32_t)sig_z < 0) { + sig_z = sig_a + sig_b; + ++exp_z; + } +end: + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + +/* + * Returns the result of subtracting the absolute values of `a' and `b'. If the + * sign `sign_z' is one, the difference is negated before being returned. The + * sign is ignored if the result is a NaN. + */ +static sfloat_t sfloat_sub_impl(sfloat_state_t *state, sfloat_t a, sfloat_t b, bool sign_z) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + int16_t exp_d = exp_a - exp_b; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a) << 7; + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b) << 7; + uint32_t sig_z = 0; + + if (0 < exp_d) goto exp_greater_a; + if (exp_d < 0) goto exp_greater_b; + + if (exp_a == 0xFF) { + if (sig_a | sig_b) + return sfloat_propagate_nan(state, a, b); + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + + if (exp_a == 0) + exp_a = exp_b = 1; + + if (sig_b < sig_a) goto greater_a; + if (sig_a < sig_b) goto greater_b; + + return SFLOAT_PACK(state->roundingmode == SFLOAT_ROUND_DOWN, 0, 0); + +exp_greater_b: + if (exp_b == 0xFF) + return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z ^ 1, 0xFF, 0); + if (exp_a == 0) + ++exp_d; + else + sig_a |= 0x40000000; + SFLOAT_SHIFT(32, sig_a, -exp_d, &sig_a); + sig_b |= 0x40000000; +greater_b: + sig_z = sig_b - sig_a; + exp_z = exp_b; + sign_z ^= 1; + goto end; + +exp_greater_a: + if (exp_a == 0xFF) + return (sig_a) ? sfloat_propagate_nan(state, a, b) : a; + if (exp_b == 0) + --exp_d; + else + sig_b |= 0x40000000; + SFLOAT_SHIFT(32, sig_b, exp_d, &sig_b); + sig_a |= 0x40000000; +greater_a: + sig_z = sig_a - sig_b; + exp_z = exp_a; + +end: + --exp_z; + return SFLOAT_PACK_normal(state, sign_z, exp_z, sig_z); +} + +static GMQCC_INLINE sfloat_t sfloat_add(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + return (sign_a == sign_b) ? sfloat_add_impl(state, a, b, sign_a) + : sfloat_sub_impl(state, a, b, sign_a); +} + +static GMQCC_INLINE sfloat_t sfloat_sub(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + return (sign_a == sign_b) ? sfloat_sub_impl(state, a, b, sign_a) + : sfloat_add_impl(state, a, b, sign_a); +} + +static sfloat_t sfloat_mul(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a); + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b); + uint32_t sig_z = 0; + uint64_t sig_z64 = 0; + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + bool sign_z = sign_a ^ sign_b; + + if (exp_a == 0xFF) { + if (sig_a || ((exp_b == 0xFF) && sig_b)) + return sfloat_propagate_nan(state, a, b); + if ((exp_b | sig_b) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_b == 0xFF) { + if (sig_b) + return sfloat_propagate_nan(state, a, b); + if ((exp_a | sig_a) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_a == 0) { + if (sig_a == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a); + } + if (exp_b == 0) { + if (sig_b == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b); + } + exp_z = exp_a + exp_b - 0x7F; + sig_a = (sig_a | 0x00800000) << 7; + sig_b = (sig_b | 0x00800000) << 8; + SFLOAT_SHIFT(64, ((uint64_t)sig_a) * sig_b, 32, &sig_z64); + sig_z = sig_z64; + if (0 <= (int32_t)(sig_z << 1)) { + sig_z <<= 1; + --exp_z; + } + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + +static sfloat_t sfloat_div(sfloat_state_t *state, sfloat_t a, sfloat_t b) { + int16_t exp_a = SFLOAT_EXTRACT_EXP(a); + int16_t exp_b = SFLOAT_EXTRACT_EXP(b); + int16_t exp_z = 0; + uint32_t sig_a = SFLOAT_EXTRACT_FRAC(a); + uint32_t sig_b = SFLOAT_EXTRACT_FRAC(b); + uint32_t sig_z = 0; + bool sign_a = SFLOAT_EXTRACT_SIGN(a); + bool sign_b = SFLOAT_EXTRACT_SIGN(b); + bool sign_z = sign_a ^ sign_b; + + if (exp_a == 0xFF) { + if (sig_a) + return sfloat_propagate_nan(state, a, b); + if (exp_b == 0xFF) { + if (sig_b) + return sfloat_propagate_nan(state, a, b); + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + if (exp_b == 0xFF) + return (sig_b) ? sfloat_propagate_nan(state, a, b) : SFLOAT_PACK(sign_z, 0, 0); + if (exp_b == 0) { + if (sig_b == 0) { + if ((exp_a | sig_a) == 0) { + SFLOAT_RAISE(state, SFLOAT_INVALID); + return SFLOAT_NAN; + } + SFLOAT_RAISE(state, SFLOAT_DIVBYZERO); + return SFLOAT_PACK(sign_z, 0xFF, 0); + } + SFLOAT_SUBNORMALIZE(sig_b, &exp_b, &sig_b); + } + if (exp_a == 0) { + if (sig_a == 0) + return SFLOAT_PACK(sign_z, 0, 0); + SFLOAT_SUBNORMALIZE(sig_a, &exp_a, &sig_a); + } + exp_z = exp_a - exp_b + 0x7D; + sig_a = (sig_a | 0x00800000) << 7; + sig_b = (sig_b | 0x00800000) << 8; + if (sig_b <= (sig_a + sig_a)) { + sig_a >>= 1; + ++exp_z; + } + sig_z = (((uint64_t)sig_a) << 32) / sig_b; + if ((sig_z & 0x3F) == 0) + sig_z |= ((uint64_t)sig_b * sig_z != ((uint64_t)sig_a) << 32); + return SFLOAT_PACK_round(state, sign_z, exp_z, sig_z); +} + +static sfloat_t sfloat_neg(sfloat_state_t *state, sfloat_t a) { + sfloat_cast_t neg; + neg.f = -1; + return sfloat_mul(state, a, neg.s); +} + +static GMQCC_INLINE void sfloat_check(lex_ctx_t ctx, sfloat_state_t *state, const char *vec) { + /* Exception comes from vector component */ + if (vec) { + if (state->exceptionflags & SFLOAT_DIVBYZERO) + compile_error(ctx, "division by zero in `%s' component", vec); + if (state->exceptionflags & SFLOAT_INVALID) + compile_error(ctx, "undefined (inf) in `%s' component", vec); + if (state->exceptionflags & SFLOAT_OVERFLOW) + compile_error(ctx, "arithmetic overflow in `%s' component", vec); + if (state->exceptionflags & SFLOAT_UNDERFLOW) + compile_error(ctx, "arithmetic underflow in `%s' component", vec); + return; + } + if (state->exceptionflags & SFLOAT_DIVBYZERO) + compile_error(ctx, "division by zero"); + if (state->exceptionflags & SFLOAT_INVALID) + compile_error(ctx, "undefined (inf)"); + if (state->exceptionflags & SFLOAT_OVERFLOW) + compile_error(ctx, "arithmetic overflow"); + if (state->exceptionflags & SFLOAT_UNDERFLOW) + compile_error(ctx, "arithmetic underflow"); +} + +static GMQCC_INLINE void sfloat_init(sfloat_state_t *state) { + state->exceptionflags = SFLOAT_NOEXCEPT; + state->roundingmode = FOLD_ROUNDING; + state->tiny = FOLD_TINYNESS; +} + /* * There is two stages to constant folding in GMQCC: there is the parse - * stage constant folding, where, witht he help of the AST, operator + * stage constant folding, where, with the help of the AST, operator * usages can be constant folded. Then there is the constant folding * in the IR for things like eliding if statements, can occur. - * + * * This file is thus, split into two parts. */ #define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) #define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) #define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING) +#define isarray(X) (((ast_expression*)(X))->vtype == TYPE_ARRAY) #define isfloats(X,Y) (isfloat (X) && isfloat (Y)) /* * Implementation of basic vector math for vec3_t, for trivial constant * folding. - * + * * TODO: gcc/clang hinting for autovectorization */ -static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) { +typedef enum { + VEC_COMP_X = 1 << 0, + VEC_COMP_Y = 1 << 1, + VEC_COMP_Z = 1 << 2 +} vec3_comp_t; + +typedef struct { + sfloat_cast_t x; + sfloat_cast_t y; + sfloat_cast_t z; +} vec3_soft_t; + +typedef struct { + vec3_comp_t faults; + sfloat_state_t state[3]; +} vec3_soft_state_t; + +static GMQCC_INLINE vec3_soft_t vec3_soft_convert(vec3_t vec) { + vec3_soft_t soft; + soft.x.f = vec.x; + soft.y.f = vec.y; + soft.z.f = vec.z; + return soft; +} + +static GMQCC_INLINE bool vec3_soft_exception(vec3_soft_state_t *vstate, size_t index) { + sfloat_exceptionflags_t flags = vstate->state[index].exceptionflags; + if (flags & SFLOAT_DIVBYZERO) return true; + if (flags & SFLOAT_INVALID) return true; + if (flags & SFLOAT_OVERFLOW) return true; + if (flags & SFLOAT_UNDERFLOW) return true; + return false; +} + +static GMQCC_INLINE void vec3_soft_eval(vec3_soft_state_t *state, + sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t), + vec3_t a, + vec3_t b) +{ + vec3_soft_t sa = vec3_soft_convert(a); + vec3_soft_t sb = vec3_soft_convert(b); + callback(&state->state[0], sa.x.s, sb.x.s); + if (vec3_soft_exception(state, 0)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_X); + callback(&state->state[1], sa.y.s, sb.y.s); + if (vec3_soft_exception(state, 1)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Y); + callback(&state->state[2], sa.z.s, sb.z.s); + if (vec3_soft_exception(state, 2)) state->faults = (vec3_comp_t)(state->faults | VEC_COMP_Z); +} + +static GMQCC_INLINE void vec3_check_except(vec3_t a, + vec3_t b, + lex_ctx_t ctx, + sfloat_t (*callback)(sfloat_state_t *, sfloat_t, sfloat_t)) +{ + vec3_soft_state_t state; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + return; + + sfloat_init(&state.state[0]); + sfloat_init(&state.state[1]); + sfloat_init(&state.state[2]); + + vec3_soft_eval(&state, callback, a, b); + if (state.faults & VEC_COMP_X) sfloat_check(ctx, &state.state[0], "x"); + if (state.faults & VEC_COMP_Y) sfloat_check(ctx, &state.state[1], "y"); + if (state.faults & VEC_COMP_Z) sfloat_check(ctx, &state.state[2], "z"); +} + +static GMQCC_INLINE vec3_t vec3_add(lex_ctx_t ctx, vec3_t a, vec3_t b) { vec3_t out; + vec3_check_except(a, b, ctx, &sfloat_add); out.x = a.x + b.x; out.y = a.y + b.y; out.z = a.z + b.z; return out; } -static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) { +static GMQCC_INLINE vec3_t vec3_sub(lex_ctx_t ctx, vec3_t a, vec3_t b) { vec3_t out; - out.x = a.x + b.x; - out.y = a.y + b.y; - out.z = a.z + b.z; + vec3_check_except(a, b, ctx, &sfloat_sub); + out.x = a.x - b.x; + out.y = a.y - b.y; + out.z = a.z - b.z; return out; } -static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) { - vec3_t out; +static GMQCC_INLINE vec3_t vec3_neg(lex_ctx_t ctx, vec3_t a) { + vec3_t out; + sfloat_cast_t v[3]; + sfloat_state_t s[3]; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto end; + + v[0].f = a.x; + v[1].f = a.y; + v[2].f = a.z; + + sfloat_init(&s[0]); + sfloat_init(&s[1]); + sfloat_init(&s[2]); + + sfloat_neg(&s[0], v[0].s); + sfloat_neg(&s[1], v[1].s); + sfloat_neg(&s[2], v[2].s); + + sfloat_check(ctx, &s[0], NULL); + sfloat_check(ctx, &s[1], NULL); + sfloat_check(ctx, &s[2], NULL); + +end: out.x = -a.x; out.y = -a.y; out.z = -a.z; return out; } +static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z)); + return out; +} + +static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) { + vec3_t out; + out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b)); + out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b)); + out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b)); + return out; +} + static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x)); @@ -89,12 +710,72 @@ static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) { return out; } -static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) { +static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { + vec3_t out; + out.x = -1-a.x; + out.y = -1-a.y; + out.z = -1-a.z; + return out; +} + +static GMQCC_INLINE qcfloat_t vec3_mulvv(lex_ctx_t ctx, vec3_t a, vec3_t b) { + vec3_soft_t sa; + vec3_soft_t sb; + sfloat_state_t s[5]; + sfloat_t r[5]; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto end; + + sa = vec3_soft_convert(a); + sb = vec3_soft_convert(b); + + sfloat_init(&s[0]); + sfloat_init(&s[1]); + sfloat_init(&s[2]); + sfloat_init(&s[3]); + sfloat_init(&s[4]); + + r[0] = sfloat_mul(&s[0], sa.x.s, sb.x.s); + r[1] = sfloat_mul(&s[1], sa.y.s, sb.y.s); + r[2] = sfloat_mul(&s[2], sa.z.s, sb.z.s); + r[3] = sfloat_add(&s[3], r[0], r[1]); + r[4] = sfloat_add(&s[4], r[3], r[2]); + + sfloat_check(ctx, &s[0], NULL); + sfloat_check(ctx, &s[1], NULL); + sfloat_check(ctx, &s[2], NULL); + sfloat_check(ctx, &s[3], NULL); + sfloat_check(ctx, &s[4], NULL); + +end: return (a.x * b.x + a.y * b.y + a.z * b.z); } -static GMQCC_INLINE vec3_t vec3_mulvf(vec3_t a, qcfloat_t b) { - vec3_t out; +static GMQCC_INLINE vec3_t vec3_mulvf(lex_ctx_t ctx, vec3_t a, qcfloat_t b) { + vec3_t out; + vec3_soft_t sa; + sfloat_cast_t sb; + sfloat_state_t s[3]; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto end; + + sa = vec3_soft_convert(a); + sb.f = b; + sfloat_init(&s[0]); + sfloat_init(&s[1]); + sfloat_init(&s[2]); + + sfloat_mul(&s[0], sa.x.s, sb.s); + sfloat_mul(&s[1], sa.y.s, sb.s); + sfloat_mul(&s[2], sa.z.s, sb.s); + + sfloat_check(ctx, &s[0], "x"); + sfloat_check(ctx, &s[1], "y"); + sfloat_check(ctx, &s[2], "z"); + +end: out.x = a.x * b; out.y = a.y * b; out.z = a.z * b; @@ -120,7 +801,57 @@ static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) { } static GMQCC_INLINE bool vec3_pbool(vec3_t a) { - return (a.x && a.y && a.z); + return (a.x || a.y || a.z); +} + +static GMQCC_INLINE vec3_t vec3_cross(lex_ctx_t ctx, vec3_t a, vec3_t b) { + vec3_t out; + vec3_soft_t sa; + vec3_soft_t sb; + sfloat_t r[9]; + sfloat_state_t s[9]; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto end; + + sa = vec3_soft_convert(a); + sb = vec3_soft_convert(b); + + sfloat_init(&s[0]); + sfloat_init(&s[1]); + sfloat_init(&s[2]); + sfloat_init(&s[3]); + sfloat_init(&s[4]); + sfloat_init(&s[5]); + sfloat_init(&s[6]); + sfloat_init(&s[7]); + sfloat_init(&s[8]); + + r[0] = sfloat_mul(&s[0], sa.y.s, sb.z.s); + r[1] = sfloat_mul(&s[1], sa.z.s, sb.y.s); + r[2] = sfloat_mul(&s[2], sa.z.s, sb.x.s); + r[3] = sfloat_mul(&s[3], sa.x.s, sb.z.s); + r[4] = sfloat_mul(&s[4], sa.x.s, sb.y.s); + r[5] = sfloat_mul(&s[5], sa.y.s, sb.x.s); + r[6] = sfloat_sub(&s[6], r[0], r[1]); + r[7] = sfloat_sub(&s[7], r[2], r[3]); + r[8] = sfloat_sub(&s[8], r[4], r[5]); + + sfloat_check(ctx, &s[0], NULL); + sfloat_check(ctx, &s[1], NULL); + sfloat_check(ctx, &s[2], NULL); + sfloat_check(ctx, &s[3], NULL); + sfloat_check(ctx, &s[4], NULL); + sfloat_check(ctx, &s[5], NULL); + sfloat_check(ctx, &s[6], "x"); + sfloat_check(ctx, &s[7], "y"); + sfloat_check(ctx, &s[8], "z"); + +end: + out.x = a.y * b.z - a.z * b.y; + out.y = a.z * b.x - a.x * b.z; + out.z = a.x * b.y - a.y * b.x; + return out; } static lex_ctx_t fold_ctx(fold_t *fold) { @@ -138,7 +869,7 @@ static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) { return !!v->constval.vfloat; case TYPE_INTEGER: return !!v->constval.vint; - case TYPE_VECTOR: + case TYPE_VECTOR: if (OPTS_FLAG(CORRECT_LOGIC)) return vec3_pbool(v->constval.vvec); return !!(v->constval.vvec.x); @@ -179,11 +910,13 @@ fold_t *fold_init(parser_t *parser) { * prime the tables with common constant values at constant * locations. */ - (void)fold_constgen_float (fold, 0.0f); - (void)fold_constgen_float (fold, 1.0f); - (void)fold_constgen_float (fold, -1.0f); + (void)fold_constgen_float (fold, 0.0f, false); + (void)fold_constgen_float (fold, 1.0f, false); + (void)fold_constgen_float (fold, -1.0f, false); + (void)fold_constgen_float (fold, 2.0f, false); (void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f)); + (void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f)); return fold; } @@ -225,18 +958,19 @@ void fold_cleanup(fold_t *fold) { mem_d(fold); } -ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) { +ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value, bool inexact) { ast_value *out = NULL; size_t i; for (i = 0; i < vec_size(fold->imm_float); i++) { - if (fold->imm_float[i]->constval.vfloat == value) + if (!memcmp(&fold->imm_float[i]->constval.vfloat, &value, sizeof(qcfloat_t))) return (ast_expression*)fold->imm_float[i]; } out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT); out->cvq = CV_CONST; out->hasvalue = true; + out->inexact = inexact; out->constval.vfloat = value; vec_push(fold->imm_float, out); @@ -290,39 +1024,71 @@ ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool transla return (ast_expression*)out; } +typedef union { + void (*callback)(void); + sfloat_t (*binary)(sfloat_state_t *, sfloat_t, sfloat_t); + sfloat_t (*unary)(sfloat_state_t *, sfloat_t); +} float_check_callback_t; + +static bool fold_check_except_float_impl(void (*callback)(void), + fold_t *fold, + ast_value *a, + ast_value *b) +{ + float_check_callback_t call; + sfloat_state_t s; + sfloat_cast_t ca; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS) && !OPTS_WARN(WARN_INEXACT_COMPARES)) + return false; + + call.callback = callback; + sfloat_init(&s); + ca.f = fold_immvalue_float(a); + if (b) { + sfloat_cast_t cb; + cb.f = fold_immvalue_float(b); + call.binary(&s, ca.s, cb.s); + } else { + call.unary(&s, ca.s); + } + + if (s.exceptionflags == 0) + return false; + + if (!OPTS_FLAG(ARITHMETIC_EXCEPTIONS)) + goto inexact_possible; + + sfloat_check(fold_ctx(fold), &s, NULL); + +inexact_possible: + return s.exceptionflags & SFLOAT_INEXACT; +} + +#define fold_check_except_float(CALLBACK, FOLD, A, B) \ + fold_check_except_float_impl(((void (*)(void))(CALLBACK)), (FOLD), (A), (B)) + +static bool fold_check_inexact_float(fold_t *fold, ast_value *a, ast_value *b) { + lex_ctx_t ctx = fold_ctx(fold); + if (!OPTS_WARN(WARN_INEXACT_COMPARES)) + return false; + if (!a->inexact && !b->inexact) + return false; + return compile_warning(ctx, WARN_INEXACT_COMPARES, "inexact value in comparison"); +} static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) { - /* - * vector-component constant folding works by matching the component sets - * to eliminate expensive operations on whole-vectors (3 components at runtime). - * to achive this effect in a clean manner this function generalizes the - * values through the use of a set paramater, which is used as an indexing method - * for creating the elided ast binary expression. - * - * Consider 'n 0 0' where y, and z need to be tested for 0, and x is - * used as the value in a binary operation generating an INSTR_MUL instruction - * to acomplish the indexing of the correct component value we use set[0], set[1], set[2] - * as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because - * of how ASCII works we can easily deliniate: - * vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a - * literal value of 2, using this 2, we know that taking the address of vec->x (float) - * and indxing it with this literal will yeild the immediate address of that component - * - * Of course more work needs to be done to generate the correct index for the ast_member_new - * call, which is no problem: set[0]-'x' suffices that job. - */ qcfloat_t x = (&vec.x)[set[0]-'x']; qcfloat_t y = (&vec.x)[set[1]-'x']; qcfloat_t z = (&vec.x)[set[2]-'x']; - if (!y && !z) { ast_expression *out; ++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS]; out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL); out->node.keep = false; ((ast_member*)out)->rvalue = true; - if (x != -1) - return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out); + if (x != -1.0f) + return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x, false), out); } return NULL; } @@ -330,11 +1096,14 @@ static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, as static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) { if (isfloat(a)) { - if (fold_can_1(a)) - return fold_constgen_float(fold, -fold_immvalue_float(a)); + if (fold_can_1(a)) { + /* Negation can produce inexact as well */ + bool inexact = fold_check_except_float(&sfloat_neg, fold, a, NULL); + return fold_constgen_float(fold, -fold_immvalue_float(a), inexact); + } } else if (isvector(a)) { if (fold_can_1(a)) - return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))); + return fold_constgen_vector(fold, vec3_neg(fold_ctx(fold), fold_immvalue_vector(a))); } return NULL; } @@ -342,16 +1111,16 @@ static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) { static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) { if (isfloat(a)) { if (fold_can_1(a)) - return fold_constgen_float(fold, !fold_immvalue_float(a)); + return fold_constgen_float(fold, !fold_immvalue_float(a), false); } else if (isvector(a)) { if (fold_can_1(a)) - return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a))); + return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a)), false); } else if (isstring(a)) { if (fold_can_1(a)) { if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) - return fold_constgen_float(fold, !fold_immvalue_string(a)); + return fold_constgen_float(fold, !fold_immvalue_string(a), false); else - return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a)); + return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a), false); } } return NULL; @@ -359,22 +1128,30 @@ static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) { static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b)); + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_add, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b), inexact); + } } else if (isvector(a)) { if (fold_can_2(a, b)) - return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))); + return fold_constgen_vector(fold, vec3_add(fold_ctx(fold), + fold_immvalue_vector(a), + fold_immvalue_vector(b))); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b)); + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_sub, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b), inexact); + } } else if (isvector(a)) { if (fold_can_2(a, b)) - return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))); + return fold_constgen_vector(fold, vec3_sub(fold_ctx(fold), + fold_immvalue_vector(a), + fold_immvalue_vector(b))); } return NULL; } @@ -383,18 +1160,20 @@ static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_ if (isfloat(a)) { if (isvector(b)) { if (fold_can_2(a, b)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))); + return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(b), fold_immvalue_float(a))); } else { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_mul, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b), inexact); + } } } else if (isvector(a)) { if (isfloat(b)) { if (fold_can_2(a, b)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(a), fold_immvalue_float(b))); } else { if (fold_can_2(a, b)) { - return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b))); + return fold_constgen_float(fold, vec3_mulvv(fold_ctx(fold), fold_immvalue_vector(a), fold_immvalue_vector(b)), false); } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) { ast_expression *out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out; @@ -413,18 +1192,27 @@ static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_ static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b)); + if (fold_can_2(a, b)) { + bool inexact = fold_check_except_float(&sfloat_div, fold, a, b); + return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b), inexact); + } else if (fold_can_1(b)) { + return (ast_expression*)ast_binary_new( + fold_ctx(fold), + INSTR_MUL_F, + (ast_expression*)a, + fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false) + ); + } } else if (isvector(a)) { - if (fold_can_2(a, b)) - return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); - else { + if (fold_can_2(a, b)) { + return fold_constgen_vector(fold, vec3_mulvf(fold_ctx(fold), fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); + } else { return (ast_expression*)ast_binary_new( fold_ctx(fold), INSTR_MUL_VF, (ast_expression*)a, (fold_can_1(b)) - ? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b)) + ? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b), false) : (ast_expression*)ast_binary_new( fold_ctx(fold), INSTR_DIV_F, @@ -438,33 +1226,52 @@ static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_ } static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) % ((qcint_t)fold_immvalue_float(b)))); - return NULL; + return (fold_can_2(a, b)) + ? fold_constgen_float(fold, fmod(fold_immvalue_float(a), fold_immvalue_float(b)), false) + : NULL; } static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b)))); + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b))), false); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } + } return NULL; } static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) { - if (fold_can_2(a, b)) - return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b)))); + if (isfloat(a)) { + if (fold_can_2(a, b)) + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b))), false); + } else { + if (isvector(b)) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b))); + } else { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b))); + } + } return NULL; } static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) - return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b)))); + return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b))), false); } else { - if (isvector(b)) { - if (fold_can_2(a, b)) + if (fold_can_2(a, b)) { + if (isvector(b)) return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b))); - } else { - if (fold_can_2(a, b)) + else return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b))); } } @@ -473,28 +1280,31 @@ static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_ static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b) && isfloats(a, b)) - return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) << (qcuint_t)(fold_immvalue_float(b)))); + return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) * powf(2.0f, fold_immvalue_float(b))), false); return NULL; } static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b) && isfloats(a, b)) - return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) >> (qcuint_t)(fold_immvalue_float(b)))); + return fold_constgen_float(fold, (qcfloat_t)floorf(fold_immvalue_float(a) / powf(2.0f, fold_immvalue_float(b))), false); return NULL; } -static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float or) { +static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) { if (fold_can_2(a, b)) { if (OPTS_FLAG(PERL_LOGIC)) { - if (fold_immediate_true(fold, a)) - return (ast_expression*)b; + if (expr) + return (fold_immediate_true(fold, a)) ? (ast_expression*)a : (ast_expression*)b; + else + return (fold_immediate_true(fold, a)) ? (ast_expression*)b : (ast_expression*)a; } else { return fold_constgen_float ( - fold, - ((or) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) - : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) + fold, + ((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) + : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) ? 1 - : 0 + : 0, + false ); } } @@ -512,12 +1322,13 @@ static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b)) - return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b))); + return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b)), false); return NULL; } static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a,b)) { + fold_check_inexact_float(fold, a, b); if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2]; if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0]; if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1]; @@ -525,27 +1336,65 @@ static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, a return NULL; } +static GMQCC_INLINE ast_expression *fold_op_ltgt(fold_t *fold, ast_value *a, ast_value *b, bool lt) { + if (fold_can_2(a, b)) { + fold_check_inexact_float(fold, a, b); + return (lt) ? (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) < fold_immvalue_float(b))] + : (ast_expression*)fold->imm_float[!!(fold_immvalue_float(a) > fold_immvalue_float(b))]; + } + return NULL; +} + static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) { if (fold_can_2(a, b)) { - return fold_constgen_float( - fold, - (ne) ? (fold_immvalue_float(a) != fold_immvalue_float(b)) - : (fold_immvalue_float(a) == fold_immvalue_float(b)) - ); + if (isfloat(a) && isfloat(b)) { + float la = fold_immvalue_float(a); + float lb = fold_immvalue_float(b); + fold_check_inexact_float(fold, a, b); + return (ast_expression*)fold->imm_float[!(ne ? la == lb : la != lb)]; + } if (isvector(a) && isvector(b)) { + vec3_t la = fold_immvalue_vector(a); + vec3_t lb = fold_immvalue_vector(b); + return (ast_expression*)fold->imm_float[!(ne ? vec3_cmp(la, lb) : !vec3_cmp(la, lb))]; + } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) { - if (fold_can_1(a)) - return fold_constgen_float(fold, ~((qcint_t)fold_immvalue_float(a))); + if (isfloat(a)) { + if (fold_can_1(a)) + return fold_constgen_float(fold, -1-fold_immvalue_float(a), false); + } else { + if (isvector(a)) { + if (fold_can_1(a)) + return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))); + } + } + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) { + if (fold_can_2(a, b)) + return fold_constgen_vector(fold, vec3_cross(fold_ctx(fold), + fold_immvalue_vector(a), + fold_immvalue_vector(b))); + return NULL; +} + +static GMQCC_INLINE ast_expression *fold_op_length(fold_t *fold, ast_value *a) { + if (fold_can_1(a) && isstring(a)) + return fold_constgen_float(fold, strlen(fold_immvalue_string(a)), false); + if (isarray(a)) + return fold_constgen_float(fold, vec_size(a->initlist), false); return NULL; } ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) { - ast_value *a = (ast_value*)opexprs[0]; - ast_value *b = (ast_value*)opexprs[1]; - ast_value *c = (ast_value*)opexprs[2]; + ast_value *a = (ast_value*)opexprs[0]; + ast_value *b = (ast_value*)opexprs[1]; + ast_value *c = (ast_value*)opexprs[2]; + ast_expression *e = NULL; /* can a fold operation be applied to this operator usage? */ if (!info->folds) @@ -556,43 +1405,140 @@ ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **op case 2: if(!b) return NULL; case 1: if(!a) { - compile_error(fold_ctx(fold), "interal error: fold_op no operands to fold\n"); + compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n"); return NULL; } } + /* + * we could use a boolean and default case but ironically gcc produces + * invalid broken assembly from that operation. clang/tcc get it right, + * but interestingly ignore compiling this to a jump-table when I do that, + * this happens to be the most efficent method, since you have per-level + * granularity on the pointer check happening only for the case you check + * it in. Opposed to the default method which would involve a boolean and + * pointer check after wards. + */ + #define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \ + case opid##ARGS ARGS_OPID: \ + if ((e = fold_op_##OP ARGS_FOLD)) { \ + ++opts_optimizationcount[OPTIM_CONST_FOLD]; \ + } \ + return e + switch(info->id) { - case opid2('-','P'): return fold_op_neg (fold, a); - case opid2('!','P'): return fold_op_not (fold, a); - case opid1('+'): return fold_op_add (fold, a, b); - case opid1('-'): return fold_op_sub (fold, a, b); - case opid1('*'): return fold_op_mul (fold, a, b); - case opid1('/'): return fold_op_div (fold, a, b); - case opid1('%'): return fold_op_mod (fold, a, b); - case opid1('|'): return fold_op_bor (fold, a, b); - case opid1('&'): return fold_op_band (fold, a, b); - case opid1('^'): return fold_op_xor (fold, a, b); - case opid2('<','<'): return fold_op_lshift (fold, a, b); - case opid2('>','>'): return fold_op_rshift (fold, a, b); - case opid2('|','|'): return fold_op_andor (fold, a, b, true); - case opid2('&','&'): return fold_op_andor (fold, a, b, false); - case opid2('?',':'): return fold_op_tern (fold, a, b, c); - case opid2('*','*'): return fold_op_exp (fold, a, b); - case opid3('<','=','>'): return fold_op_lteqgt (fold, a, b); - case opid2('!','='): return fold_op_cmp (fold, a, b, true); - case opid2('=','='): return fold_op_cmp (fold, a, b, false); - case opid2('~','P'): return fold_op_bnot (fold, a); - } - compile_error(fold_ctx(fold), "internal error: attempted to constant for unsupported operator"); + fold_op_case(2, ('-', 'P'), neg, (fold, a)); + fold_op_case(2, ('!', 'P'), not, (fold, a)); + fold_op_case(1, ('+'), add, (fold, a, b)); + fold_op_case(1, ('-'), sub, (fold, a, b)); + fold_op_case(1, ('*'), mul, (fold, a, b)); + fold_op_case(1, ('/'), div, (fold, a, b)); + fold_op_case(1, ('%'), mod, (fold, a, b)); + fold_op_case(1, ('|'), bor, (fold, a, b)); + fold_op_case(1, ('&'), band, (fold, a, b)); + fold_op_case(1, ('^'), xor, (fold, a, b)); + fold_op_case(1, ('<'), ltgt, (fold, a, b, true)); + fold_op_case(1, ('>'), ltgt, (fold, a, b, false)); + fold_op_case(2, ('<', '<'), lshift, (fold, a, b)); + fold_op_case(2, ('>', '>'), rshift, (fold, a, b)); + fold_op_case(2, ('|', '|'), andor, (fold, a, b, true)); + fold_op_case(2, ('&', '&'), andor, (fold, a, b, false)); + fold_op_case(2, ('?', ':'), tern, (fold, a, b, c)); + fold_op_case(2, ('*', '*'), exp, (fold, a, b)); + fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b)); + fold_op_case(2, ('!', '='), cmp, (fold, a, b, true)); + fold_op_case(2, ('=', '='), cmp, (fold, a, b, false)); + fold_op_case(2, ('~', 'P'), bnot, (fold, a)); + fold_op_case(2, ('>', '<'), cross, (fold, a, b)); + fold_op_case(3, ('l', 'e', 'n'), length, (fold, a)); + } + #undef fold_op_case + compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator"); return NULL; } +/* + * Constant folding for compiler intrinsics, similar approach to operator + * folding, primarily: individual functions for each intrinsics to fold, + * and a generic selection function. + */ +static GMQCC_INLINE ast_expression *fold_intrin_isfinite(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isfinite(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isinf(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isinf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isnan(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_isnormal(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, isnormal(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_signbit(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, signbit(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intirn_acosh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, acoshf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_asinh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, asinhf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_atanh(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, (float)atanh(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, expf(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_exp2(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, exp2f(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_expm1(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, expm1f(fold_immvalue_float(a)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float(fold, fmodf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) { + return fold_constgen_float(fold, powf(fold_immvalue_float(lhs), fold_immvalue_float(rhs)), false); +} +static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *a) { + return fold_constgen_float(fold, fabsf(fold_immvalue_float(a)), false); +} + + +ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) { + ast_expression *ret = NULL; + ast_value *a = (ast_value*)arg[0]; + ast_value *b = (ast_value*)arg[1]; + + if (!strcmp(intrin, "isfinite")) ret = fold_intrin_isfinite(fold, a); + if (!strcmp(intrin, "isinf")) ret = fold_intrin_isinf(fold, a); + if (!strcmp(intrin, "isnan")) ret = fold_intrin_isnan(fold, a); + if (!strcmp(intrin, "isnormal")) ret = fold_intrin_isnormal(fold, a); + if (!strcmp(intrin, "signbit")) ret = fold_intrin_signbit(fold, a); + if (!strcmp(intrin, "acosh")) ret = fold_intirn_acosh(fold, a); + if (!strcmp(intrin, "asinh")) ret = fold_intrin_asinh(fold, a); + if (!strcmp(intrin, "atanh")) ret = fold_intrin_atanh(fold, a); + if (!strcmp(intrin, "exp")) ret = fold_intrin_exp(fold, a); + if (!strcmp(intrin, "exp2")) ret = fold_intrin_exp2(fold, a); + if (!strcmp(intrin, "expm1")) ret = fold_intrin_expm1(fold, a); + if (!strcmp(intrin, "mod")) ret = fold_intrin_mod(fold, a, b); + if (!strcmp(intrin, "pow")) ret = fold_intrin_pow(fold, a, b); + if (!strcmp(intrin, "fabs")) ret = fold_intrin_fabs(fold, a); + + if (ret) + ++opts_optimizationcount[OPTIM_CONST_FOLD]; + + return ret; +} + /* * These are all the actual constant folding methods that happen in between * the AST/IR stage of the compiler , i.e eliminating branches for const * expressions, which is the only supported thing so far. We undefine the * testing macros here because an ir_value is differant than an ast_value. */ +#undef expect #undef isfloat #undef isstring #undef isvector @@ -606,23 +1552,96 @@ ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **op /*#define isstring(X) ((X)->vtype == TYPE_STRING)*/ /*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/ #define fold_immvalue_float(X) ((X)->constval.vfloat) -/*#define fold_immvalue_vector(X) ((X)->constval.vvec)*/ +#define fold_immvalue_vector(X) ((X)->constval.vvec) /*#define fold_immvalue_string(X) ((X)->constval.vstring)*/ #define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST) /*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/ +static ast_expression *fold_superfluous(ast_expression *left, ast_expression *right, int op) { + ast_expression *swapped = NULL; /* using this as bool */ + ast_value *load; + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) { + swapped = left; + left = right; + right = swapped; + } + + if (!ast_istype(right, ast_value) || !fold_can_1((load = (ast_value*)right))) + return NULL; + + switch (op) { + case INSTR_DIV_F: + if (swapped) + return NULL; + case INSTR_MUL_F: + if (fold_immvalue_float(load) == 1.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + + case INSTR_SUB_F: + if (swapped) + return NULL; + case INSTR_ADD_F: + if (fold_immvalue_float(load) == 0.0f) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + + case INSTR_MUL_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(1, 1, 1))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; -int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { + case INSTR_SUB_V: + if (swapped) + return NULL; + case INSTR_ADD_V: + if (vec3_cmp(fold_immvalue_vector(load), vec3_create(0, 0, 0))) { + ++opts_optimizationcount[OPTIM_PEEPHOLE]; + ast_unref(right); + return left; + } + break; + } + + return NULL; +} + +ast_expression *fold_binary(lex_ctx_t ctx, int op, ast_expression *left, ast_expression *right) { + ast_expression *ret = fold_superfluous(left, right, op); + if (ret) + return ret; + return (ast_expression*)ast_binary_new(ctx, op, left, right); +} + +static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) { ast_expression_codegen *cgen; ir_block *elide; ir_value *dummy; - bool istrue = (fold_immvalue_float(condval) == 1.0f && branch->on_true); + bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true); bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false); ast_expression *path = (istrue) ? branch->on_true : (isfalse) ? branch->on_false : NULL; - if (!path) - return false; + if (!path) { + /* + * no path to take implies that the evaluation is if(0) and there + * is no else block. so eliminate all the code. + */ + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; + return true; + } + if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse"))))) return false; if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy)) @@ -630,11 +1649,20 @@ int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide)) return false; /* - * now the branch has been eliminates, and the correct block for the constant evaluation + * now the branch has been eliminated and the correct block for the constant evaluation * is expanded into the current block for the function. */ func->curblock = elide; + ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; return true; } return -1; /* nothing done */ } + +int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) { + return fold_cond(condval, func, (ast_ifthen*)branch); +} + +int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) { + return fold_cond(condval, func, branch); +}