]> git.xonotic.org Git - xonotic/gmqcc.git/blobdiff - ir.c
Experimental ast_member to access vector members
[xonotic/gmqcc.git] / ir.c
diff --git a/ir.c b/ir.c
index fbb6255b29dc95461ce3c38d92104392e8fd87c5..42999c53564770bb53e3910993b630d57568f7ae 100644 (file)
--- a/ir.c
+++ b/ir.c
@@ -1,7 +1,81 @@
+/*
+ * Copyright (C) 2012
+ *     Wolfgang Bumiller
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+ * of the Software, and to permit persons to whom the Software is furnished to do
+ * so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
 #include <stdlib.h>
 #include <string.h>
+#include "gmqcc.h"
 #include "ir.h"
 
+/***********************************************************************
+ * Type sizes used at multiple points in the IR codegen
+ */
+
+size_t type_sizeof[TYPE_COUNT] = {
+    1, /* TYPE_VOID     */
+    1, /* TYPE_STRING   */
+    1, /* TYPE_FLOAT    */
+    3, /* TYPE_VECTOR   */
+    1, /* TYPE_ENTITY   */
+    1, /* TYPE_FIELD    */
+    1, /* TYPE_FUNCTION */
+    1, /* TYPE_POINTER  */
+#if 0
+    1, /* TYPE_INTEGER  */
+#endif
+    3, /* TYPE_VARIANT  */
+};
+
+uint16_t type_store_instr[TYPE_COUNT] = {
+    INSTR_STORE_F, /* should use I when having integer support */
+    INSTR_STORE_S,
+    INSTR_STORE_F,
+    INSTR_STORE_V,
+    INSTR_STORE_ENT,
+    INSTR_STORE_FLD,
+    INSTR_STORE_FNC,
+    INSTR_STORE_ENT, /* should use I */
+#if 0
+    INSTR_STORE_ENT, /* integer type */
+#endif
+    INSTR_STORE_V, /* variant, should never be accessed */
+};
+
+uint16_t type_storep_instr[TYPE_COUNT] = {
+    INSTR_STOREP_F, /* should use I when having integer support */
+    INSTR_STOREP_S,
+    INSTR_STOREP_F,
+    INSTR_STOREP_V,
+    INSTR_STOREP_ENT,
+    INSTR_STOREP_FLD,
+    INSTR_STOREP_FNC,
+    INSTR_STOREP_ENT, /* should use I */
+#if 0
+    INSTR_STOREP_ENT, /* integer type */
+#endif
+    INSTR_STOREP_V, /* variant, should never be accessed */
+};
+
+MEM_VEC_FUNCTIONS(ir_value_vector, ir_value*, v)
+
 /***********************************************************************
  *IR Builder
  */
@@ -11,21 +85,29 @@ ir_builder* ir_builder_new(const char *modulename)
     ir_builder* self;
 
     self = (ir_builder*)mem_a(sizeof(*self));
+    if (!self)
+        return NULL;
+
     MEM_VECTOR_INIT(self, functions);
     MEM_VECTOR_INIT(self, globals);
+    MEM_VECTOR_INIT(self, fields);
     self->name = NULL;
-    ir_builder_set_name(self, modulename);
+    if (!ir_builder_set_name(self, modulename)) {
+        mem_d(self);
+        return NULL;
+    }
 
     /* globals which always exist */
 
     /* for now we give it a vector size */
-    ir_builder_create_global(self, "OFS_RETURN", qc_variant);
+    ir_builder_create_global(self, "OFS_RETURN", TYPE_VARIANT);
 
     return self;
 }
 
 MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals)
-MEM_VECTOR_FUNCTIONS(ir_builder, ir_function*, functions)
+MEM_VEC_FUNCTIONS(ir_builder, ir_value*, fields)
+MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions)
 
 void ir_builder_delete(ir_builder* self)
 {
@@ -38,15 +120,20 @@ void ir_builder_delete(ir_builder* self)
     for (i = 0; i != self->globals_count; ++i) {
         ir_value_delete(self->globals[i]);
     }
-    MEM_VECTOR_CLEAR(self, globals);
+    MEM_VECTOR_CLEAR(self, fields);
+    for (i = 0; i != self->fields_count; ++i) {
+        ir_value_delete(self->fields[i]);
+    }
+    MEM_VECTOR_CLEAR(self, fields);
     mem_d(self);
 }
 
-void ir_builder_set_name(ir_builder *self, const char *name)
+bool ir_builder_set_name(ir_builder *self, const char *name)
 {
     if (self->name)
         mem_d((void*)self->name);
     self->name = util_strdup(name);
+    return !!self->name;
 }
 
 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
@@ -59,16 +146,32 @@ ir_function* ir_builder_get_function(ir_builder *self, const char *name)
     return NULL;
 }
 
-ir_function* ir_builder_create_function(ir_builder *self, const char *name)
+ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
 {
     ir_function *fn = ir_builder_get_function(self, name);
     if (fn) {
         return NULL;
     }
 
-    fn = ir_function_new(self);
-    ir_function_set_name(fn, name);
-    ir_builder_functions_add(self, fn);
+    fn = ir_function_new(self, outtype);
+    if (!ir_function_set_name(fn, name) ||
+        !ir_builder_functions_add(self, fn) )
+    {
+        ir_function_delete(fn);
+        return NULL;
+    }
+
+    fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
+    if (!fn->value) {
+        ir_function_delete(fn);
+        return NULL;
+    }
+
+    fn->value->isconst = true;
+    fn->value->outtype = outtype;
+    fn->value->constval.vfunc = fn;
+    fn->value->context = fn->context;
+
     return fn;
 }
 
@@ -82,15 +185,45 @@ ir_value* ir_builder_get_global(ir_builder *self, const char *name)
     return NULL;
 }
 
-ir_value* ir_builder_create_global(ir_builder *self, const char *name, ir_type_t vtype)
+ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
 {
     ir_value *ve = ir_builder_get_global(self, name);
     if (ve) {
         return NULL;
     }
 
-    ve = ir_value_var(name, qc_global, vtype);
-    ir_builder_globals_add(self, ve);
+    ve = ir_value_var(name, store_global, vtype);
+    if (!ir_builder_globals_add(self, ve)) {
+        ir_value_delete(ve);
+        return NULL;
+    }
+    return ve;
+}
+
+ir_value* ir_builder_get_field(ir_builder *self, const char *name)
+{
+    size_t i;
+    for (i = 0; i < self->fields_count; ++i) {
+        if (!strcmp(self->fields[i]->name, name))
+            return self->fields[i];
+    }
+    return NULL;
+}
+
+
+ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
+{
+    ir_value *ve = ir_builder_get_field(self, name);
+    if (ve) {
+        return NULL;
+    }
+
+    ve = ir_value_var(name, store_global, TYPE_FIELD);
+    ve->fieldtype = vtype;
+    if (!ir_builder_fields_add(self, ve)) {
+        ir_value_delete(ve);
+        return NULL;
+    }
     return ve;
 }
 
@@ -98,36 +231,49 @@ ir_value* ir_builder_create_global(ir_builder *self, const char *name, ir_type_t
  *IR Function
  */
 
-void ir_function_naive_phi(ir_function*);
+bool ir_function_naive_phi(ir_function*);
 void ir_function_enumerate(ir_function*);
-void ir_function_calculate_liferanges(ir_function*);
+bool ir_function_calculate_liferanges(ir_function*);
+bool ir_function_allocate_locals(ir_function*);
 
-ir_function* ir_function_new(ir_builder* owner)
+ir_function* ir_function_new(ir_builder* owner, int outtype)
 {
     ir_function *self;
     self = (ir_function*)mem_a(sizeof(*self));
+
+    if (!self)
+        return NULL;
+
+    self->name = NULL;
+    if (!ir_function_set_name(self, "<@unnamed>")) {
+        mem_d(self);
+        return NULL;
+    }
     self->owner = owner;
     self->context.file = "<@no context>";
     self->context.line = 0;
-    self->retype = qc_void;
+    self->outtype = outtype;
+    self->value = NULL;
+    self->builtin = 0;
     MEM_VECTOR_INIT(self, params);
     MEM_VECTOR_INIT(self, blocks);
     MEM_VECTOR_INIT(self, values);
     MEM_VECTOR_INIT(self, locals);
-    ir_function_set_name(self, "<@unnamed>");
 
     self->run_id = 0;
     return self;
 }
-MEM_VECTOR_FUNCTIONS(ir_function, ir_value*, values)
-MEM_VECTOR_FUNCTIONS(ir_function, ir_block*, blocks)
-MEM_VECTOR_FUNCTIONS(ir_function, ir_value*, locals)
+MEM_VEC_FUNCTIONS(ir_function, ir_value*, values)
+MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks)
+MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals)
+MEM_VEC_FUNCTIONS(ir_function, int,       params)
 
-void ir_function_set_name(ir_function *self, const char *name)
+bool ir_function_set_name(ir_function *self, const char *name)
 {
     if (self->name)
         mem_d((void*)self->name);
     self->name = util_strdup(name);
+    return !!self->name;
 }
 
 void ir_function_delete(ir_function *self)
@@ -149,27 +295,43 @@ void ir_function_delete(ir_function *self)
         ir_value_delete(self->locals[i]);
     MEM_VECTOR_CLEAR(self, locals);
 
+    /* self->value is deleted by the builder */
+
     mem_d(self);
 }
 
-void ir_function_collect_value(ir_function *self, ir_value *v)
+bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v)
 {
-    ir_function_values_add(self, v);
+    return ir_function_values_add(self, v);
 }
 
 ir_block* ir_function_create_block(ir_function *self, const char *label)
 {
     ir_block* bn = ir_block_new(self, label);
     memcpy(&bn->context, &self->context, sizeof(self->context));
-    ir_function_blocks_add(self, bn);
+    if (!ir_function_blocks_add(self, bn)) {
+        ir_block_delete(bn);
+        return NULL;
+    }
     return bn;
 }
 
-void ir_function_finalize(ir_function *self)
+bool ir_function_finalize(ir_function *self)
 {
-    ir_function_naive_phi(self);
+    if (self->builtin)
+        return true;
+
+    if (!ir_function_naive_phi(self))
+        return false;
+
     ir_function_enumerate(self);
-    ir_function_calculate_liferanges(self);
+
+    if (!ir_function_calculate_liferanges(self))
+        return false;
+
+    if (!ir_function_allocate_locals(self))
+        return false;
+    return true;
 }
 
 ir_value* ir_function_get_local(ir_function *self, const char *name)
@@ -182,15 +344,25 @@ ir_value* ir_function_get_local(ir_function *self, const char *name)
     return NULL;
 }
 
-ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype)
+ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
 {
     ir_value *ve = ir_function_get_local(self, name);
     if (ve) {
         return NULL;
     }
 
-    ve = ir_value_var(name, qc_localvar, vtype);
-    ir_function_locals_add(self, ve);
+    if (param &&
+        self->locals_count &&
+        self->locals[self->locals_count-1]->store != store_param) {
+        printf("cannot add parameters after adding locals\n");
+        return NULL;
+    }
+
+    ve = ir_value_var(name, (param ? store_param : store_local), vtype);
+    if (!ir_function_locals_add(self, ve)) {
+        ir_value_delete(ve);
+        return NULL;
+    }
     return ve;
 }
 
@@ -202,31 +374,42 @@ ir_block* ir_block_new(ir_function* owner, const char *name)
 {
     ir_block *self;
     self = (ir_block*)mem_a(sizeof(*self));
+    if (!self)
+        return NULL;
+
+    memset(self, 0, sizeof(*self));
+
+    self->label = NULL;
+    if (!ir_block_set_label(self, name)) {
+        mem_d(self);
+        return NULL;
+    }
     self->owner = owner;
     self->context.file = "<@no context>";
     self->context.line = 0;
-    self->final = ifalse;
+    self->final = false;
     MEM_VECTOR_INIT(self, instr);
     MEM_VECTOR_INIT(self, entries);
     MEM_VECTOR_INIT(self, exits);
-    self->label = NULL;
-    ir_block_set_label(self, name);
 
     self->eid = 0;
-    self->is_return = ifalse;
+    self->is_return = false;
     self->run_id = 0;
     MEM_VECTOR_INIT(self, living);
+
+    self->generated = false;
+
     return self;
 }
-MEM_VECTOR_FUNCTIONS(ir_block, ir_instr*, instr)
-MEM_VECTOR_FUNCTIONS_ALL(ir_block, ir_block*, entries)
-MEM_VECTOR_FUNCTIONS_ALL(ir_block, ir_block*, exits)
-MEM_VECTOR_FUNCTIONS_ALL(ir_block, ir_value*, living)
+MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr)
+MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries)
+MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits)
+MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living)
 
 void ir_block_delete(ir_block* self)
 {
     size_t i;
-    mem_d((void*)self->label);
+    mem_d(self->label);
     for (i = 0; i != self->instr_count; ++i)
         ir_instr_delete(self->instr[i]);
     MEM_VECTOR_CLEAR(self, instr);
@@ -236,9 +419,2378 @@ void ir_block_delete(ir_block* self)
     mem_d(self);
 }
 
-void ir_block_set_label(ir_block *self, const char *name)
+bool ir_block_set_label(ir_block *self, const char *name)
 {
     if (self->label)
         mem_d((void*)self->label);
     self->label = util_strdup(name);
+    return !!self->label;
+}
+
+/***********************************************************************
+ *IR Instructions
+ */
+
+ir_instr* ir_instr_new(ir_block* owner, int op)
+{
+    ir_instr *self;
+    self = (ir_instr*)mem_a(sizeof(*self));
+    if (!self)
+        return NULL;
+
+    self->owner = owner;
+    self->context.file = "<@no context>";
+    self->context.line = 0;
+    self->opcode = op;
+    self->_ops[0] = NULL;
+    self->_ops[1] = NULL;
+    self->_ops[2] = NULL;
+    self->bops[0] = NULL;
+    self->bops[1] = NULL;
+    MEM_VECTOR_INIT(self, phi);
+    MEM_VECTOR_INIT(self, params);
+
+    self->eid = 0;
+    return self;
+}
+MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi)
+MEM_VEC_FUNCTIONS(ir_instr, ir_value*, params)
+
+void ir_instr_delete(ir_instr *self)
+{
+    size_t i;
+    /* The following calls can only delete from
+     * vectors, we still want to delete this instruction
+     * so ignore the return value. Since with the warn_unused_result attribute
+     * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
+     * I have to improvise here and use if(foo());
+     */
+    for (i = 0; i < self->phi_count; ++i) {
+        size_t idx;
+        if (ir_value_writes_find(self->phi[i].value, self, &idx))
+            if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
+        if (ir_value_reads_find(self->phi[i].value, self, &idx))
+            if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY;
+    }
+    MEM_VECTOR_CLEAR(self, phi);
+    for (i = 0; i < self->params_count; ++i) {
+        size_t idx;
+        if (ir_value_writes_find(self->params[i], self, &idx))
+            if (ir_value_writes_remove(self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
+        if (ir_value_reads_find(self->params[i], self, &idx))
+            if (ir_value_reads_remove (self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY;
+    }
+    MEM_VECTOR_CLEAR(self, params);
+    if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
+    if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
+    if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY;
+    mem_d(self);
+}
+
+bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
+{
+    if (self->_ops[op]) {
+        size_t idx;
+        if (writing && ir_value_writes_find(self->_ops[op], self, &idx))
+        {
+            if (!ir_value_writes_remove(self->_ops[op], idx))
+                return false;
+        }
+        else if (ir_value_reads_find(self->_ops[op], self, &idx))
+        {
+            if (!ir_value_reads_remove(self->_ops[op], idx))
+                return false;
+        }
+    }
+    if (v) {
+        if (writing) {
+            if (!ir_value_writes_add(v, self))
+                return false;
+        } else {
+            if (!ir_value_reads_add(v, self))
+                return false;
+        }
+    }
+    self->_ops[op] = v;
+    return true;
+}
+
+/***********************************************************************
+ *IR Value
+ */
+
+int32_t ir_value_code_addr(const ir_value *self)
+{
+    return self->code.globaladdr + self->code.addroffset;
+}
+
+ir_value* ir_value_var(const char *name, int storetype, int vtype)
+{
+    ir_value *self;
+    self = (ir_value*)mem_a(sizeof(*self));
+    self->vtype = vtype;
+    self->fieldtype = TYPE_VOID;
+    self->outtype = TYPE_VOID;
+    self->store = storetype;
+    MEM_VECTOR_INIT(self, reads);
+    MEM_VECTOR_INIT(self, writes);
+    self->isconst = false;
+    self->context.file = "<@no context>";
+    self->context.line = 0;
+    self->name = NULL;
+    ir_value_set_name(self, name);
+
+    memset(&self->constval, 0, sizeof(self->constval));
+    memset(&self->code,     0, sizeof(self->code));
+
+    MEM_VECTOR_INIT(self, life);
+    return self;
+}
+
+ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
+{
+    ir_value *m;
+    if (member >= 3)
+        return NULL;
+
+    if (self->members[member])
+        return self->members[member];
+
+    m = ir_value_var(self->name, self->store, TYPE_FLOAT);
+    if (!m)
+        return NULL;
+    m->context = self->context;
+
+    self->members[member] = m;
+    m->code.addroffset = member;
+
+    return m;
+}
+
+MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life)
+MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads)
+MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes)
+
+ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
+{
+    ir_value *v = ir_value_var(name, storetype, vtype);
+    if (!v)
+        return NULL;
+    if (!ir_function_collect_value(owner, v))
+    {
+        ir_value_delete(v);
+        return NULL;
+    }
+    return v;
+}
+
+void ir_value_delete(ir_value* self)
+{
+    size_t i;
+    if (self->name)
+        mem_d((void*)self->name);
+    if (self->isconst)
+    {
+        if (self->vtype == TYPE_STRING)
+            mem_d((void*)self->constval.vstring);
+    }
+    for (i = 0; i < 3; ++i) {
+        if (self->members[i])
+            ir_value_delete(self->members[i]);
+    }
+    MEM_VECTOR_CLEAR(self, reads);
+    MEM_VECTOR_CLEAR(self, writes);
+    MEM_VECTOR_CLEAR(self, life);
+    mem_d(self);
+}
+
+void ir_value_set_name(ir_value *self, const char *name)
+{
+    if (self->name)
+        mem_d((void*)self->name);
+    self->name = util_strdup(name);
+}
+
+bool ir_value_set_float(ir_value *self, float f)
+{
+    if (self->vtype != TYPE_FLOAT)
+        return false;
+    self->constval.vfloat = f;
+    self->isconst = true;
+    return true;
+}
+
+bool ir_value_set_func(ir_value *self, int f)
+{
+    if (self->vtype != TYPE_FUNCTION)
+        return false;
+    self->constval.vint = f;
+    self->isconst = true;
+    return true;
+}
+
+bool ir_value_set_vector(ir_value *self, vector v)
+{
+    if (self->vtype != TYPE_VECTOR)
+        return false;
+    self->constval.vvec = v;
+    self->isconst = true;
+    return true;
+}
+
+bool ir_value_set_string(ir_value *self, const char *str)
+{
+    if (self->vtype != TYPE_STRING)
+        return false;
+    self->constval.vstring = util_strdup(str);
+    self->isconst = true;
+    return true;
+}
+
+#if 0
+bool ir_value_set_int(ir_value *self, int i)
+{
+    if (self->vtype != TYPE_INTEGER)
+        return false;
+    self->constval.vint = i;
+    self->isconst = true;
+    return true;
+}
+#endif
+
+bool ir_value_lives(ir_value *self, size_t at)
+{
+    size_t i;
+    for (i = 0; i < self->life_count; ++i)
+    {
+        ir_life_entry_t *life = &self->life[i];
+        if (life->start <= at && at <= life->end)
+            return true;
+        if (life->start > at) /* since it's ordered */
+            return false;
+    }
+    return false;
+}
+
+bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
+{
+    size_t k;
+    if (!ir_value_life_add(self, e)) /* naive... */
+        return false;
+    for (k = self->life_count-1; k > idx; --k)
+        self->life[k] = self->life[k-1];
+    self->life[idx] = e;
+    return true;
+}
+
+bool ir_value_life_merge(ir_value *self, size_t s)
+{
+    size_t i;
+    ir_life_entry_t *life = NULL;
+    ir_life_entry_t *before = NULL;
+    ir_life_entry_t new_entry;
+
+    /* Find the first range >= s */
+    for (i = 0; i < self->life_count; ++i)
+    {
+        before = life;
+        life = &self->life[i];
+        if (life->start > s)
+            break;
+    }
+    /* nothing found? append */
+    if (i == self->life_count) {
+        ir_life_entry_t e;
+        if (life && life->end+1 == s)
+        {
+            /* previous life range can be merged in */
+            life->end++;
+            return true;
+        }
+        if (life && life->end >= s)
+            return false;
+        e.start = e.end = s;
+        if (!ir_value_life_add(self, e))
+            return false; /* failing */
+        return true;
+    }
+    /* found */
+    if (before)
+    {
+        if (before->end + 1 == s &&
+            life->start - 1 == s)
+        {
+            /* merge */
+            before->end = life->end;
+            if (!ir_value_life_remove(self, i))
+                return false; /* failing */
+            return true;
+        }
+        if (before->end + 1 == s)
+        {
+            /* extend before */
+            before->end++;
+            return true;
+        }
+        /* already contained */
+        if (before->end >= s)
+            return false;
+    }
+    /* extend */
+    if (life->start - 1 == s)
+    {
+        life->start--;
+        return true;
+    }
+    /* insert a new entry */
+    new_entry.start = new_entry.end = s;
+    return ir_value_life_insert(self, i, new_entry);
+}
+
+bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
+{
+    size_t i, myi;
+
+    if (!other->life_count)
+        return true;
+
+    if (!self->life_count) {
+        for (i = 0; i < other->life_count; ++i) {
+            if (!ir_value_life_add(self, other->life[i]))
+                return false;
+        }
+        return true;
+    }
+
+    myi = 0;
+    for (i = 0; i < other->life_count; ++i)
+    {
+        const ir_life_entry_t *life = &other->life[i];
+        while (true)
+        {
+            ir_life_entry_t *entry = &self->life[myi];
+
+            if (life->end+1 < entry->start)
+            {
+                /* adding an interval before entry */
+                if (!ir_value_life_insert(self, myi, *life))
+                    return false;
+                ++myi;
+                break;
+            }
+
+            if (life->start <  entry->start &&
+                life->end   >= entry->start)
+            {
+                /* starts earlier and overlaps */
+                entry->start = life->start;
+            }
+
+            if (life->end     >  entry->end &&
+                life->start-1 <= entry->end)
+            {
+                /* ends later and overlaps */
+                entry->end = life->end;
+            }
+
+            /* see if our change combines it with the next ranges */
+            while (myi+1 < self->life_count &&
+                   entry->end+1 >= self->life[1+myi].start)
+            {
+                /* overlaps with (myi+1) */
+                if (entry->end < self->life[1+myi].end)
+                    entry->end = self->life[1+myi].end;
+                if (!ir_value_life_remove(self, myi+1))
+                    return false;
+                entry = &self->life[myi];
+            }
+
+            /* see if we're after the entry */
+            if (life->start > entry->end)
+            {
+                ++myi;
+                /* append if we're at the end */
+                if (myi >= self->life_count) {
+                    if (!ir_value_life_add(self, *life))
+                        return false;
+                    break;
+                }
+                /* otherweise check the next range */
+                continue;
+            }
+            break;
+        }
+    }
+    return true;
+}
+
+bool ir_values_overlap(const ir_value *a, const ir_value *b)
+{
+    /* For any life entry in A see if it overlaps with
+     * any life entry in B.
+     * Note that the life entries are orderes, so we can make a
+     * more efficient algorithm there than naively translating the
+     * statement above.
+     */
+
+    ir_life_entry_t *la, *lb, *enda, *endb;
+
+    /* first of all, if either has no life range, they cannot clash */
+    if (!a->life_count || !b->life_count)
+        return false;
+
+    la = a->life;
+    lb = b->life;
+    enda = la + a->life_count;
+    endb = lb + b->life_count;
+    while (true)
+    {
+        /* check if the entries overlap, for that,
+         * both must start before the other one ends.
+         */
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+        if (la->start <= lb->end &&
+            lb->start <= la->end)
+#else
+        if (la->start <  lb->end &&
+            lb->start <  la->end)
+#endif
+        {
+            return true;
+        }
+
+        /* entries are ordered
+         * one entry is earlier than the other
+         * that earlier entry will be moved forward
+         */
+        if (la->start < lb->start)
+        {
+            /* order: A B, move A forward
+             * check if we hit the end with A
+             */
+            if (++la == enda)
+                break;
+        }
+        else if (lb->start < la->start)
+        {
+            /* order: B A, move B forward
+             * check if we hit the end with B
+             */
+            if (++lb == endb)
+                break;
+        }
+    }
+    return false;
+}
+
+/***********************************************************************
+ *IR main operations
+ */
+
+bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what)
+{
+    if (target->store == store_value) {
+        fprintf(stderr, "cannot store to an SSA value\n");
+        fprintf(stderr, "trying to store: %s <- %s\n", target->name, what->name);
+        return false;
+    } else {
+        ir_instr *in = ir_instr_new(self, op);
+        if (!in)
+            return false;
+        if (!ir_instr_op(in, 0, target, true) ||
+            !ir_instr_op(in, 1, what, false)  ||
+            !ir_block_instr_add(self, in) )
+        {
+            return false;
+        }
+        return true;
+    }
+}
+
+bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what)
+{
+    int op = 0;
+    int vtype;
+    if (target->vtype == TYPE_VARIANT)
+        vtype = what->vtype;
+    else
+        vtype = target->vtype;
+
+#if 0
+    if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
+        op = INSTR_CONV_ITOF;
+    else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
+        op = INSTR_CONV_FTOI;
+#endif
+        op = type_store_instr[vtype];
+
+    return ir_block_create_store_op(self, op, target, what);
+}
+
+bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what)
+{
+    int op = 0;
+    int vtype;
+
+    if (target->vtype != TYPE_POINTER)
+        return false;
+
+    /* storing using pointer - target is a pointer, type must be
+     * inferred from source
+     */
+    vtype = what->vtype;
+
+    op = type_storep_instr[vtype];
+
+    return ir_block_create_store_op(self, op, target, what);
+}
+
+bool ir_block_create_return(ir_block *self, ir_value *v)
+{
+    ir_instr *in;
+    if (self->final) {
+        fprintf(stderr, "block already ended (%s)\n", self->label);
+        return false;
+    }
+    self->final = true;
+    self->is_return = true;
+    in = ir_instr_new(self, INSTR_RETURN);
+    if (!in)
+        return false;
+
+    if (!ir_instr_op(in, 0, v, false) ||
+        !ir_block_instr_add(self, in) )
+    {
+        return false;
+    }
+    return true;
+}
+
+bool ir_block_create_if(ir_block *self, ir_value *v,
+                        ir_block *ontrue, ir_block *onfalse)
+{
+    ir_instr *in;
+    if (self->final) {
+        fprintf(stderr, "block already ended (%s)\n", self->label);
+        return false;
+    }
+    self->final = true;
+    /*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
+    in = ir_instr_new(self, VINSTR_COND);
+    if (!in)
+        return false;
+
+    if (!ir_instr_op(in, 0, v, false)) {
+        ir_instr_delete(in);
+        return false;
+    }
+
+    in->bops[0] = ontrue;
+    in->bops[1] = onfalse;
+
+    if (!ir_block_instr_add(self, in))
+        return false;
+
+    if (!ir_block_exits_add(self, ontrue)    ||
+        !ir_block_exits_add(self, onfalse)   ||
+        !ir_block_entries_add(ontrue, self)  ||
+        !ir_block_entries_add(onfalse, self) )
+    {
+        return false;
+    }
+    return true;
+}
+
+bool ir_block_create_jump(ir_block *self, ir_block *to)
+{
+    ir_instr *in;
+    if (self->final) {
+        fprintf(stderr, "block already ended (%s)\n", self->label);
+        return false;
+    }
+    self->final = true;
+    in = ir_instr_new(self, VINSTR_JUMP);
+    if (!in)
+        return false;
+
+    in->bops[0] = to;
+    if (!ir_block_instr_add(self, in))
+        return false;
+
+    if (!ir_block_exits_add(self, to) ||
+        !ir_block_entries_add(to, self) )
+    {
+        return false;
+    }
+    return true;
+}
+
+bool ir_block_create_goto(ir_block *self, ir_block *to)
+{
+    ir_instr *in;
+    if (self->final) {
+        fprintf(stderr, "block already ended (%s)\n", self->label);
+        return false;
+    }
+    self->final = true;
+    in = ir_instr_new(self, INSTR_GOTO);
+    if (!in)
+        return false;
+
+    in->bops[0] = to;
+    if (!ir_block_instr_add(self, in))
+        return false;
+
+    if (!ir_block_exits_add(self, to) ||
+        !ir_block_entries_add(to, self) )
+    {
+        return false;
+    }
+    return true;
+}
+
+ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot)
+{
+    ir_value *out;
+    ir_instr *in;
+    in = ir_instr_new(self, VINSTR_PHI);
+    if (!in)
+        return NULL;
+    out = ir_value_out(self->owner, label, store_value, ot);
+    if (!out) {
+        ir_instr_delete(in);
+        return NULL;
+    }
+    if (!ir_instr_op(in, 0, out, true)) {
+        ir_instr_delete(in);
+        ir_value_delete(out);
+        return NULL;
+    }
+    if (!ir_block_instr_add(self, in)) {
+        ir_instr_delete(in);
+        ir_value_delete(out);
+        return NULL;
+    }
+    return in;
+}
+
+ir_value* ir_phi_value(ir_instr *self)
+{
+    return self->_ops[0];
+}
+
+bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
+{
+    ir_phi_entry_t pe;
+
+    if (!ir_block_entries_find(self->owner, b, NULL)) {
+        /* Must not be possible to cause this, otherwise the AST
+         * is doing something wrong.
+         */
+        fprintf(stderr, "Invalid entry block for PHI\n");
+        abort();
+    }
+
+    pe.value = v;
+    pe.from = b;
+    if (!ir_value_reads_add(v, self))
+        return false;
+    return ir_instr_phi_add(self, pe);
+}
+
+/* call related code */
+ir_instr* ir_block_create_call(ir_block *self, const char *label, ir_value *func)
+{
+    ir_value *out;
+    ir_instr *in;
+    in = ir_instr_new(self, INSTR_CALL0);
+    if (!in)
+        return NULL;
+    out = ir_value_out(self->owner, label, store_return, func->outtype);
+    if (!out) {
+        ir_instr_delete(in);
+        return NULL;
+    }
+    if (!ir_instr_op(in, 0, out, true) ||
+        !ir_instr_op(in, 1, func, false) ||
+        !ir_block_instr_add(self, in))
+    {
+        ir_instr_delete(in);
+        ir_value_delete(out);
+        return NULL;
+    }
+    return in;
+}
+
+ir_value* ir_call_value(ir_instr *self)
+{
+    return self->_ops[0];
+}
+
+bool ir_call_param(ir_instr* self, ir_value *v)
+{
+    if (!ir_instr_params_add(self, v))
+        return false;
+    if (!ir_value_reads_add(v, self)) {
+        if (!ir_instr_params_remove(self, self->params_count-1))
+            GMQCC_SUPPRESS_EMPTY_BODY;
+        return false;
+    }
+    return true;
+}
+
+/* binary op related code */
+
+ir_value* ir_block_create_binop(ir_block *self,
+                                const char *label, int opcode,
+                                ir_value *left, ir_value *right)
+{
+    int ot = TYPE_VOID;
+    switch (opcode) {
+        case INSTR_ADD_F:
+        case INSTR_SUB_F:
+        case INSTR_DIV_F:
+        case INSTR_MUL_F:
+        case INSTR_MUL_V:
+        case INSTR_AND:
+        case INSTR_OR:
+#if 0
+        case INSTR_AND_I:
+        case INSTR_AND_IF:
+        case INSTR_AND_FI:
+        case INSTR_OR_I:
+        case INSTR_OR_IF:
+        case INSTR_OR_FI:
+#endif
+        case INSTR_BITAND:
+        case INSTR_BITOR:
+#if 0
+        case INSTR_SUB_S: /* -- offset of string as float */
+        case INSTR_MUL_IF:
+        case INSTR_MUL_FI:
+        case INSTR_DIV_IF:
+        case INSTR_DIV_FI:
+        case INSTR_BITOR_IF:
+        case INSTR_BITOR_FI:
+        case INSTR_BITAND_FI:
+        case INSTR_BITAND_IF:
+        case INSTR_EQ_I:
+        case INSTR_NE_I:
+#endif
+            ot = TYPE_FLOAT;
+            break;
+#if 0
+        case INSTR_ADD_I:
+        case INSTR_ADD_IF:
+        case INSTR_ADD_FI:
+        case INSTR_SUB_I:
+        case INSTR_SUB_FI:
+        case INSTR_SUB_IF:
+        case INSTR_MUL_I:
+        case INSTR_DIV_I:
+        case INSTR_BITAND_I:
+        case INSTR_BITOR_I:
+        case INSTR_XOR_I:
+        case INSTR_RSHIFT_I:
+        case INSTR_LSHIFT_I:
+            ot = TYPE_INTEGER;
+            break;
+#endif
+        case INSTR_ADD_V:
+        case INSTR_SUB_V:
+        case INSTR_MUL_VF:
+        case INSTR_MUL_FV:
+#if 0
+        case INSTR_DIV_VF:
+        case INSTR_MUL_IV:
+        case INSTR_MUL_VI:
+#endif
+            ot = TYPE_VECTOR;
+            break;
+#if 0
+        case INSTR_ADD_SF:
+            ot = TYPE_POINTER;
+            break;
+#endif
+        default:
+            /* ranges: */
+            /* boolean operations result in floats */
+            if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
+                ot = TYPE_FLOAT;
+            else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
+                ot = TYPE_FLOAT;
+#if 0
+            else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
+                ot = TYPE_FLOAT;
+#endif
+            break;
+    };
+    if (ot == TYPE_VOID) {
+        /* The AST or parser were supposed to check this! */
+        return NULL;
+    }
+
+    return ir_block_create_general_instr(self, label, opcode, left, right, ot);
+}
+
+ir_value* ir_block_create_unary(ir_block *self,
+                                const char *label, int opcode,
+                                ir_value *operand)
+{
+    int ot = TYPE_FLOAT;
+    switch (opcode) {
+        case INSTR_NOT_F:
+        case INSTR_NOT_V:
+        case INSTR_NOT_S:
+        case INSTR_NOT_ENT:
+        case INSTR_NOT_FNC:
+#if 0
+        case INSTR_NOT_I:
+#endif
+            ot = TYPE_FLOAT;
+            break;
+        /* QC doesn't have other unary operations. We expect extensions to fill
+         * the above list, otherwise we assume out-type = in-type, eg for an
+         * unary minus
+         */
+        default:
+            ot = operand->vtype;
+            break;
+    };
+    if (ot == TYPE_VOID) {
+        /* The AST or parser were supposed to check this! */
+        return NULL;
+    }
+
+    /* let's use the general instruction creator and pass NULL for OPB */
+    return ir_block_create_general_instr(self, label, opcode, operand, NULL, ot);
+}
+
+ir_value* ir_block_create_general_instr(ir_block *self, const char *label,
+                                        int op, ir_value *a, ir_value *b, int outype)
+{
+    ir_instr *instr;
+    ir_value *out;
+
+    out = ir_value_out(self->owner, label, store_value, outype);
+    if (!out)
+        return NULL;
+
+    instr = ir_instr_new(self, op);
+    if (!instr) {
+        ir_value_delete(out);
+        return NULL;
+    }
+
+    if (!ir_instr_op(instr, 0, out, true) ||
+        !ir_instr_op(instr, 1, a, false) ||
+        !ir_instr_op(instr, 2, b, false) )
+    {
+        goto on_error;
+    }
+
+    if (!ir_block_instr_add(self, instr))
+        goto on_error;
+
+    return out;
+on_error:
+    ir_instr_delete(instr);
+    ir_value_delete(out);
+    return NULL;
+}
+
+ir_value* ir_block_create_fieldaddress(ir_block *self, const char *label, ir_value *ent, ir_value *field)
+{
+    ir_value *v;
+
+    /* Support for various pointer types todo if so desired */
+    if (ent->vtype != TYPE_ENTITY)
+        return NULL;
+
+    if (field->vtype != TYPE_FIELD)
+        return NULL;
+
+    v = ir_block_create_general_instr(self, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
+    v->fieldtype = field->fieldtype;
+    return v;
+}
+
+ir_value* ir_block_create_load_from_ent(ir_block *self, const char *label, ir_value *ent, ir_value *field, int outype)
+{
+    int op;
+    if (ent->vtype != TYPE_ENTITY)
+        return NULL;
+
+    /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
+    if (field->vtype != TYPE_FIELD)
+        return NULL;
+
+    switch (outype)
+    {
+        case TYPE_FLOAT:   op = INSTR_LOAD_F;   break;
+        case TYPE_VECTOR:  op = INSTR_LOAD_V;   break;
+        case TYPE_STRING:  op = INSTR_LOAD_S;   break;
+        case TYPE_FIELD:   op = INSTR_LOAD_FLD; break;
+        case TYPE_ENTITY:  op = INSTR_LOAD_ENT; break;
+#if 0
+        case TYPE_POINTER: op = INSTR_LOAD_I;   break;
+        case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
+#endif
+        default:
+            return NULL;
+    }
+
+    return ir_block_create_general_instr(self, label, op, ent, field, outype);
+}
+
+ir_value* ir_block_create_add(ir_block *self,
+                              const char *label,
+                              ir_value *left, ir_value *right)
+{
+    int op = 0;
+    int l = left->vtype;
+    int r = right->vtype;
+    if (l == r) {
+        switch (l) {
+            default:
+                return NULL;
+            case TYPE_FLOAT:
+                op = INSTR_ADD_F;
+                break;
+#if 0
+            case TYPE_INTEGER:
+                op = INSTR_ADD_I;
+                break;
+#endif
+            case TYPE_VECTOR:
+                op = INSTR_ADD_V;
+                break;
+        }
+    } else {
+#if 0
+        if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
+            op = INSTR_ADD_FI;
+        else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
+            op = INSTR_ADD_IF;
+        else
+#endif
+            return NULL;
+    }
+    return ir_block_create_binop(self, label, op, left, right);
+}
+
+ir_value* ir_block_create_sub(ir_block *self,
+                              const char *label,
+                              ir_value *left, ir_value *right)
+{
+    int op = 0;
+    int l = left->vtype;
+    int r = right->vtype;
+    if (l == r) {
+
+        switch (l) {
+            default:
+                return NULL;
+            case TYPE_FLOAT:
+                op = INSTR_SUB_F;
+                break;
+#if 0
+            case TYPE_INTEGER:
+                op = INSTR_SUB_I;
+                break;
+#endif
+            case TYPE_VECTOR:
+                op = INSTR_SUB_V;
+                break;
+        }
+    } else {
+#if 0
+        if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
+            op = INSTR_SUB_FI;
+        else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
+            op = INSTR_SUB_IF;
+        else
+#endif
+            return NULL;
+    }
+    return ir_block_create_binop(self, label, op, left, right);
+}
+
+ir_value* ir_block_create_mul(ir_block *self,
+                              const char *label,
+                              ir_value *left, ir_value *right)
+{
+    int op = 0;
+    int l = left->vtype;
+    int r = right->vtype;
+    if (l == r) {
+
+        switch (l) {
+            default:
+                return NULL;
+            case TYPE_FLOAT:
+                op = INSTR_MUL_F;
+                break;
+#if 0
+            case TYPE_INTEGER:
+                op = INSTR_MUL_I;
+                break;
+#endif
+            case TYPE_VECTOR:
+                op = INSTR_MUL_V;
+                break;
+        }
+    } else {
+        if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
+            op = INSTR_MUL_VF;
+        else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) )
+            op = INSTR_MUL_FV;
+#if 0
+        else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) )
+            op = INSTR_MUL_VI;
+        else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) )
+            op = INSTR_MUL_IV;
+        else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
+            op = INSTR_MUL_FI;
+        else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
+            op = INSTR_MUL_IF;
+#endif
+        else
+            return NULL;
+    }
+    return ir_block_create_binop(self, label, op, left, right);
+}
+
+ir_value* ir_block_create_div(ir_block *self,
+                              const char *label,
+                              ir_value *left, ir_value *right)
+{
+    int op = 0;
+    int l = left->vtype;
+    int r = right->vtype;
+    if (l == r) {
+
+        switch (l) {
+            default:
+                return NULL;
+            case TYPE_FLOAT:
+                op = INSTR_DIV_F;
+                break;
+#if 0
+            case TYPE_INTEGER:
+                op = INSTR_DIV_I;
+                break;
+#endif
+        }
+    } else {
+#if 0
+        if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) )
+            op = INSTR_DIV_VF;
+        else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) )
+            op = INSTR_DIV_FI;
+        else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) )
+            op = INSTR_DIV_IF;
+        else
+#endif
+            return NULL;
+    }
+    return ir_block_create_binop(self, label, op, left, right);
+}
+
+/* PHI resolving breaks the SSA, and must thus be the last
+ * step before life-range calculation.
+ */
+
+static bool ir_block_naive_phi(ir_block *self);
+bool ir_function_naive_phi(ir_function *self)
+{
+    size_t i;
+
+    for (i = 0; i < self->blocks_count; ++i)
+    {
+        if (!ir_block_naive_phi(self->blocks[i]))
+            return false;
+    }
+    return true;
+}
+
+static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what)
+{
+    ir_instr *instr;
+    size_t i;
+
+    /* create a store */
+    if (!ir_block_create_store(block, old, what))
+        return false;
+
+    /* we now move it up */
+    instr = block->instr[block->instr_count-1];
+    for (i = block->instr_count; i > iid; --i)
+        block->instr[i] = block->instr[i-1];
+    block->instr[i] = instr;
+
+    return true;
+}
+
+static bool ir_block_naive_phi(ir_block *self)
+{
+    size_t i, p, w;
+    /* FIXME: optionally, create_phi can add the phis
+     * to a list so we don't need to loop through blocks
+     * - anyway: "don't optimize YET"
+     */
+    for (i = 0; i < self->instr_count; ++i)
+    {
+        ir_instr *instr = self->instr[i];
+        if (instr->opcode != VINSTR_PHI)
+            continue;
+
+        if (!ir_block_instr_remove(self, i))
+            return false;
+        --i; /* NOTE: i+1 below */
+
+        for (p = 0; p < instr->phi_count; ++p)
+        {
+            ir_value *v = instr->phi[p].value;
+            for (w = 0; w < v->writes_count; ++w) {
+                ir_value *old;
+
+                if (!v->writes[w]->_ops[0])
+                    continue;
+
+                /* When the write was to a global, we have to emit a mov */
+                old = v->writes[w]->_ops[0];
+
+                /* The original instruction now writes to the PHI target local */
+                if (v->writes[w]->_ops[0] == v)
+                    v->writes[w]->_ops[0] = instr->_ops[0];
+
+                if (old->store != store_value && old->store != store_local && old->store != store_param)
+                {
+                    /* If it originally wrote to a global we need to store the value
+                     * there as welli
+                     */
+                    if (!ir_naive_phi_emit_store(self, i+1, old, v))
+                        return false;
+                    if (i+1 < self->instr_count)
+                        instr = self->instr[i+1];
+                    else
+                        instr = NULL;
+                    /* In case I forget and access instr later, it'll be NULL
+                     * when it's a problem, to make sure we crash, rather than accessing
+                     * invalid data.
+                     */
+                }
+                else
+                {
+                    /* If it didn't, we can replace all reads by the phi target now. */
+                    size_t r;
+                    for (r = 0; r < old->reads_count; ++r)
+                    {
+                        size_t op;
+                        ir_instr *ri = old->reads[r];
+                        for (op = 0; op < ri->phi_count; ++op) {
+                            if (ri->phi[op].value == old)
+                                ri->phi[op].value = v;
+                        }
+                        for (op = 0; op < 3; ++op) {
+                            if (ri->_ops[op] == old)
+                                ri->_ops[op] = v;
+                        }
+                    }
+                }
+            }
+        }
+        ir_instr_delete(instr);
+    }
+    return true;
+}
+
+/***********************************************************************
+ *IR Temp allocation code
+ * Propagating value life ranges by walking through the function backwards
+ * until no more changes are made.
+ * In theory this should happen once more than once for every nested loop
+ * level.
+ * Though this implementation might run an additional time for if nests.
+ */
+
+typedef struct
+{
+    ir_value* *v;
+    size_t    v_count;
+    size_t    v_alloc;
+} new_reads_t;
+MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v)
+
+/* Enumerate instructions used by value's life-ranges
+ */
+static void ir_block_enumerate(ir_block *self, size_t *_eid)
+{
+    size_t i;
+    size_t eid = *_eid;
+    for (i = 0; i < self->instr_count; ++i)
+    {
+        self->instr[i]->eid = eid++;
+    }
+    *_eid = eid;
+}
+
+/* Enumerate blocks and instructions.
+ * The block-enumeration is unordered!
+ * We do not really use the block enumreation, however
+ * the instruction enumeration is important for life-ranges.
+ */
+void ir_function_enumerate(ir_function *self)
+{
+    size_t i;
+    size_t instruction_id = 0;
+    for (i = 0; i < self->blocks_count; ++i)
+    {
+        self->blocks[i]->eid = i;
+        self->blocks[i]->run_id = 0;
+        ir_block_enumerate(self->blocks[i], &instruction_id);
+    }
+}
+
+static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
+bool ir_function_calculate_liferanges(ir_function *self)
+{
+    size_t i;
+    bool changed;
+
+    do {
+        self->run_id++;
+        changed = false;
+        for (i = 0; i != self->blocks_count; ++i)
+        {
+            if (self->blocks[i]->is_return)
+            {
+                if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
+                    return false;
+            }
+        }
+    } while (changed);
+    return true;
+}
+
+/* Local-value allocator
+ * After finishing creating the liferange of all values used in a function
+ * we can allocate their global-positions.
+ * This is the counterpart to register-allocation in register machines.
+ */
+typedef struct {
+    MEM_VECTOR_MAKE(ir_value*, locals);
+    MEM_VECTOR_MAKE(size_t,    sizes);
+    MEM_VECTOR_MAKE(size_t,    positions);
+} function_allocator;
+MEM_VEC_FUNCTIONS(function_allocator, ir_value*, locals)
+MEM_VEC_FUNCTIONS(function_allocator, size_t,    sizes)
+MEM_VEC_FUNCTIONS(function_allocator, size_t,    positions)
+
+static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var)
+{
+    ir_value *slot;
+    size_t vsize = type_sizeof[var->vtype];
+
+    slot = ir_value_var("reg", store_global, var->vtype);
+    if (!slot)
+        return false;
+
+    if (!ir_value_life_merge_into(slot, var))
+        goto localerror;
+
+    if (!function_allocator_locals_add(alloc, slot))
+        goto localerror;
+
+    if (!function_allocator_sizes_add(alloc, vsize))
+        goto localerror;
+
+    return true;
+
+localerror:
+    ir_value_delete(slot);
+    return false;
+}
+
+bool ir_function_allocate_locals(ir_function *self)
+{
+    size_t i, a;
+    bool   retval = true;
+    size_t pos;
+
+    ir_value *slot;
+    const ir_value *v;
+
+    function_allocator alloc;
+
+    if (!self->locals_count)
+        return true;
+
+    MEM_VECTOR_INIT(&alloc, locals);
+    MEM_VECTOR_INIT(&alloc, sizes);
+    MEM_VECTOR_INIT(&alloc, positions);
+
+    for (i = 0; i < self->locals_count; ++i)
+    {
+        if (!function_allocator_alloc(&alloc, self->locals[i]))
+            goto error;
+    }
+
+    /* Allocate a slot for any value that still exists */
+    for (i = 0; i < self->values_count; ++i)
+    {
+        v = self->values[i];
+
+        if (!v->life_count)
+            continue;
+
+        for (a = 0; a < alloc.locals_count; ++a)
+        {
+            slot = alloc.locals[a];
+
+            if (ir_values_overlap(v, slot))
+                continue;
+
+            if (!ir_value_life_merge_into(slot, v))
+                goto error;
+
+            /* adjust size for this slot */
+            if (alloc.sizes[a] < type_sizeof[v->vtype])
+                alloc.sizes[a] = type_sizeof[v->vtype];
+
+            self->values[i]->code.local = a;
+            break;
+        }
+        if (a >= alloc.locals_count) {
+            self->values[i]->code.local = alloc.locals_count;
+            if (!function_allocator_alloc(&alloc, v))
+                goto error;
+        }
+    }
+
+    /* Adjust slot positions based on sizes */
+    if (!function_allocator_positions_add(&alloc, 0))
+        goto error;
+
+    if (alloc.sizes_count)
+        pos = alloc.positions[0] + alloc.sizes[0];
+    else
+        pos = 0;
+    for (i = 1; i < alloc.sizes_count; ++i)
+    {
+        pos = alloc.positions[i-1] + alloc.sizes[i-1];
+        if (!function_allocator_positions_add(&alloc, pos))
+            goto error;
+    }
+
+    self->allocated_locals = pos + alloc.sizes[alloc.sizes_count-1];
+
+    /* Take over the actual slot positions */
+    for (i = 0; i < self->values_count; ++i)
+        self->values[i]->code.local = alloc.positions[self->values[i]->code.local];
+
+    goto cleanup;
+
+error:
+    retval = false;
+cleanup:
+    for (i = 0; i < alloc.locals_count; ++i)
+        ir_value_delete(alloc.locals[i]);
+    MEM_VECTOR_CLEAR(&alloc, locals);
+    MEM_VECTOR_CLEAR(&alloc, sizes);
+    MEM_VECTOR_CLEAR(&alloc, positions);
+    return retval;
+}
+
+/* Get information about which operand
+ * is read from, or written to.
+ */
+static void ir_op_read_write(int op, size_t *read, size_t *write)
+{
+    switch (op)
+    {
+    case VINSTR_JUMP:
+    case INSTR_GOTO:
+        *write = 0;
+        *read = 0;
+        break;
+    case INSTR_IF:
+    case INSTR_IFNOT:
+#if 0
+    case INSTR_IF_S:
+    case INSTR_IFNOT_S:
+#endif
+    case INSTR_RETURN:
+    case VINSTR_COND:
+        *write = 0;
+        *read = 1;
+        break;
+    default:
+        *write = 1;
+        *read = 6;
+        break;
+    };
+}
+
+static bool ir_block_living_add_instr(ir_block *self, size_t eid)
+{
+    size_t i;
+    bool changed = false;
+    bool tempbool;
+    for (i = 0; i != self->living_count; ++i)
+    {
+        tempbool = ir_value_life_merge(self->living[i], eid);
+        /* debug
+        if (tempbool)
+            fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid);
+        */
+        changed = changed || tempbool;
+    }
+    return changed;
+}
+
+static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
+{
+    size_t i;
+    /* values which have been read in a previous iteration are now
+     * in the "living" array even if the previous block doesn't use them.
+     * So we have to remove whatever does not exist in the previous block.
+     * They will be re-added on-read, but the liferange merge won't cause
+     * a change.
+     */
+    for (i = 0; i < self->living_count; ++i)
+    {
+        if (!ir_block_living_find(prev, self->living[i], NULL)) {
+            if (!ir_block_living_remove(self, i))
+                return false;
+            --i;
+        }
+    }
+
+    /* Whatever the previous block still has in its living set
+     * must now be added to ours as well.
+     */
+    for (i = 0; i < prev->living_count; ++i)
+    {
+        if (ir_block_living_find(self, prev->living[i], NULL))
+            continue;
+        if (!ir_block_living_add(self, prev->living[i]))
+            return false;
+        /*
+        printf("%s got from prev: %s\n", self->label, prev->living[i]->_name);
+        */
+    }
+    return true;
+}
+
+static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
+{
+    ir_instr *instr;
+    ir_value *value;
+    bool  tempbool;
+    size_t i, o, p;
+    /* bitmasks which operands are read from or written to */
+    size_t read, write;
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+    size_t rd;
+    new_reads_t new_reads;
+#endif
+    char dbg_ind[16] = { '#', '0' };
+    (void)dbg_ind;
+
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+    MEM_VECTOR_INIT(&new_reads, v);
+#endif
+
+    if (prev)
+    {
+        if (!ir_block_life_prop_previous(self, prev, changed))
+            return false;
+    }
+
+    i = self->instr_count;
+    while (i)
+    { --i;
+        instr = self->instr[i];
+
+        /* PHI operands are always read operands */
+        for (p = 0; p < instr->phi_count; ++p)
+        {
+            value = instr->phi[p].value;
+#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
+            if (!ir_block_living_find(self, value, NULL) &&
+                !ir_block_living_add(self, value))
+            {
+                goto on_error;
+            }
+#else
+            if (!new_reads_t_v_find(&new_reads, value, NULL))
+            {
+                if (!new_reads_t_v_add(&new_reads, value))
+                    goto on_error;
+            }
+#endif
+        }
+
+        /* See which operands are read and write operands */
+        ir_op_read_write(instr->opcode, &read, &write);
+
+        /* Go through the 3 main operands */
+        for (o = 0; o < 3; ++o)
+        {
+            if (!instr->_ops[o]) /* no such operand */
+                continue;
+
+            value = instr->_ops[o];
+
+            /* We only care about locals */
+            /* we also calculate parameter liferanges so that locals
+             * can take up parameter slots */
+            if (value->store != store_value &&
+                value->store != store_local &&
+                value->store != store_param)
+                continue;
+
+            /* read operands */
+            if (read & (1<<o))
+            {
+#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
+                if (!ir_block_living_find(self, value, NULL) &&
+                    !ir_block_living_add(self, value))
+                {
+                    goto on_error;
+                }
+#else
+                /* fprintf(stderr, "read: %s\n", value->_name); */
+                if (!new_reads_t_v_find(&new_reads, value, NULL))
+                {
+                    if (!new_reads_t_v_add(&new_reads, value))
+                        goto on_error;
+                }
+#endif
+            }
+
+            /* write operands */
+            /* When we write to a local, we consider it "dead" for the
+             * remaining upper part of the function, since in SSA a value
+             * can only be written once (== created)
+             */
+            if (write & (1<<o))
+            {
+                size_t idx;
+                bool in_living = ir_block_living_find(self, value, &idx);
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+                size_t readidx;
+                bool in_reads = new_reads_t_v_find(&new_reads, value, &readidx);
+                if (!in_living && !in_reads)
+#else
+                if (!in_living)
+#endif
+                {
+                    /* If the value isn't alive it hasn't been read before... */
+                    /* TODO: See if the warning can be emitted during parsing or AST processing
+                     * otherwise have warning printed here.
+                     * IF printing a warning here: include filecontext_t,
+                     * and make sure it's only printed once
+                     * since this function is run multiple times.
+                     */
+                    /* For now: debug info: */
+                    fprintf(stderr, "Value only written %s\n", value->name);
+                    tempbool = ir_value_life_merge(value, instr->eid);
+                    *changed = *changed || tempbool;
+                    /*
+                    ir_instr_dump(instr, dbg_ind, printf);
+                    abort();
+                    */
+                } else {
+                    /* since 'living' won't contain it
+                     * anymore, merge the value, since
+                     * (A) doesn't.
+                     */
+                    tempbool = ir_value_life_merge(value, instr->eid);
+                    /*
+                    if (tempbool)
+                        fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid);
+                    */
+                    *changed = *changed || tempbool;
+                    /* Then remove */
+#if ! defined(LIFE_RANGE_WITHOUT_LAST_READ)
+                    if (!ir_block_living_remove(self, idx))
+                        goto on_error;
+#else
+                    if (in_reads)
+                    {
+                        if (!new_reads_t_v_remove(&new_reads, readidx))
+                            goto on_error;
+                    }
+#endif
+                }
+            }
+        }
+        /* (A) */
+        tempbool = ir_block_living_add_instr(self, instr->eid);
+        /*fprintf(stderr, "living added values\n");*/
+        *changed = *changed || tempbool;
+
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+        /* new reads: */
+        for (rd = 0; rd < new_reads.v_count; ++rd)
+        {
+            if (!ir_block_living_find(self, new_reads.v[rd], NULL)) {
+                if (!ir_block_living_add(self, new_reads.v[rd]))
+                    goto on_error;
+            }
+            if (!i && !self->entries_count) {
+                /* fix the top */
+                *changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid);
+            }
+        }
+        MEM_VECTOR_CLEAR(&new_reads, v);
+#endif
+    }
+
+    if (self->run_id == self->owner->run_id)
+        return true;
+
+    self->run_id = self->owner->run_id;
+
+    for (i = 0; i < self->entries_count; ++i)
+    {
+        ir_block *entry = self->entries[i];
+        ir_block_life_propagate(entry, self, changed);
+    }
+
+    return true;
+on_error:
+#if defined(LIFE_RANGE_WITHOUT_LAST_READ)
+    MEM_VECTOR_CLEAR(&new_reads, v);
+#endif
+    return false;
+}
+
+/***********************************************************************
+ *IR Code-Generation
+ *
+ * Since the IR has the convention of putting 'write' operands
+ * at the beginning, we have to rotate the operands of instructions
+ * properly in order to generate valid QCVM code.
+ *
+ * Having destinations at a fixed position is more convenient. In QC
+ * this is *mostly* OPC,  but FTE adds at least 2 instructions which
+ * read from from OPA,  and store to OPB rather than OPC.   Which is
+ * partially the reason why the implementation of these instructions
+ * in darkplaces has been delayed for so long.
+ *
+ * Breaking conventions is annoying...
+ */
+static bool ir_builder_gen_global(ir_builder *self, ir_value *global);
+
+static bool gen_global_field(ir_value *global)
+{
+    if (global->isconst)
+    {
+        ir_value *fld = global->constval.vpointer;
+        if (!fld) {
+            printf("Invalid field constant with no field: %s\n", global->name);
+            return false;
+        }
+
+        /* Now, in this case, a relocation would be impossible to code
+         * since it looks like this:
+         * .vector v = origin;     <- parse error, wtf is 'origin'?
+         * .vector origin;
+         *
+         * But we will need a general relocation support later anyway
+         * for functions... might as well support that here.
+         */
+        if (!fld->code.globaladdr) {
+            printf("FIXME: Relocation support\n");
+            return false;
+        }
+
+        /* copy the field's value */
+        global->code.globaladdr = code_globals_add(code_globals_data[fld->code.globaladdr]);
+    }
+    else
+    {
+        global->code.globaladdr = code_globals_add(0);
+    }
+    if (global->code.globaladdr < 0)
+        return false;
+    return true;
+}
+
+static bool gen_global_pointer(ir_value *global)
+{
+    if (global->isconst)
+    {
+        ir_value *target = global->constval.vpointer;
+        if (!target) {
+            printf("Invalid pointer constant: %s\n", global->name);
+            /* NULL pointers are pointing to the NULL constant, which also
+             * sits at address 0, but still has an ir_value for itself.
+             */
+            return false;
+        }
+
+        /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
+         * void() foo; <- proto
+         * void() *fooptr = &foo;
+         * void() foo = { code }
+         */
+        if (!target->code.globaladdr) {
+            /* FIXME: Check for the constant nullptr ir_value!
+             * because then code.globaladdr being 0 is valid.
+             */
+            printf("FIXME: Relocation support\n");
+            return false;
+        }
+
+        global->code.globaladdr = code_globals_add(target->code.globaladdr);
+    }
+    else
+    {
+        global->code.globaladdr = code_globals_add(0);
+    }
+    if (global->code.globaladdr < 0)
+        return false;
+    return true;
+}
+
+static bool gen_blocks_recursive(ir_function *func, ir_block *block)
+{
+    prog_section_statement stmt;
+    ir_instr *instr;
+    ir_block *target;
+    ir_block *ontrue;
+    ir_block *onfalse;
+    size_t    stidx;
+    size_t    i;
+
+tailcall:
+    block->generated = true;
+    block->code_start = code_statements_elements;
+    for (i = 0; i < block->instr_count; ++i)
+    {
+        instr = block->instr[i];
+
+        if (instr->opcode == VINSTR_PHI) {
+            printf("cannot generate virtual instruction (phi)\n");
+            return false;
+        }
+
+        if (instr->opcode == VINSTR_JUMP) {
+            target = instr->bops[0];
+            /* for uncoditional jumps, if the target hasn't been generated
+             * yet, we generate them right here.
+             */
+            if (!target->generated) {
+                block = target;
+                goto tailcall;
+            }
+
+            /* otherwise we generate a jump instruction */
+            stmt.opcode = INSTR_GOTO;
+            stmt.o1.s1 = (target->code_start) - code_statements_elements;
+            stmt.o2.s1 = 0;
+            stmt.o3.s1 = 0;
+            if (code_statements_add(stmt) < 0)
+                return false;
+
+            /* no further instructions can be in this block */
+            return true;
+        }
+
+        if (instr->opcode == VINSTR_COND) {
+            ontrue  = instr->bops[0];
+            onfalse = instr->bops[1];
+            /* TODO: have the AST signal which block should
+             * come first: eg. optimize IFs without ELSE...
+             */
+
+            stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
+            stmt.o2.u1 = 0;
+            stmt.o3.s1 = 0;
+
+            if (ontrue->generated) {
+                stmt.opcode = INSTR_IF;
+                stmt.o2.s1 = (ontrue->code_start-1) - code_statements_elements;
+                if (code_statements_add(stmt) < 0)
+                    return false;
+            }
+            if (onfalse->generated) {
+                stmt.opcode = INSTR_IFNOT;
+                stmt.o2.s1 = (onfalse->code_start-1) - code_statements_elements;
+                if (code_statements_add(stmt) < 0)
+                    return false;
+            }
+            if (!ontrue->generated) {
+                if (onfalse->generated) {
+                    block = ontrue;
+                    goto tailcall;
+                }
+            }
+            if (!onfalse->generated) {
+                if (ontrue->generated) {
+                    block = onfalse;
+                    goto tailcall;
+                }
+            }
+            /* neither ontrue nor onfalse exist */
+            stmt.opcode = INSTR_IFNOT;
+            stidx = code_statements_elements;
+            if (code_statements_add(stmt) < 0)
+                return false;
+            /* on false we jump, so add ontrue-path */
+            if (!gen_blocks_recursive(func, ontrue))
+                return false;
+            /* fixup the jump address */
+            code_statements_data[stidx].o2.s1 = code_statements_elements - stidx;
+            /* generate onfalse path */
+            if (onfalse->generated) {
+                /* fixup the jump address */
+                code_statements_data[stidx].o2.s1 = (onfalse->code_start) - (stidx);
+                /* may have been generated in the previous recursive call */
+                stmt.opcode = INSTR_GOTO;
+                stmt.o1.s1 = (onfalse->code_start) - code_statements_elements;
+                stmt.o2.s1 = 0;
+                stmt.o3.s1 = 0;
+                return (code_statements_add(stmt) >= 0);
+            }
+            /* if not, generate now */
+            block = onfalse;
+            goto tailcall;
+        }
+
+        if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
+            /* Trivial call translation:
+             * copy all params to OFS_PARM*
+             * if the output's storetype is not store_return,
+             * add append a STORE instruction!
+             *
+             * NOTES on how to do it better without much trouble:
+             * -) The liferanges!
+             *      Simply check the liferange of all parameters for
+             *      other CALLs. For each param with no CALL in its
+             *      liferange, we can store it in an OFS_PARM at
+             *      generation already. This would even include later
+             *      reuse.... probably... :)
+             */
+            size_t p;
+            ir_value *retvalue;
+
+            for (p = 0; p < instr->params_count; ++p)
+            {
+                ir_value *param = instr->params[p];
+
+                stmt.opcode = INSTR_STORE_F;
+                stmt.o3.u1 = 0;
+
+                stmt.opcode = type_store_instr[param->vtype];
+                stmt.o1.u1 = ir_value_code_addr(param);
+                stmt.o2.u1 = OFS_PARM0 + 3 * p;
+                if (code_statements_add(stmt) < 0)
+                    return false;
+            }
+            stmt.opcode = INSTR_CALL0 + instr->params_count;
+            if (stmt.opcode > INSTR_CALL8)
+                stmt.opcode = INSTR_CALL8;
+            stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
+            stmt.o2.u1 = 0;
+            stmt.o3.u1 = 0;
+            if (code_statements_add(stmt) < 0)
+                return false;
+
+            retvalue = instr->_ops[0];
+            if (retvalue && retvalue->store != store_return && retvalue->life_count)
+            {
+                /* not to be kept in OFS_RETURN */
+                stmt.opcode = type_store_instr[retvalue->vtype];
+                stmt.o1.u1 = OFS_RETURN;
+                stmt.o2.u1 = ir_value_code_addr(retvalue);
+                stmt.o3.u1 = 0;
+                if (code_statements_add(stmt) < 0)
+                    return false;
+            }
+            continue;
+        }
+
+        if (instr->opcode == INSTR_STATE) {
+            printf("TODO: state instruction\n");
+            return false;
+        }
+
+        stmt.opcode = instr->opcode;
+        stmt.o1.u1 = 0;
+        stmt.o2.u1 = 0;
+        stmt.o3.u1 = 0;
+
+        /* This is the general order of operands */
+        if (instr->_ops[0])
+            stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
+
+        if (instr->_ops[1])
+            stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
+
+        if (instr->_ops[2])
+            stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
+
+        if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
+        {
+            stmt.o1.u1 = stmt.o3.u1;
+            stmt.o3.u1 = 0;
+        }
+        else if (stmt.opcode >= INSTR_STORE_F &&
+                 stmt.opcode <= INSTR_STORE_FNC)
+        {
+            /* 2-operand instructions with A -> B */
+            stmt.o2.u1 = stmt.o3.u1;
+            stmt.o3.u1 = 0;
+        }
+
+        if (code_statements_add(stmt) < 0)
+            return false;
+    }
+    return true;
+}
+
+static bool gen_function_code(ir_function *self)
+{
+    ir_block *block;
+    prog_section_statement stmt;
+
+    /* Starting from entry point, we generate blocks "as they come"
+     * for now. Dead blocks will not be translated obviously.
+     */
+    if (!self->blocks_count) {
+        printf("Function '%s' declared without body.\n", self->name);
+        return false;
+    }
+
+    block = self->blocks[0];
+    if (block->generated)
+        return true;
+
+    if (!gen_blocks_recursive(self, block)) {
+        printf("failed to generate blocks for '%s'\n", self->name);
+        return false;
+    }
+
+    /* otherwise code_write crashes since it debug-prints functions until AINSTR_END */
+    stmt.opcode = AINSTR_END;
+    stmt.o1.u1 = 0;
+    stmt.o2.u1 = 0;
+    stmt.o3.u1 = 0;
+    if (code_statements_add(stmt) < 0)
+        return false;
+    return true;
+}
+
+static bool gen_global_function(ir_builder *ir, ir_value *global)
+{
+    prog_section_function fun;
+    ir_function          *irfun;
+
+    size_t i;
+    size_t local_var_end;
+
+    if (!global->isconst || (!global->constval.vfunc))
+    {
+        printf("Invalid state of function-global: not constant: %s\n", global->name);
+        return false;
+    }
+
+    irfun = global->constval.vfunc;
+
+    fun.name    = global->code.name;
+    fun.file    = code_cachedstring(global->context.file);
+    fun.profile = 0; /* always 0 */
+    fun.nargs   = irfun->params_count;
+
+    for (i = 0;i < 8; ++i) {
+        if (i >= fun.nargs)
+            fun.argsize[i] = 0;
+        else
+            fun.argsize[i] = type_sizeof[irfun->params[i]];
+    }
+
+    fun.firstlocal = code_globals_elements;
+    fun.locals     = irfun->allocated_locals + irfun->locals_count;
+
+    local_var_end = 0;
+    for (i = 0; i < irfun->locals_count; ++i) {
+        if (!ir_builder_gen_global(ir, irfun->locals[i])) {
+            printf("Failed to generate global %s\n", irfun->locals[i]->name);
+            return false;
+        }
+    }
+    if (irfun->locals_count) {
+        ir_value *last = irfun->locals[irfun->locals_count-1];
+        local_var_end = last->code.globaladdr;
+        local_var_end += type_sizeof[last->vtype];
+    }
+    for (i = 0; i < irfun->values_count; ++i)
+    {
+        /* generate code.globaladdr for ssa values */
+        ir_value *v = irfun->values[i];
+        v->code.globaladdr = local_var_end + v->code.local;
+    }
+    for (i = 0; i < irfun->locals_count; ++i) {
+        /* fill the locals with zeros */
+        code_globals_add(0);
+    }
+
+    if (irfun->builtin)
+        fun.entry = irfun->builtin;
+    else {
+        fun.entry = code_statements_elements;
+        if (!gen_function_code(irfun)) {
+            printf("Failed to generate code for function %s\n", irfun->name);
+            return false;
+        }
+    }
+
+    return (code_functions_add(fun) >= 0);
+}
+
+static bool ir_builder_gen_global(ir_builder *self, ir_value *global)
+{
+    size_t           i;
+    int32_t         *iptr;
+    prog_section_def def;
+
+    def.type   = global->vtype;
+    def.offset = code_globals_elements;
+    def.name   = global->code.name       = code_genstring(global->name);
+
+    switch (global->vtype)
+    {
+    case TYPE_POINTER:
+        if (code_defs_add(def) < 0)
+            return false;
+        return gen_global_pointer(global);
+    case TYPE_FIELD:
+        if (code_defs_add(def) < 0)
+            return false;
+        return gen_global_field(global);
+    case TYPE_ENTITY:
+        /* fall through */
+    case TYPE_FLOAT:
+    {
+        if (code_defs_add(def) < 0)
+            return false;
+
+        if (global->isconst) {
+            iptr = (int32_t*)&global->constval.vfloat;
+            global->code.globaladdr = code_globals_add(*iptr);
+        } else
+            global->code.globaladdr = code_globals_add(0);
+
+        return global->code.globaladdr >= 0;
+    }
+    case TYPE_STRING:
+    {
+        if (code_defs_add(def) < 0)
+            return false;
+        if (global->isconst)
+            global->code.globaladdr = code_globals_add(code_cachedstring(global->constval.vstring));
+        else
+            global->code.globaladdr = code_globals_add(0);
+        return global->code.globaladdr >= 0;
+    }
+    case TYPE_VECTOR:
+    {
+        size_t d;
+        if (code_defs_add(def) < 0)
+            return false;
+
+        if (global->isconst) {
+            iptr = (int32_t*)&global->constval.vvec;
+            global->code.globaladdr = code_globals_add(iptr[0]);
+            if (global->code.globaladdr < 0)
+                return false;
+            for (d = 1; d < type_sizeof[global->vtype]; ++d)
+            {
+                if (code_globals_add(iptr[d]) < 0)
+                    return false;
+            }
+        } else {
+            global->code.globaladdr = code_globals_add(0);
+            if (global->code.globaladdr < 0)
+                return false;
+            for (d = 1; d < type_sizeof[global->vtype]; ++d)
+            {
+                if (code_globals_add(0) < 0)
+                    return false;
+            }
+        }
+        return global->code.globaladdr >= 0;
+    }
+    case TYPE_FUNCTION:
+        if (code_defs_add(def) < 0)
+            return false;
+        global->code.globaladdr = code_globals_elements;
+        code_globals_add(code_functions_elements);
+        return gen_global_function(self, global);
+    case TYPE_VARIANT:
+        /* assume biggest type */
+            global->code.globaladdr = code_globals_add(0);
+            for (i = 1; i < type_sizeof[TYPE_VARIANT]; ++i)
+                code_globals_add(0);
+            return true;
+    default:
+        /* refuse to create 'void' type or any other fancy business. */
+        printf("Invalid type for global variable %s\n", global->name);
+        return false;
+    }
+}
+
+static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
+{
+    prog_section_def def;
+    prog_section_field fld;
+
+    def.type   = field->vtype;
+    def.offset = code_globals_elements;
+    def.name   = field->code.name = code_genstring(field->name);
+
+    if (code_defs_add(def) < 0)
+        return false;
+
+    fld.name = def.name;
+    fld.offset = code_fields_elements;
+    fld.type = field->fieldtype;
+
+    if (fld.type == TYPE_VOID) {
+        printf("field is missing a type: %s - don't know its size\n", field->name);
+        return false;
+    }
+
+    if (code_fields_add(fld) < 0)
+        return false;
+
+    if (!code_globals_add(code_alloc_field(type_sizeof[field->fieldtype])))
+        return false;
+
+    field->code.globaladdr = code_globals_add(fld.offset);
+    return field->code.globaladdr >= 0;
+}
+
+bool ir_builder_generate(ir_builder *self, const char *filename)
+{
+    size_t i;
+
+    code_init();
+
+    for (i = 0; i < self->fields_count; ++i)
+    {
+        if (!ir_builder_gen_field(self, self->fields[i])) {
+            return false;
+        }
+    }
+
+    for (i = 0; i < self->globals_count; ++i)
+    {
+        if (!ir_builder_gen_global(self, self->globals[i])) {
+            return false;
+        }
+    }
+
+    printf("writing '%s'...\n", filename);
+    return code_write(filename);
+}
+
+/***********************************************************************
+ *IR DEBUG Dump functions...
+ */
+
+#define IND_BUFSZ 1024
+
+const char *qc_opname(int op)
+{
+    if (op < 0) return "<INVALID>";
+    if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
+        return asm_instr[op].m;
+    switch (op) {
+        case VINSTR_PHI:  return "PHI";
+        case VINSTR_JUMP: return "JUMP";
+        case VINSTR_COND: return "COND";
+        default:          return "<UNK>";
+    }
+}
+
+void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
+{
+       size_t i;
+       char indent[IND_BUFSZ];
+       indent[0] = '\t';
+       indent[1] = 0;
+
+       oprintf("module %s\n", b->name);
+       for (i = 0; i < b->globals_count; ++i)
+       {
+               oprintf("global ");
+               if (b->globals[i]->isconst)
+                       oprintf("%s = ", b->globals[i]->name);
+               ir_value_dump(b->globals[i], oprintf);
+               oprintf("\n");
+       }
+       for (i = 0; i < b->functions_count; ++i)
+               ir_function_dump(b->functions[i], indent, oprintf);
+       oprintf("endmodule %s\n", b->name);
+}
+
+void ir_function_dump(ir_function *f, char *ind,
+                      int (*oprintf)(const char*, ...))
+{
+       size_t i;
+       if (f->builtin != 0) {
+           oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
+           return;
+       }
+       oprintf("%sfunction %s\n", ind, f->name);
+       strncat(ind, "\t", IND_BUFSZ);
+       if (f->locals_count)
+       {
+               oprintf("%s%i locals:\n", ind, (int)f->locals_count);
+               for (i = 0; i < f->locals_count; ++i) {
+                       oprintf("%s\t", ind);
+                       ir_value_dump(f->locals[i], oprintf);
+                       oprintf("\n");
+               }
+       }
+       if (f->blocks_count)
+       {
+               oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
+               for (i = 0; i < f->blocks_count; ++i) {
+                   if (f->blocks[i]->run_id != f->run_id) {
+                       oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
+                   }
+                       ir_block_dump(f->blocks[i], ind, oprintf);
+               }
+
+       }
+       ind[strlen(ind)-1] = 0;
+       oprintf("%sendfunction %s\n", ind, f->name);
+}
+
+void ir_block_dump(ir_block* b, char *ind,
+                   int (*oprintf)(const char*, ...))
+{
+       size_t i;
+       oprintf("%s:%s\n", ind, b->label);
+       strncat(ind, "\t", IND_BUFSZ);
+
+       for (i = 0; i < b->instr_count; ++i)
+               ir_instr_dump(b->instr[i], ind, oprintf);
+       ind[strlen(ind)-1] = 0;
+}
+
+void dump_phi(ir_instr *in, char *ind,
+              int (*oprintf)(const char*, ...))
+{
+       size_t i;
+       oprintf("%s <- phi ", in->_ops[0]->name);
+       for (i = 0; i < in->phi_count; ++i)
+       {
+               oprintf("([%s] : %s) ", in->phi[i].from->label,
+                                       in->phi[i].value->name);
+       }
+       oprintf("\n");
+}
+
+void ir_instr_dump(ir_instr *in, char *ind,
+                       int (*oprintf)(const char*, ...))
+{
+       size_t i;
+       const char *comma = NULL;
+
+       oprintf("%s (%i) ", ind, (int)in->eid);
+
+       if (in->opcode == VINSTR_PHI) {
+               dump_phi(in, ind, oprintf);
+               return;
+       }
+
+       strncat(ind, "\t", IND_BUFSZ);
+
+       if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
+               ir_value_dump(in->_ops[0], oprintf);
+               if (in->_ops[1] || in->_ops[2])
+                       oprintf(" <- ");
+       }
+       oprintf("%s\t", qc_opname(in->opcode));
+       if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
+               ir_value_dump(in->_ops[0], oprintf);
+               comma = ",\t";
+       }
+       else
+       {
+               for (i = 1; i != 3; ++i) {
+                       if (in->_ops[i]) {
+                               if (comma)
+                                       oprintf(comma);
+                               ir_value_dump(in->_ops[i], oprintf);
+                               comma = ",\t";
+                       }
+               }
+       }
+       if (in->bops[0]) {
+               if (comma)
+                       oprintf(comma);
+               oprintf("[%s]", in->bops[0]->label);
+               comma = ",\t";
+       }
+       if (in->bops[1])
+               oprintf("%s[%s]", comma, in->bops[1]->label);
+       oprintf("\n");
+       ind[strlen(ind)-1] = 0;
+}
+
+void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
+{
+       if (v->isconst) {
+               switch (v->vtype) {
+                       case TYPE_VOID:
+                               oprintf("(void)");
+                               break;
+                       case TYPE_FLOAT:
+                               oprintf("%g", v->constval.vfloat);
+                               break;
+                       case TYPE_VECTOR:
+                               oprintf("'%g %g %g'",
+                                       v->constval.vvec.x,
+                                       v->constval.vvec.y,
+                                       v->constval.vvec.z);
+                               break;
+                       case TYPE_ENTITY:
+                               oprintf("(entity)");
+                               break;
+                       case TYPE_STRING:
+                               oprintf("\"%s\"", v->constval.vstring);
+                               break;
+#if 0
+                       case TYPE_INTEGER:
+                               oprintf("%i", v->constval.vint);
+                               break;
+#endif
+                       case TYPE_POINTER:
+                               oprintf("&%s",
+                                       v->constval.vpointer->name);
+                               break;
+               }
+       } else {
+               oprintf("%s", v->name);
+       }
+}
+
+void ir_value_dump_life(ir_value *self, int (*oprintf)(const char*,...))
+{
+       size_t i;
+       oprintf("Life of %s:\n", self->name);
+       for (i = 0; i < self->life_count; ++i)
+       {
+               oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
+       }
 }