/* * Copyright (C) 2012, 2013 * Dale Weiler * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "gmqcc.h" /* * Initially this was handled with a table in the gmqcc.h header, but * much to my surprise the contents of the table was duplicated for * each translation unit, causing all these strings to be duplicated * for every .c file it was included into. This method culls back on * it. This is a 'utility' function because the executor also depends * on this for dissasembled bytecode. */ const char *util_instr_str[VINSTR_END] = { "DONE", "MUL_F", "MUL_V", "MUL_FV", "MUL_VF", "DIV_F", "ADD_F", "ADD_V", "SUB_F", "SUB_V", "EQ_F", "EQ_V", "EQ_S", "EQ_E", "EQ_FNC", "NE_F", "NE_V", "NE_S", "NE_E", "NE_FNC", "LE", "GE", "LT", "GT", "LOAD_F", "LOAD_V", "LOAD_S", "LOAD_ENT", "LOAD_FLD", "LOAD_FNC", "ADDRESS", "STORE_F", "STORE_V", "STORE_S", "STORE_ENT", "STORE_FLD", "STORE_FNC", "STOREP_F", "STOREP_V", "STOREP_S", "STOREP_ENT", "STOREP_FLD", "STOREP_FNC", "RETURN", "NOT_F", "NOT_V", "NOT_S", "NOT_ENT", "NOT_FNC", "IF", "IFNOT", "CALL0", "CALL1", "CALL2", "CALL3", "CALL4", "CALL5", "CALL6", "CALL7", "CALL8", "STATE", "GOTO", "AND", "OR", "BITAND", "BITOR" }; void util_debug(const char *area, const char *ms, ...) { va_list va; if (!OPTS_OPTION_BOOL(OPTION_DEBUG)) return; if (!strcmp(area, "MEM") && !OPTS_OPTION_BOOL(OPTION_MEMCHK)) return; va_start(va, ms); con_out ("[%s] ", area); con_vout(ms, va); va_end (va); } /* * only required if big endian .. otherwise no need to swap * data. */ #if PLATFORM_BYTE_ORDER == GMQCC_BYTE_ORDER_BIG static GMQCC_INLINE void util_swap16(uint16_t *d, size_t l) { while (l--) { d[l] = (d[l] << 8) | (d[l] >> 8); } } static GMQCC_INLINE void util_swap32(uint32_t *d, size_t l) { while (l--) { uint32_t v; v = ((d[l] << 8) & 0xFF00FF00) | ((d[l] >> 8) & 0x00FF00FF); d[l] = (v << 16) | (v >> 16); } } /* Some strange system doesn't like constants that big, AND doesn't recognize an ULL suffix * so let's go the safe way */ static GMQCC_INLINE void util_swap64(uint32_t *d, size_t l) { /* while (l--) { uint64_t v; v = ((d[l] << 8) & 0xFF00FF00FF00FF00) | ((d[l] >> 8) & 0x00FF00FF00FF00FF); v = ((v << 16) & 0xFFFF0000FFFF0000) | ((v >> 16) & 0x0000FFFF0000FFFF); d[l] = (v << 32) | (v >> 32); } */ size_t i; for (i = 0; i < l; i += 2) { uint32_t v1 = d[i]; d[i] = d[i+1]; d[i+1] = v1; util_swap32(d+i, 2); } } #endif void util_endianswap(void *_data, size_t length, unsigned int typesize) { # if PLATFORM_BYTE_ORDER == -1 /* runtime check */ if (*((char*)&typesize)) return; #else /* prevent unused warnings */ (void) _data; (void) length; (void) typesize; # if PLATFORM_BYTE_ORDER == GMQCC_BYTE_ORDER_LITTLE return; # else switch (typesize) { case 1: return; case 2: util_swap16((uint16_t*)_data, length>>1); return; case 4: util_swap32((uint32_t*)_data, length>>2); return; case 8: util_swap64((uint32_t*)_data, length>>3); return; default: exit(EXIT_FAILURE); /* please blow the fuck up! */ } # endif #endif } /* * CRC algorithms vary in the width of the polynomial, the value of said polynomial, * the initial value used for the register, weather the bits of each byte are reflected * before being processed, weather the algorithm itself feeds input bytes through the * register or XORs them with a byte from one end and then straight into the table, as * well as (but not limited to the idea of reflected versions) where the final register * value becomes reversed, and finally weather the value itself is used to XOR the final * register value. AS such you can already imagine how painfully annoying CRCs are, * of course we stand to target Quake, which expects it's certian set of rules for proper * calculation of a CRC. * * In most traditional CRC algorithms on uses a reflected table driven method where a value * or register is reflected if it's bits are swapped around it's center. For example: * take the bits 0101 is the 4-bit reflection of 1010, and respectfully 0011 would be the * reflection of 1100. Quake however expects a NON-Reflected CRC on the output, but still * requires a final XOR on the values (0xFFFF and 0x0000) this is a standard CCITT CRC-16 * which I respectfully as a programmer don't agree with. * * So now you know what we target, and why we target it, despite how unsettling it may seem * but those are what Quake seems to request. */ static const uint16_t util_crc16_table[] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; /* Non - Reflected */ uint16_t util_crc16(uint16_t current, const char *k, size_t len) { register uint16_t h = current; for (; len; --len, ++k) h = util_crc16_table[(h>>8)^((unsigned char)*k)]^(h<<8); return h; } /* Reflective Varation (for reference) */ #if 0 uint16_t util_crc16(const char *k, int len, const short clamp) { register uint16_t h= (uint16_t)0xFFFFFFFF; for (; len; --len, ++k) h = util_crc16_table[(h^((unsigned char)*k))&0xFF]^(h>>8); return (~h)%clamp; } #endif size_t util_strtocmd(const char *in, char *out, size_t outsz) { size_t sz = 1; for (; *in && sz < outsz; ++in, ++out, ++sz) *out = (*in == '-') ? '_' : (util_isalpha(*in) && !util_isupper(*in)) ? *in + 'A' - 'a': *in; *out = 0; return sz-1; } size_t util_strtononcmd(const char *in, char *out, size_t outsz) { size_t sz = 1; for (; *in && sz < outsz; ++in, ++out, ++sz) *out = (*in == '_') ? '-' : (util_isalpha(*in) && util_isupper(*in)) ? *in + 'a' - 'A' : *in; *out = 0; return sz-1; } /* * Portable implementation of vasprintf/asprintf. Assumes vsnprintf * exists, otherwise compiler error. * * TODO: fix for MSVC .... */ int util_vasprintf(char **dat, const char *fmt, va_list args) { int ret; int len; char *tmp = NULL; /* * For visuals tido _vsnprintf doesn't tell you the length of a * formatted string if it overflows. However there is a MSVC * intrinsic (which is documented wrong) called _vcsprintf which * will return the required amount to allocate. */ #ifdef _MSC_VER if ((len = _vscprintf(fmt, args)) < 0) { *dat = NULL; return -1; } tmp = (char*)mem_a(len + 1); if ((ret = _vsnprintf_s(tmp, len+1, len+1, fmt, args)) != len) { mem_d(tmp); *dat = NULL; return -1; } *dat = tmp; return len; #else /* * For everything else we have a decent conformint vsnprintf that * returns the number of bytes needed. We give it a try though on * a short buffer, since efficently speaking, it could be nice to * above a second vsnprintf call. */ char buf[128]; va_list cpy; va_copy(cpy, args); len = vsnprintf(buf, sizeof(buf), fmt, cpy); va_end (cpy); if (len < (int)sizeof(buf)) { *dat = util_strdup(buf); return len; } /* not large enough ... */ tmp = (char*)mem_a(len + 1); if ((ret = vsnprintf(tmp, len + 1, fmt, args)) != len) { mem_d(tmp); *dat = NULL; return -1; } *dat = tmp; return len; #endif } int util_asprintf(char **ret, const char *fmt, ...) { va_list args; int read; va_start(args, fmt); read = util_vasprintf(ret, fmt, args); va_end (args); return read; } /* * These are various re-implementations (wrapping the real ones) of * string functions that MSVC consideres unsafe. We wrap these up and * use the safe varations on MSVC. */ #ifdef _MSC_VER static char **util_strerror_allocated() { static char **data = NULL; return data; } static void util_strerror_cleanup(void) { size_t i; char **data = util_strerror_allocated(); for (i = 0; i < vec_size(data); i++) mem_d(data[i]); vec_free(data); } const char *util_strerror(int num) { char *allocated = NULL; static bool install = false; static size_t tries = 0; char **vector = util_strerror_allocated(); /* try installing cleanup handler */ while (!install) { if (tries == 32) return "(unknown)"; install = !atexit(&util_strerror_cleanup); tries ++; } allocated = (char*)mem_a(4096); /* A page must be enough */ strerror_s(allocated, 4096, num); vec_push(vector, allocated); return (const char *)allocated; } int util_snprintf(char *src, size_t bytes, const char *format, ...) { int rt; va_list va; va_start(va, format); rt = vsprintf_s(src, bytes, format, va); va_end (va); return rt; } char *util_strcat(char *dest, const char *src) { strcat_s(dest, strlen(src), src); return dest; } char *util_strncpy(char *dest, const char *src, size_t num) { strncpy_s(dest, num, src, num); return dest; } #else const char *util_strerror(int num) { return strerror(num); } int util_snprintf(char *src, size_t bytes, const char *format, ...) { int rt; va_list va; va_start(va, format); rt = vsnprintf(src, bytes, format, va); va_end (va); return rt; } char *util_strcat(char *dest, const char *src) { return strcat(dest, src); } char *util_strncpy(char *dest, const char *src, size_t num) { return strncpy(dest, src, num); } #endif /*! _MSC_VER */ /* * Implementation of the Mersenne twister PRNG (pseudo random numer * generator). Implementation of MT19937. Has a period of 2^19937-1 * which is a Mersenne Prime (hence the name). * * Implemented from specification and original paper: * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf * * This code is placed in the public domain by me personally * (Dale Weiler, a.k.a graphitemaster). */ #define MT_SIZE 624 #define MT_PERIOD 397 #define MT_SPACE (MT_SIZE - MT_PERIOD) static uint32_t mt_state[MT_SIZE]; static size_t mt_index = 0; static GMQCC_INLINE void mt_generate(void) { /* * The loop has been unrolled here: the original paper and implemenation * Called for the following code: * for (register unsigned i = 0; i < MT_SIZE; ++i) { * register uint32_t load; * load = (0x80000000 & mt_state[i]) // most significant 32nd bit * load |= (0x7FFFFFFF & mt_state[(i + 1) % MT_SIZE]) // least significant 31nd bit * * mt_state[i] = mt_state[(i + MT_PERIOD) % MT_SIZE] ^ (load >> 1); * * if (load & 1) mt_state[i] ^= 0x9908B0DF; * } * * This essentially is a waste: we have two modulus operations, and * a branch that is executed every iteration from [0, MT_SIZE). * * Please see: http://www.quadibloc.com/crypto/co4814.htm for more * information on how this clever trick works. */ static const uint32_t matrix[2] = { 0x00000000, 0x9908B0Df }; /* * This register gives up a little more speed by instructing the compiler * to force these into CPU registers (they're counters for indexing mt_state * which we can force the compiler to generate prefetch instructions for) */ register uint32_t y; register uint32_t i; /* * Said loop has been unrolled for MT_SPACE (226 iterations), opposed * to [0, MT_SIZE) (634 iterations). */ for (i = 0; i < MT_SPACE-1; ++i) { y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; i ++; /* loop unroll */ y = (0x80000000 & mt_state[i]) | (0x7FFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i + MT_PERIOD] ^ (y >> 1) ^ matrix[y & 1]; } /* * collapsing the walls unrolled (evenly dividing 396 [632-227 = 396 * = 2*2*3*3*11]) */ i = MT_SPACE; while (i < MT_SIZE-2) { /* * We expand this 11 times .. manually, no macros are required * here. This all fits in the CPU cache. */ y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; y = (0x80000000 & mt_state[i]) | (0x7FFFFFFF & mt_state[i + 1]); mt_state[i] = mt_state[i - MT_SPACE] ^ (y >> 1) ^ matrix[y & 1]; ++i; } /* i = mt_state[623] */ y = (0x80000000 & mt_state[MT_SIZE - 1]) | (0x7FFFFFFF & mt_state[MT_SIZE - 1]); mt_state[MT_SIZE - 1] = mt_state[MT_PERIOD - 1] ^ (y >> 1) ^ matrix[y & 1]; } void util_seed(uint32_t value) { /* * We seed the mt_state with a LCG (linear congruential generator) * We're operating exactly on exactly m=32, so there is no need to * use modulus. * * The multipler of choice is 0x6C07865, also knows as the Borosh- * Niederreiter multipler used for modulus 2^32. More can be read * about this in Knuth's TAOCP Volume 2, page 106. * * If you don't own TAOCP something is wrong with you :-) .. so I * also provided a link to the original paper by Borosh and * Niederreiter. It's called "Optional Multipliers for PRNG by The * Linear Congruential Method" (1983). * http://en.wikipedia.org/wiki/Linear_congruential_generator * * From said page, it says the following: * "A common Mersenne twister implementation, interestingly enough * used an LCG to generate seed data." * * Remarks: * The data we're operating on is 32-bits for the mt_state array, so * there is no masking required with 0xFFFFFFFF */ register size_t i; mt_state[0] = value; for (i = 1; i < MT_SIZE; ++i) mt_state[i] = 0x6C078965 * (mt_state[i - 1] ^ mt_state[i - 1] >> 30) + i; } uint32_t util_rand() { register uint32_t y; /* * This is inlined with any sane compiler (I checked) * for some reason though, SubC seems to be generating invalid * code when it inlines this. */ if (!mt_index) mt_generate(); y = mt_state[mt_index]; /* Standard tempering */ y ^= y >> 11; /* +7 */ y ^= y << 7 & 0x9D2C5680; /* +4 */ y ^= y << 15 & 0xEFC60000; /* -4 */ y ^= y >> 18; /* -7 */ if(++mt_index == MT_SIZE) mt_index = 0; return y; }