/* * Copyright (C) 2012, 2013 * Dale Weiler * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "gmqcc.h" /* * GMQCC performs tons of allocations, constructions, and crazyness * all around. When trying to optimizes systems, or just get fancy * statistics out of the compiler, it's often printf mess. This file * implements the statistics system of the compiler. I.E the allocator * we use to track allocations, and other systems of interest. */ #define ST_SIZE 1024 typedef struct stat_mem_block_s { const char *file; size_t line; size_t size; struct stat_mem_block_s *next; struct stat_mem_block_s *prev; } stat_mem_block_t; typedef struct { size_t key; size_t value; } stat_size_entry_t, **stat_size_table_t; static uint64_t stat_mem_allocated = 0; static uint64_t stat_mem_deallocated = 0; static uint64_t stat_mem_allocated_total = 0; static uint64_t stat_mem_deallocated_total = 0; static uint64_t stat_mem_high = 0; static uint64_t stat_mem_peak = 0; static uint64_t stat_used_strdups = 0; static uint64_t stat_used_vectors = 0; static uint64_t stat_used_hashtables = 0; static uint64_t stat_type_vectors = 0; static uint64_t stat_type_hashtables = 0; static stat_size_table_t stat_size_vectors = NULL; static stat_size_table_t stat_size_hashtables = NULL; static stat_mem_block_t *stat_mem_block_root = NULL; /* * A tiny size_t key-value hashtbale for tracking vector and hashtable * sizes. We can use it for other things too, if we need to. This is * very TIGHT, and efficent in terms of space though. */ static stat_size_table_t stat_size_new() { return (stat_size_table_t)memset( mem_a(sizeof(stat_size_entry_t*) * ST_SIZE), 0, ST_SIZE * sizeof(stat_size_entry_t*) ); } static void stat_size_del(stat_size_table_t table) { size_t i = 0; for (; i < ST_SIZE; i++) if(table[i]) mem_d(table[i]); mem_d(table); } static stat_size_entry_t *stat_size_get(stat_size_table_t table, size_t key) { size_t hash = (key % ST_SIZE); while (table[hash] && table[hash]->key != key) hash = (hash + 1) % ST_SIZE; return table[hash]; } static void stat_size_put(stat_size_table_t table, size_t key, size_t value) { size_t hash = (key % ST_SIZE); while (table[hash] && table[hash]->key != key) hash = (hash + 1) % ST_SIZE; table[hash] = (stat_size_entry_t*)mem_a(sizeof(stat_size_entry_t)); table[hash]->key = key; table[hash]->value = value; } /* * A basic header of information wrapper allocator. Simply stores * information as a header, returns the memory + 1 past it, can be * retrieved again with - 1. Where type is stat_mem_block_t*. */ void *stat_mem_allocate(size_t size, size_t line, const char *file) { stat_mem_block_t *info = (stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size); void *data = (void*)(info + 1); if(!info) return NULL; info->line = line; info->size = size; info->file = file; info->prev = NULL; info->next = stat_mem_block_root; if (stat_mem_block_root) stat_mem_block_root->prev = info; stat_mem_block_root = info; stat_mem_allocated += size; stat_mem_high += size; stat_mem_allocated_total ++; if (stat_mem_high > stat_mem_peak) stat_mem_peak = stat_mem_high; return data; } void stat_mem_deallocate(void *ptr) { stat_mem_block_t *info = NULL; if (!ptr) return; info = ((stat_mem_block_t*)ptr - 1); stat_mem_deallocated += info->size; stat_mem_high -= info->size; stat_mem_deallocated_total ++; if (info->prev) info->prev->next = info->next; if (info->next) info->next->prev = info->prev; /* move ahead */ if (info == stat_mem_block_root) stat_mem_block_root = info->next; free(info); } void *stat_mem_reallocate(void *ptr, size_t size, size_t line, const char *file) { stat_mem_block_t *oldinfo = NULL; stat_mem_block_t *newinfo; if (!ptr) return stat_mem_allocate(size, line, file); /* stay consistent with glic */ if (!size) { stat_mem_deallocate(ptr); return NULL; } oldinfo = ((stat_mem_block_t*)ptr - 1); newinfo = ((stat_mem_block_t*)malloc(sizeof(stat_mem_block_t) + size)); if (!newinfo) { stat_mem_deallocate(ptr); return NULL; } memcpy(newinfo+1, oldinfo+1, oldinfo->size); if (oldinfo->prev) oldinfo->prev->next = oldinfo->next; if (oldinfo->next) oldinfo->next->prev = oldinfo->prev; /* move ahead */ if (oldinfo == stat_mem_block_root) stat_mem_block_root = oldinfo->next; newinfo->line = line; newinfo->size = size; newinfo->file = file; newinfo->prev = NULL; newinfo->next = stat_mem_block_root; if (stat_mem_block_root) stat_mem_block_root->prev = newinfo; stat_mem_block_root = newinfo; stat_mem_allocated -= oldinfo->size; stat_mem_high -= oldinfo->size; stat_mem_allocated += newinfo->size; stat_mem_high += newinfo->size; if (stat_mem_high > stat_mem_peak) stat_mem_peak = stat_mem_high; free(oldinfo); return newinfo + 1; } /* * strdup does it's own malloc, we need to track malloc. We don't want * to overwrite malloc though, infact, we can't really hook it at all * without library specific assumptions. So we re implement strdup. */ char *stat_mem_strdup(const char *src, size_t line, const char *file, bool empty) { size_t len = 0; char *ptr = NULL; if (!src) return NULL; len = strlen(src); if (((!empty) ? len : true) && (ptr = (char*)stat_mem_allocate(len + 1, line, file))) { memcpy(ptr, src, len); ptr[len] = '\0'; } stat_used_strdups ++; return ptr; } /* * The reallocate function for resizing vectors. */ void _util_vec_grow(void **a, size_t i, size_t s) { vector_t *d = vec_meta(*a); size_t m = 0; stat_size_entry_t *e = NULL; void *p = NULL; if (*a) { m = 2 * d->allocated + i; p = mem_r(d, s * m + sizeof(vector_t)); } else { m = i + 1; p = mem_a(s * m + sizeof(vector_t)); ((vector_t*)p)->used = 0; stat_used_vectors++; } if (!stat_size_vectors) stat_size_vectors = stat_size_new(); if ((e = stat_size_get(stat_size_vectors, s))) { e->value ++; } else { stat_size_put(stat_size_vectors, s, 1); /* start off with 1 */ stat_type_vectors++; } *a = (vector_t*)p + 1; vec_meta(*a)->allocated = m; } /* * Hash table for generic data, based on dynamic memory allocations * all around. This is the internal interface, please look for * EXPOSED INTERFACE comment below */ typedef struct hash_node_t { char *key; /* the key for this node in table */ void *value; /* pointer to the data as void* */ struct hash_node_t *next; /* next node (linked list) */ } hash_node_t; GMQCC_INLINE size_t util_hthash(hash_table_t *ht, const char *key) { const uint32_t mix = 0x5BD1E995; const uint32_t rot = 24; size_t size = strlen(key); uint32_t hash = 0x1EF0 /* LICRC TAB */ ^ size; uint32_t alias = 0; const unsigned char *data = (const unsigned char*)key; while (size >= 4) { alias = (data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24)); alias *= mix; alias ^= alias >> rot; alias *= mix; hash *= mix; hash ^= alias; data += 4; size -= 4; } switch (size) { case 3: hash ^= data[2] << 16; case 2: hash ^= data[1] << 8; case 1: hash ^= data[0]; hash *= mix; } hash ^= hash >> 13; hash *= mix; hash ^= hash >> 15; return (size_t) (hash % ht->size); } static hash_node_t *_util_htnewpair(const char *key, void *value) { hash_node_t *node; if (!(node = (hash_node_t*)mem_a(sizeof(hash_node_t)))) return NULL; if (!(node->key = util_strdupe(key))) { mem_d(node); return NULL; } node->value = value; node->next = NULL; return node; } /* * EXPOSED INTERFACE for the hashtable implementation * util_htnew(size) -- to make a new hashtable * util_htset(table, key, value, sizeof(value)) -- to set something in the table * util_htget(table, key) -- to get something from the table * util_htdel(table) -- to delete the table */ hash_table_t *util_htnew(size_t size) { hash_table_t *hashtable = NULL; stat_size_entry_t *find = NULL; if (size < 1) return NULL; if (!stat_size_hashtables) stat_size_hashtables = stat_size_new(); if (!(hashtable = (hash_table_t*)mem_a(sizeof(hash_table_t)))) return NULL; if (!(hashtable->table = (hash_node_t**)mem_a(sizeof(hash_node_t*) * size))) { mem_d(hashtable); return NULL; } if ((find = stat_size_get(stat_size_hashtables, size))) find->value++; else { stat_type_hashtables++; stat_size_put(stat_size_hashtables, size, 1); } hashtable->size = size; memset(hashtable->table, 0, sizeof(hash_node_t*) * size); stat_used_hashtables++; return hashtable; } void util_htseth(hash_table_t *ht, const char *key, size_t bin, void *value) { hash_node_t *newnode = NULL; hash_node_t *next = NULL; hash_node_t *last = NULL; next = ht->table[bin]; while (next && next->key && strcmp(key, next->key) > 0) last = next, next = next->next; /* already in table, do a replace */ if (next && next->key && strcmp(key, next->key) == 0) { next->value = value; } else { /* not found, grow a pair man :P */ newnode = _util_htnewpair(key, value); if (next == ht->table[bin]) { newnode->next = next; ht->table[bin] = newnode; } else if (!next) { last->next = newnode; } else { newnode->next = next; last->next = newnode; } } } void util_htset(hash_table_t *ht, const char *key, void *value) { util_htseth(ht, key, util_hthash(ht, key), value); } void *util_htgeth(hash_table_t *ht, const char *key, size_t bin) { hash_node_t *pair = ht->table[bin]; while (pair && pair->key && strcmp(key, pair->key) > 0) pair = pair->next; if (!pair || !pair->key || strcmp(key, pair->key) != 0) return NULL; return pair->value; } void *util_htget(hash_table_t *ht, const char *key) { return util_htgeth(ht, key, util_hthash(ht, key)); } void *code_util_str_htgeth(hash_table_t *ht, const char *key, size_t bin) { hash_node_t *pair; size_t len, keylen; int cmp; keylen = strlen(key); pair = ht->table[bin]; while (pair && pair->key) { len = strlen(pair->key); if (len < keylen) { pair = pair->next; continue; } if (keylen == len) { cmp = strcmp(key, pair->key); if (cmp == 0) return pair->value; if (cmp < 0) return NULL; pair = pair->next; continue; } cmp = strcmp(key, pair->key + len - keylen); if (cmp == 0) { uintptr_t up = (uintptr_t)pair->value; up += len - keylen; return (void*)up; } pair = pair->next; } return NULL; } /* * Free all allocated data in a hashtable, this is quite the amount * of work. */ void util_htrem(hash_table_t *ht, void (*callback)(void *data)) { size_t i = 0; for (; i < ht->size; i++) { hash_node_t *n = ht->table[i]; hash_node_t *p; /* free in list */ while (n) { if (n->key) mem_d(n->key); if (callback) callback(n->value); p = n; n = n->next; mem_d(p); } } /* free table */ mem_d(ht->table); mem_d(ht); } void util_htrmh(hash_table_t *ht, const char *key, size_t bin, void (*cb)(void*)) { hash_node_t **pair = &ht->table[bin]; hash_node_t *tmp; while (*pair && (*pair)->key && strcmp(key, (*pair)->key) > 0) pair = &(*pair)->next; tmp = *pair; if (!tmp || !tmp->key || strcmp(key, tmp->key) != 0) return; if (cb) (*cb)(tmp->value); *pair = tmp->next; mem_d(tmp->key); mem_d(tmp); } void util_htrm(hash_table_t *ht, const char *key, void (*cb)(void*)) { util_htrmh(ht, key, util_hthash(ht, key), cb); } void util_htdel(hash_table_t *ht) { util_htrem(ht, NULL); } /* * The following functions below implement printing / dumping of statistical * information. */ static void stat_dump_mem_contents(stat_mem_block_t *memory, uint16_t cols) { uint32_t i, j; for (i = 0; i < memory->size + ((memory->size % cols) ? (cols - memory->size % cols) : 0); i++) { if (i % cols == 0) con_out(" 0x%06X: ", i); if (i < memory->size) con_out("%02X " , 0xFF & ((unsigned char*)(memory + 1))[i]); else con_out(" "); if ((uint16_t)(i % cols) == (cols - 1)) { for (j = i - (cols - 1); j <= i; j++) { con_out("%c", (j >= memory->size) ? ' ' : (isprint(((unsigned char*)(memory + 1))[j])) ? 0xFF & ((unsigned char*)(memory + 1)) [j] : '.' ); } con_out("\n"); } } } static void stat_dump_mem_leaks() { stat_mem_block_t *info; for (info = stat_mem_block_root; info; info = info->next) { con_out("lost: %u (bytes) at %s:%u\n", info->size, info->file, info->line ); stat_dump_mem_contents(info, OPTS_OPTION_U16(OPTION_MEMDUMPCOLS)); } } static void stat_dump_mem_info() { con_out("Memory information:\n\ Total allocations: %llu\n\ Total deallocations: %llu\n\ Total allocated: %f (MB)\n\ Total deallocated: %f (MB)\n\ Total peak memory: %f (MB)\n\ Total leaked memory: %f (MB) in %llu allocations\n", stat_mem_allocated_total, stat_mem_deallocated_total, (float)(stat_mem_allocated) / 1048576.0f, (float)(stat_mem_deallocated) / 1048576.0f, (float)(stat_mem_peak) / 1048576.0f, (float)(stat_mem_allocated - stat_mem_deallocated) / 1048576.0f, stat_mem_allocated_total - stat_mem_deallocated_total ); } static void stat_dump_stats_table(stat_size_table_t table, const char *string, uint64_t *size) { size_t i,j; if (!table) return; for (i = 0, j = 0; i < ST_SIZE; i++) { stat_size_entry_t *entry; if (!(entry = table[i])) continue; con_out(string, (unsigned)j, (unsigned)entry->key, (unsigned)entry->value); j++; if (size) *size += entry->key * entry->value; } } void stat_info() { if (OPTS_OPTION_BOOL(OPTION_DEBUG)) stat_dump_mem_leaks(); if (OPTS_OPTION_BOOL(OPTION_DEBUG) || OPTS_OPTION_BOOL(OPTION_MEMCHK)) stat_dump_mem_info(); if (OPTS_OPTION_BOOL(OPTION_MEMCHK) || OPTS_OPTION_BOOL(OPTION_STATISTICS)) { uint64_t mem = 0; con_out("\nAdditional Statistics:\n\ Total vectors allocated: %llu\n\ Total string duplicates: %llu\n\ Total hashtables allocated: %llu\n\ Total unique vector sizes: %llu\n", stat_used_vectors, stat_used_strdups, stat_used_hashtables, stat_type_vectors ); stat_dump_stats_table ( stat_size_vectors, " %2u| # of %4u byte vectors: %u\n", &mem ); con_out ( " Total unique hashtable sizes: %llu\n", stat_type_hashtables ); stat_dump_stats_table ( stat_size_hashtables, " %2u| # of %4u element hashtables: %u\n", NULL ); con_out ( " Total vector memory: %f (MB)\n", (float)(mem) / 1048576.0f ); } if (stat_size_vectors) stat_size_del(stat_size_vectors); if (stat_size_hashtables) stat_size_del(stat_size_hashtables); } #undef ST_SIZE