#ifndef GMQCC_IR_HDR #define GMQCC_IR_HDR #include "gmqcc.h" /* * Type large enough to hold all the possible IR flags. This should be * changed if the static assertion at the end of this file fails. */ typedef uint8_t ir_flag_t; struct ir_value; struct ir_instr; struct ir_block; struct ir_function; struct ir_builder; struct ir_life_entry_t { /* both inclusive */ size_t start; size_t end; }; enum { IR_FLAG_HAS_ARRAYS = 1 << 0, IR_FLAG_HAS_UNINITIALIZED = 1 << 1, IR_FLAG_HAS_GOTO = 1 << 2, IR_FLAG_INCLUDE_DEF = 1 << 3, IR_FLAG_ERASABLE = 1 << 4, IR_FLAG_BLOCK_COVERAGE = 1 << 5, IR_FLAG_NOREF = 1 << 6, IR_FLAG_SPLIT_VECTOR = 1 << 7, IR_FLAG_LAST, IR_FLAG_MASK_NO_OVERLAP = (IR_FLAG_HAS_ARRAYS | IR_FLAG_HAS_UNINITIALIZED), IR_FLAG_MASK_NO_LOCAL_TEMPS = (IR_FLAG_HAS_ARRAYS | IR_FLAG_HAS_UNINITIALIZED) }; struct ir_value { ir_value(std::string&& name, store_type storetype, qc_type vtype); ir_value(ir_function *owner, std::string&& name, store_type storetype, qc_type vtype); ~ir_value(); ir_value *vectorMember(unsigned int member); bool GMQCC_WARN setFloat(float); bool GMQCC_WARN setFunc(int); bool GMQCC_WARN setString(const char*); bool GMQCC_WARN setVector(vec3_t); bool GMQCC_WARN setField(ir_value*); #if 0 bool GMQCC_WARN setInt(int); #endif bool lives(size_t at); void dumpLife(int (*oprintf)(const char*, ...)) const; void setCodeAddress(int32_t gaddr); int32_t codeAddress() const; bool insertLife(size_t idx, ir_life_entry_t); bool setAlive(size_t position); bool mergeLife(const ir_value *other); std::string m_name; qc_type m_vtype; store_type m_store; lex_ctx_t m_context; qc_type m_fieldtype; // even the IR knows the subtype of a field qc_type m_outtype; // and the output type of a function int m_cvq; // 'const' vs 'var' qualifier ir_flag_t m_flags; std::vector m_reads; std::vector m_writes; // constant values bool m_hasvalue; union { qcfloat_t vfloat; int vint; vec3_t vvec; int32_t ivec[3]; char *vstring; ir_value *vpointer; ir_function *vfunc; } m_constval; struct { int32_t globaladdr; int32_t name; int32_t local; // filled by the local-allocator int32_t addroffset; // added for members int32_t fieldaddr; // to generate field-addresses early } m_code; // for accessing vectors ir_value *m_members[3]; ir_value *m_memberof; bool m_unique_life; // arrays will never overlap with temps bool m_locked; // temps living during a CALL must be locked bool m_callparam; std::vector m_life; // For the temp allocator size_t size() const; void dump(int (*oprintf)(const char*, ...)) const; }; /* PHI data */ struct ir_phi_entry_t { ir_value *value; ir_block *from; }; /* instruction */ struct ir_instr { ir_instr(lex_ctx_t, ir_block *owner, int opcode); ~ir_instr(); int m_opcode; lex_ctx_t m_context; ir_value *(_m_ops[3]) = { nullptr, nullptr, nullptr }; ir_block *(m_bops[2]) = { nullptr, nullptr }; std::vector m_phi; std::vector m_params; // For the temp-allocation size_t m_eid = 0; // For IFs bool m_likely = true; ir_block *m_owner; }; /* block */ struct ir_block { ir_block(ir_function *owner, const std::string& name); ~ir_block(); ir_function *m_owner; std::string m_label; lex_ctx_t m_context; bool m_final = false; /* once a jump is added we're done */ std::vector m_instr; std::vector m_entries; std::vector m_exits; std::vector m_living; /* For the temp-allocation */ size_t m_entry_id = 0; size_t m_eid = 0; bool m_is_return = false; bool m_generated = false; size_t m_code_start = 0; }; ir_value* ir_block_create_binop(ir_block*, lex_ctx_t, const char *label, int op, ir_value *left, ir_value *right); ir_value* ir_block_create_unary(ir_block*, lex_ctx_t, const char *label, int op, ir_value *operand); bool GMQCC_WARN ir_block_create_store_op(ir_block*, lex_ctx_t, int op, ir_value *target, ir_value *what); bool GMQCC_WARN ir_block_create_storep(ir_block*, lex_ctx_t, ir_value *target, ir_value *what); ir_value* ir_block_create_load_from_ent(ir_block*, lex_ctx_t, const char *label, ir_value *ent, ir_value *field, qc_type outype); ir_value* ir_block_create_fieldaddress(ir_block*, lex_ctx_t, const char *label, ir_value *entity, ir_value *field); bool GMQCC_WARN ir_block_create_state_op(ir_block*, lex_ctx_t, ir_value *frame, ir_value *think); /* This is to create an instruction of the form * %label := opcode a, b */ ir_instr* ir_block_create_phi(ir_block*, lex_ctx_t, const char *label, qc_type vtype); ir_value* ir_phi_value(ir_instr*); void ir_phi_add(ir_instr*, ir_block *b, ir_value *v); ir_instr* ir_block_create_call(ir_block*, lex_ctx_t, const char *label, ir_value *func, bool noreturn); ir_value* ir_call_value(ir_instr*); void ir_call_param(ir_instr*, ir_value*); bool GMQCC_WARN ir_block_create_return(ir_block*, lex_ctx_t, ir_value *opt_value); bool GMQCC_WARN ir_block_create_if(ir_block*, lex_ctx_t, ir_value *cond, ir_block *ontrue, ir_block *onfalse); /* * A 'goto' is an actual 'goto' coded in QC, whereas * a 'jump' is a virtual construct which simply names the * next block to go to. * A goto usually becomes an OP_GOTO in the resulting code, * whereas a 'jump' usually doesn't add any actual instruction. */ bool GMQCC_WARN ir_block_create_jump(ir_block*, lex_ctx_t, ir_block *to); bool GMQCC_WARN ir_block_create_goto(ir_block*, lex_ctx_t, ir_block *to); /* function */ struct ir_function { ir_function(ir_builder *owner, qc_type returntype); ~ir_function(); ir_builder *m_owner; std::string m_name; qc_type m_outtype; int *m_params = nullptr; ir_flag_t m_flags = 0; int m_builtin = 0; std::vector> m_blocks; /* * values generated from operations * which might get optimized away, so anything * in there needs to be deleted in the dtor. */ std::vector> m_values; std::vector> m_locals; /* locally defined variables */ ir_value *m_value = nullptr; size_t m_allocated_locals = 0; size_t m_globaltemps = 0; ir_block* m_first = nullptr; ir_block* m_last = nullptr; lex_ctx_t m_context; /* * for prototypes - first we generate all the * globals, and we remember teh function-defs * so we can later fill in the entry pos * * remember the ID: */ qcint_t m_code_function_def = -1; /* for temp allocation */ size_t m_run_id = 0; /* vararg support: */ size_t m_max_varargs = 0; }; ir_value* ir_function_create_local(ir_function *self, const std::string& name, qc_type vtype, bool param); bool GMQCC_WARN ir_function_finalize(ir_function*); ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function*, const char *label); /* builder */ #define IR_HT_SIZE 1024 #define IR_MAX_VINSTR_TEMPS 1 struct ir_builder { ir_builder(const std::string& modulename); ~ir_builder(); ir_function *createFunction(const std::string &name, qc_type outtype); ir_value *createGlobal(const std::string &name, qc_type vtype); ir_value *createField(const std::string &name, qc_type vtype); ir_value *get_va_count(); bool generate(const char *filename); void dump(int (*oprintf)(const char*, ...)) const; ir_value *generateExtparamProto(); void generateExtparam(); ir_value *literalFloat(float value, bool add_to_list); std::string m_name; std::vector> m_functions; std::vector> m_globals; std::vector> m_fields; // for reusing them in vector-splits, TODO: sort this or use a radix-tree std::vector m_const_floats; ht m_htfunctions; ht m_htglobals; ht m_htfields; // extparams' ir_values reference the ones from extparam_protos std::vector> m_extparam_protos; std::vector m_extparams; // the highest func->allocated_locals size_t m_max_locals = 0; size_t m_max_globaltemps = 0; uint32_t m_first_common_local = 0; uint32_t m_first_common_globaltemp = 0; std::vector m_filenames; std::vector m_filestrings; // we cache the #IMMEDIATE string here qcint_t m_str_immediate = 0; // there should just be this one nil ir_value *m_nil; ir_value *m_reserved_va_count = nullptr; ir_value *m_coverage_func = nullptr; /* some virtual instructions require temps, and their code is isolated * so that we don't need to keep track of their liveness. */ ir_value *m_vinstr_temp[IR_MAX_VINSTR_TEMPS]; /* code generator */ std::unique_ptr m_code; private: qcint_t filestring(const char *filename); bool generateGlobal(ir_value*, bool is_local); bool generateGlobalFunction(ir_value*); bool generateGlobalFunctionCode(ir_value*); bool generateFunctionLocals(ir_value*); }; /* * This code assumes 32 bit floats while generating binary * Blub: don't use extern here, it's annoying and shows up in nm * for some reason :P */ typedef int static_assert_is_32bit_float [(sizeof(int32_t) == 4) ? 1 : -1]; typedef int static_assert_is_32bit_integer[(sizeof(qcfloat_t) == 4) ? 1 : -1]; /* * If the condition creates a situation where this becomes -1 size it means there are * more IR_FLAGs than the type ir_flag_t is capable of holding. So either eliminate * the IR flag count or change the ir_flag_t typedef to a type large enough to accomodate * all the flags. */ typedef int static_assert_is_ir_flag_safe [((IR_FLAG_LAST) <= (ir_flag_t)(-1)) ? 1 : -1]; #endif