#include #include #include "gmqcc.h" #include "ir.h" /*********************************************************************** * Type sizes used at multiple points in the IR codegen */ const char *type_name[TYPE_COUNT] = { "void", "string", "float", "vector", "entity", "field", "function", "pointer", "integer", "variant", "struct", "union", "array", "nil", "" }; static size_t type_sizeof_[TYPE_COUNT] = { 1, /* TYPE_VOID */ 1, /* TYPE_STRING */ 1, /* TYPE_FLOAT */ 3, /* TYPE_VECTOR */ 1, /* TYPE_ENTITY */ 1, /* TYPE_FIELD */ 1, /* TYPE_FUNCTION */ 1, /* TYPE_POINTER */ 1, /* TYPE_INTEGER */ 3, /* TYPE_VARIANT */ 0, /* TYPE_STRUCT */ 0, /* TYPE_UNION */ 0, /* TYPE_ARRAY */ 0, /* TYPE_NIL */ 0, /* TYPE_NOESPR */ }; const uint16_t type_store_instr[TYPE_COUNT] = { INSTR_STORE_F, /* should use I when having integer support */ INSTR_STORE_S, INSTR_STORE_F, INSTR_STORE_V, INSTR_STORE_ENT, INSTR_STORE_FLD, INSTR_STORE_FNC, INSTR_STORE_ENT, /* should use I */ #if 0 INSTR_STORE_I, /* integer type */ #else INSTR_STORE_F, #endif INSTR_STORE_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; const uint16_t field_store_instr[TYPE_COUNT] = { INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_V, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, INSTR_STORE_FLD, #if 0 INSTR_STORE_FLD, /* integer type */ #else INSTR_STORE_FLD, #endif INSTR_STORE_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; const uint16_t type_storep_instr[TYPE_COUNT] = { INSTR_STOREP_F, /* should use I when having integer support */ INSTR_STOREP_S, INSTR_STOREP_F, INSTR_STOREP_V, INSTR_STOREP_ENT, INSTR_STOREP_FLD, INSTR_STOREP_FNC, INSTR_STOREP_ENT, /* should use I */ #if 0 INSTR_STOREP_ENT, /* integer type */ #else INSTR_STOREP_F, #endif INSTR_STOREP_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; const uint16_t type_eq_instr[TYPE_COUNT] = { INSTR_EQ_F, /* should use I when having integer support */ INSTR_EQ_S, INSTR_EQ_F, INSTR_EQ_V, INSTR_EQ_E, INSTR_EQ_E, /* FLD has no comparison */ INSTR_EQ_FNC, INSTR_EQ_E, /* should use I */ #if 0 INSTR_EQ_I, #else INSTR_EQ_F, #endif INSTR_EQ_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; const uint16_t type_ne_instr[TYPE_COUNT] = { INSTR_NE_F, /* should use I when having integer support */ INSTR_NE_S, INSTR_NE_F, INSTR_NE_V, INSTR_NE_E, INSTR_NE_E, /* FLD has no comparison */ INSTR_NE_FNC, INSTR_NE_E, /* should use I */ #if 0 INSTR_NE_I, #else INSTR_NE_F, #endif INSTR_NE_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; const uint16_t type_not_instr[TYPE_COUNT] = { INSTR_NOT_F, /* should use I when having integer support */ VINSTR_END, /* not to be used, depends on string related -f flags */ INSTR_NOT_F, INSTR_NOT_V, INSTR_NOT_ENT, INSTR_NOT_ENT, INSTR_NOT_FNC, INSTR_NOT_ENT, /* should use I */ #if 0 INSTR_NOT_I, /* integer type */ #else INSTR_NOT_F, #endif INSTR_NOT_V, /* variant, should never be accessed */ VINSTR_END, /* struct */ VINSTR_END, /* union */ VINSTR_END, /* array */ VINSTR_END, /* nil */ VINSTR_END, /* noexpr */ }; /* protos */ static void ir_function_dump(ir_function*, char *ind, int (*oprintf)(const char*,...)); static ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx_t, const char *label, int op, ir_value *a, ir_value *b, qc_type outype); static bool GMQCC_WARN ir_block_create_store(ir_block*, lex_ctx_t, ir_value *target, ir_value *what); static void ir_block_dump(ir_block*, char *ind, int (*oprintf)(const char*,...)); static bool ir_instr_op(ir_instr*, int op, ir_value *value, bool writing); static void ir_instr_dump(ir_instr* in, char *ind, int (*oprintf)(const char*,...)); /* error functions */ static void irerror(lex_ctx_t ctx, const char *msg, ...) { va_list ap; va_start(ap, msg); con_cvprintmsg(ctx, LVL_ERROR, "internal error", msg, ap); va_end(ap); } static bool GMQCC_WARN irwarning(lex_ctx_t ctx, int warntype, const char *fmt, ...) { bool r; va_list ap; va_start(ap, fmt); r = vcompile_warning(ctx, warntype, fmt, ap); va_end(ap); return r; } /*********************************************************************** * Vector utility functions */ static bool GMQCC_WARN vec_ir_value_find(std::vector &vec, const ir_value *what, size_t *idx) { for (auto &it : vec) { if (it != what) continue; if (idx) *idx = &it - &vec[0]; return true; } return false; } static bool GMQCC_WARN vec_ir_block_find(std::vector &vec, ir_block *what, size_t *idx) { for (auto &it : vec) { if (it != what) continue; if (idx) *idx = &it - &vec[0]; return true; } return false; } static bool GMQCC_WARN vec_ir_instr_find(std::vector &vec, ir_instr *what, size_t *idx) { for (auto &it : vec) { if (it != what) continue; if (idx) *idx = &it - &vec[0]; return true; } return false; } /*********************************************************************** * IR Builder */ static void ir_block_delete_quick(ir_block* self); static void ir_instr_delete_quick(ir_instr *self); static void ir_function_delete_quick(ir_function *self); ir_builder::ir_builder(const std::string& modulename) : m_name(modulename), m_code(new code_t) { m_htglobals = util_htnew(IR_HT_SIZE); m_htfields = util_htnew(IR_HT_SIZE); m_htfunctions = util_htnew(IR_HT_SIZE); m_nil = new ir_value("nil", store_value, TYPE_NIL); m_nil->m_cvq = CV_CONST; for (size_t i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) { /* we write to them, but they're not supposed to be used outside the IR, so * let's not allow the generation of ir_instrs which use these. * So it's a constant noexpr. */ m_vinstr_temp[i] = new ir_value("vinstr_temp", store_value, TYPE_NOEXPR); m_vinstr_temp[i]->m_cvq = CV_CONST; } } ir_builder::~ir_builder() { util_htdel(m_htglobals); util_htdel(m_htfields); util_htdel(m_htfunctions); for (auto& f : m_functions) ir_function_delete_quick(f.release()); m_functions.clear(); // delete them now before deleting the rest: delete m_nil; for (size_t i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) { delete m_vinstr_temp[i]; } m_extparams.clear(); m_extparam_protos.clear(); } ir_function* ir_builder::createFunction(const std::string& name, qc_type outtype) { ir_function *fn = (ir_function*)util_htget(m_htfunctions, name.c_str()); if (fn) return nullptr; fn = new ir_function(this, outtype); fn->m_name = name; m_functions.emplace_back(fn); util_htset(m_htfunctions, name.c_str(), fn); fn->m_value = createGlobal(fn->m_name, TYPE_FUNCTION); if (!fn->m_value) { delete fn; return nullptr; } fn->m_value->m_hasvalue = true; fn->m_value->m_outtype = outtype; fn->m_value->m_constval.vfunc = fn; fn->m_value->m_context = fn->m_context; return fn; } ir_value* ir_builder::createGlobal(const std::string& name, qc_type vtype) { ir_value *ve; if (name[0] != '#') { ve = (ir_value*)util_htget(m_htglobals, name.c_str()); if (ve) { return nullptr; } } ve = new ir_value(std::string(name), store_global, vtype); m_globals.emplace_back(ve); util_htset(m_htglobals, name.c_str(), ve); return ve; } ir_value* ir_builder::get_va_count() { if (m_reserved_va_count) return m_reserved_va_count; return (m_reserved_va_count = createGlobal("reserved:va_count", TYPE_FLOAT)); } ir_value* ir_builder::createField(const std::string& name, qc_type vtype) { ir_value *ve = (ir_value*)util_htget(m_htfields, name.c_str()); if (ve) { return nullptr; } ve = new ir_value(std::string(name), store_global, TYPE_FIELD); ve->m_fieldtype = vtype; m_fields.emplace_back(ve); util_htset(m_htfields, name.c_str(), ve); return ve; } /*********************************************************************** *IR Function */ static bool ir_function_naive_phi(ir_function*); static void ir_function_enumerate(ir_function*); static bool ir_function_calculate_liferanges(ir_function*); static bool ir_function_allocate_locals(ir_function*); ir_function::ir_function(ir_builder* owner_, qc_type outtype_) : m_owner(owner_), m_name("<@unnamed>"), m_outtype(outtype_) { m_context.file = "<@no context>"; m_context.line = 0; } ir_function::~ir_function() { } static void ir_function_delete_quick(ir_function *self) { for (auto& b : self->m_blocks) ir_block_delete_quick(b.release()); delete self; } static void ir_function_collect_value(ir_function *self, ir_value *v) { self->m_values.emplace_back(v); } ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function *self, const char *label) { ir_block* bn = new ir_block(self, label ? std::string(label) : std::string()); bn->m_context = ctx; self->m_blocks.emplace_back(bn); if ((self->m_flags & IR_FLAG_BLOCK_COVERAGE) && self->m_owner->m_coverage_func) (void)ir_block_create_call(bn, ctx, nullptr, self->m_owner->m_coverage_func, false); return bn; } static bool instr_is_operation(uint16_t op) { return ( (op >= INSTR_MUL_F && op <= INSTR_GT) || (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) || (op == INSTR_ADDRESS) || (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) || (op >= INSTR_AND && op <= INSTR_BITOR) || (op >= INSTR_CALL0 && op <= INSTR_CALL8) || (op >= VINSTR_BITAND_V && op <= VINSTR_NEG_V) ); } static bool ir_function_pass_peephole(ir_function *self) { for (auto& bp : self->m_blocks) { ir_block *block = bp.get(); for (size_t i = 0; i < vec_size(block->m_instr); ++i) { ir_instr *inst; inst = block->m_instr[i]; if (i >= 1 && (inst->m_opcode >= INSTR_STORE_F && inst->m_opcode <= INSTR_STORE_FNC)) { ir_instr *store; ir_instr *oper; ir_value *value; store = inst; oper = block->m_instr[i-1]; if (!instr_is_operation(oper->m_opcode)) continue; /* Don't change semantics of MUL_VF in engines where these may not alias. */ if (OPTS_FLAG(LEGACY_VECTOR_MATHS)) { if (oper->m_opcode == INSTR_MUL_VF && oper->_m_ops[2]->m_memberof == oper->_m_ops[1]) continue; if (oper->m_opcode == INSTR_MUL_FV && oper->_m_ops[1]->m_memberof == oper->_m_ops[2]) continue; } value = oper->_m_ops[0]; /* only do it for SSA values */ if (value->m_store != store_value) continue; /* don't optimize out the temp if it's used later again */ if (value->m_reads.size() != 1) continue; /* The very next store must use this value */ if (value->m_reads[0] != store) continue; /* And of course the store must _read_ from it, so it's in * OP 1 */ if (store->_m_ops[1] != value) continue; ++opts_optimizationcount[OPTIM_PEEPHOLE]; (void)!ir_instr_op(oper, 0, store->_m_ops[0], true); vec_remove(block->m_instr, i, 1); delete store; } else if (inst->m_opcode == VINSTR_COND) { /* COND on a value resulting from a NOT could * remove the NOT and swap its operands */ while (true) { ir_block *tmp; size_t inotid; ir_instr *inot; ir_value *value; value = inst->_m_ops[0]; if (value->m_store != store_value || value->m_reads.size() != 1 || value->m_reads[0] != inst) break; inot = value->m_writes[0]; if (inot->_m_ops[0] != value || inot->m_opcode < INSTR_NOT_F || inot->m_opcode > INSTR_NOT_FNC || inot->m_opcode == INSTR_NOT_V || /* can't do these */ inot->m_opcode == INSTR_NOT_S) { break; } /* count */ ++opts_optimizationcount[OPTIM_PEEPHOLE]; /* change operand */ (void)!ir_instr_op(inst, 0, inot->_m_ops[1], false); /* remove NOT */ tmp = inot->m_owner; for (inotid = 0; inotid < vec_size(tmp->m_instr); ++inotid) { if (tmp->m_instr[inotid] == inot) break; } if (inotid >= vec_size(tmp->m_instr)) { compile_error(inst->m_context, "sanity-check failed: failed to find instruction to optimize out"); return false; } vec_remove(tmp->m_instr, inotid, 1); delete inot; /* swap ontrue/onfalse */ tmp = inst->m_bops[0]; inst->m_bops[0] = inst->m_bops[1]; inst->m_bops[1] = tmp; } continue; } } } return true; } static bool ir_function_pass_tailrecursion(ir_function *self) { size_t p; for (auto& bp : self->m_blocks) { ir_block *block = bp.get(); ir_value *funcval; ir_instr *ret, *call, *store = nullptr; if (!block->m_final || vec_size(block->m_instr) < 2) continue; ret = block->m_instr[vec_size(block->m_instr)-1]; if (ret->m_opcode != INSTR_DONE && ret->m_opcode != INSTR_RETURN) continue; call = block->m_instr[vec_size(block->m_instr)-2]; if (call->m_opcode >= INSTR_STORE_F && call->m_opcode <= INSTR_STORE_FNC) { /* account for the unoptimized * CALL * STORE %return, %tmp * RETURN %tmp * version */ if (vec_size(block->m_instr) < 3) continue; store = call; call = block->m_instr[vec_size(block->m_instr)-3]; } if (call->m_opcode < INSTR_CALL0 || call->m_opcode > INSTR_CALL8) continue; if (store) { /* optimize out the STORE */ if (ret->_m_ops[0] && ret->_m_ops[0] == store->_m_ops[0] && store->_m_ops[1] == call->_m_ops[0]) { ++opts_optimizationcount[OPTIM_PEEPHOLE]; call->_m_ops[0] = store->_m_ops[0]; vec_remove(block->m_instr, vec_size(block->m_instr) - 2, 1); delete store; } else continue; } if (!call->_m_ops[0]) continue; funcval = call->_m_ops[1]; if (!funcval) continue; if (funcval->m_vtype != TYPE_FUNCTION || funcval->m_constval.vfunc != self) continue; /* now we have a CALL and a RET, check if it's a tailcall */ if (ret->_m_ops[0] && call->_m_ops[0] != ret->_m_ops[0]) continue; ++opts_optimizationcount[OPTIM_TAIL_RECURSION]; vec_shrinkby(block->m_instr, 2); block->m_final = false; /* open it back up */ /* emite parameter-stores */ for (p = 0; p < call->m_params.size(); ++p) { /* assert(call->params_count <= self->locals_count); */ if (!ir_block_create_store(block, call->m_context, self->m_locals[p].get(), call->m_params[p])) { irerror(call->m_context, "failed to create tailcall store instruction for parameter %i", (int)p); return false; } } if (!ir_block_create_jump(block, call->m_context, self->m_blocks[0].get())) { irerror(call->m_context, "failed to create tailcall jump"); return false; } delete call; delete ret; } return true; } bool ir_function_finalize(ir_function *self) { if (self->m_builtin) return true; for (auto& lp : self->m_locals) { ir_value *v = lp.get(); if (v->m_reads.empty() && v->m_writes.size() && !(v->m_flags & IR_FLAG_NOREF)) { // if it's a vector check to ensure all it's members are unused before // claiming it's unused, otherwise skip the vector entierly if (v->m_vtype == TYPE_VECTOR) { size_t mask = (1 << 3) - 1, bits = 0; for (size_t i = 0; i < 3; i++) if (!v->m_members[i] || (v->m_members[i]->m_reads.empty() && v->m_members[i]->m_writes.size())) bits |= (1 << i); // all components are unused so just report the vector if (bits == mask && irwarning(v->m_context, WARN_UNUSED_VARIABLE, "unused variable: `%s`", v->m_name.c_str())) return false; else if (bits != mask) // individual components are unused so mention them for (size_t i = 0; i < 3; i++) if ((bits & (1 << i)) && irwarning(v->m_context, WARN_UNUSED_COMPONENT, "unused vector component: `%s.%c`", v->m_name.c_str(), "xyz"[i])) return false; } // just a standard variable else if (irwarning(v->m_context, WARN_UNUSED_VARIABLE, "unused variable: `%s`", v->m_name.c_str())) return false; } } if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) { if (!ir_function_pass_peephole(self)) { irerror(self->m_context, "generic optimization pass broke something in `%s`", self->m_name.c_str()); return false; } } if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) { if (!ir_function_pass_tailrecursion(self)) { irerror(self->m_context, "tail-recursion optimization pass broke something in `%s`", self->m_name.c_str()); return false; } } if (!ir_function_naive_phi(self)) { irerror(self->m_context, "internal error: ir_function_naive_phi failed"); return false; } for (auto& lp : self->m_locals) { ir_value *v = lp.get(); if (v->m_vtype == TYPE_VECTOR || (v->m_vtype == TYPE_FIELD && v->m_outtype == TYPE_VECTOR)) { v->vectorMember(0); v->vectorMember(1); v->vectorMember(2); } } for (auto& vp : self->m_values) { ir_value *v = vp.get(); if (v->m_vtype == TYPE_VECTOR || (v->m_vtype == TYPE_FIELD && v->m_outtype == TYPE_VECTOR)) { v->vectorMember(0); v->vectorMember(1); v->vectorMember(2); } } ir_function_enumerate(self); if (!ir_function_calculate_liferanges(self)) return false; if (!ir_function_allocate_locals(self)) return false; return true; } ir_value* ir_function_create_local(ir_function *self, const std::string& name, qc_type vtype, bool param) { ir_value *ve; if (param && !self->m_locals.empty() && self->m_locals.back()->m_store != store_param) { irerror(self->m_context, "cannot add parameters after adding locals"); return nullptr; } ve = new ir_value(std::string(name), (param ? store_param : store_local), vtype); if (param) ve->m_locked = true; self->m_locals.emplace_back(ve); return ve; } /*********************************************************************** *IR Block */ ir_block::ir_block(ir_function* owner, const std::string& name) : m_owner(owner), m_label(name) { m_context.file = "<@no context>"; m_context.line = 0; } ir_block::~ir_block() { for (size_t i = 0; i != vec_size(m_instr); ++i) delete m_instr[i]; vec_free(m_instr); vec_free(m_exits); } static void ir_block_delete_quick(ir_block* self) { size_t i; for (i = 0; i != vec_size(self->m_instr); ++i) ir_instr_delete_quick(self->m_instr[i]); vec_free(self->m_instr); delete self; } /*********************************************************************** *IR Instructions */ ir_instr::ir_instr(lex_ctx_t ctx, ir_block* owner_, int op) : m_opcode(op), m_context(ctx), m_owner(owner_) { } ir_instr::~ir_instr() { // The following calls can only delete from // vectors, we still want to delete this instruction // so ignore the return value. Since with the warn_unused_result attribute // gcc doesn't care about an explicit: (void)foo(); to ignore the result, // I have to improvise here and use if(foo()); for (auto &it : m_phi) { size_t idx; if (vec_ir_instr_find(it.value->m_writes, this, &idx)) it.value->m_writes.erase(it.value->m_writes.begin() + idx); if (vec_ir_instr_find(it.value->m_reads, this, &idx)) it.value->m_reads.erase(it.value->m_reads.begin() + idx); } for (auto &it : m_params) { size_t idx; if (vec_ir_instr_find(it->m_writes, this, &idx)) it->m_writes.erase(it->m_writes.begin() + idx); if (vec_ir_instr_find(it->m_reads, this, &idx)) it->m_reads.erase(it->m_reads.begin() + idx); } (void)!ir_instr_op(this, 0, nullptr, false); (void)!ir_instr_op(this, 1, nullptr, false); (void)!ir_instr_op(this, 2, nullptr, false); } static void ir_instr_delete_quick(ir_instr *self) { self->m_phi.clear(); self->m_params.clear(); self->_m_ops[0] = nullptr; self->_m_ops[1] = nullptr; self->_m_ops[2] = nullptr; delete self; } static bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing) { if (v && v->m_vtype == TYPE_NOEXPR) { irerror(self->m_context, "tried to use a NOEXPR value"); return false; } if (self->_m_ops[op]) { size_t idx; if (writing && vec_ir_instr_find(self->_m_ops[op]->m_writes, self, &idx)) self->_m_ops[op]->m_writes.erase(self->_m_ops[op]->m_writes.begin() + idx); else if (vec_ir_instr_find(self->_m_ops[op]->m_reads, self, &idx)) self->_m_ops[op]->m_reads.erase(self->_m_ops[op]->m_reads.begin() + idx); } if (v) { if (writing) v->m_writes.push_back(self); else v->m_reads.push_back(self); } self->_m_ops[op] = v; return true; } /*********************************************************************** *IR Value */ void ir_value::setCodeAddress(int32_t gaddr) { m_code.globaladdr = gaddr; if (m_members[0]) m_members[0]->m_code.globaladdr = gaddr; if (m_members[1]) m_members[1]->m_code.globaladdr = gaddr; if (m_members[2]) m_members[2]->m_code.globaladdr = gaddr; } int32_t ir_value::codeAddress() const { if (m_store == store_return) return OFS_RETURN + m_code.addroffset; return m_code.globaladdr + m_code.addroffset; } ir_value::ir_value(std::string&& name_, store_type store_, qc_type vtype_) : m_name(move(name_)) , m_vtype(vtype_) , m_store(store_) { m_fieldtype = TYPE_VOID; m_outtype = TYPE_VOID; m_flags = 0; m_cvq = CV_NONE; m_hasvalue = false; m_context.file = "<@no context>"; m_context.line = 0; memset(&m_constval, 0, sizeof(m_constval)); memset(&m_code, 0, sizeof(m_code)); m_members[0] = nullptr; m_members[1] = nullptr; m_members[2] = nullptr; m_memberof = nullptr; m_unique_life = false; m_locked = false; m_callparam = false; } ir_value::ir_value(ir_function *owner, std::string&& name, store_type storetype, qc_type vtype) : ir_value(move(name), storetype, vtype) { ir_function_collect_value(owner, this); } ir_value::~ir_value() { size_t i; if (m_hasvalue) { if (m_vtype == TYPE_STRING) mem_d((void*)m_constval.vstring); } if (!(m_flags & IR_FLAG_SPLIT_VECTOR)) { for (i = 0; i < 3; ++i) { if (m_members[i]) delete m_members[i]; } } } /* helper function */ ir_value* ir_builder::literalFloat(float value, bool add_to_list) { ir_value *v = new ir_value("#IMMEDIATE", store_global, TYPE_FLOAT); v->m_flags |= IR_FLAG_ERASABLE; v->m_hasvalue = true; v->m_cvq = CV_CONST; v->m_constval.vfloat = value; m_globals.emplace_back(v); if (add_to_list) m_const_floats.emplace_back(v); return v; } ir_value* ir_value::vectorMember(unsigned int member) { std::string name; ir_value *m; if (member >= 3) return nullptr; if (m_members[member]) return m_members[member]; if (!m_name.empty()) { char member_name[3] = { '_', char('x' + member), 0 }; name = m_name + member_name; } if (m_vtype == TYPE_VECTOR) { m = new ir_value(move(name), m_store, TYPE_FLOAT); if (!m) return nullptr; m->m_context = m_context; m_members[member] = m; m->m_code.addroffset = member; } else if (m_vtype == TYPE_FIELD) { if (m_fieldtype != TYPE_VECTOR) return nullptr; m = new ir_value(move(name), m_store, TYPE_FIELD); if (!m) return nullptr; m->m_fieldtype = TYPE_FLOAT; m->m_context = m_context; m_members[member] = m; m->m_code.addroffset = member; } else { irerror(m_context, "invalid member access on %s", m_name.c_str()); return nullptr; } m->m_memberof = this; return m; } size_t ir_value::size() const { if (m_vtype == TYPE_FIELD && m_fieldtype == TYPE_VECTOR) return type_sizeof_[TYPE_VECTOR]; return type_sizeof_[m_vtype]; } bool ir_value::setFloat(float f) { if (m_vtype != TYPE_FLOAT) return false; m_constval.vfloat = f; m_hasvalue = true; return true; } bool ir_value::setFunc(int f) { if (m_vtype != TYPE_FUNCTION) return false; m_constval.vint = f; m_hasvalue = true; return true; } bool ir_value::setVector(vec3_t v) { if (m_vtype != TYPE_VECTOR) return false; m_constval.vvec = v; m_hasvalue = true; return true; } bool ir_value::setField(ir_value *fld) { if (m_vtype != TYPE_FIELD) return false; m_constval.vpointer = fld; m_hasvalue = true; return true; } bool ir_value::setString(const char *str) { if (m_vtype != TYPE_STRING) return false; m_constval.vstring = util_strdupe(str); m_hasvalue = true; return true; } #if 0 bool ir_value::setInt(int i) { if (m_vtype != TYPE_INTEGER) return false; m_constval.vint = i; m_hasvalue = true; return true; } #endif bool ir_value::lives(size_t at) { for (auto& l : m_life) { if (l.start <= at && at <= l.end) return true; if (l.start > at) /* since it's ordered */ return false; } return false; } bool ir_value::insertLife(size_t idx, ir_life_entry_t e) { m_life.insert(m_life.begin() + idx, e); return true; } bool ir_value::setAlive(size_t s) { size_t i; const size_t vs = m_life.size(); ir_life_entry_t *life_found = nullptr; ir_life_entry_t *before = nullptr; ir_life_entry_t new_entry; /* Find the first range >= s */ for (i = 0; i < vs; ++i) { before = life_found; life_found = &m_life[i]; if (life_found->start > s) break; } /* nothing found? append */ if (i == vs) { ir_life_entry_t e; if (life_found && life_found->end+1 == s) { /* previous life range can be merged in */ life_found->end++; return true; } if (life_found && life_found->end >= s) return false; e.start = e.end = s; m_life.emplace_back(e); return true; } /* found */ if (before) { if (before->end + 1 == s && life_found->start - 1 == s) { /* merge */ before->end = life_found->end; m_life.erase(m_life.begin()+i); return true; } if (before->end + 1 == s) { /* extend before */ before->end++; return true; } /* already contained */ if (before->end >= s) return false; } /* extend */ if (life_found->start - 1 == s) { life_found->start--; return true; } /* insert a new entry */ new_entry.start = new_entry.end = s; return insertLife(i, new_entry); } bool ir_value::mergeLife(const ir_value *other) { size_t i, myi; if (other->m_life.empty()) return true; if (m_life.empty()) { m_life = other->m_life; return true; } myi = 0; for (i = 0; i < other->m_life.size(); ++i) { const ir_life_entry_t &otherlife = other->m_life[i]; while (true) { ir_life_entry_t *entry = &m_life[myi]; if (otherlife.end+1 < entry->start) { /* adding an interval before entry */ if (!insertLife(myi, otherlife)) return false; ++myi; break; } if (otherlife.start < entry->start && otherlife.end+1 >= entry->start) { /* starts earlier and overlaps */ entry->start = otherlife.start; } if (otherlife.end > entry->end && otherlife.start <= entry->end+1) { /* ends later and overlaps */ entry->end = otherlife.end; } /* see if our change combines it with the next ranges */ while (myi+1 < m_life.size() && entry->end+1 >= m_life[1+myi].start) { /* overlaps with (myi+1) */ if (entry->end < m_life[1+myi].end) entry->end = m_life[1+myi].end; m_life.erase(m_life.begin() + (myi + 1)); entry = &m_life[myi]; } /* see if we're after the entry */ if (otherlife.start > entry->end) { ++myi; /* append if we're at the end */ if (myi >= m_life.size()) { m_life.emplace_back(otherlife); break; } /* otherweise check the next range */ continue; } break; } } return true; } static bool ir_values_overlap(const ir_value *a, const ir_value *b) { /* For any life entry in A see if it overlaps with * any life entry in B. * Note that the life entries are orderes, so we can make a * more efficient algorithm there than naively translating the * statement above. */ const ir_life_entry_t *la, *lb, *enda, *endb; /* first of all, if either has no life range, they cannot clash */ if (a->m_life.empty() || b->m_life.empty()) return false; la = &a->m_life.front(); lb = &b->m_life.front(); enda = &a->m_life.back() + 1; endb = &b->m_life.back() + 1; while (true) { /* check if the entries overlap, for that, * both must start before the other one ends. */ if (la->start < lb->end && lb->start < la->end) { return true; } /* entries are ordered * one entry is earlier than the other * that earlier entry will be moved forward */ if (la->start < lb->start) { /* order: A B, move A forward * check if we hit the end with A */ if (++la == enda) break; } else /* if (lb->start < la->start) actually <= */ { /* order: B A, move B forward * check if we hit the end with B */ if (++lb == endb) break; } } return false; } /*********************************************************************** *IR main operations */ static bool ir_check_unreachable(ir_block *self) { /* The IR should never have to deal with unreachable code */ if (!self->m_final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/) return true; irerror(self->m_context, "unreachable statement (%s)", self->m_label.c_str()); return false; } bool ir_block_create_store_op(ir_block *self, lex_ctx_t ctx, int op, ir_value *target, ir_value *what) { ir_instr *in; if (!ir_check_unreachable(self)) return false; if (target->m_store == store_value && (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) { irerror(self->m_context, "cannot store to an SSA value"); irerror(self->m_context, "trying to store: %s <- %s", target->m_name.c_str(), what->m_name.c_str()); irerror(self->m_context, "instruction: %s", util_instr_str[op]); return false; } in = new ir_instr(ctx, self, op); if (!in) return false; if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) || !ir_instr_op(in, 1, what, false)) { delete in; return false; } vec_push(self->m_instr, in); return true; } bool ir_block_create_state_op(ir_block *self, lex_ctx_t ctx, ir_value *frame, ir_value *think) { ir_instr *in; if (!ir_check_unreachable(self)) return false; in = new ir_instr(ctx, self, INSTR_STATE); if (!in) return false; if (!ir_instr_op(in, 0, frame, false) || !ir_instr_op(in, 1, think, false)) { delete in; return false; } vec_push(self->m_instr, in); return true; } static bool ir_block_create_store(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what) { int op = 0; qc_type vtype; if (target->m_vtype == TYPE_VARIANT) vtype = what->m_vtype; else vtype = target->m_vtype; #if 0 if (vtype == TYPE_FLOAT && what->m_vtype == TYPE_INTEGER) op = INSTR_CONV_ITOF; else if (vtype == TYPE_INTEGER && what->m_vtype == TYPE_FLOAT) op = INSTR_CONV_FTOI; #endif op = type_store_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STORE_FLD && what->m_fieldtype == TYPE_VECTOR) op = INSTR_STORE_V; } return ir_block_create_store_op(self, ctx, op, target, what); } bool ir_block_create_storep(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what) { int op = 0; qc_type vtype; if (target->m_vtype != TYPE_POINTER) return false; /* storing using pointer - target is a pointer, type must be * inferred from source */ vtype = what->m_vtype; op = type_storep_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STOREP_FLD && what->m_fieldtype == TYPE_VECTOR) op = INSTR_STOREP_V; } return ir_block_create_store_op(self, ctx, op, target, what); } bool ir_block_create_return(ir_block *self, lex_ctx_t ctx, ir_value *v) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->m_final = true; self->m_is_return = true; in = new ir_instr(ctx, self, INSTR_RETURN); if (!in) return false; if (v && !ir_instr_op(in, 0, v, false)) { delete in; return false; } vec_push(self->m_instr, in); return true; } bool ir_block_create_if(ir_block *self, lex_ctx_t ctx, ir_value *v, ir_block *ontrue, ir_block *onfalse) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->m_final = true; /*in = new ir_instr(ctx, self, (v->m_vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/ in = new ir_instr(ctx, self, VINSTR_COND); if (!in) return false; if (!ir_instr_op(in, 0, v, false)) { delete in; return false; } in->m_bops[0] = ontrue; in->m_bops[1] = onfalse; vec_push(self->m_instr, in); vec_push(self->m_exits, ontrue); vec_push(self->m_exits, onfalse); ontrue->m_entries.push_back(self); onfalse->m_entries.push_back(self); return true; } bool ir_block_create_jump(ir_block *self, lex_ctx_t ctx, ir_block *to) { ir_instr *in; if (!ir_check_unreachable(self)) return false; self->m_final = true; in = new ir_instr(ctx, self, VINSTR_JUMP); if (!in) return false; in->m_bops[0] = to; vec_push(self->m_instr, in); vec_push(self->m_exits, to); to->m_entries.push_back(self); return true; } bool ir_block_create_goto(ir_block *self, lex_ctx_t ctx, ir_block *to) { self->m_owner->m_flags |= IR_FLAG_HAS_GOTO; return ir_block_create_jump(self, ctx, to); } ir_instr* ir_block_create_phi(ir_block *self, lex_ctx_t ctx, const char *label, qc_type ot) { ir_value *out; ir_instr *in; if (!ir_check_unreachable(self)) return nullptr; in = new ir_instr(ctx, self, VINSTR_PHI); if (!in) return nullptr; out = new ir_value(self->m_owner, label ? label : "", store_value, ot); if (!out) { delete in; return nullptr; } if (!ir_instr_op(in, 0, out, true)) { delete in; return nullptr; } vec_push(self->m_instr, in); return in; } ir_value* ir_phi_value(ir_instr *self) { return self->_m_ops[0]; } void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v) { ir_phi_entry_t pe; if (!vec_ir_block_find(self->m_owner->m_entries, b, nullptr)) { // Must not be possible to cause this, otherwise the AST // is doing something wrong. irerror(self->m_context, "Invalid entry block for PHI"); exit(EXIT_FAILURE); } pe.value = v; pe.from = b; v->m_reads.push_back(self); self->m_phi.push_back(pe); } /* call related code */ ir_instr* ir_block_create_call(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *func, bool noreturn) { ir_value *out; ir_instr *in; if (!ir_check_unreachable(self)) return nullptr; in = new ir_instr(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0)); if (!in) return nullptr; if (noreturn) { self->m_final = true; self->m_is_return = true; } out = new ir_value(self->m_owner, label ? label : "", (func->m_outtype == TYPE_VOID) ? store_return : store_value, func->m_outtype); if (!out) { delete in; return nullptr; } if (!ir_instr_op(in, 0, out, true) || !ir_instr_op(in, 1, func, false)) { delete in; return nullptr; } vec_push(self->m_instr, in); /* if (noreturn) { if (!ir_block_create_return(self, ctx, nullptr)) { compile_error(ctx, "internal error: failed to generate dummy-return instruction"); delete in; return nullptr; } } */ return in; } ir_value* ir_call_value(ir_instr *self) { return self->_m_ops[0]; } void ir_call_param(ir_instr* self, ir_value *v) { self->m_params.push_back(v); v->m_reads.push_back(self); } /* binary op related code */ ir_value* ir_block_create_binop(ir_block *self, lex_ctx_t ctx, const char *label, int opcode, ir_value *left, ir_value *right) { qc_type ot = TYPE_VOID; switch (opcode) { case INSTR_ADD_F: case INSTR_SUB_F: case INSTR_DIV_F: case INSTR_MUL_F: case INSTR_MUL_V: case INSTR_AND: case INSTR_OR: #if 0 case INSTR_AND_I: case INSTR_AND_IF: case INSTR_AND_FI: case INSTR_OR_I: case INSTR_OR_IF: case INSTR_OR_FI: #endif case INSTR_BITAND: case INSTR_BITOR: case VINSTR_BITXOR: #if 0 case INSTR_SUB_S: /* -- offset of string as float */ case INSTR_MUL_IF: case INSTR_MUL_FI: case INSTR_DIV_IF: case INSTR_DIV_FI: case INSTR_BITOR_IF: case INSTR_BITOR_FI: case INSTR_BITAND_FI: case INSTR_BITAND_IF: case INSTR_EQ_I: case INSTR_NE_I: #endif ot = TYPE_FLOAT; break; #if 0 case INSTR_ADD_I: case INSTR_ADD_IF: case INSTR_ADD_FI: case INSTR_SUB_I: case INSTR_SUB_FI: case INSTR_SUB_IF: case INSTR_MUL_I: case INSTR_DIV_I: case INSTR_BITAND_I: case INSTR_BITOR_I: case INSTR_XOR_I: case INSTR_RSHIFT_I: case INSTR_LSHIFT_I: ot = TYPE_INTEGER; break; #endif case INSTR_ADD_V: case INSTR_SUB_V: case INSTR_MUL_VF: case INSTR_MUL_FV: case VINSTR_BITAND_V: case VINSTR_BITOR_V: case VINSTR_BITXOR_V: case VINSTR_BITAND_VF: case VINSTR_BITOR_VF: case VINSTR_BITXOR_VF: case VINSTR_CROSS: #if 0 case INSTR_DIV_VF: case INSTR_MUL_IV: case INSTR_MUL_VI: #endif ot = TYPE_VECTOR; break; #if 0 case INSTR_ADD_SF: ot = TYPE_POINTER; break; #endif /* * after the following default case, the value of opcode can never * be 1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65 */ default: /* ranges: */ /* boolean operations result in floats */ /* * opcode >= 10 takes true branch opcode is at least 10 * opcode <= 23 takes false branch opcode is at least 24 */ if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT) ot = TYPE_FLOAT; /* * At condition "opcode <= 23", the value of "opcode" must be * at least 24. * At condition "opcode <= 23", the value of "opcode" cannot be * equal to any of {1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65}. * The condition "opcode <= 23" cannot be true. * * Thus ot=2 (TYPE_FLOAT) can never be true */ #if 0 else if (opcode >= INSTR_LE && opcode <= INSTR_GT) ot = TYPE_FLOAT; else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI) ot = TYPE_FLOAT; #endif break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return nullptr; } return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot); } ir_value* ir_block_create_unary(ir_block *self, lex_ctx_t ctx, const char *label, int opcode, ir_value *operand) { qc_type ot = TYPE_FLOAT; switch (opcode) { case INSTR_NOT_F: case INSTR_NOT_V: case INSTR_NOT_S: case INSTR_NOT_ENT: case INSTR_NOT_FNC: /* case INSTR_NOT_I: */ ot = TYPE_FLOAT; break; /* * Negation for virtual instructions is emulated with 0-value. Thankfully * the operand for 0 already exists so we just source it from here. */ case VINSTR_NEG_F: return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_F, nullptr, operand, ot); case VINSTR_NEG_V: return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_V, nullptr, operand, TYPE_VECTOR); default: ot = operand->m_vtype; break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return nullptr; } /* let's use the general instruction creator and pass nullptr for OPB */ return ir_block_create_general_instr(self, ctx, label, opcode, operand, nullptr, ot); } static ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx_t ctx, const char *label, int op, ir_value *a, ir_value *b, qc_type outype) { ir_instr *instr; ir_value *out; out = new ir_value(self->m_owner, label ? label : "", store_value, outype); if (!out) return nullptr; instr = new ir_instr(ctx, self, op); if (!instr) { return nullptr; } if (!ir_instr_op(instr, 0, out, true) || !ir_instr_op(instr, 1, a, false) || !ir_instr_op(instr, 2, b, false) ) { goto on_error; } vec_push(self->m_instr, instr); return out; on_error: delete instr; return nullptr; } ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field) { ir_value *v; /* Support for various pointer types todo if so desired */ if (ent->m_vtype != TYPE_ENTITY) return nullptr; if (field->m_vtype != TYPE_FIELD) return nullptr; v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER); v->m_fieldtype = field->m_fieldtype; return v; } ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field, qc_type outype) { int op; if (ent->m_vtype != TYPE_ENTITY) return nullptr; /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */ if (field->m_vtype != TYPE_FIELD) return nullptr; switch (outype) { case TYPE_FLOAT: op = INSTR_LOAD_F; break; case TYPE_VECTOR: op = INSTR_LOAD_V; break; case TYPE_STRING: op = INSTR_LOAD_S; break; case TYPE_FIELD: op = INSTR_LOAD_FLD; break; case TYPE_ENTITY: op = INSTR_LOAD_ENT; break; case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break; #if 0 case TYPE_POINTER: op = INSTR_LOAD_I; break; case TYPE_INTEGER: op = INSTR_LOAD_I; break; #endif default: irerror(self->m_context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]); return nullptr; } return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype); } /* PHI resolving breaks the SSA, and must thus be the last * step before life-range calculation. */ static bool ir_block_naive_phi(ir_block *self); bool ir_function_naive_phi(ir_function *self) { for (auto& b : self->m_blocks) if (!ir_block_naive_phi(b.get())) return false; return true; } static bool ir_block_naive_phi(ir_block *self) { size_t i; /* FIXME: optionally, create_phi can add the phis * to a list so we don't need to loop through blocks * - anyway: "don't optimize YET" */ for (i = 0; i < vec_size(self->m_instr); ++i) { ir_instr *instr = self->m_instr[i]; if (instr->m_opcode != VINSTR_PHI) continue; vec_remove(self->m_instr, i, 1); --i; /* NOTE: i+1 below */ for (auto &it : instr->m_phi) { ir_value *v = it.value; ir_block *b = it.from; if (v->m_store == store_value && v->m_reads.size() == 1 && v->m_writes.size() == 1) { /* replace the value */ if (!ir_instr_op(v->m_writes[0], 0, instr->_m_ops[0], true)) return false; } else { /* force a move instruction */ ir_instr *prevjump = vec_last(b->m_instr); vec_pop(b->m_instr); b->m_final = false; instr->_m_ops[0]->m_store = store_global; if (!ir_block_create_store(b, instr->m_context, instr->_m_ops[0], v)) return false; instr->_m_ops[0]->m_store = store_value; vec_push(b->m_instr, prevjump); b->m_final = true; } } delete instr; } return true; } /*********************************************************************** *IR Temp allocation code * Propagating value life ranges by walking through the function backwards * until no more changes are made. * In theory this should happen once more than once for every nested loop * level. * Though this implementation might run an additional time for if nests. */ /* Enumerate instructions used by value's life-ranges */ static void ir_block_enumerate(ir_block *self, size_t *_eid) { size_t i; size_t eid = *_eid; for (i = 0; i < vec_size(self->m_instr); ++i) { self->m_instr[i]->m_eid = eid++; } *_eid = eid; } /* Enumerate blocks and instructions. * The block-enumeration is unordered! * We do not really use the block enumreation, however * the instruction enumeration is important for life-ranges. */ void ir_function_enumerate(ir_function *self) { size_t instruction_id = 0; size_t block_eid = 0; for (auto& block : self->m_blocks) { /* each block now gets an additional "entry" instruction id * we can use to avoid point-life issues */ block->m_entry_id = instruction_id; block->m_eid = block_eid; ++instruction_id; ++block_eid; ir_block_enumerate(block.get(), &instruction_id); } } /* Local-value allocator * After finishing creating the liferange of all values used in a function * we can allocate their global-positions. * This is the counterpart to register-allocation in register machines. */ struct function_allocator { ir_value **locals; size_t *sizes; size_t *positions; bool *unique; }; static bool function_allocator_alloc(function_allocator *alloc, ir_value *var) { ir_value *slot; size_t vsize = var->size(); var->m_code.local = vec_size(alloc->locals); slot = new ir_value("reg", store_global, var->m_vtype); if (!slot) return false; if (!slot->mergeLife(var)) goto localerror; vec_push(alloc->locals, slot); vec_push(alloc->sizes, vsize); vec_push(alloc->unique, var->m_unique_life); return true; localerror: delete slot; return false; } static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v) { size_t a; ir_value *slot; if (v->m_unique_life) return function_allocator_alloc(alloc, v); for (a = 0; a < vec_size(alloc->locals); ++a) { /* if it's reserved for a unique liferange: skip */ if (alloc->unique[a]) continue; slot = alloc->locals[a]; /* never resize parameters * will be required later when overlapping temps + locals */ if (a < vec_size(self->m_params) && alloc->sizes[a] < v->size()) { continue; } if (ir_values_overlap(v, slot)) continue; if (!slot->mergeLife(v)) return false; /* adjust size for this slot */ if (alloc->sizes[a] < v->size()) alloc->sizes[a] = v->size(); v->m_code.local = a; return true; } if (a >= vec_size(alloc->locals)) { if (!function_allocator_alloc(alloc, v)) return false; } return true; } bool ir_function_allocate_locals(ir_function *self) { bool retval = true; size_t pos; bool opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS); function_allocator lockalloc, globalloc; if (self->m_locals.empty() && self->m_values.empty()) return true; globalloc.locals = nullptr; globalloc.sizes = nullptr; globalloc.positions = nullptr; globalloc.unique = nullptr; lockalloc.locals = nullptr; lockalloc.sizes = nullptr; lockalloc.positions = nullptr; lockalloc.unique = nullptr; size_t i; for (i = 0; i < self->m_locals.size(); ++i) { ir_value *v = self->m_locals[i].get(); if ((self->m_flags & IR_FLAG_MASK_NO_LOCAL_TEMPS) || !OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) { v->m_locked = true; v->m_unique_life = true; } else if (i >= vec_size(self->m_params)) break; else v->m_locked = true; /* lock parameters locals */ if (!function_allocator_alloc((v->m_locked || !opt_gt ? &lockalloc : &globalloc), v)) goto error; } for (; i < self->m_locals.size(); ++i) { ir_value *v = self->m_locals[i].get(); if (v->m_life.empty()) continue; if (!ir_function_allocator_assign(self, (v->m_locked || !opt_gt ? &lockalloc : &globalloc), v)) goto error; } /* Allocate a slot for any value that still exists */ for (i = 0; i < self->m_values.size(); ++i) { ir_value *v = self->m_values[i].get(); if (v->m_life.empty()) continue; /* CALL optimization: * If the value is a parameter-temp: 1 write, 1 read from a CALL * and it's not "locked", write it to the OFS_PARM directly. */ if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->m_locked && !v->m_unique_life) { if (v->m_reads.size() == 1 && v->m_writes.size() == 1 && (v->m_reads[0]->m_opcode == VINSTR_NRCALL || (v->m_reads[0]->m_opcode >= INSTR_CALL0 && v->m_reads[0]->m_opcode <= INSTR_CALL8) ) ) { size_t param; ir_instr *call = v->m_reads[0]; if (!vec_ir_value_find(call->m_params, v, ¶m)) { irerror(call->m_context, "internal error: unlocked parameter %s not found", v->m_name.c_str()); goto error; } ++opts_optimizationcount[OPTIM_CALL_STORES]; v->m_callparam = true; if (param < 8) v->setCodeAddress(OFS_PARM0 + 3*param); else { size_t nprotos = self->m_owner->m_extparam_protos.size(); ir_value *ep; param -= 8; if (nprotos > param) ep = self->m_owner->m_extparam_protos[param].get(); else { ep = self->m_owner->generateExtparamProto(); while (++nprotos <= param) ep = self->m_owner->generateExtparamProto(); } ir_instr_op(v->m_writes[0], 0, ep, true); call->m_params[param+8] = ep; } continue; } if (v->m_writes.size() == 1 && v->m_writes[0]->m_opcode == INSTR_CALL0) { v->m_store = store_return; if (v->m_members[0]) v->m_members[0]->m_store = store_return; if (v->m_members[1]) v->m_members[1]->m_store = store_return; if (v->m_members[2]) v->m_members[2]->m_store = store_return; ++opts_optimizationcount[OPTIM_CALL_STORES]; continue; } } if (!ir_function_allocator_assign(self, (v->m_locked || !opt_gt ? &lockalloc : &globalloc), v)) goto error; } if (!lockalloc.sizes && !globalloc.sizes) { goto cleanup; } vec_push(lockalloc.positions, 0); vec_push(globalloc.positions, 0); /* Adjust slot positions based on sizes */ if (lockalloc.sizes) { pos = (vec_size(lockalloc.sizes) ? lockalloc.positions[0] : 0); for (i = 1; i < vec_size(lockalloc.sizes); ++i) { pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1]; vec_push(lockalloc.positions, pos); } self->m_allocated_locals = pos + vec_last(lockalloc.sizes); } if (globalloc.sizes) { pos = (vec_size(globalloc.sizes) ? globalloc.positions[0] : 0); for (i = 1; i < vec_size(globalloc.sizes); ++i) { pos = globalloc.positions[i-1] + globalloc.sizes[i-1]; vec_push(globalloc.positions, pos); } self->m_globaltemps = pos + vec_last(globalloc.sizes); } /* Locals need to know their new position */ for (auto& local : self->m_locals) { if (local->m_locked || !opt_gt) local->m_code.local = lockalloc.positions[local->m_code.local]; else local->m_code.local = globalloc.positions[local->m_code.local]; } /* Take over the actual slot positions on values */ for (auto& value : self->m_values) { if (value->m_locked || !opt_gt) value->m_code.local = lockalloc.positions[value->m_code.local]; else value->m_code.local = globalloc.positions[value->m_code.local]; } goto cleanup; error: retval = false; cleanup: for (i = 0; i < vec_size(lockalloc.locals); ++i) delete lockalloc.locals[i]; for (i = 0; i < vec_size(globalloc.locals); ++i) delete globalloc.locals[i]; vec_free(globalloc.unique); vec_free(globalloc.locals); vec_free(globalloc.sizes); vec_free(globalloc.positions); vec_free(lockalloc.unique); vec_free(lockalloc.locals); vec_free(lockalloc.sizes); vec_free(lockalloc.positions); return retval; } /* Get information about which operand * is read from, or written to. */ static void ir_op_read_write(int op, size_t *read, size_t *write) { switch (op) { case VINSTR_JUMP: case INSTR_GOTO: *write = 0; *read = 0; break; case INSTR_IF: case INSTR_IFNOT: #if 0 case INSTR_IF_S: case INSTR_IFNOT_S: #endif case INSTR_RETURN: case VINSTR_COND: *write = 0; *read = 1; break; case INSTR_STOREP_F: case INSTR_STOREP_V: case INSTR_STOREP_S: case INSTR_STOREP_ENT: case INSTR_STOREP_FLD: case INSTR_STOREP_FNC: *write = 0; *read = 7; break; default: *write = 1; *read = 6; break; }; } static bool ir_block_living_add_instr(ir_block *self, size_t eid) { bool changed = false; for (auto &it : self->m_living) if (it->setAlive(eid)) changed = true; return changed; } static bool ir_block_living_lock(ir_block *self) { bool changed = false; for (auto &it : self->m_living) { if (it->m_locked) continue; it->m_locked = true; changed = true; } return changed; } static bool ir_block_life_propagate(ir_block *self, bool *changed) { ir_instr *instr; ir_value *value; size_t i, o, p, mem; // bitmasks which operands are read from or written to size_t read, write; self->m_living.clear(); p = vec_size(self->m_exits); for (i = 0; i < p; ++i) { ir_block *prev = self->m_exits[i]; for (auto &it : prev->m_living) if (!vec_ir_value_find(self->m_living, it, nullptr)) self->m_living.push_back(it); } i = vec_size(self->m_instr); while (i) { --i; instr = self->m_instr[i]; /* See which operands are read and write operands */ ir_op_read_write(instr->m_opcode, &read, &write); /* Go through the 3 main operands * writes first, then reads */ for (o = 0; o < 3; ++o) { if (!instr->_m_ops[o]) /* no such operand */ continue; value = instr->_m_ops[o]; /* We only care about locals */ /* we also calculate parameter liferanges so that locals * can take up parameter slots */ if (value->m_store != store_value && value->m_store != store_local && value->m_store != store_param) continue; /* write operands */ /* When we write to a local, we consider it "dead" for the * remaining upper part of the function, since in SSA a value * can only be written once (== created) */ if (write & (1<m_living, value, &idx); if (!in_living) { /* If the value isn't alive it hasn't been read before... */ /* TODO: See if the warning can be emitted during parsing or AST processing * otherwise have warning printed here. * IF printing a warning here: include filecontext_t, * and make sure it's only printed once * since this function is run multiple times. */ /* con_err( "Value only written %s\n", value->m_name); */ if (value->setAlive(instr->m_eid)) *changed = true; } else { /* since 'living' won't contain it * anymore, merge the value, since * (A) doesn't. */ if (value->setAlive(instr->m_eid)) *changed = true; // Then remove self->m_living.erase(self->m_living.begin() + idx); } /* Removing a vector removes all members */ for (mem = 0; mem < 3; ++mem) { if (value->m_members[mem] && vec_ir_value_find(self->m_living, value->m_members[mem], &idx)) { if (value->m_members[mem]->setAlive(instr->m_eid)) *changed = true; self->m_living.erase(self->m_living.begin() + idx); } } /* Removing the last member removes the vector */ if (value->m_memberof) { value = value->m_memberof; for (mem = 0; mem < 3; ++mem) { if (value->m_members[mem] && vec_ir_value_find(self->m_living, value->m_members[mem], nullptr)) break; } if (mem == 3 && vec_ir_value_find(self->m_living, value, &idx)) { if (value->setAlive(instr->m_eid)) *changed = true; self->m_living.erase(self->m_living.begin() + idx); } } } } /* These operations need a special case as they can break when using * same source and destination operand otherwise, as the engine may * read the source multiple times. */ if (instr->m_opcode == INSTR_MUL_VF || instr->m_opcode == VINSTR_BITAND_VF || instr->m_opcode == VINSTR_BITOR_VF || instr->m_opcode == VINSTR_BITXOR || instr->m_opcode == VINSTR_BITXOR_VF || instr->m_opcode == VINSTR_BITXOR_V || instr->m_opcode == VINSTR_CROSS) { value = instr->_m_ops[2]; /* the float source will get an additional lifetime */ if (value->setAlive(instr->m_eid+1)) *changed = true; if (value->m_memberof && value->m_memberof->setAlive(instr->m_eid+1)) *changed = true; } if (instr->m_opcode == INSTR_MUL_FV || instr->m_opcode == INSTR_LOAD_V || instr->m_opcode == VINSTR_BITXOR || instr->m_opcode == VINSTR_BITXOR_VF || instr->m_opcode == VINSTR_BITXOR_V || instr->m_opcode == VINSTR_CROSS) { value = instr->_m_ops[1]; /* the float source will get an additional lifetime */ if (value->setAlive(instr->m_eid+1)) *changed = true; if (value->m_memberof && value->m_memberof->setAlive(instr->m_eid+1)) *changed = true; } for (o = 0; o < 3; ++o) { if (!instr->_m_ops[o]) /* no such operand */ continue; value = instr->_m_ops[o]; /* We only care about locals */ /* we also calculate parameter liferanges so that locals * can take up parameter slots */ if (value->m_store != store_value && value->m_store != store_local && value->m_store != store_param) continue; /* read operands */ if (read & (1<m_living, value, nullptr)) self->m_living.push_back(value); /* reading adds the full vector */ if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr)) self->m_living.push_back(value->m_memberof); for (mem = 0; mem < 3; ++mem) { if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr)) self->m_living.push_back(value->m_members[mem]); } } } /* PHI operands are always read operands */ for (auto &it : instr->m_phi) { value = it.value; if (!vec_ir_value_find(self->m_living, value, nullptr)) self->m_living.push_back(value); /* reading adds the full vector */ if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr)) self->m_living.push_back(value->m_memberof); for (mem = 0; mem < 3; ++mem) { if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr)) self->m_living.push_back(value->m_members[mem]); } } /* on a call, all these values must be "locked" */ if (instr->m_opcode >= INSTR_CALL0 && instr->m_opcode <= INSTR_CALL8) { if (ir_block_living_lock(self)) *changed = true; } /* call params are read operands too */ for (auto &it : instr->m_params) { value = it; if (!vec_ir_value_find(self->m_living, value, nullptr)) self->m_living.push_back(value); /* reading adds the full vector */ if (value->m_memberof && !vec_ir_value_find(self->m_living, value->m_memberof, nullptr)) self->m_living.push_back(value->m_memberof); for (mem = 0; mem < 3; ++mem) { if (value->m_members[mem] && !vec_ir_value_find(self->m_living, value->m_members[mem], nullptr)) self->m_living.push_back(value->m_members[mem]); } } /* (A) */ if (ir_block_living_add_instr(self, instr->m_eid)) *changed = true; } /* the "entry" instruction ID */ if (ir_block_living_add_instr(self, self->m_entry_id)) *changed = true; return true; } bool ir_function_calculate_liferanges(ir_function *self) { /* parameters live at 0 */ for (size_t i = 0; i < vec_size(self->m_params); ++i) if (!self->m_locals[i].get()->setAlive(0)) compile_error(self->m_context, "internal error: failed value-life merging"); bool changed; do { self->m_run_id++; changed = false; for (auto i = self->m_blocks.rbegin(); i != self->m_blocks.rend(); ++i) ir_block_life_propagate(i->get(), &changed); } while (changed); if (self->m_blocks.size()) { ir_block *block = self->m_blocks[0].get(); for (auto &it : block->m_living) { ir_value *v = it; if (v->m_store != store_local) continue; if (v->m_vtype == TYPE_VECTOR) continue; self->m_flags |= IR_FLAG_HAS_UNINITIALIZED; /* find the instruction reading from it */ size_t s = 0; for (; s < v->m_reads.size(); ++s) { if (v->m_reads[s]->m_eid == v->m_life[0].end) break; } if (s < v->m_reads.size()) { if (irwarning(v->m_context, WARN_USED_UNINITIALIZED, "variable `%s` may be used uninitialized in this function\n" " -> %s:%i", v->m_name.c_str(), v->m_reads[s]->m_context.file, v->m_reads[s]->m_context.line) ) { return false; } continue; } if (v->m_memberof) { ir_value *vec = v->m_memberof; for (s = 0; s < vec->m_reads.size(); ++s) { if (vec->m_reads[s]->m_eid == v->m_life[0].end) break; } if (s < vec->m_reads.size()) { if (irwarning(v->m_context, WARN_USED_UNINITIALIZED, "variable `%s` may be used uninitialized in this function\n" " -> %s:%i", v->m_name.c_str(), vec->m_reads[s]->m_context.file, vec->m_reads[s]->m_context.line) ) { return false; } continue; } } if (irwarning(v->m_context, WARN_USED_UNINITIALIZED, "variable `%s` may be used uninitialized in this function", v->m_name.c_str())) { return false; } } } return true; } /*********************************************************************** *IR Code-Generation * * Since the IR has the convention of putting 'write' operands * at the beginning, we have to rotate the operands of instructions * properly in order to generate valid QCVM code. * * Having destinations at a fixed position is more convenient. In QC * this is *mostly* OPC, but FTE adds at least 2 instructions which * read from from OPA, and store to OPB rather than OPC. Which is * partially the reason why the implementation of these instructions * in darkplaces has been delayed for so long. * * Breaking conventions is annoying... */ static bool gen_global_field(code_t *code, ir_value *global) { if (global->m_hasvalue) { ir_value *fld = global->m_constval.vpointer; if (!fld) { irerror(global->m_context, "Invalid field constant with no field: %s", global->m_name.c_str()); return false; } /* copy the field's value */ global->setCodeAddress(code->globals.size()); code->globals.push_back(fld->m_code.fieldaddr); if (global->m_fieldtype == TYPE_VECTOR) { code->globals.push_back(fld->m_code.fieldaddr+1); code->globals.push_back(fld->m_code.fieldaddr+2); } } else { global->setCodeAddress(code->globals.size()); code->globals.push_back(0); if (global->m_fieldtype == TYPE_VECTOR) { code->globals.push_back(0); code->globals.push_back(0); } } if (global->m_code.globaladdr < 0) return false; return true; } static bool gen_global_pointer(code_t *code, ir_value *global) { if (global->m_hasvalue) { ir_value *target = global->m_constval.vpointer; if (!target) { irerror(global->m_context, "Invalid pointer constant: %s", global->m_name.c_str()); /* nullptr pointers are pointing to the nullptr constant, which also * sits at address 0, but still has an ir_value for itself. */ return false; } /* Here, relocations ARE possible - in fteqcc-enhanced-qc: * void() foo; <- proto * void() *fooptr = &foo; * void() foo = { code } */ if (!target->m_code.globaladdr) { /* FIXME: Check for the constant nullptr ir_value! * because then code.globaladdr being 0 is valid. */ irerror(global->m_context, "FIXME: Relocation support"); return false; } global->setCodeAddress(code->globals.size()); code->globals.push_back(target->m_code.globaladdr); } else { global->setCodeAddress(code->globals.size()); code->globals.push_back(0); } if (global->m_code.globaladdr < 0) return false; return true; } static bool gen_blocks_recursive(code_t *code, ir_function *func, ir_block *block) { prog_section_statement_t stmt; ir_instr *instr; ir_block *target; ir_block *ontrue; ir_block *onfalse; size_t stidx; size_t i; int j; block->m_generated = true; block->m_code_start = code->statements.size(); for (i = 0; i < vec_size(block->m_instr); ++i) { instr = block->m_instr[i]; if (instr->m_opcode == VINSTR_PHI) { irerror(block->m_context, "cannot generate virtual instruction (phi)"); return false; } if (instr->m_opcode == VINSTR_JUMP) { target = instr->m_bops[0]; /* for uncoditional jumps, if the target hasn't been generated * yet, we generate them right here. */ if (!target->m_generated) return gen_blocks_recursive(code, func, target); /* otherwise we generate a jump instruction */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = target->m_code_start - code->statements.size(); stmt.o2.s1 = 0; stmt.o3.s1 = 0; if (stmt.o1.s1 != 1) code_push_statement(code, &stmt, instr->m_context); /* no further instructions can be in this block */ return true; } if (instr->m_opcode == VINSTR_BITXOR) { stmt.opcode = INSTR_BITOR; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.opcode = INSTR_BITAND; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.opcode = INSTR_SUB_F; stmt.o1.s1 = instr->_m_ops[0]->codeAddress(); stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITAND_V) { stmt.opcode = INSTR_BITAND; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o2.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o2.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITOR_V) { stmt.opcode = INSTR_BITOR; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o2.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o2.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITXOR_V) { for (j = 0; j < 3; ++j) { stmt.opcode = INSTR_BITOR; stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j; stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + j; stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); stmt.opcode = INSTR_BITAND; stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j; stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + j; stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); } stmt.opcode = INSTR_SUB_V; stmt.o1.s1 = instr->_m_ops[0]->codeAddress(); stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITAND_VF) { stmt.opcode = INSTR_BITAND; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITOR_VF) { stmt.opcode = INSTR_BITOR; stmt.o1.s1 = instr->_m_ops[1]->codeAddress(); stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); ++stmt.o1.s1; ++stmt.o3.s1; code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_BITXOR_VF) { for (j = 0; j < 3; ++j) { stmt.opcode = INSTR_BITOR; stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j; stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); stmt.opcode = INSTR_BITAND; stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + j; stmt.o2.s1 = instr->_m_ops[2]->codeAddress(); stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); } stmt.opcode = INSTR_SUB_V; stmt.o1.s1 = instr->_m_ops[0]->codeAddress(); stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_CROSS) { stmt.opcode = INSTR_MUL_F; for (j = 0; j < 3; ++j) { stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + (j + 1) % 3; stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + (j + 2) % 3; stmt.o3.s1 = instr->_m_ops[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); stmt.o1.s1 = instr->_m_ops[1]->codeAddress() + (j + 2) % 3; stmt.o2.s1 = instr->_m_ops[2]->codeAddress() + (j + 1) % 3; stmt.o3.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress() + j; code_push_statement(code, &stmt, instr->m_context); } stmt.opcode = INSTR_SUB_V; stmt.o1.s1 = instr->_m_ops[0]->codeAddress(); stmt.o2.s1 = func->m_owner->m_vinstr_temp[0]->codeAddress(); stmt.o3.s1 = instr->_m_ops[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); /* instruction generated */ continue; } if (instr->m_opcode == VINSTR_COND) { ontrue = instr->m_bops[0]; onfalse = instr->m_bops[1]; /* TODO: have the AST signal which block should * come first: eg. optimize IFs without ELSE... */ stmt.o1.u1 = instr->_m_ops[0]->codeAddress(); stmt.o2.u1 = 0; stmt.o3.s1 = 0; if (ontrue->m_generated) { stmt.opcode = INSTR_IF; stmt.o2.s1 = ontrue->m_code_start - code->statements.size(); if (stmt.o2.s1 != 1) code_push_statement(code, &stmt, instr->m_context); } if (onfalse->m_generated) { stmt.opcode = INSTR_IFNOT; stmt.o2.s1 = onfalse->m_code_start - code->statements.size(); if (stmt.o2.s1 != 1) code_push_statement(code, &stmt, instr->m_context); } if (!ontrue->m_generated) { if (onfalse->m_generated) return gen_blocks_recursive(code, func, ontrue); } if (!onfalse->m_generated) { if (ontrue->m_generated) return gen_blocks_recursive(code, func, onfalse); } /* neither ontrue nor onfalse exist */ stmt.opcode = INSTR_IFNOT; if (!instr->m_likely) { /* Honor the likelyhood hint */ ir_block *tmp = onfalse; stmt.opcode = INSTR_IF; onfalse = ontrue; ontrue = tmp; } stidx = code->statements.size(); code_push_statement(code, &stmt, instr->m_context); /* on false we jump, so add ontrue-path */ if (!gen_blocks_recursive(code, func, ontrue)) return false; /* fixup the jump address */ code->statements[stidx].o2.s1 = code->statements.size() - stidx; /* generate onfalse path */ if (onfalse->m_generated) { /* fixup the jump address */ code->statements[stidx].o2.s1 = onfalse->m_code_start - stidx; if (stidx+2 == code->statements.size() && code->statements[stidx].o2.s1 == 1) { code->statements[stidx] = code->statements[stidx+1]; if (code->statements[stidx].o1.s1 < 0) code->statements[stidx].o1.s1++; code_pop_statement(code); } stmt.opcode = code->statements.back().opcode; if (stmt.opcode == INSTR_GOTO || stmt.opcode == INSTR_IF || stmt.opcode == INSTR_IFNOT || stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) { /* no use jumping from here */ return true; } /* may have been generated in the previous recursive call */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = onfalse->m_code_start - code->statements.size(); stmt.o2.s1 = 0; stmt.o3.s1 = 0; if (stmt.o1.s1 != 1) code_push_statement(code, &stmt, instr->m_context); return true; } else if (stidx+2 == code->statements.size() && code->statements[stidx].o2.s1 == 1) { code->statements[stidx] = code->statements[stidx+1]; if (code->statements[stidx].o1.s1 < 0) code->statements[stidx].o1.s1++; code_pop_statement(code); } /* if not, generate now */ return gen_blocks_recursive(code, func, onfalse); } if ( (instr->m_opcode >= INSTR_CALL0 && instr->m_opcode <= INSTR_CALL8) || instr->m_opcode == VINSTR_NRCALL) { size_t p, first; ir_value *retvalue; first = instr->m_params.size(); if (first > 8) first = 8; for (p = 0; p < first; ++p) { ir_value *param = instr->m_params[p]; if (param->m_callparam) continue; stmt.opcode = INSTR_STORE_F; stmt.o3.u1 = 0; if (param->m_vtype == TYPE_FIELD) stmt.opcode = field_store_instr[param->m_fieldtype]; else if (param->m_vtype == TYPE_NIL) stmt.opcode = INSTR_STORE_V; else stmt.opcode = type_store_instr[param->m_vtype]; stmt.o1.u1 = param->codeAddress(); stmt.o2.u1 = OFS_PARM0 + 3 * p; if (param->m_vtype == TYPE_VECTOR && (param->m_flags & IR_FLAG_SPLIT_VECTOR)) { /* fetch 3 separate floats */ stmt.opcode = INSTR_STORE_F; stmt.o1.u1 = param->m_members[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.o2.u1++; stmt.o1.u1 = param->m_members[1]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.o2.u1++; stmt.o1.u1 = param->m_members[2]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); } else code_push_statement(code, &stmt, instr->m_context); } /* Now handle extparams */ first = instr->m_params.size(); for (; p < first; ++p) { ir_builder *ir = func->m_owner; ir_value *param = instr->m_params[p]; ir_value *targetparam; if (param->m_callparam) continue; if (p-8 >= ir->m_extparams.size()) ir->generateExtparam(); targetparam = ir->m_extparams[p-8]; stmt.opcode = INSTR_STORE_F; stmt.o3.u1 = 0; if (param->m_vtype == TYPE_FIELD) stmt.opcode = field_store_instr[param->m_fieldtype]; else if (param->m_vtype == TYPE_NIL) stmt.opcode = INSTR_STORE_V; else stmt.opcode = type_store_instr[param->m_vtype]; stmt.o1.u1 = param->codeAddress(); stmt.o2.u1 = targetparam->codeAddress(); if (param->m_vtype == TYPE_VECTOR && (param->m_flags & IR_FLAG_SPLIT_VECTOR)) { /* fetch 3 separate floats */ stmt.opcode = INSTR_STORE_F; stmt.o1.u1 = param->m_members[0]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.o2.u1++; stmt.o1.u1 = param->m_members[1]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); stmt.o2.u1++; stmt.o1.u1 = param->m_members[2]->codeAddress(); code_push_statement(code, &stmt, instr->m_context); } else code_push_statement(code, &stmt, instr->m_context); } stmt.opcode = INSTR_CALL0 + instr->m_params.size(); if (stmt.opcode > INSTR_CALL8) stmt.opcode = INSTR_CALL8; stmt.o1.u1 = instr->_m_ops[1]->codeAddress(); stmt.o2.u1 = 0; stmt.o3.u1 = 0; code_push_statement(code, &stmt, instr->m_context); retvalue = instr->_m_ops[0]; if (retvalue && retvalue->m_store != store_return && (retvalue->m_store == store_global || retvalue->m_life.size())) { /* not to be kept in OFS_RETURN */ if (retvalue->m_vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS)) stmt.opcode = field_store_instr[retvalue->m_fieldtype]; else stmt.opcode = type_store_instr[retvalue->m_vtype]; stmt.o1.u1 = OFS_RETURN; stmt.o2.u1 = retvalue->codeAddress(); stmt.o3.u1 = 0; code_push_statement(code, &stmt, instr->m_context); } continue; } if (instr->m_opcode == INSTR_STATE) { stmt.opcode = instr->m_opcode; if (instr->_m_ops[0]) stmt.o1.u1 = instr->_m_ops[0]->codeAddress(); if (instr->_m_ops[1]) stmt.o2.u1 = instr->_m_ops[1]->codeAddress(); stmt.o3.u1 = 0; code_push_statement(code, &stmt, instr->m_context); continue; } stmt.opcode = instr->m_opcode; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; /* This is the general order of operands */ if (instr->_m_ops[0]) stmt.o3.u1 = instr->_m_ops[0]->codeAddress(); if (instr->_m_ops[1]) stmt.o1.u1 = instr->_m_ops[1]->codeAddress(); if (instr->_m_ops[2]) stmt.o2.u1 = instr->_m_ops[2]->codeAddress(); if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) { stmt.o1.u1 = stmt.o3.u1; stmt.o3.u1 = 0; } else if ((stmt.opcode >= INSTR_STORE_F && stmt.opcode <= INSTR_STORE_FNC) || (stmt.opcode >= INSTR_STOREP_F && stmt.opcode <= INSTR_STOREP_FNC)) { /* 2-operand instructions with A -> B */ stmt.o2.u1 = stmt.o3.u1; stmt.o3.u1 = 0; /* tiny optimization, don't output * STORE a, a */ if (stmt.o2.u1 == stmt.o1.u1 && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) { ++opts_optimizationcount[OPTIM_PEEPHOLE]; continue; } } code_push_statement(code, &stmt, instr->m_context); } return true; } static bool gen_function_code(code_t *code, ir_function *self) { ir_block *block; prog_section_statement_t stmt, *retst; /* Starting from entry point, we generate blocks "as they come" * for now. Dead blocks will not be translated obviously. */ if (self->m_blocks.empty()) { irerror(self->m_context, "Function '%s' declared without body.", self->m_name.c_str()); return false; } block = self->m_blocks[0].get(); if (block->m_generated) return true; if (!gen_blocks_recursive(code, self, block)) { irerror(self->m_context, "failed to generate blocks for '%s'", self->m_name.c_str()); return false; } /* code_write and qcvm -disasm need to know that the function ends here */ retst = &code->statements.back(); if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) && self->m_outtype == TYPE_VOID && retst->opcode == INSTR_RETURN && !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1) { retst->opcode = INSTR_DONE; ++opts_optimizationcount[OPTIM_VOID_RETURN]; } else { lex_ctx_t last; stmt.opcode = INSTR_DONE; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; last.line = code->linenums.back(); last.column = code->columnnums.back(); code_push_statement(code, &stmt, last); } return true; } qcint_t ir_builder::filestring(const char *filename) { /* NOTE: filename pointers are copied, we never strdup them, * thus we can use pointer-comparison to find the string. */ qcint_t str; for (size_t i = 0; i != m_filenames.size(); ++i) { if (!strcmp(m_filenames[i], filename)) return i; } str = code_genstring(m_code.get(), filename); m_filenames.push_back(filename); m_filestrings.push_back(str); return str; } bool ir_builder::generateGlobalFunction(ir_value *global) { prog_section_function_t fun; ir_function *irfun; size_t i; if (!global->m_hasvalue || (!global->m_constval.vfunc)) { irerror(global->m_context, "Invalid state of function-global: not constant: %s", global->m_name.c_str()); return false; } irfun = global->m_constval.vfunc; fun.name = global->m_code.name; fun.file = filestring(global->m_context.file); fun.profile = 0; /* always 0 */ fun.nargs = vec_size(irfun->m_params); if (fun.nargs > 8) fun.nargs = 8; for (i = 0; i < 8; ++i) { if ((int32_t)i >= fun.nargs) fun.argsize[i] = 0; else fun.argsize[i] = type_sizeof_[irfun->m_params[i]]; } fun.firstlocal = 0; fun.locals = irfun->m_allocated_locals; if (irfun->m_builtin) fun.entry = irfun->m_builtin+1; else { irfun->m_code_function_def = m_code->functions.size(); fun.entry = m_code->statements.size(); } m_code->functions.push_back(fun); return true; } ir_value* ir_builder::generateExtparamProto() { char name[128]; util_snprintf(name, sizeof(name), "EXTPARM#%i", (int)(m_extparam_protos.size())); ir_value *global = new ir_value(name, store_global, TYPE_VECTOR); m_extparam_protos.emplace_back(global); return global; } void ir_builder::generateExtparam() { prog_section_def_t def; ir_value *global; if (m_extparam_protos.size() < m_extparams.size()+1) global = generateExtparamProto(); else global = m_extparam_protos[m_extparams.size()].get(); def.name = code_genstring(m_code.get(), global->m_name.c_str()); def.type = TYPE_VECTOR; def.offset = m_code->globals.size(); m_code->defs.push_back(def); global->setCodeAddress(def.offset); m_code->globals.push_back(0); m_code->globals.push_back(0); m_code->globals.push_back(0); m_extparams.emplace_back(global); } static bool gen_function_extparam_copy(code_t *code, ir_function *self) { ir_builder *ir = self->m_owner; size_t numparams = vec_size(self->m_params); if (!numparams) return true; prog_section_statement_t stmt; stmt.opcode = INSTR_STORE_F; stmt.o3.s1 = 0; for (size_t i = 8; i < numparams; ++i) { size_t ext = i - 8; if (ext >= ir->m_extparams.size()) ir->generateExtparam(); ir_value *ep = ir->m_extparams[ext]; stmt.opcode = type_store_instr[self->m_locals[i]->m_vtype]; if (self->m_locals[i]->m_vtype == TYPE_FIELD && self->m_locals[i]->m_fieldtype == TYPE_VECTOR) { stmt.opcode = INSTR_STORE_V; } stmt.o1.u1 = ep->codeAddress(); stmt.o2.u1 = self->m_locals[i].get()->codeAddress(); code_push_statement(code, &stmt, self->m_context); } return true; } static bool gen_function_varargs_copy(code_t *code, ir_function *self) { size_t i, ext, numparams, maxparams; ir_builder *ir = self->m_owner; ir_value *ep; prog_section_statement_t stmt; numparams = vec_size(self->m_params); if (!numparams) return true; stmt.opcode = INSTR_STORE_V; stmt.o3.s1 = 0; maxparams = numparams + self->m_max_varargs; for (i = numparams; i < maxparams; ++i) { if (i < 8) { stmt.o1.u1 = OFS_PARM0 + 3*i; stmt.o2.u1 = self->m_locals[i].get()->codeAddress(); code_push_statement(code, &stmt, self->m_context); continue; } ext = i - 8; while (ext >= ir->m_extparams.size()) ir->generateExtparam(); ep = ir->m_extparams[ext]; stmt.o1.u1 = ep->codeAddress(); stmt.o2.u1 = self->m_locals[i].get()->codeAddress(); code_push_statement(code, &stmt, self->m_context); } return true; } bool ir_builder::generateFunctionLocals(ir_value *global) { prog_section_function_t *def; ir_function *irfun; uint32_t firstlocal, firstglobal; irfun = global->m_constval.vfunc; def = &m_code->functions[0] + irfun->m_code_function_def; if (OPTS_OPTION_BOOL(OPTION_G) || !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS) || (irfun->m_flags & IR_FLAG_MASK_NO_OVERLAP)) { firstlocal = def->firstlocal = m_code->globals.size(); } else { firstlocal = def->firstlocal = m_first_common_local; ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS]; } firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? m_first_common_globaltemp : firstlocal); for (size_t i = m_code->globals.size(); i < firstlocal + irfun->m_allocated_locals; ++i) m_code->globals.push_back(0); for (auto& lp : irfun->m_locals) { ir_value *v = lp.get(); if (v->m_locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) { v->setCodeAddress(firstlocal + v->m_code.local); if (!generateGlobal(v, true)) { irerror(v->m_context, "failed to generate local %s", v->m_name.c_str()); return false; } } else v->setCodeAddress(firstglobal + v->m_code.local); } for (auto& vp : irfun->m_values) { ir_value *v = vp.get(); if (v->m_callparam) continue; if (v->m_locked) v->setCodeAddress(firstlocal + v->m_code.local); else v->setCodeAddress(firstglobal + v->m_code.local); } return true; } bool ir_builder::generateGlobalFunctionCode(ir_value *global) { prog_section_function_t *fundef; ir_function *irfun; irfun = global->m_constval.vfunc; if (!irfun) { if (global->m_cvq == CV_NONE) { if (irwarning(global->m_context, WARN_IMPLICIT_FUNCTION_POINTER, "function `%s` has no body and in QC implicitly becomes a function-pointer", global->m_name.c_str())) { /* Not bailing out just now. If this happens a lot you don't want to have * to rerun gmqcc for each such function. */ /* return false; */ } } /* this was a function pointer, don't generate code for those */ return true; } if (irfun->m_builtin) return true; /* * If there is no definition and the thing is eraseable, we can ignore * outputting the function to begin with. */ if (global->m_flags & IR_FLAG_ERASABLE && irfun->m_code_function_def < 0) { return true; } if (irfun->m_code_function_def < 0) { irerror(irfun->m_context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->m_name.c_str()); return false; } fundef = &m_code->functions[irfun->m_code_function_def]; fundef->entry = m_code->statements.size(); if (!generateFunctionLocals(global)) { irerror(irfun->m_context, "Failed to generate locals for function %s", irfun->m_name.c_str()); return false; } if (!gen_function_extparam_copy(m_code.get(), irfun)) { irerror(irfun->m_context, "Failed to generate extparam-copy code for function %s", irfun->m_name.c_str()); return false; } if (irfun->m_max_varargs && !gen_function_varargs_copy(m_code.get(), irfun)) { irerror(irfun->m_context, "Failed to generate vararg-copy code for function %s", irfun->m_name.c_str()); return false; } if (!gen_function_code(m_code.get(), irfun)) { irerror(irfun->m_context, "Failed to generate code for function %s", irfun->m_name.c_str()); return false; } return true; } static void gen_vector_defs(code_t *code, prog_section_def_t def, const char *name) { char *component; size_t len, i; if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS)) return; def.type = TYPE_FLOAT; len = strlen(name); component = (char*)mem_a(len+3); memcpy(component, name, len); len += 2; component[len-0] = 0; component[len-2] = '_'; component[len-1] = 'x'; for (i = 0; i < 3; ++i) { def.name = code_genstring(code, component); code->defs.push_back(def); def.offset++; component[len-1]++; } mem_d(component); } static void gen_vector_fields(code_t *code, prog_section_field_t fld, const char *name) { char *component; size_t len, i; if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS)) return; fld.type = TYPE_FLOAT; len = strlen(name); component = (char*)mem_a(len+3); memcpy(component, name, len); len += 2; component[len-0] = 0; component[len-2] = '_'; component[len-1] = 'x'; for (i = 0; i < 3; ++i) { fld.name = code_genstring(code, component); code->fields.push_back(fld); fld.offset++; component[len-1]++; } mem_d(component); } bool ir_builder::generateGlobal(ir_value *global, bool islocal) { size_t i; int32_t *iptr; prog_section_def_t def; bool pushdef = opts.optimizeoff; /* we don't generate split-vectors */ if (global->m_vtype == TYPE_VECTOR && (global->m_flags & IR_FLAG_SPLIT_VECTOR)) return true; def.type = global->m_vtype; def.offset = m_code->globals.size(); def.name = 0; if (OPTS_OPTION_BOOL(OPTION_G) || !islocal) { pushdef = true; /* * if we're eraseable and the function isn't referenced ignore outputting * the function. */ if (global->m_flags & IR_FLAG_ERASABLE && global->m_reads.empty()) { return true; } if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) && !(global->m_flags & IR_FLAG_INCLUDE_DEF) && (global->m_name[0] == '#' || global->m_cvq == CV_CONST)) { pushdef = false; } if (pushdef) { if (global->m_name[0] == '#') { if (!m_str_immediate) m_str_immediate = code_genstring(m_code.get(), "IMMEDIATE"); def.name = global->m_code.name = m_str_immediate; } else def.name = global->m_code.name = code_genstring(m_code.get(), global->m_name.c_str()); } else def.name = 0; if (islocal) { def.offset = global->codeAddress(); m_code->defs.push_back(def); if (global->m_vtype == TYPE_VECTOR) gen_vector_defs(m_code.get(), def, global->m_name.c_str()); else if (global->m_vtype == TYPE_FIELD && global->m_fieldtype == TYPE_VECTOR) gen_vector_defs(m_code.get(), def, global->m_name.c_str()); return true; } } if (islocal) return true; switch (global->m_vtype) { case TYPE_VOID: if (0 == global->m_name.compare("end_sys_globals")) { // TODO: remember this point... all the defs before this one // should be checksummed and added to progdefs.h when we generate it. } else if (0 == global->m_name.compare("end_sys_fields")) { // TODO: same as above but for entity-fields rather than globsl } else if(irwarning(global->m_context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`", global->m_name.c_str())) { /* Not bailing out */ /* return false; */ } /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far * the system fields actually go? Though the engine knows this anyway... * Maybe this could be an -foption * fteqcc creates data for end_sys_* - of size 1, so let's do the same */ global->setCodeAddress(m_code->globals.size()); m_code->globals.push_back(0); /* Add the def */ if (pushdef) m_code->defs.push_back(def); return true; case TYPE_POINTER: if (pushdef) m_code->defs.push_back(def); return gen_global_pointer(m_code.get(), global); case TYPE_FIELD: if (pushdef) { m_code->defs.push_back(def); if (global->m_fieldtype == TYPE_VECTOR) gen_vector_defs(m_code.get(), def, global->m_name.c_str()); } return gen_global_field(m_code.get(), global); case TYPE_ENTITY: /* fall through */ case TYPE_FLOAT: { global->setCodeAddress(m_code->globals.size()); if (global->m_hasvalue) { if (global->m_cvq == CV_CONST && global->m_reads.empty()) return true; iptr = (int32_t*)&global->m_constval.ivec[0]; m_code->globals.push_back(*iptr); } else { m_code->globals.push_back(0); } if (!islocal && global->m_cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; if (pushdef) m_code->defs.push_back(def); return global->m_code.globaladdr >= 0; } case TYPE_STRING: { global->setCodeAddress(m_code->globals.size()); if (global->m_hasvalue) { if (global->m_cvq == CV_CONST && global->m_reads.empty()) return true; uint32_t load = code_genstring(m_code.get(), global->m_constval.vstring); m_code->globals.push_back(load); } else { m_code->globals.push_back(0); } if (!islocal && global->m_cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; if (pushdef) m_code->defs.push_back(def); return global->m_code.globaladdr >= 0; } case TYPE_VECTOR: { size_t d; global->setCodeAddress(m_code->globals.size()); if (global->m_hasvalue) { iptr = (int32_t*)&global->m_constval.ivec[0]; m_code->globals.push_back(iptr[0]); if (global->m_code.globaladdr < 0) return false; for (d = 1; d < type_sizeof_[global->m_vtype]; ++d) { m_code->globals.push_back(iptr[d]); } } else { m_code->globals.push_back(0); if (global->m_code.globaladdr < 0) return false; for (d = 1; d < type_sizeof_[global->m_vtype]; ++d) { m_code->globals.push_back(0); } } if (!islocal && global->m_cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; if (pushdef) { m_code->defs.push_back(def); def.type &= ~DEF_SAVEGLOBAL; gen_vector_defs(m_code.get(), def, global->m_name.c_str()); } return global->m_code.globaladdr >= 0; } case TYPE_FUNCTION: global->setCodeAddress(m_code->globals.size()); if (!global->m_hasvalue) { m_code->globals.push_back(0); if (global->m_code.globaladdr < 0) return false; } else { m_code->globals.push_back(m_code->functions.size()); if (!generateGlobalFunction(global)) return false; } if (!islocal && global->m_cvq != CV_CONST) def.type |= DEF_SAVEGLOBAL; if (pushdef) m_code->defs.push_back(def); return true; case TYPE_VARIANT: /* assume biggest type */ global->setCodeAddress(m_code->globals.size()); m_code->globals.push_back(0); for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i) m_code->globals.push_back(0); return true; default: /* refuse to create 'void' type or any other fancy business. */ irerror(global->m_context, "Invalid type for global variable `%s`: %s", global->m_name.c_str(), type_name[global->m_vtype]); return false; } } static GMQCC_INLINE void ir_builder_prepare_field(code_t *code, ir_value *field) { field->m_code.fieldaddr = code_alloc_field(code, type_sizeof_[field->m_fieldtype]); } static bool ir_builder_gen_field(ir_builder *self, ir_value *field) { prog_section_def_t def; prog_section_field_t fld; (void)self; def.type = (uint16_t)field->m_vtype; def.offset = (uint16_t)self->m_code->globals.size(); /* create a global named the same as the field */ if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_GMQCC) { /* in our standard, the global gets a dot prefix */ size_t len = field->m_name.length(); char name[1024]; /* we really don't want to have to allocate this, and 1024 * bytes is more than enough for a variable/field name */ if (len+2 >= sizeof(name)) { irerror(field->m_context, "invalid field name size: %u", (unsigned int)len); return false; } name[0] = '.'; memcpy(name+1, field->m_name.c_str(), len); // no strncpy - we used strlen above name[len+1] = 0; def.name = code_genstring(self->m_code.get(), name); fld.name = def.name + 1; /* we reuse that string table entry */ } else { /* in plain QC, there cannot be a global with the same name, * and so we also name the global the same. * FIXME: fteqcc should create a global as well * check if it actually uses the same name. Probably does */ def.name = code_genstring(self->m_code.get(), field->m_name.c_str()); fld.name = def.name; } field->m_code.name = def.name; self->m_code->defs.push_back(def); fld.type = field->m_fieldtype; if (fld.type == TYPE_VOID) { irerror(field->m_context, "field is missing a type: %s - don't know its size", field->m_name.c_str()); return false; } fld.offset = field->m_code.fieldaddr; self->m_code->fields.push_back(fld); field->setCodeAddress(self->m_code->globals.size()); self->m_code->globals.push_back(fld.offset); if (fld.type == TYPE_VECTOR) { self->m_code->globals.push_back(fld.offset+1); self->m_code->globals.push_back(fld.offset+2); } if (field->m_fieldtype == TYPE_VECTOR) { gen_vector_defs (self->m_code.get(), def, field->m_name.c_str()); gen_vector_fields(self->m_code.get(), fld, field->m_name.c_str()); } return field->m_code.globaladdr >= 0; } static void ir_builder_collect_reusables(ir_builder *builder) { std::vector reusables; for (auto& gp : builder->m_globals) { ir_value *value = gp.get(); if (value->m_vtype != TYPE_FLOAT || !value->m_hasvalue) continue; if (value->m_cvq == CV_CONST || (value->m_name.length() >= 1 && value->m_name[0] == '#')) reusables.emplace_back(value); } builder->m_const_floats = move(reusables); } static void ir_builder_split_vector(ir_builder *self, ir_value *vec) { ir_value* found[3] = { nullptr, nullptr, nullptr }; // must not be written to if (vec->m_writes.size()) return; // must not be trying to access individual members if (vec->m_members[0] || vec->m_members[1] || vec->m_members[2]) return; // should be actually used otherwise it won't be generated anyway if (vec->m_reads.empty()) return; //size_t count = vec->m_reads.size(); //if (!count) // return; // may only be used directly as function parameters, so if we find some other instruction cancel for (ir_instr *user : vec->m_reads) { // we only split vectors if they're used directly as parameter to a call only! if ((user->m_opcode < INSTR_CALL0 || user->m_opcode > INSTR_CALL8) && user->m_opcode != VINSTR_NRCALL) return; } vec->m_flags |= IR_FLAG_SPLIT_VECTOR; // find existing floats making up the split for (ir_value *c : self->m_const_floats) { if (!found[0] && c->m_constval.vfloat == vec->m_constval.vvec.x) found[0] = c; if (!found[1] && c->m_constval.vfloat == vec->m_constval.vvec.y) found[1] = c; if (!found[2] && c->m_constval.vfloat == vec->m_constval.vvec.z) found[2] = c; if (found[0] && found[1] && found[2]) break; } // generate floats for not yet found components if (!found[0]) found[0] = self->literalFloat(vec->m_constval.vvec.x, true); if (!found[1]) { if (vec->m_constval.vvec.y == vec->m_constval.vvec.x) found[1] = found[0]; else found[1] = self->literalFloat(vec->m_constval.vvec.y, true); } if (!found[2]) { if (vec->m_constval.vvec.z == vec->m_constval.vvec.x) found[2] = found[0]; else if (vec->m_constval.vvec.z == vec->m_constval.vvec.y) found[2] = found[1]; else found[2] = self->literalFloat(vec->m_constval.vvec.z, true); } // the .members array should be safe to use here vec->m_members[0] = found[0]; vec->m_members[1] = found[1]; vec->m_members[2] = found[2]; // register the readers for these floats found[0]->m_reads.insert(found[0]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end()); found[1]->m_reads.insert(found[1]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end()); found[2]->m_reads.insert(found[2]->m_reads.end(), vec->m_reads.begin(), vec->m_reads.end()); } static void ir_builder_split_vectors(ir_builder *self) { // member values may be added to self->m_globals during this operation, but // no new vectors will be added, we need to iterate via an index as // c++ iterators would be invalidated const size_t count = self->m_globals.size(); for (size_t i = 0; i != count; ++i) { ir_value *v = self->m_globals[i].get(); if (v->m_vtype != TYPE_VECTOR || !v->m_name.length() || v->m_name[0] != '#') continue; ir_builder_split_vector(self, v); } } bool ir_builder::generate(const char *filename) { prog_section_statement_t stmt; char *lnofile = nullptr; if (OPTS_FLAG(SPLIT_VECTOR_PARAMETERS)) { ir_builder_collect_reusables(this); if (!m_const_floats.empty()) ir_builder_split_vectors(this); } for (auto& fp : m_fields) ir_builder_prepare_field(m_code.get(), fp.get()); for (auto& gp : m_globals) { ir_value *global = gp.get(); if (!generateGlobal(global, false)) { return false; } if (global->m_vtype == TYPE_FUNCTION) { ir_function *func = global->m_constval.vfunc; if (func && m_max_locals < func->m_allocated_locals && !(func->m_flags & IR_FLAG_MASK_NO_OVERLAP)) { m_max_locals = func->m_allocated_locals; } if (func && m_max_globaltemps < func->m_globaltemps) m_max_globaltemps = func->m_globaltemps; } } for (auto& fp : m_fields) { if (!ir_builder_gen_field(this, fp.get())) return false; } // generate nil m_nil->setCodeAddress(m_code->globals.size()); m_code->globals.push_back(0); m_code->globals.push_back(0); m_code->globals.push_back(0); // generate virtual-instruction temps for (size_t i = 0; i < IR_MAX_VINSTR_TEMPS; ++i) { m_vinstr_temp[i]->setCodeAddress(m_code->globals.size()); m_code->globals.push_back(0); m_code->globals.push_back(0); m_code->globals.push_back(0); } // generate global temps m_first_common_globaltemp = m_code->globals.size(); m_code->globals.insert(m_code->globals.end(), m_max_globaltemps, 0); // FIXME:DELME: //for (size_t i = 0; i < m_max_globaltemps; ++i) { // m_code->globals.push_back(0); //} // generate common locals m_first_common_local = m_code->globals.size(); m_code->globals.insert(m_code->globals.end(), m_max_locals, 0); // FIXME:DELME: //for (i = 0; i < m_max_locals; ++i) { // m_code->globals.push_back(0); //} // generate function code for (auto& gp : m_globals) { ir_value *global = gp.get(); if (global->m_vtype == TYPE_FUNCTION) { if (!this->generateGlobalFunctionCode(global)) return false; } } if (m_code->globals.size() >= 65536) { irerror(m_globals.back()->m_context, "This progs file would require more globals than the metadata can handle (%zu). Bailing out.", m_code->globals.size()); return false; } /* DP errors if the last instruction is not an INSTR_DONE. */ if (m_code->statements.back().opcode != INSTR_DONE) { lex_ctx_t last; stmt.opcode = INSTR_DONE; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; last.line = m_code->linenums.back(); last.column = m_code->columnnums.back(); code_push_statement(m_code.get(), &stmt, last); } if (OPTS_OPTION_BOOL(OPTION_PP_ONLY)) return true; if (m_code->statements.size() != m_code->linenums.size()) { con_err("Linecounter wrong: %lu != %lu\n", m_code->statements.size(), m_code->linenums.size()); } else if (OPTS_FLAG(LNO)) { char *dot; size_t filelen = strlen(filename); memcpy(vec_add(lnofile, filelen+1), filename, filelen+1); dot = strrchr(lnofile, '.'); if (!dot) { vec_pop(lnofile); } else { vec_shrinkto(lnofile, dot - lnofile); } memcpy(vec_add(lnofile, 5), ".lno", 5); } if (!code_write(m_code.get(), filename, lnofile)) { vec_free(lnofile); return false; } vec_free(lnofile); return true; } /*********************************************************************** *IR DEBUG Dump functions... */ #define IND_BUFSZ 1024 static const char *qc_opname(int op) { if (op < 0) return ""; if (op < VINSTR_END) return util_instr_str[op]; switch (op) { case VINSTR_END: return "END"; case VINSTR_PHI: return "PHI"; case VINSTR_JUMP: return "JUMP"; case VINSTR_COND: return "COND"; case VINSTR_BITXOR: return "BITXOR"; case VINSTR_BITAND_V: return "BITAND_V"; case VINSTR_BITOR_V: return "BITOR_V"; case VINSTR_BITXOR_V: return "BITXOR_V"; case VINSTR_BITAND_VF: return "BITAND_VF"; case VINSTR_BITOR_VF: return "BITOR_VF"; case VINSTR_BITXOR_VF: return "BITXOR_VF"; case VINSTR_CROSS: return "CROSS"; case VINSTR_NEG_F: return "NEG_F"; case VINSTR_NEG_V: return "NEG_V"; default: return ""; } } void ir_builder::dump(int (*oprintf)(const char*, ...)) const { size_t i; char indent[IND_BUFSZ]; indent[0] = '\t'; indent[1] = 0; oprintf("module %s\n", m_name.c_str()); for (i = 0; i < m_globals.size(); ++i) { oprintf("global "); if (m_globals[i]->m_hasvalue) oprintf("%s = ", m_globals[i]->m_name.c_str()); m_globals[i].get()->dump(oprintf); oprintf("\n"); } for (i = 0; i < m_functions.size(); ++i) ir_function_dump(m_functions[i].get(), indent, oprintf); oprintf("endmodule %s\n", m_name.c_str()); } static const char *storenames[] = { "[global]", "[local]", "[param]", "[value]", "[return]" }; void ir_function_dump(ir_function *f, char *ind, int (*oprintf)(const char*, ...)) { size_t i; if (f->m_builtin != 0) { oprintf("%sfunction %s = builtin %i\n", ind, f->m_name.c_str(), -f->m_builtin); return; } oprintf("%sfunction %s\n", ind, f->m_name.c_str()); util_strncat(ind, "\t", IND_BUFSZ-1); if (f->m_locals.size()) { oprintf("%s%i locals:\n", ind, (int)f->m_locals.size()); for (i = 0; i < f->m_locals.size(); ++i) { oprintf("%s\t", ind); f->m_locals[i].get()->dump(oprintf); oprintf("\n"); } } oprintf("%sliferanges:\n", ind); for (i = 0; i < f->m_locals.size(); ++i) { const char *attr = ""; size_t l, m; ir_value *v = f->m_locals[i].get(); if (v->m_unique_life && v->m_locked) attr = "unique,locked "; else if (v->m_unique_life) attr = "unique "; else if (v->m_locked) attr = "locked "; oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->m_name.c_str(), type_name[v->m_vtype], storenames[v->m_store], attr, (v->m_callparam ? "callparam " : ""), (int)v->m_code.local); if (v->m_life.empty()) oprintf("[null]"); for (l = 0; l < v->m_life.size(); ++l) { oprintf("[%i,%i] ", v->m_life[l].start, v->m_life[l].end); } oprintf("\n"); for (m = 0; m < 3; ++m) { ir_value *vm = v->m_members[m]; if (!vm) continue; oprintf("%s\t%s: @%i ", ind, vm->m_name.c_str(), (int)vm->m_code.local); for (l = 0; l < vm->m_life.size(); ++l) { oprintf("[%i,%i] ", vm->m_life[l].start, vm->m_life[l].end); } oprintf("\n"); } } for (i = 0; i < f->m_values.size(); ++i) { const char *attr = ""; size_t l, m; ir_value *v = f->m_values[i].get(); if (v->m_unique_life && v->m_locked) attr = "unique,locked "; else if (v->m_unique_life) attr = "unique "; else if (v->m_locked) attr = "locked "; oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->m_name.c_str(), type_name[v->m_vtype], storenames[v->m_store], attr, (v->m_callparam ? "callparam " : ""), (int)v->m_code.local); if (v->m_life.empty()) oprintf("[null]"); for (l = 0; l < v->m_life.size(); ++l) { oprintf("[%i,%i] ", v->m_life[l].start, v->m_life[l].end); } oprintf("\n"); for (m = 0; m < 3; ++m) { ir_value *vm = v->m_members[m]; if (!vm) continue; if (vm->m_unique_life && vm->m_locked) attr = "unique,locked "; else if (vm->m_unique_life) attr = "unique "; else if (vm->m_locked) attr = "locked "; oprintf("%s\t%s: %s@%i ", ind, vm->m_name.c_str(), attr, (int)vm->m_code.local); for (l = 0; l < vm->m_life.size(); ++l) { oprintf("[%i,%i] ", vm->m_life[l].start, vm->m_life[l].end); } oprintf("\n"); } } if (f->m_blocks.size()) { oprintf("%slife passes: %i\n", ind, (int)f->m_run_id); for (i = 0; i < f->m_blocks.size(); ++i) { ir_block_dump(f->m_blocks[i].get(), ind, oprintf); } } ind[strlen(ind)-1] = 0; oprintf("%sendfunction %s\n", ind, f->m_name.c_str()); } void ir_block_dump(ir_block* b, char *ind, int (*oprintf)(const char*, ...)) { size_t i; oprintf("%s:%s\n", ind, b->m_label.c_str()); util_strncat(ind, "\t", IND_BUFSZ-1); if (b->m_instr && b->m_instr[0]) oprintf("%s (%i) [entry]\n", ind, (int)(b->m_instr[0]->m_eid-1)); for (i = 0; i < vec_size(b->m_instr); ++i) ir_instr_dump(b->m_instr[i], ind, oprintf); ind[strlen(ind)-1] = 0; } static void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...)) { oprintf("%s <- phi ", in->_m_ops[0]->m_name.c_str()); for (auto &it : in->m_phi) { oprintf("([%s] : %s) ", it.from->m_label.c_str(), it.value->m_name.c_str()); } oprintf("\n"); } void ir_instr_dump(ir_instr *in, char *ind, int (*oprintf)(const char*, ...)) { size_t i; const char *comma = nullptr; oprintf("%s (%i) ", ind, (int)in->m_eid); if (in->m_opcode == VINSTR_PHI) { dump_phi(in, oprintf); return; } util_strncat(ind, "\t", IND_BUFSZ-1); if (in->_m_ops[0] && (in->_m_ops[1] || in->_m_ops[2])) { in->_m_ops[0]->dump(oprintf); if (in->_m_ops[1] || in->_m_ops[2]) oprintf(" <- "); } if (in->m_opcode == INSTR_CALL0 || in->m_opcode == VINSTR_NRCALL) { oprintf("CALL%i\t", in->m_params.size()); } else oprintf("%s\t", qc_opname(in->m_opcode)); if (in->_m_ops[0] && !(in->_m_ops[1] || in->_m_ops[2])) { in->_m_ops[0]->dump(oprintf); comma = ",\t"; } else { for (i = 1; i != 3; ++i) { if (in->_m_ops[i]) { if (comma) oprintf(comma); in->_m_ops[i]->dump(oprintf); comma = ",\t"; } } } if (in->m_bops[0]) { if (comma) oprintf(comma); oprintf("[%s]", in->m_bops[0]->m_label.c_str()); comma = ",\t"; } if (in->m_bops[1]) oprintf("%s[%s]", comma, in->m_bops[1]->m_label.c_str()); if (in->m_params.size()) { oprintf("\tparams: "); for (auto &it : in->m_params) oprintf("%s, ", it->m_name.c_str()); } oprintf("\n"); ind[strlen(ind)-1] = 0; } static void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...)) { oprintf("\""); for (; *str; ++str) { switch (*str) { case '\n': oprintf("\\n"); break; case '\r': oprintf("\\r"); break; case '\t': oprintf("\\t"); break; case '\v': oprintf("\\v"); break; case '\f': oprintf("\\f"); break; case '\b': oprintf("\\b"); break; case '\a': oprintf("\\a"); break; case '\\': oprintf("\\\\"); break; case '"': oprintf("\\\""); break; default: oprintf("%c", *str); break; } } oprintf("\""); } void ir_value::dump(int (*oprintf)(const char*, ...)) const { if (m_hasvalue) { switch (m_vtype) { default: case TYPE_VOID: oprintf("(void)"); break; case TYPE_FUNCTION: oprintf("fn:%s", m_name.c_str()); break; case TYPE_FLOAT: oprintf("%g", m_constval.vfloat); break; case TYPE_VECTOR: oprintf("'%g %g %g'", m_constval.vvec.x, m_constval.vvec.y, m_constval.vvec.z); break; case TYPE_ENTITY: oprintf("(entity)"); break; case TYPE_STRING: ir_value_dump_string(m_constval.vstring, oprintf); break; #if 0 case TYPE_INTEGER: oprintf("%i", m_constval.vint); break; #endif case TYPE_POINTER: oprintf("&%s", m_constval.vpointer->m_name.c_str()); break; } } else { oprintf("%s", m_name.c_str()); } } void ir_value::dumpLife(int (*oprintf)(const char*,...)) const { oprintf("Life of %12s:", m_name.c_str()); for (size_t i = 0; i < m_life.size(); ++i) { oprintf(" + [%i, %i]\n", m_life[i].start, m_life[i].end); } }