/* * Copyright (C) 2012 * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "gmqcc.h" #include "ir.h" /*********************************************************************** * Type sizes used at multiple points in the IR codegen */ const char *type_name[TYPE_COUNT] = { "void", "string", "float", "vector", "entity", "field", "function", "pointer", #if 0 "integer", #endif "variant" }; size_t type_sizeof[TYPE_COUNT] = { 1, /* TYPE_VOID */ 1, /* TYPE_STRING */ 1, /* TYPE_FLOAT */ 3, /* TYPE_VECTOR */ 1, /* TYPE_ENTITY */ 1, /* TYPE_FIELD */ 1, /* TYPE_FUNCTION */ 1, /* TYPE_POINTER */ #if 0 1, /* TYPE_INTEGER */ #endif 3, /* TYPE_VARIANT */ }; uint16_t type_store_instr[TYPE_COUNT] = { INSTR_STORE_F, /* should use I when having integer support */ INSTR_STORE_S, INSTR_STORE_F, INSTR_STORE_V, INSTR_STORE_ENT, INSTR_STORE_FLD, INSTR_STORE_FNC, INSTR_STORE_ENT, /* should use I */ #if 0 INSTR_STORE_I, /* integer type */ #endif INSTR_STORE_V, /* variant, should never be accessed */ }; uint16_t type_storep_instr[TYPE_COUNT] = { INSTR_STOREP_F, /* should use I when having integer support */ INSTR_STOREP_S, INSTR_STOREP_F, INSTR_STOREP_V, INSTR_STOREP_ENT, INSTR_STOREP_FLD, INSTR_STOREP_FNC, INSTR_STOREP_ENT, /* should use I */ #if 0 INSTR_STOREP_ENT, /* integer type */ #endif INSTR_STOREP_V, /* variant, should never be accessed */ }; MEM_VEC_FUNCTIONS(ir_value_vector, ir_value*, v) /*********************************************************************** *IR Builder */ ir_builder* ir_builder_new(const char *modulename) { ir_builder* self; self = (ir_builder*)mem_a(sizeof(*self)); if (!self) return NULL; MEM_VECTOR_INIT(self, functions); MEM_VECTOR_INIT(self, globals); MEM_VECTOR_INIT(self, fields); self->name = NULL; if (!ir_builder_set_name(self, modulename)) { mem_d(self); return NULL; } /* globals which always exist */ /* for now we give it a vector size */ ir_builder_create_global(self, "OFS_RETURN", TYPE_VARIANT); return self; } MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals) MEM_VEC_FUNCTIONS(ir_builder, ir_value*, fields) MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions) void ir_builder_delete(ir_builder* self) { size_t i; mem_d((void*)self->name); for (i = 0; i != self->functions_count; ++i) { ir_function_delete(self->functions[i]); } MEM_VECTOR_CLEAR(self, functions); for (i = 0; i != self->globals_count; ++i) { ir_value_delete(self->globals[i]); } MEM_VECTOR_CLEAR(self, fields); for (i = 0; i != self->fields_count; ++i) { ir_value_delete(self->fields[i]); } MEM_VECTOR_CLEAR(self, fields); mem_d(self); } bool ir_builder_set_name(ir_builder *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } ir_function* ir_builder_get_function(ir_builder *self, const char *name) { size_t i; for (i = 0; i < self->functions_count; ++i) { if (!strcmp(name, self->functions[i]->name)) return self->functions[i]; } return NULL; } ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype) { ir_function *fn = ir_builder_get_function(self, name); if (fn) { return NULL; } fn = ir_function_new(self, outtype); if (!ir_function_set_name(fn, name) || !ir_builder_functions_add(self, fn) ) { ir_function_delete(fn); return NULL; } fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION); if (!fn->value) { ir_function_delete(fn); return NULL; } fn->value->isconst = true; fn->value->outtype = outtype; fn->value->constval.vfunc = fn; fn->value->context = fn->context; return fn; } ir_value* ir_builder_get_global(ir_builder *self, const char *name) { size_t i; for (i = 0; i < self->globals_count; ++i) { if (!strcmp(self->globals[i]->name, name)) return self->globals[i]; } return NULL; } ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype) { ir_value *ve; if (name && name[0] != '#') { ve = ir_builder_get_global(self, name); if (ve) { return NULL; } } ve = ir_value_var(name, store_global, vtype); if (!ir_builder_globals_add(self, ve)) { ir_value_delete(ve); return NULL; } return ve; } ir_value* ir_builder_get_field(ir_builder *self, const char *name) { size_t i; for (i = 0; i < self->fields_count; ++i) { if (!strcmp(self->fields[i]->name, name)) return self->fields[i]; } return NULL; } ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype) { ir_value *ve = ir_builder_get_field(self, name); if (ve) { return NULL; } ve = ir_value_var(name, store_global, TYPE_FIELD); ve->fieldtype = vtype; if (!ir_builder_fields_add(self, ve)) { ir_value_delete(ve); return NULL; } return ve; } /*********************************************************************** *IR Function */ bool ir_function_naive_phi(ir_function*); void ir_function_enumerate(ir_function*); bool ir_function_calculate_liferanges(ir_function*); bool ir_function_allocate_locals(ir_function*); ir_function* ir_function_new(ir_builder* owner, int outtype) { ir_function *self; self = (ir_function*)mem_a(sizeof(*self)); if (!self) return NULL; self->name = NULL; if (!ir_function_set_name(self, "<@unnamed>")) { mem_d(self); return NULL; } self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->outtype = outtype; self->value = NULL; self->builtin = 0; MEM_VECTOR_INIT(self, params); MEM_VECTOR_INIT(self, blocks); MEM_VECTOR_INIT(self, values); MEM_VECTOR_INIT(self, locals); self->run_id = 0; return self; } MEM_VEC_FUNCTIONS(ir_function, ir_value*, values) MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks) MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals) MEM_VEC_FUNCTIONS(ir_function, int, params) bool ir_function_set_name(ir_function *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } void ir_function_delete(ir_function *self) { size_t i; mem_d((void*)self->name); for (i = 0; i != self->blocks_count; ++i) ir_block_delete(self->blocks[i]); MEM_VECTOR_CLEAR(self, blocks); MEM_VECTOR_CLEAR(self, params); for (i = 0; i != self->values_count; ++i) ir_value_delete(self->values[i]); MEM_VECTOR_CLEAR(self, values); for (i = 0; i != self->locals_count; ++i) ir_value_delete(self->locals[i]); MEM_VECTOR_CLEAR(self, locals); /* self->value is deleted by the builder */ mem_d(self); } bool GMQCC_WARN ir_function_collect_value(ir_function *self, ir_value *v) { return ir_function_values_add(self, v); } ir_block* ir_function_create_block(ir_function *self, const char *label) { ir_block* bn = ir_block_new(self, label); memcpy(&bn->context, &self->context, sizeof(self->context)); if (!ir_function_blocks_add(self, bn)) { ir_block_delete(bn); return NULL; } return bn; } bool ir_function_finalize(ir_function *self) { if (self->builtin) return true; if (!ir_function_naive_phi(self)) return false; ir_function_enumerate(self); if (!ir_function_calculate_liferanges(self)) return false; if (!ir_function_allocate_locals(self)) return false; return true; } ir_value* ir_function_get_local(ir_function *self, const char *name) { size_t i; for (i = 0; i < self->locals_count; ++i) { if (!strcmp(self->locals[i]->name, name)) return self->locals[i]; } return NULL; } ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param) { ir_value *ve = ir_function_get_local(self, name); if (ve) { return NULL; } if (param && self->locals_count && self->locals[self->locals_count-1]->store != store_param) { printf("cannot add parameters after adding locals\n"); return NULL; } ve = ir_value_var(name, (param ? store_param : store_local), vtype); if (!ir_function_locals_add(self, ve)) { ir_value_delete(ve); return NULL; } return ve; } /*********************************************************************** *IR Block */ ir_block* ir_block_new(ir_function* owner, const char *name) { ir_block *self; self = (ir_block*)mem_a(sizeof(*self)); if (!self) return NULL; memset(self, 0, sizeof(*self)); self->label = NULL; if (!ir_block_set_label(self, name)) { mem_d(self); return NULL; } self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->final = false; MEM_VECTOR_INIT(self, instr); MEM_VECTOR_INIT(self, entries); MEM_VECTOR_INIT(self, exits); self->eid = 0; self->is_return = false; self->run_id = 0; MEM_VECTOR_INIT(self, living); self->generated = false; return self; } MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living) void ir_block_delete(ir_block* self) { size_t i; mem_d(self->label); for (i = 0; i != self->instr_count; ++i) ir_instr_delete(self->instr[i]); MEM_VECTOR_CLEAR(self, instr); MEM_VECTOR_CLEAR(self, entries); MEM_VECTOR_CLEAR(self, exits); MEM_VECTOR_CLEAR(self, living); mem_d(self); } bool ir_block_set_label(ir_block *self, const char *name) { if (self->label) mem_d((void*)self->label); self->label = util_strdup(name); return !!self->label; } /*********************************************************************** *IR Instructions */ ir_instr* ir_instr_new(ir_block* owner, int op) { ir_instr *self; self = (ir_instr*)mem_a(sizeof(*self)); if (!self) return NULL; self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->opcode = op; self->_ops[0] = NULL; self->_ops[1] = NULL; self->_ops[2] = NULL; self->bops[0] = NULL; self->bops[1] = NULL; MEM_VECTOR_INIT(self, phi); MEM_VECTOR_INIT(self, params); self->eid = 0; return self; } MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi) MEM_VEC_FUNCTIONS(ir_instr, ir_value*, params) void ir_instr_delete(ir_instr *self) { size_t i; /* The following calls can only delete from * vectors, we still want to delete this instruction * so ignore the return value. Since with the warn_unused_result attribute * gcc doesn't care about an explicit: (void)foo(); to ignore the result, * I have to improvise here and use if(foo()); */ for (i = 0; i < self->phi_count; ++i) { size_t idx; if (ir_value_writes_find(self->phi[i].value, self, &idx)) if (ir_value_writes_remove(self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY; if (ir_value_reads_find(self->phi[i].value, self, &idx)) if (ir_value_reads_remove (self->phi[i].value, idx)) GMQCC_SUPPRESS_EMPTY_BODY; } MEM_VECTOR_CLEAR(self, phi); for (i = 0; i < self->params_count; ++i) { size_t idx; if (ir_value_writes_find(self->params[i], self, &idx)) if (ir_value_writes_remove(self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY; if (ir_value_reads_find(self->params[i], self, &idx)) if (ir_value_reads_remove (self->params[i], idx)) GMQCC_SUPPRESS_EMPTY_BODY; } MEM_VECTOR_CLEAR(self, params); if (ir_instr_op(self, 0, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; if (ir_instr_op(self, 1, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; if (ir_instr_op(self, 2, NULL, false)) GMQCC_SUPPRESS_EMPTY_BODY; mem_d(self); } bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing) { if (self->_ops[op]) { size_t idx; if (writing && ir_value_writes_find(self->_ops[op], self, &idx)) { if (!ir_value_writes_remove(self->_ops[op], idx)) return false; } else if (ir_value_reads_find(self->_ops[op], self, &idx)) { if (!ir_value_reads_remove(self->_ops[op], idx)) return false; } } if (v) { if (writing) { if (!ir_value_writes_add(v, self)) return false; } else { if (!ir_value_reads_add(v, self)) return false; } } self->_ops[op] = v; return true; } /*********************************************************************** *IR Value */ void ir_value_code_setaddr(ir_value *self, int32_t gaddr) { self->code.globaladdr = gaddr; if (self->members[0]) self->members[0]->code.globaladdr = gaddr; if (self->members[1]) self->members[1]->code.globaladdr = gaddr; if (self->members[2]) self->members[2]->code.globaladdr = gaddr; } int32_t ir_value_code_addr(const ir_value *self) { if (self->store == store_return) return OFS_RETURN + self->code.addroffset; return self->code.globaladdr + self->code.addroffset; } ir_value* ir_value_var(const char *name, int storetype, int vtype) { ir_value *self; self = (ir_value*)mem_a(sizeof(*self)); self->vtype = vtype; self->fieldtype = TYPE_VOID; self->outtype = TYPE_VOID; self->store = storetype; MEM_VECTOR_INIT(self, reads); MEM_VECTOR_INIT(self, writes); self->isconst = false; self->context.file = "<@no context>"; self->context.line = 0; self->name = NULL; ir_value_set_name(self, name); memset(&self->constval, 0, sizeof(self->constval)); memset(&self->code, 0, sizeof(self->code)); MEM_VECTOR_INIT(self, life); return self; } ir_value* ir_value_vector_member(ir_value *self, unsigned int member) { ir_value *m; if (member >= 3) return NULL; if (self->members[member]) return self->members[member]; if (self->vtype == TYPE_VECTOR) { m = ir_value_var(self->name, self->store, TYPE_FLOAT); if (!m) return NULL; m->context = self->context; self->members[member] = m; m->code.addroffset = member; } else if (self->vtype == TYPE_FIELD) { if (self->fieldtype != TYPE_VECTOR) return NULL; m = ir_value_var(self->name, self->store, TYPE_FIELD); if (!m) return NULL; m->fieldtype = TYPE_FLOAT; m->context = self->context; self->members[member] = m; m->code.addroffset = member; } else { printf("invalid member access on %s\n", self->name); return NULL; } return m; } MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life) MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, reads) MEM_VEC_FUNCTIONS_ALL(ir_value, ir_instr*, writes) ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype) { ir_value *v = ir_value_var(name, storetype, vtype); if (!v) return NULL; if (!ir_function_collect_value(owner, v)) { ir_value_delete(v); return NULL; } return v; } void ir_value_delete(ir_value* self) { size_t i; if (self->name) mem_d((void*)self->name); if (self->isconst) { if (self->vtype == TYPE_STRING) mem_d((void*)self->constval.vstring); } for (i = 0; i < 3; ++i) { if (self->members[i]) ir_value_delete(self->members[i]); } MEM_VECTOR_CLEAR(self, reads); MEM_VECTOR_CLEAR(self, writes); MEM_VECTOR_CLEAR(self, life); mem_d(self); } void ir_value_set_name(ir_value *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); } bool ir_value_set_float(ir_value *self, float f) { if (self->vtype != TYPE_FLOAT) return false; self->constval.vfloat = f; self->isconst = true; return true; } bool ir_value_set_func(ir_value *self, int f) { if (self->vtype != TYPE_FUNCTION) return false; self->constval.vint = f; self->isconst = true; return true; } bool ir_value_set_vector(ir_value *self, vector v) { if (self->vtype != TYPE_VECTOR) return false; self->constval.vvec = v; self->isconst = true; return true; } bool ir_value_set_field(ir_value *self, ir_value *fld) { if (self->vtype != TYPE_FIELD) return false; self->constval.vpointer = fld; self->isconst = true; return true; } bool ir_value_set_string(ir_value *self, const char *str) { if (self->vtype != TYPE_STRING) return false; self->constval.vstring = util_strdup(str); self->isconst = true; return true; } #if 0 bool ir_value_set_int(ir_value *self, int i) { if (self->vtype != TYPE_INTEGER) return false; self->constval.vint = i; self->isconst = true; return true; } #endif bool ir_value_lives(ir_value *self, size_t at) { size_t i; for (i = 0; i < self->life_count; ++i) { ir_life_entry_t *life = &self->life[i]; if (life->start <= at && at <= life->end) return true; if (life->start > at) /* since it's ordered */ return false; } return false; } bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e) { size_t k; if (!ir_value_life_add(self, e)) /* naive... */ return false; for (k = self->life_count-1; k > idx; --k) self->life[k] = self->life[k-1]; self->life[idx] = e; return true; } bool ir_value_life_merge(ir_value *self, size_t s) { size_t i; ir_life_entry_t *life = NULL; ir_life_entry_t *before = NULL; ir_life_entry_t new_entry; /* Find the first range >= s */ for (i = 0; i < self->life_count; ++i) { before = life; life = &self->life[i]; if (life->start > s) break; } /* nothing found? append */ if (i == self->life_count) { ir_life_entry_t e; if (life && life->end+1 == s) { /* previous life range can be merged in */ life->end++; return true; } if (life && life->end >= s) return false; e.start = e.end = s; if (!ir_value_life_add(self, e)) return false; /* failing */ return true; } /* found */ if (before) { if (before->end + 1 == s && life->start - 1 == s) { /* merge */ before->end = life->end; if (!ir_value_life_remove(self, i)) return false; /* failing */ return true; } if (before->end + 1 == s) { /* extend before */ before->end++; return true; } /* already contained */ if (before->end >= s) return false; } /* extend */ if (life->start - 1 == s) { life->start--; return true; } /* insert a new entry */ new_entry.start = new_entry.end = s; return ir_value_life_insert(self, i, new_entry); } bool ir_value_life_merge_into(ir_value *self, const ir_value *other) { size_t i, myi; if (!other->life_count) return true; if (!self->life_count) { for (i = 0; i < other->life_count; ++i) { if (!ir_value_life_add(self, other->life[i])) return false; } return true; } myi = 0; for (i = 0; i < other->life_count; ++i) { const ir_life_entry_t *life = &other->life[i]; while (true) { ir_life_entry_t *entry = &self->life[myi]; if (life->end+1 < entry->start) { /* adding an interval before entry */ if (!ir_value_life_insert(self, myi, *life)) return false; ++myi; break; } if (life->start < entry->start && life->end >= entry->start) { /* starts earlier and overlaps */ entry->start = life->start; } if (life->end > entry->end && life->start-1 <= entry->end) { /* ends later and overlaps */ entry->end = life->end; } /* see if our change combines it with the next ranges */ while (myi+1 < self->life_count && entry->end+1 >= self->life[1+myi].start) { /* overlaps with (myi+1) */ if (entry->end < self->life[1+myi].end) entry->end = self->life[1+myi].end; if (!ir_value_life_remove(self, myi+1)) return false; entry = &self->life[myi]; } /* see if we're after the entry */ if (life->start > entry->end) { ++myi; /* append if we're at the end */ if (myi >= self->life_count) { if (!ir_value_life_add(self, *life)) return false; break; } /* otherweise check the next range */ continue; } break; } } return true; } bool ir_values_overlap(const ir_value *a, const ir_value *b) { /* For any life entry in A see if it overlaps with * any life entry in B. * Note that the life entries are orderes, so we can make a * more efficient algorithm there than naively translating the * statement above. */ ir_life_entry_t *la, *lb, *enda, *endb; /* first of all, if either has no life range, they cannot clash */ if (!a->life_count || !b->life_count) return false; la = a->life; lb = b->life; enda = la + a->life_count; endb = lb + b->life_count; while (true) { /* check if the entries overlap, for that, * both must start before the other one ends. */ #if defined(LIFE_RANGE_WITHOUT_LAST_READ) if (la->start <= lb->end && lb->start <= la->end) #else if (la->start < lb->end && lb->start < la->end) #endif { return true; } /* entries are ordered * one entry is earlier than the other * that earlier entry will be moved forward */ if (la->start < lb->start) { /* order: A B, move A forward * check if we hit the end with A */ if (++la == enda) break; } else if (lb->start < la->start) { /* order: B A, move B forward * check if we hit the end with B */ if (++lb == endb) break; } } return false; } /*********************************************************************** *IR main operations */ bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what) { ir_instr *in = ir_instr_new(self, op); if (!in) return false; if (target->store == store_value && (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) { fprintf(stderr, "cannot store to an SSA value\n"); fprintf(stderr, "trying to store: %s <- %s\n", target->name, what->name); fprintf(stderr, "instruction: %s\n", asm_instr[op].m); return false; } if (!ir_instr_op(in, 0, target, true) || !ir_instr_op(in, 1, what, false) || !ir_block_instr_add(self, in) ) { return false; } return true; } bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what) { int op = 0; int vtype; if (target->vtype == TYPE_VARIANT) vtype = what->vtype; else vtype = target->vtype; #if 0 if (vtype == TYPE_FLOAT && what->vtype == TYPE_INTEGER) op = INSTR_CONV_ITOF; else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT) op = INSTR_CONV_FTOI; #endif op = type_store_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR) op = INSTR_STORE_V; } return ir_block_create_store_op(self, op, target, what); } bool ir_block_create_storep(ir_block *self, ir_value *target, ir_value *what) { int op = 0; int vtype; if (target->vtype != TYPE_POINTER) return false; /* storing using pointer - target is a pointer, type must be * inferred from source */ vtype = what->vtype; op = type_storep_instr[vtype]; if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) { if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR) op = INSTR_STOREP_V; } return ir_block_create_store_op(self, op, target, what); } bool ir_block_create_return(ir_block *self, ir_value *v) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return false; } self->final = true; self->is_return = true; in = ir_instr_new(self, INSTR_RETURN); if (!in) return false; if (!ir_instr_op(in, 0, v, false) || !ir_block_instr_add(self, in) ) { return false; } return true; } bool ir_block_create_if(ir_block *self, ir_value *v, ir_block *ontrue, ir_block *onfalse) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return false; } self->final = true; /*in = ir_instr_new(self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/ in = ir_instr_new(self, VINSTR_COND); if (!in) return false; if (!ir_instr_op(in, 0, v, false)) { ir_instr_delete(in); return false; } in->bops[0] = ontrue; in->bops[1] = onfalse; if (!ir_block_instr_add(self, in)) return false; if (!ir_block_exits_add(self, ontrue) || !ir_block_exits_add(self, onfalse) || !ir_block_entries_add(ontrue, self) || !ir_block_entries_add(onfalse, self) ) { return false; } return true; } bool ir_block_create_jump(ir_block *self, ir_block *to) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return false; } self->final = true; in = ir_instr_new(self, VINSTR_JUMP); if (!in) return false; in->bops[0] = to; if (!ir_block_instr_add(self, in)) return false; if (!ir_block_exits_add(self, to) || !ir_block_entries_add(to, self) ) { return false; } return true; } bool ir_block_create_goto(ir_block *self, ir_block *to) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return false; } self->final = true; in = ir_instr_new(self, INSTR_GOTO); if (!in) return false; in->bops[0] = to; if (!ir_block_instr_add(self, in)) return false; if (!ir_block_exits_add(self, to) || !ir_block_entries_add(to, self) ) { return false; } return true; } ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot) { ir_value *out; ir_instr *in; in = ir_instr_new(self, VINSTR_PHI); if (!in) return NULL; out = ir_value_out(self->owner, label, store_value, ot); if (!out) { ir_instr_delete(in); return NULL; } if (!ir_instr_op(in, 0, out, true)) { ir_instr_delete(in); ir_value_delete(out); return NULL; } if (!ir_block_instr_add(self, in)) { ir_instr_delete(in); ir_value_delete(out); return NULL; } return in; } ir_value* ir_phi_value(ir_instr *self) { return self->_ops[0]; } bool ir_phi_add(ir_instr* self, ir_block *b, ir_value *v) { ir_phi_entry_t pe; if (!ir_block_entries_find(self->owner, b, NULL)) { /* Must not be possible to cause this, otherwise the AST * is doing something wrong. */ fprintf(stderr, "Invalid entry block for PHI\n"); abort(); } pe.value = v; pe.from = b; if (!ir_value_reads_add(v, self)) return false; return ir_instr_phi_add(self, pe); } /* call related code */ ir_instr* ir_block_create_call(ir_block *self, const char *label, ir_value *func) { ir_value *out; ir_instr *in; in = ir_instr_new(self, INSTR_CALL0); if (!in) return NULL; out = ir_value_out(self->owner, label, store_return, func->outtype); if (!out) { ir_instr_delete(in); return NULL; } if (!ir_instr_op(in, 0, out, true) || !ir_instr_op(in, 1, func, false) || !ir_block_instr_add(self, in)) { ir_instr_delete(in); ir_value_delete(out); return NULL; } return in; } ir_value* ir_call_value(ir_instr *self) { return self->_ops[0]; } bool ir_call_param(ir_instr* self, ir_value *v) { if (!ir_instr_params_add(self, v)) return false; if (!ir_value_reads_add(v, self)) { if (!ir_instr_params_remove(self, self->params_count-1)) GMQCC_SUPPRESS_EMPTY_BODY; return false; } return true; } /* binary op related code */ ir_value* ir_block_create_binop(ir_block *self, const char *label, int opcode, ir_value *left, ir_value *right) { int ot = TYPE_VOID; switch (opcode) { case INSTR_ADD_F: case INSTR_SUB_F: case INSTR_DIV_F: case INSTR_MUL_F: case INSTR_MUL_V: case INSTR_AND: case INSTR_OR: #if 0 case INSTR_AND_I: case INSTR_AND_IF: case INSTR_AND_FI: case INSTR_OR_I: case INSTR_OR_IF: case INSTR_OR_FI: #endif case INSTR_BITAND: case INSTR_BITOR: #if 0 case INSTR_SUB_S: /* -- offset of string as float */ case INSTR_MUL_IF: case INSTR_MUL_FI: case INSTR_DIV_IF: case INSTR_DIV_FI: case INSTR_BITOR_IF: case INSTR_BITOR_FI: case INSTR_BITAND_FI: case INSTR_BITAND_IF: case INSTR_EQ_I: case INSTR_NE_I: #endif ot = TYPE_FLOAT; break; #if 0 case INSTR_ADD_I: case INSTR_ADD_IF: case INSTR_ADD_FI: case INSTR_SUB_I: case INSTR_SUB_FI: case INSTR_SUB_IF: case INSTR_MUL_I: case INSTR_DIV_I: case INSTR_BITAND_I: case INSTR_BITOR_I: case INSTR_XOR_I: case INSTR_RSHIFT_I: case INSTR_LSHIFT_I: ot = TYPE_INTEGER; break; #endif case INSTR_ADD_V: case INSTR_SUB_V: case INSTR_MUL_VF: case INSTR_MUL_FV: #if 0 case INSTR_DIV_VF: case INSTR_MUL_IV: case INSTR_MUL_VI: #endif ot = TYPE_VECTOR; break; #if 0 case INSTR_ADD_SF: ot = TYPE_POINTER; break; #endif default: /* ranges: */ /* boolean operations result in floats */ if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT) ot = TYPE_FLOAT; else if (opcode >= INSTR_LE && opcode <= INSTR_GT) ot = TYPE_FLOAT; #if 0 else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI) ot = TYPE_FLOAT; #endif break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return NULL; } return ir_block_create_general_instr(self, label, opcode, left, right, ot); } ir_value* ir_block_create_unary(ir_block *self, const char *label, int opcode, ir_value *operand) { int ot = TYPE_FLOAT; switch (opcode) { case INSTR_NOT_F: case INSTR_NOT_V: case INSTR_NOT_S: case INSTR_NOT_ENT: case INSTR_NOT_FNC: #if 0 case INSTR_NOT_I: #endif ot = TYPE_FLOAT; break; /* QC doesn't have other unary operations. We expect extensions to fill * the above list, otherwise we assume out-type = in-type, eg for an * unary minus */ default: ot = operand->vtype; break; }; if (ot == TYPE_VOID) { /* The AST or parser were supposed to check this! */ return NULL; } /* let's use the general instruction creator and pass NULL for OPB */ return ir_block_create_general_instr(self, label, opcode, operand, NULL, ot); } ir_value* ir_block_create_general_instr(ir_block *self, const char *label, int op, ir_value *a, ir_value *b, int outype) { ir_instr *instr; ir_value *out; out = ir_value_out(self->owner, label, store_value, outype); if (!out) return NULL; instr = ir_instr_new(self, op); if (!instr) { ir_value_delete(out); return NULL; } if (!ir_instr_op(instr, 0, out, true) || !ir_instr_op(instr, 1, a, false) || !ir_instr_op(instr, 2, b, false) ) { goto on_error; } if (!ir_block_instr_add(self, instr)) goto on_error; return out; on_error: ir_instr_delete(instr); ir_value_delete(out); return NULL; } ir_value* ir_block_create_fieldaddress(ir_block *self, const char *label, ir_value *ent, ir_value *field) { ir_value *v; /* Support for various pointer types todo if so desired */ if (ent->vtype != TYPE_ENTITY) return NULL; if (field->vtype != TYPE_FIELD) return NULL; v = ir_block_create_general_instr(self, label, INSTR_ADDRESS, ent, field, TYPE_POINTER); v->fieldtype = field->fieldtype; return v; } ir_value* ir_block_create_load_from_ent(ir_block *self, const char *label, ir_value *ent, ir_value *field, int outype) { int op; if (ent->vtype != TYPE_ENTITY) return NULL; /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */ if (field->vtype != TYPE_FIELD) return NULL; switch (outype) { case TYPE_FLOAT: op = INSTR_LOAD_F; break; case TYPE_VECTOR: op = INSTR_LOAD_V; break; case TYPE_STRING: op = INSTR_LOAD_S; break; case TYPE_FIELD: op = INSTR_LOAD_FLD; break; case TYPE_ENTITY: op = INSTR_LOAD_ENT; break; #if 0 case TYPE_POINTER: op = INSTR_LOAD_I; break; case TYPE_INTEGER: op = INSTR_LOAD_I; break; #endif default: return NULL; } return ir_block_create_general_instr(self, label, op, ent, field, outype); } ir_value* ir_block_create_add(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case TYPE_FLOAT: op = INSTR_ADD_F; break; #if 0 case TYPE_INTEGER: op = INSTR_ADD_I; break; #endif case TYPE_VECTOR: op = INSTR_ADD_V; break; } } else { #if 0 if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_ADD_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_ADD_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_sub(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case TYPE_FLOAT: op = INSTR_SUB_F; break; #if 0 case TYPE_INTEGER: op = INSTR_SUB_I; break; #endif case TYPE_VECTOR: op = INSTR_SUB_V; break; } } else { #if 0 if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_SUB_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_SUB_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_mul(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case TYPE_FLOAT: op = INSTR_MUL_F; break; #if 0 case TYPE_INTEGER: op = INSTR_MUL_I; break; #endif case TYPE_VECTOR: op = INSTR_MUL_V; break; } } else { if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) op = INSTR_MUL_VF; else if ( (l == TYPE_FLOAT && r == TYPE_VECTOR) ) op = INSTR_MUL_FV; #if 0 else if ( (l == TYPE_VECTOR && r == TYPE_INTEGER) ) op = INSTR_MUL_VI; else if ( (l == TYPE_INTEGER && r == TYPE_VECTOR) ) op = INSTR_MUL_IV; else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_MUL_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_MUL_IF; #endif else return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_div(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case TYPE_FLOAT: op = INSTR_DIV_F; break; #if 0 case TYPE_INTEGER: op = INSTR_DIV_I; break; #endif } } else { #if 0 if ( (l == TYPE_VECTOR && r == TYPE_FLOAT) ) op = INSTR_DIV_VF; else if ( (l == TYPE_FLOAT && r == TYPE_INTEGER) ) op = INSTR_DIV_FI; else if ( (l == TYPE_INTEGER && r == TYPE_FLOAT) ) op = INSTR_DIV_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } /* PHI resolving breaks the SSA, and must thus be the last * step before life-range calculation. */ static bool ir_block_naive_phi(ir_block *self); bool ir_function_naive_phi(ir_function *self) { size_t i; for (i = 0; i < self->blocks_count; ++i) { if (!ir_block_naive_phi(self->blocks[i])) return false; } return true; } static bool ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what) { ir_instr *instr; size_t i; /* create a store */ if (!ir_block_create_store(block, old, what)) return false; /* we now move it up */ instr = block->instr[block->instr_count-1]; for (i = block->instr_count; i > iid; --i) block->instr[i] = block->instr[i-1]; block->instr[i] = instr; return true; } static bool ir_block_naive_phi(ir_block *self) { size_t i, p, w; /* FIXME: optionally, create_phi can add the phis * to a list so we don't need to loop through blocks * - anyway: "don't optimize YET" */ for (i = 0; i < self->instr_count; ++i) { ir_instr *instr = self->instr[i]; if (instr->opcode != VINSTR_PHI) continue; if (!ir_block_instr_remove(self, i)) return false; --i; /* NOTE: i+1 below */ for (p = 0; p < instr->phi_count; ++p) { ir_value *v = instr->phi[p].value; for (w = 0; w < v->writes_count; ++w) { ir_value *old; if (!v->writes[w]->_ops[0]) continue; /* When the write was to a global, we have to emit a mov */ old = v->writes[w]->_ops[0]; /* The original instruction now writes to the PHI target local */ if (v->writes[w]->_ops[0] == v) v->writes[w]->_ops[0] = instr->_ops[0]; if (old->store != store_value && old->store != store_local && old->store != store_param) { /* If it originally wrote to a global we need to store the value * there as welli */ if (!ir_naive_phi_emit_store(self, i+1, old, v)) return false; if (i+1 < self->instr_count) instr = self->instr[i+1]; else instr = NULL; /* In case I forget and access instr later, it'll be NULL * when it's a problem, to make sure we crash, rather than accessing * invalid data. */ } else { /* If it didn't, we can replace all reads by the phi target now. */ size_t r; for (r = 0; r < old->reads_count; ++r) { size_t op; ir_instr *ri = old->reads[r]; for (op = 0; op < ri->phi_count; ++op) { if (ri->phi[op].value == old) ri->phi[op].value = v; } for (op = 0; op < 3; ++op) { if (ri->_ops[op] == old) ri->_ops[op] = v; } } } } } ir_instr_delete(instr); } return true; } /*********************************************************************** *IR Temp allocation code * Propagating value life ranges by walking through the function backwards * until no more changes are made. * In theory this should happen once more than once for every nested loop * level. * Though this implementation might run an additional time for if nests. */ typedef struct { ir_value* *v; size_t v_count; size_t v_alloc; } new_reads_t; MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v) /* Enumerate instructions used by value's life-ranges */ static void ir_block_enumerate(ir_block *self, size_t *_eid) { size_t i; size_t eid = *_eid; for (i = 0; i < self->instr_count; ++i) { self->instr[i]->eid = eid++; } *_eid = eid; } /* Enumerate blocks and instructions. * The block-enumeration is unordered! * We do not really use the block enumreation, however * the instruction enumeration is important for life-ranges. */ void ir_function_enumerate(ir_function *self) { size_t i; size_t instruction_id = 0; for (i = 0; i < self->blocks_count; ++i) { self->blocks[i]->eid = i; self->blocks[i]->run_id = 0; ir_block_enumerate(self->blocks[i], &instruction_id); } } static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed); bool ir_function_calculate_liferanges(ir_function *self) { size_t i; bool changed; do { self->run_id++; changed = false; for (i = 0; i != self->blocks_count; ++i) { if (self->blocks[i]->is_return) { if (!ir_block_life_propagate(self->blocks[i], NULL, &changed)) return false; } } } while (changed); return true; } /* Local-value allocator * After finishing creating the liferange of all values used in a function * we can allocate their global-positions. * This is the counterpart to register-allocation in register machines. */ typedef struct { MEM_VECTOR_MAKE(ir_value*, locals); MEM_VECTOR_MAKE(size_t, sizes); MEM_VECTOR_MAKE(size_t, positions); } function_allocator; MEM_VEC_FUNCTIONS(function_allocator, ir_value*, locals) MEM_VEC_FUNCTIONS(function_allocator, size_t, sizes) MEM_VEC_FUNCTIONS(function_allocator, size_t, positions) static bool function_allocator_alloc(function_allocator *alloc, const ir_value *var) { ir_value *slot; size_t vsize = type_sizeof[var->vtype]; slot = ir_value_var("reg", store_global, var->vtype); if (!slot) return false; if (!ir_value_life_merge_into(slot, var)) goto localerror; if (!function_allocator_locals_add(alloc, slot)) goto localerror; if (!function_allocator_sizes_add(alloc, vsize)) goto localerror; return true; localerror: ir_value_delete(slot); return false; } bool ir_function_allocate_locals(ir_function *self) { size_t i, a; bool retval = true; size_t pos; ir_value *slot; const ir_value *v; function_allocator alloc; if (!self->locals_count) return true; MEM_VECTOR_INIT(&alloc, locals); MEM_VECTOR_INIT(&alloc, sizes); MEM_VECTOR_INIT(&alloc, positions); for (i = 0; i < self->locals_count; ++i) { if (!function_allocator_alloc(&alloc, self->locals[i])) goto error; } /* Allocate a slot for any value that still exists */ for (i = 0; i < self->values_count; ++i) { v = self->values[i]; if (!v->life_count) continue; for (a = 0; a < alloc.locals_count; ++a) { slot = alloc.locals[a]; if (ir_values_overlap(v, slot)) continue; if (!ir_value_life_merge_into(slot, v)) goto error; /* adjust size for this slot */ if (alloc.sizes[a] < type_sizeof[v->vtype]) alloc.sizes[a] = type_sizeof[v->vtype]; self->values[i]->code.local = a; break; } if (a >= alloc.locals_count) { self->values[i]->code.local = alloc.locals_count; if (!function_allocator_alloc(&alloc, v)) goto error; } } /* Adjust slot positions based on sizes */ if (!function_allocator_positions_add(&alloc, 0)) goto error; if (alloc.sizes_count) pos = alloc.positions[0] + alloc.sizes[0]; else pos = 0; for (i = 1; i < alloc.sizes_count; ++i) { pos = alloc.positions[i-1] + alloc.sizes[i-1]; if (!function_allocator_positions_add(&alloc, pos)) goto error; } self->allocated_locals = pos + alloc.sizes[alloc.sizes_count-1]; /* Take over the actual slot positions */ for (i = 0; i < self->values_count; ++i) self->values[i]->code.local = alloc.positions[self->values[i]->code.local]; goto cleanup; error: retval = false; cleanup: for (i = 0; i < alloc.locals_count; ++i) ir_value_delete(alloc.locals[i]); MEM_VECTOR_CLEAR(&alloc, locals); MEM_VECTOR_CLEAR(&alloc, sizes); MEM_VECTOR_CLEAR(&alloc, positions); return retval; } /* Get information about which operand * is read from, or written to. */ static void ir_op_read_write(int op, size_t *read, size_t *write) { switch (op) { case VINSTR_JUMP: case INSTR_GOTO: *write = 0; *read = 0; break; case INSTR_IF: case INSTR_IFNOT: #if 0 case INSTR_IF_S: case INSTR_IFNOT_S: #endif case INSTR_RETURN: case VINSTR_COND: *write = 0; *read = 1; break; default: *write = 1; *read = 6; break; }; } static bool ir_block_living_add_instr(ir_block *self, size_t eid) { size_t i; bool changed = false; bool tempbool; for (i = 0; i != self->living_count; ++i) { tempbool = ir_value_life_merge(self->living[i], eid); /* debug if (tempbool) fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid); */ changed = changed || tempbool; } return changed; } static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed) { size_t i; /* values which have been read in a previous iteration are now * in the "living" array even if the previous block doesn't use them. * So we have to remove whatever does not exist in the previous block. * They will be re-added on-read, but the liferange merge won't cause * a change. */ for (i = 0; i < self->living_count; ++i) { if (!ir_block_living_find(prev, self->living[i], NULL)) { if (!ir_block_living_remove(self, i)) return false; --i; } } /* Whatever the previous block still has in its living set * must now be added to ours as well. */ for (i = 0; i < prev->living_count; ++i) { if (ir_block_living_find(self, prev->living[i], NULL)) continue; if (!ir_block_living_add(self, prev->living[i])) return false; /* printf("%s got from prev: %s\n", self->label, prev->living[i]->_name); */ } return true; } static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed) { ir_instr *instr; ir_value *value; bool tempbool; size_t i, o, p; /* bitmasks which operands are read from or written to */ size_t read, write; #if defined(LIFE_RANGE_WITHOUT_LAST_READ) size_t rd; new_reads_t new_reads; #endif char dbg_ind[16] = { '#', '0' }; (void)dbg_ind; #if defined(LIFE_RANGE_WITHOUT_LAST_READ) MEM_VECTOR_INIT(&new_reads, v); #endif if (prev) { if (!ir_block_life_prop_previous(self, prev, changed)) return false; } i = self->instr_count; while (i) { --i; instr = self->instr[i]; /* PHI operands are always read operands */ for (p = 0; p < instr->phi_count; ++p) { value = instr->phi[p].value; #if ! defined(LIFE_RANGE_WITHOUT_LAST_READ) if (!ir_block_living_find(self, value, NULL) && !ir_block_living_add(self, value)) { goto on_error; } #else if (!new_reads_t_v_find(&new_reads, value, NULL)) { if (!new_reads_t_v_add(&new_reads, value)) goto on_error; } #endif } /* See which operands are read and write operands */ ir_op_read_write(instr->opcode, &read, &write); /* Go through the 3 main operands */ for (o = 0; o < 3; ++o) { if (!instr->_ops[o]) /* no such operand */ continue; value = instr->_ops[o]; /* We only care about locals */ /* we also calculate parameter liferanges so that locals * can take up parameter slots */ if (value->store != store_value && value->store != store_local && value->store != store_param) continue; /* read operands */ if (read & (1<_name); */ if (!new_reads_t_v_find(&new_reads, value, NULL)) { if (!new_reads_t_v_add(&new_reads, value)) goto on_error; } #endif } /* write operands */ /* When we write to a local, we consider it "dead" for the * remaining upper part of the function, since in SSA a value * can only be written once (== created) */ if (write & (1<name); tempbool = ir_value_life_merge(value, instr->eid); *changed = *changed || tempbool; /* ir_instr_dump(instr, dbg_ind, printf); abort(); */ } else { /* since 'living' won't contain it * anymore, merge the value, since * (A) doesn't. */ tempbool = ir_value_life_merge(value, instr->eid); /* if (tempbool) fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid); */ *changed = *changed || tempbool; /* Then remove */ #if ! defined(LIFE_RANGE_WITHOUT_LAST_READ) if (!ir_block_living_remove(self, idx)) goto on_error; #else if (in_reads) { if (!new_reads_t_v_remove(&new_reads, readidx)) goto on_error; } #endif } } } /* (A) */ tempbool = ir_block_living_add_instr(self, instr->eid); /*fprintf(stderr, "living added values\n");*/ *changed = *changed || tempbool; #if defined(LIFE_RANGE_WITHOUT_LAST_READ) /* new reads: */ for (rd = 0; rd < new_reads.v_count; ++rd) { if (!ir_block_living_find(self, new_reads.v[rd], NULL)) { if (!ir_block_living_add(self, new_reads.v[rd])) goto on_error; } if (!i && !self->entries_count) { /* fix the top */ *changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid); } } MEM_VECTOR_CLEAR(&new_reads, v); #endif } if (self->run_id == self->owner->run_id) return true; self->run_id = self->owner->run_id; for (i = 0; i < self->entries_count; ++i) { ir_block *entry = self->entries[i]; ir_block_life_propagate(entry, self, changed); } return true; on_error: #if defined(LIFE_RANGE_WITHOUT_LAST_READ) MEM_VECTOR_CLEAR(&new_reads, v); #endif return false; } /*********************************************************************** *IR Code-Generation * * Since the IR has the convention of putting 'write' operands * at the beginning, we have to rotate the operands of instructions * properly in order to generate valid QCVM code. * * Having destinations at a fixed position is more convenient. In QC * this is *mostly* OPC, but FTE adds at least 2 instructions which * read from from OPA, and store to OPB rather than OPC. Which is * partially the reason why the implementation of these instructions * in darkplaces has been delayed for so long. * * Breaking conventions is annoying... */ static bool ir_builder_gen_global(ir_builder *self, ir_value *global); static bool gen_global_field(ir_value *global) { if (global->isconst) { ir_value *fld = global->constval.vpointer; if (!fld) { printf("Invalid field constant with no field: %s\n", global->name); return false; } /* Now, in this case, a relocation would be impossible to code * since it looks like this: * .vector v = origin; <- parse error, wtf is 'origin'? * .vector origin; * * But we will need a general relocation support later anyway * for functions... might as well support that here. */ if (!fld->code.globaladdr) { printf("FIXME: Relocation support\n"); return false; } /* copy the field's value */ ir_value_code_setaddr(global, code_globals_add(code_globals_data[fld->code.globaladdr])); if (global->fieldtype == TYPE_VECTOR) { code_globals_add(code_globals_data[fld->code.globaladdr]+1); code_globals_add(code_globals_data[fld->code.globaladdr]+2); } } else { ir_value_code_setaddr(global, code_globals_add(0)); if (global->fieldtype == TYPE_VECTOR) { code_globals_add(0); code_globals_add(0); } } if (global->code.globaladdr < 0) return false; return true; } static bool gen_global_pointer(ir_value *global) { if (global->isconst) { ir_value *target = global->constval.vpointer; if (!target) { printf("Invalid pointer constant: %s\n", global->name); /* NULL pointers are pointing to the NULL constant, which also * sits at address 0, but still has an ir_value for itself. */ return false; } /* Here, relocations ARE possible - in fteqcc-enhanced-qc: * void() foo; <- proto * void() *fooptr = &foo; * void() foo = { code } */ if (!target->code.globaladdr) { /* FIXME: Check for the constant nullptr ir_value! * because then code.globaladdr being 0 is valid. */ printf("FIXME: Relocation support\n"); return false; } ir_value_code_setaddr(global, code_globals_add(target->code.globaladdr)); } else { ir_value_code_setaddr(global, code_globals_add(0)); } if (global->code.globaladdr < 0) return false; return true; } static bool gen_blocks_recursive(ir_function *func, ir_block *block) { prog_section_statement stmt; ir_instr *instr; ir_block *target; ir_block *ontrue; ir_block *onfalse; size_t stidx; size_t i; tailcall: block->generated = true; block->code_start = code_statements_elements; for (i = 0; i < block->instr_count; ++i) { instr = block->instr[i]; if (instr->opcode == VINSTR_PHI) { printf("cannot generate virtual instruction (phi)\n"); return false; } if (instr->opcode == VINSTR_JUMP) { target = instr->bops[0]; /* for uncoditional jumps, if the target hasn't been generated * yet, we generate them right here. */ if (!target->generated) { block = target; goto tailcall; } /* otherwise we generate a jump instruction */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = (target->code_start) - code_statements_elements; stmt.o2.s1 = 0; stmt.o3.s1 = 0; if (code_statements_add(stmt) < 0) return false; /* no further instructions can be in this block */ return true; } if (instr->opcode == VINSTR_COND) { ontrue = instr->bops[0]; onfalse = instr->bops[1]; /* TODO: have the AST signal which block should * come first: eg. optimize IFs without ELSE... */ stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]); stmt.o2.u1 = 0; stmt.o3.s1 = 0; if (ontrue->generated) { stmt.opcode = INSTR_IF; stmt.o2.s1 = (ontrue->code_start-1) - code_statements_elements; if (code_statements_add(stmt) < 0) return false; } if (onfalse->generated) { stmt.opcode = INSTR_IFNOT; stmt.o2.s1 = (onfalse->code_start-1) - code_statements_elements; if (code_statements_add(stmt) < 0) return false; } if (!ontrue->generated) { if (onfalse->generated) { block = ontrue; goto tailcall; } } if (!onfalse->generated) { if (ontrue->generated) { block = onfalse; goto tailcall; } } /* neither ontrue nor onfalse exist */ stmt.opcode = INSTR_IFNOT; stidx = code_statements_elements; if (code_statements_add(stmt) < 0) return false; /* on false we jump, so add ontrue-path */ if (!gen_blocks_recursive(func, ontrue)) return false; /* fixup the jump address */ code_statements_data[stidx].o2.s1 = code_statements_elements - stidx; /* generate onfalse path */ if (onfalse->generated) { /* fixup the jump address */ code_statements_data[stidx].o2.s1 = (onfalse->code_start) - (stidx); /* may have been generated in the previous recursive call */ stmt.opcode = INSTR_GOTO; stmt.o1.s1 = (onfalse->code_start) - code_statements_elements; stmt.o2.s1 = 0; stmt.o3.s1 = 0; return (code_statements_add(stmt) >= 0); } /* if not, generate now */ block = onfalse; goto tailcall; } if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) { /* Trivial call translation: * copy all params to OFS_PARM* * if the output's storetype is not store_return, * add append a STORE instruction! * * NOTES on how to do it better without much trouble: * -) The liferanges! * Simply check the liferange of all parameters for * other CALLs. For each param with no CALL in its * liferange, we can store it in an OFS_PARM at * generation already. This would even include later * reuse.... probably... :) */ size_t p; ir_value *retvalue; for (p = 0; p < instr->params_count; ++p) { ir_value *param = instr->params[p]; stmt.opcode = INSTR_STORE_F; stmt.o3.u1 = 0; stmt.opcode = type_store_instr[param->vtype]; stmt.o1.u1 = ir_value_code_addr(param); stmt.o2.u1 = OFS_PARM0 + 3 * p; if (code_statements_add(stmt) < 0) return false; } stmt.opcode = INSTR_CALL0 + instr->params_count; if (stmt.opcode > INSTR_CALL8) stmt.opcode = INSTR_CALL8; stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); stmt.o2.u1 = 0; stmt.o3.u1 = 0; if (code_statements_add(stmt) < 0) return false; retvalue = instr->_ops[0]; if (retvalue && retvalue->store != store_return && retvalue->life_count) { /* not to be kept in OFS_RETURN */ stmt.opcode = type_store_instr[retvalue->vtype]; stmt.o1.u1 = OFS_RETURN; stmt.o2.u1 = ir_value_code_addr(retvalue); stmt.o3.u1 = 0; if (code_statements_add(stmt) < 0) return false; } continue; } if (instr->opcode == INSTR_STATE) { printf("TODO: state instruction\n"); return false; } stmt.opcode = instr->opcode; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; /* This is the general order of operands */ if (instr->_ops[0]) stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]); if (instr->_ops[1]) stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]); if (instr->_ops[2]) stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]); if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE) { stmt.o1.u1 = stmt.o3.u1; stmt.o3.u1 = 0; } else if ((stmt.opcode >= INSTR_STORE_F && stmt.opcode <= INSTR_STORE_FNC) || (stmt.opcode >= INSTR_STOREP_F && stmt.opcode <= INSTR_STOREP_FNC)) { /* 2-operand instructions with A -> B */ stmt.o2.u1 = stmt.o3.u1; stmt.o3.u1 = 0; } if (code_statements_add(stmt) < 0) return false; } return true; } static bool gen_function_code(ir_function *self) { ir_block *block; prog_section_statement stmt; /* Starting from entry point, we generate blocks "as they come" * for now. Dead blocks will not be translated obviously. */ if (!self->blocks_count) { printf("Function '%s' declared without body.\n", self->name); return false; } block = self->blocks[0]; if (block->generated) return true; if (!gen_blocks_recursive(self, block)) { printf("failed to generate blocks for '%s'\n", self->name); return false; } /* otherwise code_write crashes since it debug-prints functions until AINSTR_END */ stmt.opcode = AINSTR_END; stmt.o1.u1 = 0; stmt.o2.u1 = 0; stmt.o3.u1 = 0; if (code_statements_add(stmt) < 0) return false; return true; } static bool gen_global_function(ir_builder *ir, ir_value *global) { prog_section_function fun; ir_function *irfun; size_t i; size_t local_var_end; if (!global->isconst || (!global->constval.vfunc)) { printf("Invalid state of function-global: not constant: %s\n", global->name); return false; } irfun = global->constval.vfunc; fun.name = global->code.name; fun.file = code_cachedstring(global->context.file); fun.profile = 0; /* always 0 */ fun.nargs = irfun->params_count; for (i = 0;i < 8; ++i) { if (i >= fun.nargs) fun.argsize[i] = 0; else fun.argsize[i] = type_sizeof[irfun->params[i]]; } fun.firstlocal = code_globals_elements; fun.locals = irfun->allocated_locals + irfun->locals_count; local_var_end = 0; for (i = 0; i < irfun->locals_count; ++i) { if (!ir_builder_gen_global(ir, irfun->locals[i])) { printf("Failed to generate global %s\n", irfun->locals[i]->name); return false; } } if (irfun->locals_count) { ir_value *last = irfun->locals[irfun->locals_count-1]; local_var_end = last->code.globaladdr; local_var_end += type_sizeof[last->vtype]; } for (i = 0; i < irfun->values_count; ++i) { /* generate code.globaladdr for ssa values */ ir_value *v = irfun->values[i]; ir_value_code_setaddr(v, local_var_end + v->code.local); } for (i = 0; i < irfun->locals_count; ++i) { /* fill the locals with zeros */ code_globals_add(0); } if (irfun->builtin) fun.entry = irfun->builtin; else { fun.entry = code_statements_elements; if (!gen_function_code(irfun)) { printf("Failed to generate code for function %s\n", irfun->name); return false; } } return (code_functions_add(fun) >= 0); } static bool ir_builder_gen_global(ir_builder *self, ir_value *global) { size_t i; int32_t *iptr; prog_section_def def; def.type = global->vtype; def.offset = code_globals_elements; def.name = global->code.name = code_genstring(global->name); switch (global->vtype) { case TYPE_POINTER: if (code_defs_add(def) < 0) return false; return gen_global_pointer(global); case TYPE_FIELD: if (code_defs_add(def) < 0) return false; return gen_global_field(global); case TYPE_ENTITY: /* fall through */ case TYPE_FLOAT: { if (code_defs_add(def) < 0) return false; if (global->isconst) { iptr = (int32_t*)&global->constval.vfloat; ir_value_code_setaddr(global, code_globals_add(*iptr)); } else ir_value_code_setaddr(global, code_globals_add(0)); return global->code.globaladdr >= 0; } case TYPE_STRING: { if (code_defs_add(def) < 0) return false; if (global->isconst) ir_value_code_setaddr(global, code_globals_add(code_cachedstring(global->constval.vstring))); else ir_value_code_setaddr(global, code_globals_add(0)); return global->code.globaladdr >= 0; } case TYPE_VECTOR: { size_t d; if (code_defs_add(def) < 0) return false; if (global->isconst) { iptr = (int32_t*)&global->constval.vvec; ir_value_code_setaddr(global, code_globals_add(iptr[0])); if (global->code.globaladdr < 0) return false; for (d = 1; d < type_sizeof[global->vtype]; ++d) { if (code_globals_add(iptr[d]) < 0) return false; } } else { ir_value_code_setaddr(global, code_globals_add(0)); if (global->code.globaladdr < 0) return false; for (d = 1; d < type_sizeof[global->vtype]; ++d) { if (code_globals_add(0) < 0) return false; } } return global->code.globaladdr >= 0; } case TYPE_FUNCTION: if (code_defs_add(def) < 0) return false; ir_value_code_setaddr(global, code_globals_elements); code_globals_add(code_functions_elements); return gen_global_function(self, global); case TYPE_VARIANT: /* assume biggest type */ ir_value_code_setaddr(global, code_globals_add(0)); for (i = 1; i < type_sizeof[TYPE_VARIANT]; ++i) code_globals_add(0); return true; default: /* refuse to create 'void' type or any other fancy business. */ printf("Invalid type for global variable %s\n", global->name); return false; } } static bool ir_builder_gen_field(ir_builder *self, ir_value *field) { prog_section_def def; prog_section_field fld; def.type = field->vtype; def.offset = code_globals_elements; /* create a global named the same as the field */ if (opts_standard == COMPILER_GMQCC) { /* in our standard, the global gets a dot prefix */ size_t len = strlen(field->name); char name[1024]; /* we really don't want to have to allocate this, and 1024 * bytes is more than enough for a variable/field name */ if (len+2 >= sizeof(name)) { printf("invalid field name size: %u\n", (unsigned int)len); return false; } name[0] = '.'; strcpy(name+1, field->name); /* no strncpy - we used strlen above */ name[len+1] = 0; def.name = code_genstring(name); fld.name = def.name + 1; /* we reuse that string table entry */ } else { /* in plain QC, there cannot be a global with the same name, * and so we also name the global the same. * FIXME: fteqcc should create a global as well * check if it actually uses the same name. Probably does */ def.name = code_genstring(field->name); fld.name = def.name; } field->code.name = def.name; if (code_defs_add(def) < 0) return false; fld.type = field->fieldtype; if (fld.type == TYPE_VOID) { printf("field is missing a type: %s - don't know its size\n", field->name); return false; } fld.offset = code_alloc_field(type_sizeof[field->fieldtype]); if (code_fields_add(fld) < 0) return false; ir_value_code_setaddr(field, code_globals_elements); if (!code_globals_add(fld.offset)) return false; if (fld.type == TYPE_VECTOR) { if (!code_globals_add(fld.offset+1)) return false; if (!code_globals_add(fld.offset+2)) return false; } return field->code.globaladdr >= 0; } bool ir_builder_generate(ir_builder *self, const char *filename) { size_t i; code_init(); for (i = 0; i < self->fields_count; ++i) { if (!ir_builder_gen_field(self, self->fields[i])) { return false; } } for (i = 0; i < self->globals_count; ++i) { if (!ir_builder_gen_global(self, self->globals[i])) { return false; } } printf("writing '%s'...\n", filename); return code_write(filename); } /*********************************************************************** *IR DEBUG Dump functions... */ #define IND_BUFSZ 1024 const char *qc_opname(int op) { if (op < 0) return ""; if (op < ( sizeof(asm_instr) / sizeof(asm_instr[0]) )) return asm_instr[op].m; switch (op) { case VINSTR_PHI: return "PHI"; case VINSTR_JUMP: return "JUMP"; case VINSTR_COND: return "COND"; default: return ""; } } void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...)) { size_t i; char indent[IND_BUFSZ]; indent[0] = '\t'; indent[1] = 0; oprintf("module %s\n", b->name); for (i = 0; i < b->globals_count; ++i) { oprintf("global "); if (b->globals[i]->isconst) oprintf("%s = ", b->globals[i]->name); ir_value_dump(b->globals[i], oprintf); oprintf("\n"); } for (i = 0; i < b->functions_count; ++i) ir_function_dump(b->functions[i], indent, oprintf); oprintf("endmodule %s\n", b->name); } void ir_function_dump(ir_function *f, char *ind, int (*oprintf)(const char*, ...)) { size_t i; if (f->builtin != 0) { oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin); return; } oprintf("%sfunction %s\n", ind, f->name); strncat(ind, "\t", IND_BUFSZ); if (f->locals_count) { oprintf("%s%i locals:\n", ind, (int)f->locals_count); for (i = 0; i < f->locals_count; ++i) { oprintf("%s\t", ind); ir_value_dump(f->locals[i], oprintf); oprintf("\n"); } } if (f->blocks_count) { oprintf("%slife passes (check): %i\n", ind, (int)f->run_id); for (i = 0; i < f->blocks_count; ++i) { if (f->blocks[i]->run_id != f->run_id) { oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id); } ir_block_dump(f->blocks[i], ind, oprintf); } } ind[strlen(ind)-1] = 0; oprintf("%sendfunction %s\n", ind, f->name); } void ir_block_dump(ir_block* b, char *ind, int (*oprintf)(const char*, ...)) { size_t i; oprintf("%s:%s\n", ind, b->label); strncat(ind, "\t", IND_BUFSZ); for (i = 0; i < b->instr_count; ++i) ir_instr_dump(b->instr[i], ind, oprintf); ind[strlen(ind)-1] = 0; } void dump_phi(ir_instr *in, char *ind, int (*oprintf)(const char*, ...)) { size_t i; oprintf("%s <- phi ", in->_ops[0]->name); for (i = 0; i < in->phi_count; ++i) { oprintf("([%s] : %s) ", in->phi[i].from->label, in->phi[i].value->name); } oprintf("\n"); } void ir_instr_dump(ir_instr *in, char *ind, int (*oprintf)(const char*, ...)) { size_t i; const char *comma = NULL; oprintf("%s (%i) ", ind, (int)in->eid); if (in->opcode == VINSTR_PHI) { dump_phi(in, ind, oprintf); return; } strncat(ind, "\t", IND_BUFSZ); if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) { ir_value_dump(in->_ops[0], oprintf); if (in->_ops[1] || in->_ops[2]) oprintf(" <- "); } if (in->opcode == INSTR_CALL0) { oprintf("CALL%i\t", in->params_count); } else oprintf("%s\t", qc_opname(in->opcode)); if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) { ir_value_dump(in->_ops[0], oprintf); comma = ",\t"; } else { for (i = 1; i != 3; ++i) { if (in->_ops[i]) { if (comma) oprintf(comma); ir_value_dump(in->_ops[i], oprintf); comma = ",\t"; } } } if (in->bops[0]) { if (comma) oprintf(comma); oprintf("[%s]", in->bops[0]->label); comma = ",\t"; } if (in->bops[1]) oprintf("%s[%s]", comma, in->bops[1]->label); oprintf("\n"); ind[strlen(ind)-1] = 0; } void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...)) { if (v->isconst) { switch (v->vtype) { default: case TYPE_VOID: oprintf("(void)"); break; case TYPE_FUNCTION: oprintf("(function)"); break; case TYPE_FLOAT: oprintf("%g", v->constval.vfloat); break; case TYPE_VECTOR: oprintf("'%g %g %g'", v->constval.vvec.x, v->constval.vvec.y, v->constval.vvec.z); break; case TYPE_ENTITY: oprintf("(entity)"); break; case TYPE_STRING: oprintf("\"%s\"", v->constval.vstring); break; #if 0 case TYPE_INTEGER: oprintf("%i", v->constval.vint); break; #endif case TYPE_POINTER: oprintf("&%s", v->constval.vpointer->name); break; } } else { oprintf("%s", v->name); } } void ir_value_dump_life(ir_value *self, int (*oprintf)(const char*,...)) { size_t i; oprintf("Life of %s:\n", self->name); for (i = 0; i < self->life_count; ++i) { oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end); } }