/* * Copyright (C) 2012 * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "gmqcc.h" #include "ir.h" /*********************************************************************** *IR Builder */ ir_builder* ir_builder_new(const char *modulename) { ir_builder* self; self = (ir_builder*)mem_a(sizeof(*self)); MEM_VECTOR_INIT(self, functions); MEM_VECTOR_INIT(self, globals); self->name = NULL; ir_builder_set_name(self, modulename); /* globals which always exist */ /* for now we give it a vector size */ ir_builder_create_global(self, "OFS_RETURN", qc_variant); return self; } MEM_VEC_FUNCTIONS(ir_builder, ir_value*, globals) MEM_VEC_FUNCTIONS(ir_builder, ir_function*, functions) void ir_builder_delete(ir_builder* self) { size_t i; mem_d((void*)self->name); for (i = 0; i != self->functions_count; ++i) { ir_function_delete(self->functions[i]); } MEM_VECTOR_CLEAR(self, functions); for (i = 0; i != self->globals_count; ++i) { ir_value_delete(self->globals[i]); } MEM_VECTOR_CLEAR(self, globals); mem_d(self); } void ir_builder_set_name(ir_builder *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); } ir_function* ir_builder_get_function(ir_builder *self, const char *name) { size_t i; for (i = 0; i < self->functions_count; ++i) { if (!strcmp(name, self->functions[i]->name)) return self->functions[i]; } return NULL; } ir_function* ir_builder_create_function(ir_builder *self, const char *name) { ir_function *fn = ir_builder_get_function(self, name); if (fn) { return NULL; } fn = ir_function_new(self); ir_function_set_name(fn, name); ir_builder_functions_add(self, fn); return fn; } ir_value* ir_builder_get_global(ir_builder *self, const char *name) { size_t i; for (i = 0; i < self->globals_count; ++i) { if (!strcmp(self->globals[i]->name, name)) return self->globals[i]; } return NULL; } ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype) { ir_value *ve = ir_builder_get_global(self, name); if (ve) { return NULL; } ve = ir_value_var(name, store_global, vtype); ir_builder_globals_add(self, ve); return ve; } /*********************************************************************** *IR Function */ void ir_function_naive_phi(ir_function*); void ir_function_enumerate(ir_function*); void ir_function_calculate_liferanges(ir_function*); ir_function* ir_function_new(ir_builder* owner) { ir_function *self; self = (ir_function*)mem_a(sizeof(*self)); self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->retype = qc_void; MEM_VECTOR_INIT(self, params); MEM_VECTOR_INIT(self, blocks); MEM_VECTOR_INIT(self, values); MEM_VECTOR_INIT(self, locals); ir_function_set_name(self, "<@unnamed>"); self->run_id = 0; return self; } MEM_VEC_FUNCTIONS(ir_function, ir_value*, values) MEM_VEC_FUNCTIONS(ir_function, ir_block*, blocks) MEM_VEC_FUNCTIONS(ir_function, ir_value*, locals) void ir_function_set_name(ir_function *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); } void ir_function_delete(ir_function *self) { size_t i; mem_d((void*)self->name); for (i = 0; i != self->blocks_count; ++i) ir_block_delete(self->blocks[i]); MEM_VECTOR_CLEAR(self, blocks); MEM_VECTOR_CLEAR(self, params); for (i = 0; i != self->values_count; ++i) ir_value_delete(self->values[i]); MEM_VECTOR_CLEAR(self, values); for (i = 0; i != self->locals_count; ++i) ir_value_delete(self->locals[i]); MEM_VECTOR_CLEAR(self, locals); mem_d(self); } void ir_function_collect_value(ir_function *self, ir_value *v) { ir_function_values_add(self, v); } ir_block* ir_function_create_block(ir_function *self, const char *label) { ir_block* bn = ir_block_new(self, label); memcpy(&bn->context, &self->context, sizeof(self->context)); ir_function_blocks_add(self, bn); return bn; } void ir_function_finalize(ir_function *self) { ir_function_naive_phi(self); ir_function_enumerate(self); ir_function_calculate_liferanges(self); } ir_value* ir_function_get_local(ir_function *self, const char *name) { size_t i; for (i = 0; i < self->locals_count; ++i) { if (!strcmp(self->locals[i]->name, name)) return self->locals[i]; } return NULL; } ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype) { ir_value *ve = ir_function_get_local(self, name); if (ve) { return NULL; } ve = ir_value_var(name, store_local, vtype); ir_function_locals_add(self, ve); return ve; } /*********************************************************************** *IR Block */ ir_block* ir_block_new(ir_function* owner, const char *name) { ir_block *self; self = (ir_block*)mem_a(sizeof(*self)); self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->final = false; MEM_VECTOR_INIT(self, instr); MEM_VECTOR_INIT(self, entries); MEM_VECTOR_INIT(self, exits); self->label = NULL; ir_block_set_label(self, name); self->eid = 0; self->is_return = false; self->run_id = 0; MEM_VECTOR_INIT(self, living); return self; } MEM_VEC_FUNCTIONS(ir_block, ir_instr*, instr) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, entries) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_block*, exits) MEM_VEC_FUNCTIONS_ALL(ir_block, ir_value*, living) void ir_block_delete(ir_block* self) { size_t i; mem_d((void*)self->label); for (i = 0; i != self->instr_count; ++i) ir_instr_delete(self->instr[i]); MEM_VECTOR_CLEAR(self, instr); MEM_VECTOR_CLEAR(self, entries); MEM_VECTOR_CLEAR(self, exits); MEM_VECTOR_CLEAR(self, living); mem_d(self); } void ir_block_set_label(ir_block *self, const char *name) { if (self->label) mem_d((void*)self->label); self->label = util_strdup(name); } /*********************************************************************** *IR Instructions */ ir_instr* ir_instr_new(ir_block* owner, int op) { ir_instr *self; self = (ir_instr*)mem_a(sizeof(*self)); self->owner = owner; self->context.file = "<@no context>"; self->context.line = 0; self->opcode = op; self->_ops[0] = NULL; self->_ops[1] = NULL; self->_ops[2] = NULL; self->bops[0] = NULL; self->bops[1] = NULL; MEM_VECTOR_INIT(self, phi); self->eid = 0; return self; } MEM_VEC_FUNCTIONS(ir_instr, ir_phi_entry_t, phi) void ir_instr_delete(ir_instr *self) { ir_instr_op(self, 0, NULL, false); ir_instr_op(self, 1, NULL, false); ir_instr_op(self, 2, NULL, false); MEM_VECTOR_CLEAR(self, phi); mem_d(self); } void ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing) { if (self->_ops[op]) { if (writing) ir_value_writes_add(self->_ops[op], self); else ir_value_reads_add(self->_ops[op], self); } if (v) { if (writing) ir_value_writes_add(v, self); else ir_value_reads_add(v, self); } self->_ops[op] = v; } /*********************************************************************** *IR Value */ ir_value* ir_value_var(const char *name, int storetype, int vtype) { ir_value *self; self = (ir_value*)mem_a(sizeof(*self)); self->vtype = vtype; self->store = storetype; MEM_VECTOR_INIT(self, reads); MEM_VECTOR_INIT(self, writes); self->isconst = false; self->context.file = "<@no context>"; self->context.line = 0; self->name = NULL; ir_value_set_name(self, name); MEM_VECTOR_INIT(self, life); return self; } MEM_VEC_FUNCTIONS(ir_value, ir_life_entry_t, life) MEM_VEC_FUNCTIONS(ir_value, ir_instr*, reads) MEM_VEC_FUNCTIONS(ir_value, ir_instr*, writes) ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype) { ir_value *v = ir_value_var(name, storetype, vtype); ir_function_collect_value(owner, v); return v; } void ir_value_delete(ir_value* self) { mem_d((void*)self->name); if (self->isconst) { if (self->vtype == qc_string) mem_d((void*)self->constval.vstring); } MEM_VECTOR_CLEAR(self, reads); MEM_VECTOR_CLEAR(self, writes); MEM_VECTOR_CLEAR(self, life); mem_d(self); } void ir_value_set_name(ir_value *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); } bool ir_value_set_float(ir_value *self, float f) { if (self->vtype != qc_float) return false; self->constval.vfloat = f; self->isconst = true; return true; } bool ir_value_set_vector(ir_value *self, vector_t v) { if (self->vtype != qc_vector) return false; self->constval.vvec = v; self->isconst = true; return true; } bool ir_value_set_string(ir_value *self, const char *str) { if (self->vtype != qc_string) return false; self->constval.vstring = util_strdup(str); self->isconst = true; return true; } bool ir_value_set_int(ir_value *self, int i) { if (self->vtype != qc_int) return false; self->constval.vint = i; self->isconst = true; return true; } bool ir_value_lives(ir_value *self, size_t at) { size_t i; for (i = 0; i < self->life_count; ++i) { ir_life_entry_t *life = &self->life[i]; if (life->start <= at && at <= life->end) return true; if (life->start > at) /* since it's ordered */ return false; } return false; } void ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e) { size_t k; ir_value_life_add(self, e); /* naive... */ for (k = self->life_count-1; k > idx; --k) self->life[k] = self->life[k-1]; self->life[idx] = e; } bool ir_value_life_merge(ir_value *self, size_t s) { size_t i; ir_life_entry_t *life = NULL; ir_life_entry_t *before = NULL; ir_life_entry_t new_entry; /* Find the first range >= s */ for (i = 0; i < self->life_count; ++i) { before = life; life = &self->life[i]; if (life->start > s) break; } /* nothing found? append */ if (i == self->life_count) { if (life && life->end+1 == s) { /* previous life range can be merged in */ life->end++; return true; } if (life && life->end >= s) return false; ir_life_entry_t e; e.start = e.end = s; ir_value_life_add(self, e); return true; } /* found */ if (before) { if (before->end + 1 == s && life->start - 1 == s) { /* merge */ before->end = life->end; ir_value_life_remove(self, i); return true; } if (before->end + 1 == s) { /* extend before */ before->end++; return true; } /* already contained */ if (before->end >= s) return false; } /* extend */ if (life->start - 1 == s) { life->start--; return true; } /* insert a new entry */ new_entry.start = new_entry.end = s; ir_value_life_insert(self, i, new_entry); return true; } /*********************************************************************** *IR main operations */ bool ir_block_create_store_op(ir_block *self, int op, ir_value *target, ir_value *what) { if (target->store == store_value) { fprintf(stderr, "cannot store to an SSA value\n"); return false; } else { ir_instr *in = ir_instr_new(self, op); ir_instr_op(in, 0, target, true); ir_instr_op(in, 1, what, false); ir_block_instr_add(self, in); return true; } } bool ir_block_create_store(ir_block *self, ir_value *target, ir_value *what) { int op = 0; int vtype; if (target->vtype == qc_variant) vtype = what->vtype; else vtype = target->vtype; switch (vtype) { case qc_float: #if 0 if (what->vtype == qc_int) op = INSTR_CONV_ITOF; else #endif op = INSTR_STORE_F; break; case qc_vector: op = INSTR_STORE_V; break; case qc_entity: op = INSTR_STORE_ENT; break; case qc_string: op = INSTR_STORE_S; break; #if 0 case qc_int: if (what->vtype == qc_int) op = INSTR_CONV_FTOI; else op = INSTR_STORE_I; break; #endif case qc_pointer: #if 0 op = INSTR_STORE_I; #else op = INSTR_STORE_ENT; #endif break; } return ir_block_create_store_op(self, op, target, what); } void ir_block_create_return(ir_block *self, ir_value *v) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return; } self->final = true; self->is_return = true; in = ir_instr_new(self, INSTR_RETURN); ir_instr_op(in, 0, v, false); ir_block_instr_add(self, in); } void ir_block_create_if(ir_block *self, ir_value *v, ir_block *ontrue, ir_block *onfalse) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return; } self->final = true; //in = ir_instr_new(self, (v->vtype == qc_string ? INSTR_IF_S : INSTR_IF_F)); in = ir_instr_new(self, VINSTR_COND); ir_instr_op(in, 0, v, false); in->bops[0] = ontrue; in->bops[1] = onfalse; ir_block_instr_add(self, in); ir_block_exits_add(self, ontrue); ir_block_exits_add(self, onfalse); ir_block_entries_add(ontrue, self); ir_block_entries_add(onfalse, self); } void ir_block_create_jump(ir_block *self, ir_block *to) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return; } self->final = true; in = ir_instr_new(self, VINSTR_JUMP); in->bops[0] = to; ir_block_instr_add(self, in); ir_block_exits_add(self, to); ir_block_entries_add(to, self); } void ir_block_create_goto(ir_block *self, ir_block *to) { ir_instr *in; if (self->final) { fprintf(stderr, "block already ended (%s)\n", self->label); return; } self->final = true; in = ir_instr_new(self, INSTR_GOTO); in->bops[0] = to; ir_block_instr_add(self, in); ir_block_exits_add(self, to); ir_block_entries_add(to, self); } ir_instr* ir_block_create_phi(ir_block *self, const char *label, int ot) { ir_value *out; ir_instr *in; in = ir_instr_new(self, VINSTR_PHI); out = ir_value_out(self->owner, label, store_local, ot); ir_instr_op(in, 0, out, true); ir_block_instr_add(self, in); return in; } ir_value* ir_phi_value(ir_instr *self) { return self->_ops[0]; } void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v) { ir_phi_entry_t pe; if (!ir_block_entries_find(self->owner, b, NULL)) { /* Must not be possible to cause this, otherwise the AST * is doing something wrong. */ fprintf(stderr, "Invalid entry block for PHI\n"); abort(); } pe.value = v; pe.from = b; ir_value_reads_add(v, self); ir_instr_phi_add(self, pe); } /* binary op related code */ ir_value* ir_block_create_binop(ir_block *self, const char *label, int opcode, ir_value *left, ir_value *right) { int ot = qc_void; switch (opcode) { case INSTR_ADD_F: case INSTR_SUB_F: case INSTR_DIV_F: case INSTR_MUL_F: case INSTR_MUL_V: case INSTR_AND: case INSTR_OR: #if 0 case INSTR_AND_I: case INSTR_AND_IF: case INSTR_AND_FI: case INSTR_OR_I: case INSTR_OR_IF: case INSTR_OR_FI: #endif case INSTR_BITAND: case INSTR_BITOR: #if 0 case INSTR_SUB_S: /* -- offset of string as float */ case INSTR_MUL_IF: case INSTR_MUL_FI: case INSTR_DIV_IF: case INSTR_DIV_FI: case INSTR_BITOR_IF: case INSTR_BITOR_FI: case INSTR_BITAND_FI: case INSTR_BITAND_IF: case INSTR_EQ_I: case INSTR_NE_I: #endif ot = qc_float; break; #if 0 case INSTR_ADD_I: case INSTR_ADD_IF: case INSTR_ADD_FI: case INSTR_SUB_I: case INSTR_SUB_FI: case INSTR_SUB_IF: case INSTR_MUL_I: case INSTR_DIV_I: case INSTR_BITAND_I: case INSTR_BITOR_I: case INSTR_XOR_I: case INSTR_RSHIFT_I: case INSTR_LSHIFT_I: ot = qc_int; break; #endif case INSTR_ADD_V: case INSTR_SUB_V: case INSTR_MUL_VF: case INSTR_MUL_FV: #if 0 case INSTR_DIV_VF: case INSTR_MUL_IV: case INSTR_MUL_VI: #endif ot = qc_vector; break; #if 0 case INSTR_ADD_SF: ot = qc_pointer; break; #endif default: // ranges: /* boolean operations result in floats */ if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT) ot = qc_float; else if (opcode >= INSTR_LE && opcode <= INSTR_GT) ot = qc_float; #if 0 else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI) ot = qc_float; #endif break; }; if (ot == qc_void) { /* The AST or parser were supposed to check this! */ abort(); return NULL; } ir_value *out = ir_value_out(self->owner, label, store_local, ot); ir_instr *in = ir_instr_new(self, opcode); ir_instr_op(in, 0, out, true); ir_instr_op(in, 1, left, false); ir_instr_op(in, 2, right, false); ir_block_instr_add(self, in); return out; } ir_value* ir_block_create_add(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case qc_float: op = INSTR_ADD_F; break; #if 0 case qc_int: op = INSTR_ADD_I; break; #endif case qc_vector: op = INSTR_ADD_V; break; } } else { #if 0 if ( (l == qc_float && r == qc_int) ) op = INSTR_ADD_FI; else if ( (l == qc_int && r == qc_float) ) op = INSTR_ADD_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_sub(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case qc_float: op = INSTR_SUB_F; break; #if 0 case qc_int: op = INSTR_SUB_I; break; #endif case qc_vector: op = INSTR_SUB_V; break; } } else { #if 0 if ( (l == qc_float && r == qc_int) ) op = INSTR_SUB_FI; else if ( (l == qc_int && r == qc_float) ) op = INSTR_SUB_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_mul(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case qc_float: op = INSTR_MUL_F; break; #if 0 case qc_int: op = INSTR_MUL_I; break; #endif case qc_vector: op = INSTR_MUL_V; break; } } else { if ( (l == qc_vector && r == qc_float) ) op = INSTR_MUL_VF; else if ( (l == qc_float && r == qc_vector) ) op = INSTR_MUL_FV; #if 0 else if ( (l == qc_vector && r == qc_int) ) op = INSTR_MUL_VI; else if ( (l == qc_int && r == qc_vector) ) op = INSTR_MUL_IV; else if ( (l == qc_float && r == qc_int) ) op = INSTR_MUL_FI; else if ( (l == qc_int && r == qc_float) ) op = INSTR_MUL_IF; #endif else return NULL; } return ir_block_create_binop(self, label, op, left, right); } ir_value* ir_block_create_div(ir_block *self, const char *label, ir_value *left, ir_value *right) { int op = 0; int l = left->vtype; int r = right->vtype; if (l == r) { switch (l) { default: return NULL; case qc_float: op = INSTR_DIV_F; break; #if 0 case qc_int: op = INSTR_DIV_I; break; #endif } } else { #if 0 if ( (l == qc_vector && r == qc_float) ) op = INSTR_DIV_VF; else if ( (l == qc_float && r == qc_int) ) op = INSTR_DIV_FI; else if ( (l == qc_int && r == qc_float) ) op = INSTR_DIV_IF; else #endif return NULL; } return ir_block_create_binop(self, label, op, left, right); } /* PHI resolving breaks the SSA, and must thus be the last * step before life-range calculation. */ static void ir_block_naive_phi(ir_block *self); void ir_function_naive_phi(ir_function *self) { size_t i; for (i = 0; i < self->blocks_count; ++i) ir_block_naive_phi(self->blocks[i]); } static void ir_naive_phi_emit_store(ir_block *block, size_t iid, ir_value *old, ir_value *what) { ir_instr *instr; size_t i; /* create a store */ ir_block_create_store(block, old, what); /* we now move it up */ instr = block->instr[block->instr_count-1]; for (i = block->instr_count; i > iid; --i) block->instr[i] = block->instr[i-1]; block->instr[i] = instr; } static void ir_block_naive_phi(ir_block *self) { size_t i, p, w; /* FIXME: optionally, create_phi can add the phis * to a list so we don't need to loop through blocks * - anyway: "don't optimize YET" */ for (i = 0; i < self->instr_count; ++i) { ir_instr *instr = self->instr[i]; if (instr->opcode != VINSTR_PHI) continue; ir_block_instr_remove(self, i); --i; /* NOTE: i+1 below */ for (p = 0; p < instr->phi_count; ++p) { ir_value *v = instr->phi[p].value; for (w = 0; w < v->writes_count; ++w) { ir_value *old; if (!v->writes[w]->_ops[0]) continue; /* When the write was to a global, we have to emit a mov */ old = v->writes[w]->_ops[0]; /* The original instruction now writes to the PHI target local */ if (v->writes[w]->_ops[0] == v) v->writes[w]->_ops[0] = instr->_ops[0]; if (old->store != store_local) { /* If it originally wrote to a global we need to store the value * there as welli */ ir_naive_phi_emit_store(self, i+1, old, v); if (i+1 < self->instr_count) instr = self->instr[i+1]; else instr = NULL; /* In case I forget and access instr later, it'll be NULL * when it's a problem, to make sure we crash, rather than accessing * invalid data. */ } else { /* If it didn't, we can replace all reads by the phi target now. */ size_t r; for (r = 0; r < old->reads_count; ++r) { size_t op; ir_instr *ri = old->reads[r]; for (op = 0; op < ri->phi_count; ++op) { if (ri->phi[op].value == old) ri->phi[op].value = v; } for (op = 0; op < 3; ++op) { if (ri->_ops[op] == old) ri->_ops[op] = v; } } } } } ir_instr_delete(instr); } } /*********************************************************************** *IR Temp allocation code * Propagating value life ranges by walking through the function backwards * until no more changes are made. * In theory this should happen once more than once for every nested loop * level. * Though this implementation might run an additional time for if nests. */ typedef struct { ir_value* *v; size_t v_count; size_t v_alloc; } new_reads_t; MEM_VEC_FUNCTIONS_ALL(new_reads_t, ir_value*, v) /* Enumerate instructions used by value's life-ranges */ static void ir_block_enumerate(ir_block *self, size_t *_eid) { size_t i; size_t eid = *_eid; for (i = 0; i < self->instr_count; ++i) { self->instr[i]->eid = eid++; } *_eid = eid; } /* Enumerate blocks and instructions. * The block-enumeration is unordered! * We do not really use the block enumreation, however * the instruction enumeration is important for life-ranges. */ void ir_function_enumerate(ir_function *self) { size_t i; size_t instruction_id = 0; for (i = 0; i < self->blocks_count; ++i) { self->blocks[i]->eid = i; self->blocks[i]->run_id = 0; ir_block_enumerate(self->blocks[i], &instruction_id); } } static void ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed); void ir_function_calculate_liferanges(ir_function *self) { size_t i; bool changed; do { self->run_id++; changed = false; for (i = 0; i != self->blocks_count; ++i) { if (self->blocks[i]->is_return) ir_block_life_propagate(self->blocks[i], NULL, &changed); } } while (changed); } /* Get information about which operand * is read from, or written to. */ static void ir_op_read_write(int op, size_t *read, size_t *write) { switch (op) { case VINSTR_JUMP: case INSTR_GOTO: *write = 0; *read = 0; break; case INSTR_IF: case INSTR_IFNOT: #if 0 case INSTR_IF_S: case INSTR_IFNOT_S: #endif case INSTR_RETURN: case VINSTR_COND: *write = 0; *read = 1; break; default: *write = 1; *read = 6; break; }; } static bool ir_block_living_add_instr(ir_block *self, size_t eid) { size_t i; bool changed = false; bool tempbool; for (i = 0; i != self->living_count; ++i) { tempbool = ir_value_life_merge(self->living[i], eid); /* debug if (tempbool) fprintf(stderr, "block_living_add_instr() value instruction added %s: %i\n", self->living[i]->_name, (int)eid); */ changed = changed || tempbool; } return changed; } static void ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed) { size_t i; /* values which have been read in a previous iteration are now * in the "living" array even if the previous block doesn't use them. * So we have to remove whatever does not exist in the previous block. * They will be re-added on-read, but the liferange merge won't cause * a change. */ for (i = 0; i < self->living_count; ++i) { if (!ir_block_living_find(prev, self->living[i], NULL)) { ir_block_living_remove(self, i); --i; } } /* Whatever the previous block still has in its living set * must now be added to ours as well. */ for (i = 0; i < prev->living_count; ++i) { if (ir_block_living_find(self, prev->living[i], NULL)) continue; ir_block_living_add(self, prev->living[i]); /* printf("%s got from prev: %s\n", self->label, prev->living[i]->_name); */ } } static void ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed) { ir_instr *instr; ir_value *value; bool tempbool; size_t i, o, p, rd; /* bitmasks which operands are read from or written to */ size_t read, write; new_reads_t new_reads; char dbg_ind[16] = { '#', '0' }; (void)dbg_ind; MEM_VECTOR_INIT(&new_reads, v); if (prev) ir_block_life_prop_previous(self, prev, changed); i = self->instr_count; while (i) { --i; instr = self->instr[i]; /* PHI operands are always read operands */ for (p = 0; p < instr->phi_count; ++p) { value = instr->phi[p].value; /* used this before new_reads - puts the last read into the life range as well if (!ir_block_living_find(self, value, NULL)) ir_block_living_add(self, value); */ /* fprintf(stderr, "read: %s\n", value->_name); */ if (!new_reads_t_v_find(&new_reads, value, NULL)) new_reads_t_v_add(&new_reads, value); } /* See which operands are read and write operands */ ir_op_read_write(instr->opcode, &read, &write); /* Go through the 3 main operands */ for (o = 0; o < 3; ++o) { if (!instr->_ops[o]) /* no such operand */ continue; value = instr->_ops[o]; /* We only care about locals */ if (value->store != store_value && value->store != store_local) continue; /* read operands */ if (read & (1<_name); */ if (!new_reads_t_v_find(&new_reads, value, NULL)) new_reads_t_v_add(&new_reads, value); } /* write operands */ /* When we write to a local, we consider it "dead" for the * remaining upper part of the function, since in SSA a value * can only be written once (== created) */ if (write & (1<name); tempbool = ir_value_life_merge(value, instr->eid); *changed = *changed || tempbool; /* ir_instr_dump(instr, dbg_ind, printf); abort(); */ } else { /* since 'living' won't contain it * anymore, merge the value, since * (A) doesn't. */ tempbool = ir_value_life_merge(value, instr->eid); /* if (tempbool) fprintf(stderr, "value added id %s %i\n", value->name, (int)instr->eid); */ *changed = *changed || tempbool; /* Then remove */ ir_block_living_remove(self, idx); if (in_reads) new_reads_t_v_remove(&new_reads, readidx); } } } /* (A) */ tempbool = ir_block_living_add_instr(self, instr->eid); //fprintf(stderr, "living added values\n"); *changed = *changed || tempbool; /* new reads: */ for (rd = 0; rd < new_reads.v_count; ++rd) { if (!ir_block_living_find(self, new_reads.v[rd], NULL)) { ir_block_living_add(self, new_reads.v[rd]); } if (!i && !self->entries_count) { /* fix the top */ *changed = *changed || ir_value_life_merge(new_reads.v[rd], instr->eid); } } new_reads_t_v_clear(&new_reads); } if (self->run_id == self->owner->run_id) return; self->run_id = self->owner->run_id; for (i = 0; i < self->entries_count; ++i) { ir_block *entry = self->entries[i]; ir_block_life_propagate(entry, self, changed); } }