/* * Copyright (C) 2012, 2013 * Dale Weiler * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "ast.h" #include "parser.h" #define FOLD_STRING_UNTRANSLATE_HTSIZE 1024 #define FOLD_STRING_DOTRANSLATE_HTSIZE 1024 /* * There is two stages to constant folding in GMQCC: there is the parse * stage constant folding, where, witht he help of the AST, operator * usages can be constant folded. Then there is the constant folding * in the IR for things like eliding if statements, can occur. * * This file is thus, split into two parts. */ #define isfloat(X) (((ast_expression*)(X))->vtype == TYPE_FLOAT) #define isvector(X) (((ast_expression*)(X))->vtype == TYPE_VECTOR) #define isstring(X) (((ast_expression*)(X))->vtype == TYPE_STRING) #define isfloats(X,Y) (isfloat (X) && isfloat (Y)) /* * Implementation of basic vector math for vec3_t, for trivial constant * folding. * * TODO: gcc/clang hinting for autovectorization */ static GMQCC_INLINE vec3_t vec3_add(vec3_t a, vec3_t b) { vec3_t out; out.x = a.x + b.x; out.y = a.y + b.y; out.z = a.z + b.z; return out; } static GMQCC_INLINE vec3_t vec3_sub(vec3_t a, vec3_t b) { vec3_t out; out.x = a.x + b.x; out.y = a.y + b.y; out.z = a.z + b.z; return out; } static GMQCC_INLINE vec3_t vec3_neg(vec3_t a) { vec3_t out; out.x = -a.x; out.y = -a.y; out.z = -a.z; return out; } static GMQCC_INLINE vec3_t vec3_or(vec3_t a, vec3_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b.x)); out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b.y)); out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b.z)); return out; } static GMQCC_INLINE vec3_t vec3_orvf(vec3_t a, qcfloat_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) | ((qcint_t)b)); out.y = (qcfloat_t)(((qcint_t)a.y) | ((qcint_t)b)); out.z = (qcfloat_t)(((qcint_t)a.z) | ((qcint_t)b)); return out; } static GMQCC_INLINE vec3_t vec3_and(vec3_t a, vec3_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b.x)); out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b.y)); out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b.z)); return out; } static GMQCC_INLINE vec3_t vec3_andvf(vec3_t a, qcfloat_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) & ((qcint_t)b)); out.y = (qcfloat_t)(((qcint_t)a.y) & ((qcint_t)b)); out.z = (qcfloat_t)(((qcint_t)a.z) & ((qcint_t)b)); return out; } static GMQCC_INLINE vec3_t vec3_xor(vec3_t a, vec3_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b.x)); out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b.y)); out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b.z)); return out; } static GMQCC_INLINE vec3_t vec3_xorvf(vec3_t a, qcfloat_t b) { vec3_t out; out.x = (qcfloat_t)(((qcint_t)a.x) ^ ((qcint_t)b)); out.y = (qcfloat_t)(((qcint_t)a.y) ^ ((qcint_t)b)); out.z = (qcfloat_t)(((qcint_t)a.z) ^ ((qcint_t)b)); return out; } static GMQCC_INLINE vec3_t vec3_not(vec3_t a) { vec3_t out; out.x = (qcfloat_t)(~((qcint_t)a.x)); out.y = (qcfloat_t)(~((qcint_t)a.y)); out.z = (qcfloat_t)(~((qcint_t)a.z)); return out; } static GMQCC_INLINE qcfloat_t vec3_mulvv(vec3_t a, vec3_t b) { return (a.x * b.x + a.y * b.y + a.z * b.z); } static GMQCC_INLINE vec3_t vec3_mulvf(vec3_t a, qcfloat_t b) { vec3_t out; out.x = a.x * b; out.y = a.y * b; out.z = a.z * b; return out; } static GMQCC_INLINE bool vec3_cmp(vec3_t a, vec3_t b) { return a.x == b.x && a.y == b.y && a.z == b.z; } static GMQCC_INLINE vec3_t vec3_create(float x, float y, float z) { vec3_t out; out.x = x; out.y = y; out.z = z; return out; } static GMQCC_INLINE qcfloat_t vec3_notf(vec3_t a) { return (!a.x && !a.y && !a.z); } static GMQCC_INLINE bool vec3_pbool(vec3_t a) { return (a.x && a.y && a.z); } static GMQCC_INLINE vec3_t vec3_cross(vec3_t a, vec3_t b) { vec3_t out; out.x = a.y * b.z - a.z * b.y; out.y = a.z * b.x - a.x * b.z; out.z = a.x * b.y - a.y * b.x; return out; } static lex_ctx_t fold_ctx(fold_t *fold) { lex_ctx_t ctx; if (fold->parser->lex) return parser_ctx(fold->parser); memset(&ctx, 0, sizeof(ctx)); return ctx; } static GMQCC_INLINE bool fold_immediate_true(fold_t *fold, ast_value *v) { switch (v->expression.vtype) { case TYPE_FLOAT: return !!v->constval.vfloat; case TYPE_INTEGER: return !!v->constval.vint; case TYPE_VECTOR: if (OPTS_FLAG(CORRECT_LOGIC)) return vec3_pbool(v->constval.vvec); return !!(v->constval.vvec.x); case TYPE_STRING: if (!v->constval.vstring) return false; if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) return true; return !!v->constval.vstring[0]; default: compile_error(fold_ctx(fold), "internal error: fold_immediate_true on invalid type"); break; } return !!v->constval.vfunc; } /* Handy macros to determine if an ast_value can be constant folded. */ #define fold_can_1(X) \ (ast_istype(((ast_expression*)(X)), ast_value) && (X)->hasvalue && ((X)->cvq == CV_CONST) && \ ((ast_expression*)(X))->vtype != TYPE_FUNCTION) #define fold_can_2(X, Y) (fold_can_1(X) && fold_can_1(Y)) #define fold_can_div(X) (fold_immvalue_float(X) != 0.0f) #define fold_immvalue_float(E) ((E)->constval.vfloat) #define fold_immvalue_vector(E) ((E)->constval.vvec) #define fold_immvalue_string(E) ((E)->constval.vstring) #ifdef INFINITY # define fold_infinity_float INFINITY #else # define fold_infinity_float (1.0 / 0.0) #endif /*! INFINITY */ #define fold_infinity_vector \ vec3_create( \ fold_infinity_float, \ fold_infinity_float, \ fold_infinity_float \ ) fold_t *fold_init(parser_t *parser) { fold_t *fold = (fold_t*)mem_a(sizeof(fold_t)); fold->parser = parser; fold->imm_float = NULL; fold->imm_vector = NULL; fold->imm_string = NULL; fold->imm_string_untranslate = util_htnew(FOLD_STRING_UNTRANSLATE_HTSIZE); fold->imm_string_dotranslate = util_htnew(FOLD_STRING_DOTRANSLATE_HTSIZE); /* * prime the tables with common constant values at constant * locations. */ (void)fold_constgen_float (fold, 0.0f); (void)fold_constgen_float (fold, 1.0f); (void)fold_constgen_float (fold, -1.0f); (void)fold_constgen_float (fold, fold_infinity_float); /* +inf */ (void)fold_constgen_vector(fold, vec3_create(0.0f, 0.0f, 0.0f)); (void)fold_constgen_vector(fold, vec3_create(-1.0f, -1.0f, -1.0f)); (void)fold_constgen_vector(fold, fold_infinity_vector); /* +inf */ return fold; } bool fold_generate(fold_t *fold, ir_builder *ir) { /* generate globals for immediate folded values */ size_t i; ast_value *cur; for (i = 0; i < vec_size(fold->imm_float); ++i) if (!ast_global_codegen ((cur = fold->imm_float[i]), ir, false)) goto err; for (i = 0; i < vec_size(fold->imm_vector); ++i) if (!ast_global_codegen((cur = fold->imm_vector[i]), ir, false)) goto err; for (i = 0; i < vec_size(fold->imm_string); ++i) if (!ast_global_codegen((cur = fold->imm_string[i]), ir, false)) goto err; return true; err: con_out("failed to generate global %s\n", cur->name); ir_builder_delete(ir); return false; } void fold_cleanup(fold_t *fold) { size_t i; for (i = 0; i < vec_size(fold->imm_float); ++i) ast_delete(fold->imm_float[i]); for (i = 0; i < vec_size(fold->imm_vector); ++i) ast_delete(fold->imm_vector[i]); for (i = 0; i < vec_size(fold->imm_string); ++i) ast_delete(fold->imm_string[i]); vec_free(fold->imm_float); vec_free(fold->imm_vector); vec_free(fold->imm_string); util_htdel(fold->imm_string_untranslate); util_htdel(fold->imm_string_dotranslate); mem_d(fold); } ast_expression *fold_constgen_float(fold_t *fold, qcfloat_t value) { ast_value *out = NULL; size_t i; for (i = 0; i < vec_size(fold->imm_float); i++) { if (fold->imm_float[i]->constval.vfloat == value) return (ast_expression*)fold->imm_float[i]; } out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_FLOAT); out->cvq = CV_CONST; out->hasvalue = true; out->constval.vfloat = value; vec_push(fold->imm_float, out); return (ast_expression*)out; } ast_expression *fold_constgen_vector(fold_t *fold, vec3_t value) { ast_value *out; size_t i; for (i = 0; i < vec_size(fold->imm_vector); i++) { if (vec3_cmp(fold->imm_vector[i]->constval.vvec, value)) return (ast_expression*)fold->imm_vector[i]; } out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_VECTOR); out->cvq = CV_CONST; out->hasvalue = true; out->constval.vvec = value; vec_push(fold->imm_vector, out); return (ast_expression*)out; } ast_expression *fold_constgen_string(fold_t *fold, const char *str, bool translate) { hash_table_t *table = (translate) ? fold->imm_string_untranslate : fold->imm_string_dotranslate; ast_value *out = NULL; size_t hash = util_hthash(table, str); if ((out = (ast_value*)util_htgeth(table, str, hash))) return (ast_expression*)out; if (translate) { char name[32]; util_snprintf(name, sizeof(name), "dotranslate_%lu", (unsigned long)(fold->parser->translated++)); out = ast_value_new(parser_ctx(fold->parser), name, TYPE_STRING); out->expression.flags |= AST_FLAG_INCLUDE_DEF; /* def needs to be included for translatables */ } else out = ast_value_new(fold_ctx(fold), "#IMMEDIATE", TYPE_STRING); out->cvq = CV_CONST; out->hasvalue = true; out->isimm = true; out->constval.vstring = parser_strdup(str); vec_push(fold->imm_string, out); util_htseth(table, str, hash, out); return (ast_expression*)out; } static GMQCC_INLINE ast_expression *fold_op_mul_vec(fold_t *fold, vec3_t vec, ast_value *sel, const char *set) { /* * vector-component constant folding works by matching the component sets * to eliminate expensive operations on whole-vectors (3 components at runtime). * to achive this effect in a clean manner this function generalizes the * values through the use of a set paramater, which is used as an indexing method * for creating the elided ast binary expression. * * Consider 'n 0 0' where y, and z need to be tested for 0, and x is * used as the value in a binary operation generating an INSTR_MUL instruction, * to acomplish the indexing of the correct component value we use set[0], set[1], set[2] * as x, y, z, where the values of those operations return 'x', 'y', 'z'. Because * of how ASCII works we can easily deliniate: * vec.z is the same as set[2]-'x' for when set[2] is 'z', 'z'-'x' results in a * literal value of 2, using this 2, we know that taking the address of vec->x (float) * and indxing it with this literal will yeild the immediate address of that component * * Of course more work needs to be done to generate the correct index for the ast_member_new * call, which is no problem: set[0]-'x' suffices that job. */ qcfloat_t x = (&vec.x)[set[0]-'x']; qcfloat_t y = (&vec.x)[set[1]-'x']; qcfloat_t z = (&vec.x)[set[2]-'x']; if (!y && !z) { ast_expression *out; ++opts_optimizationcount[OPTIM_VECTOR_COMPONENTS]; out = (ast_expression*)ast_member_new(fold_ctx(fold), (ast_expression*)sel, set[0]-'x', NULL); out->node.keep = false; ((ast_member*)out)->rvalue = true; if (x != -1.0f) return (ast_expression*)ast_binary_new(fold_ctx(fold), INSTR_MUL_F, fold_constgen_float(fold, x), out); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_neg(fold_t *fold, ast_value *a) { if (isfloat(a)) { if (fold_can_1(a)) return fold_constgen_float(fold, -fold_immvalue_float(a)); } else if (isvector(a)) { if (fold_can_1(a)) return fold_constgen_vector(fold, vec3_neg(fold_immvalue_vector(a))); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_not(fold_t *fold, ast_value *a) { if (isfloat(a)) { if (fold_can_1(a)) return fold_constgen_float(fold, !fold_immvalue_float(a)); } else if (isvector(a)) { if (fold_can_1(a)) return fold_constgen_float(fold, vec3_notf(fold_immvalue_vector(a))); } else if (isstring(a)) { if (fold_can_1(a)) { if (OPTS_FLAG(TRUE_EMPTY_STRINGS)) return fold_constgen_float(fold, !fold_immvalue_string(a)); else return fold_constgen_float(fold, !fold_immvalue_string(a) || !*fold_immvalue_string(a)); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_add(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) return fold_constgen_float(fold, fold_immvalue_float(a) + fold_immvalue_float(b)); } else if (isvector(a)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_add(fold_immvalue_vector(a), fold_immvalue_vector(b))); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_sub(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) return fold_constgen_float(fold, fold_immvalue_float(a) - fold_immvalue_float(b)); } else if (isvector(a)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_sub(fold_immvalue_vector(a), fold_immvalue_vector(b))); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_mul(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (isvector(b)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(b), fold_immvalue_float(a))); } else { if (fold_can_2(a, b)) return fold_constgen_float(fold, fold_immvalue_float(a) * fold_immvalue_float(b)); } } else if (isvector(a)) { if (isfloat(b)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), fold_immvalue_float(b))); } else { if (fold_can_2(a, b)) { return fold_constgen_float(fold, vec3_mulvv(fold_immvalue_vector(a), fold_immvalue_vector(b))); } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(a)) { ast_expression *out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "xyz"))) return out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "yxz"))) return out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(a), b, "zxy"))) return out; } else if (OPTS_OPTIMIZATION(OPTIM_VECTOR_COMPONENTS) && fold_can_1(b)) { ast_expression *out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "xyz"))) return out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "yxz"))) return out; if ((out = fold_op_mul_vec(fold, fold_immvalue_vector(b), a, "zxy"))) return out; } } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_div(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) { if (fold_can_div(b)) return fold_constgen_float(fold, fold_immvalue_float(a) / fold_immvalue_float(b)); else return (ast_expression*)fold->imm_float[3]; /* inf */ } else if (fold_can_1(b)) { return (ast_expression*)ast_binary_new( fold_ctx(fold), INSTR_MUL_F, (ast_expression*)a, fold_constgen_float(fold, 1.0f / fold_immvalue_float(b)) ); } } else if (isvector(a)) { if (fold_can_2(a, b)) { if (fold_can_div(b)) { return fold_constgen_vector(fold, vec3_mulvf(fold_immvalue_vector(a), 1.0f / fold_immvalue_float(b))); } else { return (ast_expression*)fold->imm_vector[2]; /* inf */ } } else { return (ast_expression*)ast_binary_new( fold_ctx(fold), INSTR_MUL_VF, (ast_expression*)a, (fold_can_1(b)) ? (ast_expression*)fold_constgen_float(fold, 1.0f / fold_immvalue_float(b)) : (ast_expression*)ast_binary_new( fold_ctx(fold), INSTR_DIV_F, (ast_expression*)fold->imm_float[1], (ast_expression*)b ) ); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_mod(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b)) { if (fold_can_div(b)) return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) % ((qcint_t)fold_immvalue_float(b)))); else return (ast_expression*)fold->imm_float[3]; /* inf */ } return NULL; } static GMQCC_INLINE ast_expression *fold_op_bor(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) | ((qcint_t)fold_immvalue_float(b)))); } else { if (isvector(b)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_or(fold_immvalue_vector(a), fold_immvalue_vector(b))); } else { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_orvf(fold_immvalue_vector(a), fold_immvalue_float(b))); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_band(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) & ((qcint_t)fold_immvalue_float(b)))); } else { if (isvector(b)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_and(fold_immvalue_vector(a), fold_immvalue_vector(b))); } else { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_andvf(fold_immvalue_vector(a), fold_immvalue_float(b))); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_xor(fold_t *fold, ast_value *a, ast_value *b) { if (isfloat(a)) { if (fold_can_2(a, b)) return fold_constgen_float(fold, (qcfloat_t)(((qcint_t)fold_immvalue_float(a)) ^ ((qcint_t)fold_immvalue_float(b)))); } else { if (isvector(b)) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_xor(fold_immvalue_vector(a), fold_immvalue_vector(b))); } else { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_xorvf(fold_immvalue_vector(a), fold_immvalue_float(b))); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_lshift(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b) && isfloats(a, b)) return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) << (qcuint_t)(fold_immvalue_float(b)))); return NULL; } static GMQCC_INLINE ast_expression *fold_op_rshift(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b) && isfloats(a, b)) return fold_constgen_float(fold, (qcfloat_t)((qcuint_t)(fold_immvalue_float(a)) >> (qcuint_t)(fold_immvalue_float(b)))); return NULL; } static GMQCC_INLINE ast_expression *fold_op_andor(fold_t *fold, ast_value *a, ast_value *b, float expr) { if (fold_can_2(a, b)) { if (OPTS_FLAG(PERL_LOGIC)) { if (fold_immediate_true(fold, a)) return (ast_expression*)b; } else { return fold_constgen_float ( fold, ((expr) ? (fold_immediate_true(fold, a) || fold_immediate_true(fold, b)) : (fold_immediate_true(fold, a) && fold_immediate_true(fold, b))) ? 1 : 0 ); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_tern(fold_t *fold, ast_value *a, ast_value *b, ast_value *c) { if (fold_can_1(a)) { return fold_immediate_true(fold, a) ? (ast_expression*)b : (ast_expression*)c; } return NULL; } static GMQCC_INLINE ast_expression *fold_op_exp(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b)) return fold_constgen_float(fold, (qcfloat_t)powf(fold_immvalue_float(a), fold_immvalue_float(b))); return NULL; } static GMQCC_INLINE ast_expression *fold_op_lteqgt(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a,b)) { if (fold_immvalue_float(a) < fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[2]; if (fold_immvalue_float(a) == fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[0]; if (fold_immvalue_float(a) > fold_immvalue_float(b)) return (ast_expression*)fold->imm_float[1]; } return NULL; } static GMQCC_INLINE ast_expression *fold_op_cmp(fold_t *fold, ast_value *a, ast_value *b, bool ne) { if (fold_can_2(a, b)) { return fold_constgen_float( fold, (ne) ? (fold_immvalue_float(a) != fold_immvalue_float(b)) : (fold_immvalue_float(a) == fold_immvalue_float(b)) ); } return NULL; } static GMQCC_INLINE ast_expression *fold_op_bnot(fold_t *fold, ast_value *a) { if (isfloat(a)) { if (fold_can_1(a)) return fold_constgen_float(fold, ~((qcint_t)fold_immvalue_float(a))); } else { if (isvector(a)) { if (fold_can_1(a)) return fold_constgen_vector(fold, vec3_not(fold_immvalue_vector(a))); } } return NULL; } static GMQCC_INLINE ast_expression *fold_op_cross(fold_t *fold, ast_value *a, ast_value *b) { if (fold_can_2(a, b)) return fold_constgen_vector(fold, vec3_cross(fold_immvalue_vector(a), fold_immvalue_vector(b))); return NULL; } ast_expression *fold_op(fold_t *fold, const oper_info *info, ast_expression **opexprs) { ast_value *a = (ast_value*)opexprs[0]; ast_value *b = (ast_value*)opexprs[1]; ast_value *c = (ast_value*)opexprs[2]; ast_expression *e = NULL; /* can a fold operation be applied to this operator usage? */ if (!info->folds) return NULL; switch(info->operands) { case 3: if(!c) return NULL; case 2: if(!b) return NULL; case 1: if(!a) { compile_error(fold_ctx(fold), "internal error: fold_op no operands to fold\n"); return NULL; } } /* * we could use a boolean and default case but ironically gcc produces * invalid broken assembly from that operation. clang/tcc get it right, * but interestingly ignore compiling this to a jump-table when I do that, * this happens to be the most efficent method, since you have per-level * granularity on the pointer check happening only for the case you check * it in. Opposed to the default method which would involve a boolean and * pointer check after wards. */ #define fold_op_case(ARGS, ARGS_OPID, OP, ARGS_FOLD) \ case opid##ARGS ARGS_OPID: \ if ((e = fold_op_##OP ARGS_FOLD)) { \ ++opts_optimizationcount[OPTIM_CONST_FOLD]; \ } \ return e switch(info->id) { fold_op_case(2, ('-', 'P'), neg, (fold, a)); fold_op_case(2, ('!', 'P'), not, (fold, a)); fold_op_case(1, ('+'), add, (fold, a, b)); fold_op_case(1, ('-'), sub, (fold, a, b)); fold_op_case(1, ('*'), mul, (fold, a, b)); fold_op_case(1, ('/'), div, (fold, a, b)); fold_op_case(1, ('%'), mod, (fold, a, b)); fold_op_case(1, ('|'), bor, (fold, a, b)); fold_op_case(1, ('&'), band, (fold, a, b)); fold_op_case(1, ('^'), xor, (fold, a, b)); fold_op_case(2, ('<', '<'), lshift, (fold, a, b)); fold_op_case(2, ('>', '>'), rshift, (fold, a, b)); fold_op_case(2, ('|', '|'), andor, (fold, a, b, true)); fold_op_case(2, ('&', '&'), andor, (fold, a, b, false)); fold_op_case(2, ('?', ':'), tern, (fold, a, b, c)); fold_op_case(2, ('*', '*'), exp, (fold, a, b)); fold_op_case(3, ('<','=','>'), lteqgt, (fold, a, b)); fold_op_case(2, ('!', '='), cmp, (fold, a, b, true)); fold_op_case(2, ('=', '='), cmp, (fold, a, b, false)); fold_op_case(2, ('~', 'P'), bnot, (fold, a)); fold_op_case(2, ('>', '<'), cross, (fold, a, b)); } #undef fold_op_case compile_error(fold_ctx(fold), "internal error: attempted to constant-fold for unsupported operator"); return NULL; } /* * Constant folding for compiler intrinsics, simaler approach to operator * folding, primarly: individual functions for each intrinsics to fold, * and a generic selection function. */ static GMQCC_INLINE ast_expression *fold_intrin_mod(fold_t *fold, ast_value *lhs, ast_value *rhs) { return fold_constgen_float( fold, fmodf( fold_immvalue_float(lhs), fold_immvalue_float(rhs) ) ); } static GMQCC_INLINE ast_expression *fold_intrin_pow(fold_t *fold, ast_value *lhs, ast_value *rhs) { return fold_constgen_float( fold, powf( fold_immvalue_float(lhs), fold_immvalue_float(rhs) ) ); } static GMQCC_INLINE ast_expression *fold_intrin_exp(fold_t *fold, ast_value *value) { return fold_constgen_float(fold, exp(fold_immvalue_float(value))); } static GMQCC_INLINE ast_expression *fold_intrin_isnan(fold_t *fold, ast_value *value) { return fold_constgen_float(fold, isnan(fold_immvalue_float(value)) != 0.0f); } static GMQCC_INLINE ast_expression *fold_intrin_fabs(fold_t *fold, ast_value *value) { return fold_constgen_float(fold, fabs(fold_immvalue_float(value))); } ast_expression *fold_intrin(fold_t *fold, const char *intrin, ast_expression **arg) { if (!strcmp(intrin, "mod")) return fold_intrin_mod (fold, (ast_value*)arg[0], (ast_value*)arg[1]); if (!strcmp(intrin, "pow")) return fold_intrin_pow (fold, (ast_value*)arg[0], (ast_value*)arg[1]); if (!strcmp(intrin, "exp")) return fold_intrin_exp (fold, (ast_value*)arg[0]); if (!strcmp(intrin, "isnan")) return fold_intrin_isnan(fold, (ast_value*)arg[0]); if (!strcmp(intrin, "fabs")) return fold_intrin_fabs (fold, (ast_value*)arg[0]); return NULL; } /* * These are all the actual constant folding methods that happen in between * the AST/IR stage of the compiler , i.e eliminating branches for const * expressions, which is the only supported thing so far. We undefine the * testing macros here because an ir_value is differant than an ast_value. */ #undef expect #undef isfloat #undef isstring #undef isvector #undef fold_immvalue_float #undef fold_immvalue_string #undef fold_immvalue_vector #undef fold_can_1 #undef fold_can_2 #define isfloat(X) ((X)->vtype == TYPE_FLOAT) /*#define isstring(X) ((X)->vtype == TYPE_STRING)*/ /*#define isvector(X) ((X)->vtype == TYPE_VECTOR)*/ #define fold_immvalue_float(X) ((X)->constval.vfloat) /*#define fold_immvalue_vector(X) ((X)->constval.vvec)*/ /*#define fold_immvalue_string(X) ((X)->constval.vstring)*/ #define fold_can_1(X) ((X)->hasvalue && (X)->cvq == CV_CONST) /*#define fold_can_2(X,Y) (fold_can_1(X) && fold_can_1(Y))*/ static GMQCC_INLINE int fold_cond(ir_value *condval, ast_function *func, ast_ifthen *branch) { if (isfloat(condval) && fold_can_1(condval) && OPTS_OPTIMIZATION(OPTIM_CONST_FOLD_DCE)) { ast_expression_codegen *cgen; ir_block *elide; ir_value *dummy; bool istrue = (fold_immvalue_float(condval) != 0.0f && branch->on_true); bool isfalse = (fold_immvalue_float(condval) == 0.0f && branch->on_false); ast_expression *path = (istrue) ? branch->on_true : (isfalse) ? branch->on_false : NULL; if (!path) { /* * no path to take implies that the evaluation is if(0) and there * is no else block. so eliminate all the code. */ ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; return true; } if (!(elide = ir_function_create_block(ast_ctx(branch), func->ir_func, ast_function_label(func, ((istrue) ? "ontrue" : "onfalse"))))) return false; if (!(*(cgen = path->codegen))((ast_expression*)path, func, false, &dummy)) return false; if (!ir_block_create_jump(func->curblock, ast_ctx(branch), elide)) return false; /* * now the branch has been eliminated and the correct block for the constant evaluation * is expanded into the current block for the function. */ func->curblock = elide; ++opts_optimizationcount[OPTIM_CONST_FOLD_DCE]; return true; } return -1; /* nothing done */ } int fold_cond_ternary(ir_value *condval, ast_function *func, ast_ternary *branch) { return fold_cond(condval, func, (ast_ifthen*)branch); } int fold_cond_ifthen(ir_value *condval, ast_function *func, ast_ifthen *branch) { return fold_cond(condval, func, branch); }