#ifndef GMQCC_AST_HDR #define GMQCC_AST_HDR #include #include "ir.h" typedef uint16_t ast_flag_t; /* Note: I will not be using a _t suffix for the * "main" ast node types for now. */ struct ast_node; struct ast_expression; struct ast_value; struct ast_function; struct ast_block; struct ast_binary; struct ast_store; struct ast_binstore; struct ast_entfield; struct ast_ifthen; struct ast_ternary; struct ast_loop; struct ast_call; struct ast_unary; struct ast_return; struct ast_member; struct ast_array_index; struct ast_breakcont; struct ast_switch; struct ast_label; struct ast_goto; struct ast_argpipe; struct ast_state; enum { AST_FLAG_VARIADIC = 1 << 0, AST_FLAG_NORETURN = 1 << 1, AST_FLAG_INLINE = 1 << 2, AST_FLAG_INITIALIZED = 1 << 3, AST_FLAG_DEPRECATED = 1 << 4, AST_FLAG_INCLUDE_DEF = 1 << 5, AST_FLAG_IS_VARARG = 1 << 6, AST_FLAG_ALIAS = 1 << 7, AST_FLAG_ERASEABLE = 1 << 8, AST_FLAG_ACCUMULATE = 1 << 9, /* An array declared as [] * so that the size is taken from the initializer */ AST_FLAG_ARRAY_INIT = 1 << 10, AST_FLAG_FINAL_DECL = 1 << 11, /* Several coverage options * AST_FLAG_COVERAGE means there was an explicit [[coverage]] attribute, * which will overwrite the default set via the commandline switches. * BLOCK_COVERAGE inserts coverage() calls into every basic block. * In the future there might be more options like tracking variable access * by creating get/set wrapper functions. */ AST_FLAG_COVERAGE = 1 << 12, AST_FLAG_BLOCK_COVERAGE = 1 << 13, AST_FLAG_LAST, AST_FLAG_TYPE_MASK = (AST_FLAG_VARIADIC | AST_FLAG_NORETURN), AST_FLAG_COVERAGE_MASK = (AST_FLAG_BLOCK_COVERAGE) }; enum { TYPE_ast_node, /* 0 */ TYPE_ast_expression, /* 1 */ TYPE_ast_value, /* 2 */ TYPE_ast_function, /* 3 */ TYPE_ast_block, /* 4 */ TYPE_ast_binary, /* 5 */ TYPE_ast_store, /* 6 */ TYPE_ast_binstore, /* 7 */ TYPE_ast_entfield, /* 8 */ TYPE_ast_ifthen, /* 9 */ TYPE_ast_ternary, /* 10 */ TYPE_ast_loop, /* 11 */ TYPE_ast_call, /* 12 */ TYPE_ast_unary, /* 13 */ TYPE_ast_return, /* 14 */ TYPE_ast_member, /* 15 */ TYPE_ast_array_index, /* 16 */ TYPE_ast_breakcont, /* 17 */ TYPE_ast_switch, /* 18 */ TYPE_ast_label, /* 19 */ TYPE_ast_goto, /* 20 */ TYPE_ast_argpipe, /* 21 */ TYPE_ast_state /* 22 */ }; #define ast_istype(x, t) ( (x)->m_node_type == (TYPE_##t) ) /* Node interface with common components */ typedef void ast_node_delete(ast_node*); struct ast_node { ast_node() = delete; ast_node(lex_ctx_t, int nodetype); virtual ~ast_node(); lex_ctx_t m_context; /* I don't feel comfortable using keywords like 'delete' as names... */ int m_node_type; /* keep_node: if a node contains this node, 'keep_node' * prevents its dtor from destroying this node as well. */ bool m_keep_node; bool m_side_effects; void propagate_side_effects(ast_node *other) const; }; #define ast_unref(x) do \ { \ if (! (x)->m_keep_node ) { \ delete (x); \ } \ } while(0) enum class ast_copy_type_t { value }; static const ast_copy_type_t ast_copy_type = ast_copy_type_t::value; /* Expression interface * * Any expression or block returns an ir_value, and needs * to know the current function. */ typedef bool ast_expression_codegen(ast_expression*, ast_function*, bool lvalue, ir_value**); /* TODO: the codegen function should take an output-type parameter * indicating whether a variable, type, label etc. is expected, and * an environment! * Then later an ast_ident could have a codegen using this to figure * out what to look for. * eg. in code which uses a not-yet defined variable, the expression * would take an ast_ident, and the codegen would be called with * type `expression`, so the ast_ident's codegen would search for * variables through the environment (or functions, constants...). */ struct ast_expression : ast_node { ast_expression() = delete; ast_expression(lex_ctx_t ctx, int nodetype, qc_type vtype); ast_expression(lex_ctx_t ctx, int nodetype); ~ast_expression(); ast_expression(ast_copy_type_t, int nodetype, const ast_expression&); ast_expression(ast_copy_type_t, const ast_expression&); static ast_expression *shallow_type(lex_ctx_t ctx, qc_type vtype); bool compare_type(const ast_expression &other) const; void adopt_type(const ast_expression &other); qc_type m_vtype = TYPE_VOID; ast_expression *m_next = nullptr; /* arrays get a member-count */ size_t m_count = 0; std::vector> m_type_params; ast_flag_t m_flags = 0; /* void foo(string...) gets varparam set as a restriction * for variadic parameters */ ast_expression *m_varparam = nullptr; /* The codegen functions should store their output values * so we can call it multiple times without re-evaluating. * Store lvalue and rvalue seperately though. So that * ast_entfield for example can generate both if required. */ ir_value *m_outl = nullptr; ir_value *m_outr = nullptr; }; /* Value * * Types are also values, both have a type and a name. * especially considering possible constructs like typedefs. * typedef float foo; * is like creating a 'float foo', foo serving as the type's name. */ union basic_value_t { qcfloat_t vfloat; int vint; vec3_t vvec; const char *vstring; int ventity; ast_function *vfunc; ast_value *vfield; }; struct ast_value : ast_expression { ast_value() = delete; ast_value(lex_ctx_t ctx, const std::string &name, qc_type qctype); ~ast_value(); ast_value(ast_copy_type_t, const ast_expression&, const std::string&); ast_value(ast_copy_type_t, const ast_value&); ast_value(ast_copy_type_t, const ast_value&, const std::string&); void add_param(ast_value*); std::string m_name; std::string m_desc; const char *m_argcounter = nullptr; int m_cvq = CV_NONE; /* const/var qualifier */ bool m_isfield = false; /* this declares a field */ bool m_isimm = false; /* an immediate, not just const */ bool m_hasvalue = false; bool m_inexact = false; /* inexact coming from folded expression */ basic_value_t m_constval; /* for TYPE_ARRAY we have an optional vector * of constants when an initializer list * was provided. */ std::vector m_initlist; /* usecount for the parser */ size_t m_uses = 0; ir_value *m_ir_v = nullptr; ir_value **m_ir_values = nullptr; size_t m_ir_value_count = 0; /* ONLY for arrays in progs version up to 6 */ ast_value *m_setter = nullptr; ast_value *m_getter = nullptr; bool m_intrinsic = false; /* true if associated with intrinsic */ }; bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield); void ast_type_to_string(const ast_expression *e, char *buf, size_t bufsize); enum ast_binary_ref { AST_REF_NONE = 0, AST_REF_LEFT = 1 << 1, AST_REF_RIGHT = 1 << 2, AST_REF_ALL = (AST_REF_LEFT | AST_REF_RIGHT) }; /* Binary * * A value-returning binary expression. */ struct ast_binary : ast_expression { ast_binary() = delete; ast_binary(lex_ctx_t ctx, int op, ast_expression *l, ast_expression *r); ~ast_binary(); int m_op; ast_expression *m_left; ast_expression *m_right; ast_binary_ref m_refs; bool m_right_first; }; /* Binstore * * An assignment including a binary expression with the source as left operand. * Eg. a += b; is a binstore { INSTR_STORE, INSTR_ADD, a, b } */ struct ast_binstore : ast_expression { ast_binstore() = delete; ast_binstore(lex_ctx_t ctx, int storeop, int mathop, ast_expression *l, ast_expression *r); ~ast_binstore(); int m_opstore; int m_opbin; ast_expression *m_dest; ast_expression *m_source; /* for &~= which uses the destination in a binary in source we can use this */ bool m_keep_dest; }; ast_binstore* ast_binstore_new(lex_ctx_t ctx, int storeop, int op, ast_expression *left, ast_expression *right); /* Unary * * Regular unary expressions: not,neg */ struct ast_unary : ast_expression { ast_unary() = delete; ~ast_unary(); int m_op; ast_expression *m_operand; static ast_unary* make(lex_ctx_t ctx, int op, ast_expression *expr); private: ast_unary(lex_ctx_t ctx, int op, ast_expression *expr); }; /* Return * * Make sure 'return' only happens at the end of a block, otherwise the IR * will refuse to create further instructions. * This should be honored by the parser. */ struct ast_return : ast_expression { ast_return() = delete; ast_return(lex_ctx_t ctx, ast_expression *expr); ~ast_return(); ast_expression *m_operand; }; /* Entity-field * * This must do 2 things: * -) Provide a way to fetch an entity field value. (Rvalue) * -) Provide a pointer to an entity field. (Lvalue) * The problem: * In original QC, there's only a STORE via pointer, but * no LOAD via pointer. * So we must know beforehand if we are going to read or assign * the field. * For this we will have to extend the codegen() functions with * a flag saying whether or not we need an L or an R-value. */ struct ast_entfield : ast_expression { ast_entfield() = delete; ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field); ast_entfield(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype); ~ast_entfield(); // The entity can come from an expression of course. ast_expression *m_entity; // As can the field, it just must result in a value of TYPE_FIELD ast_expression *m_field; }; /* Member access: * * For now used for vectors. If we get structs or unions * we can have them handled here as well. */ struct ast_member : ast_expression { static ast_member *make(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name); ~ast_member(); ast_expression *m_owner; unsigned int m_field; std::string m_name; bool m_rvalue; private: ast_member() = delete; ast_member(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const std::string &name); }; /* Array index access: * * QC forces us to take special action on arrays: * an ast_store on an ast_array_index must not codegen the index, * but call its setter - unless we have an instruction set which supports * what we need. * Any other array index access will be codegened to a call to the getter. * In any case, accessing an element via a compiletime-constant index will * result in quick access to that variable. */ struct ast_array_index : ast_expression { static ast_array_index* make(lex_ctx_t ctx, ast_expression *array, ast_expression *index); ~ast_array_index(); ast_expression *m_array; ast_expression *m_index; private: ast_array_index() = delete; ast_array_index(lex_ctx_t ctx, ast_expression *array, ast_expression *index); }; /* Vararg pipe node: * * copy all varargs starting from a specific index */ struct ast_argpipe : ast_expression { ast_argpipe() = delete; ast_argpipe(lex_ctx_t ctx, ast_expression *index); ~ast_argpipe(); ast_expression *m_index; }; /* Store * * Stores left<-right and returns left. * Specialized binary expression node */ struct ast_store : ast_expression { ast_store() = delete; ast_store(lex_ctx_t ctx, int op, ast_expression *d, ast_expression *s); ~ast_store(); int m_op; ast_expression *m_dest; ast_expression *m_source; }; /* If * * A general 'if then else' statement, either side can be nullptr and will * thus be omitted. It is an error for *both* cases to be nullptr at once. * * During its 'codegen' it'll be changing the ast_function's block. * * An if is also an "expression". Its codegen will put nullptr into the * output field though. For ternary expressions an ast_ternary will be * added. */ struct ast_ifthen : ast_expression { ast_ifthen() = delete; ast_ifthen(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse); ~ast_ifthen(); ast_expression *m_cond; /* It's all just 'expressions', since an ast_block is one too. */ ast_expression *m_on_true; ast_expression *m_on_false; }; /* Ternary expressions... * * Contrary to 'if-then-else' nodes, ternary expressions actually * return a value, otherwise they behave the very same way. * The difference in 'codegen' is that it'll return the value of * a PHI node. * * The other difference is that in an ast_ternary, NEITHER side * must be nullptr, there's ALWAYS an else branch. * * This is the only ast_node beside ast_value which contains * an ir_value. Theoretically we don't need to remember it though. */ struct ast_ternary : ast_expression { ast_ternary() = delete; ast_ternary(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse); ~ast_ternary(); ast_expression *m_cond; /* It's all just 'expressions', since an ast_block is one too. */ ast_expression *m_on_true; ast_expression *m_on_false; }; /* A general loop node * * For convenience it contains 4 parts: * -) (ini) = initializing expression * -) (pre) = pre-loop condition * -) (pst) = post-loop condition * -) (inc) = "increment" expression * The following is a psudo-representation of this loop * note that '=>' bears the logical meaning of "implies". * (a => b) equals (!a || b) {ini}; while (has_pre => {pre}) { {body}; continue: // a 'continue' will jump here if (has_pst => {pst}) break; {inc}; } */ struct ast_loop : ast_expression { ast_loop() = delete; ast_loop(lex_ctx_t ctx, ast_expression *initexpr, ast_expression *precond, bool pre_not, ast_expression *postcond, bool post_not, ast_expression *increment, ast_expression *body); ~ast_loop(); ast_expression *m_initexpr; ast_expression *m_precond; ast_expression *m_postcond; ast_expression *m_increment; ast_expression *m_body; /* For now we allow a seperate flag on whether or not the condition * is supposed to be true or false. * That way, the parser can generate a 'while not(!x)' for `while(x)` * if desired, which is useful for the new -f{true,false}-empty-strings * flag. */ bool m_pre_not; bool m_post_not; }; /* Break/Continue */ struct ast_breakcont : ast_expression { bool m_is_continue; unsigned int m_levels; }; ast_breakcont* ast_breakcont_new(lex_ctx_t ctx, bool iscont, unsigned int levels); /* Switch Statements * * A few notes about this: with the original QCVM, no real optimization * is possible. The SWITCH instruction set isn't really helping a lot, since * it only collapes the EQ and IF instructions into one. * Note: Declaring local variables inside caseblocks is normal. * Since we don't have to deal with a stack there's no unnatural behaviour to * be expected from it. * TODO: Ticket #20 */ struct ast_switch_case { ast_expression *m_value; /* #20 will replace this */ ast_expression *m_code; }; struct ast_switch : ast_expression { ast_expression *m_operand; std::vector m_cases; }; ast_switch* ast_switch_new(lex_ctx_t ctx, ast_expression *op); /* Label nodes * * Introduce a label which can be used together with 'goto' */ struct ast_label : ast_expression { const char *m_name; ir_block *m_irblock; std::vector m_gotos; /* means it has not yet been defined */ bool m_undefined; }; ast_label* ast_label_new(lex_ctx_t ctx, const char *name, bool undefined); /* GOTO nodes * * Go to a label, the label node is filled in at a later point! */ struct ast_goto : ast_expression { const char *m_name; ast_label *m_target; ir_block *m_irblock_from; }; ast_goto* ast_goto_new(lex_ctx_t ctx, const char *name); void ast_goto_set_label(ast_goto*, ast_label*); /* STATE node * * For frame/think state updates: void foo() [framenum, nextthink] {} */ struct ast_state : ast_expression { ast_expression *m_framenum; ast_expression *m_nextthink; }; ast_state* ast_state_new(lex_ctx_t ctx, ast_expression *frame, ast_expression *think); void ast_state_delete(ast_state*); /* CALL node * * Contains an ast_expression as target, rather than an ast_function/value. * Since it's how QC works, every ast_function has an ast_value * associated anyway - in other words, the VM contains function * pointers for every function anyway. Thus, this node will call * expression. * Additionally it contains a list of ast_expressions as parameters. * Since calls can return values, an ast_call is also an ast_expression. */ struct ast_call : ast_expression { ast_expression *m_func; std::vector m_params; ast_expression *m_va_count; }; ast_call* ast_call_new(lex_ctx_t ctx, ast_expression *funcexpr); bool ast_call_check_types(ast_call*, ast_expression *this_func_va_type); /* Blocks * */ struct ast_block : ast_expression { std::vector m_locals; std::vector m_exprs; std::vector m_collect; }; ast_block* ast_block_new(lex_ctx_t ctx); void ast_block_delete(ast_block*); void ast_block_set_type(ast_block*, ast_expression *from); void ast_block_collect(ast_block*, ast_expression*); bool GMQCC_WARN ast_block_add_expr(ast_block*, ast_expression*); /* Function * * Contains a list of blocks... at least in theory. * Usually there's just the main block, other blocks are inside that. * * Technically, functions don't need to be an AST node, since we have * neither functions inside functions, nor lambdas, and function * pointers could just work with a name. However, this way could be * more flexible, and adds no real complexity. */ struct ast_function : ast_node { ast_value *m_function_type; const char *m_name; int m_builtin; /* list of used-up names for statics without the count suffix */ std::vector m_static_names; /* number of static variables, by convention this includes the * ones without the count-suffix - remember this when dealing * with savegames. uint instead of size_t as %zu in printf is * C99, so no windows support. */ unsigned int m_static_count; ir_function *m_ir_func; ir_block *m_curblock; std::vector m_breakblocks; std::vector m_continueblocks; size_t m_labelcount; /* in order for thread safety - for the optional * channel abesed multithreading... keeping a buffer * here to use in ast_function_label. */ char m_labelbuf[64]; std::vector> m_blocks; ast_value *m_varargs; ast_value *m_argc; ast_value *m_fixedparams; ast_value *m_return_value; }; ast_function* ast_function_new(lex_ctx_t ctx, const char *name, ast_value *vtype); /* This will NOT delete the underlying ast_value */ void ast_function_delete(ast_function*); /* For "optimized" builds this can just keep returning "foo"... * or whatever... */ const char* ast_function_label(ast_function*, const char *prefix); bool ast_function_codegen(ast_function *self, ir_builder *builder); bool ast_generate_accessors(ast_value *asvalue, ir_builder *ir); /* * If the condition creates a situation where this becomes -1 size it means there are * more AST_FLAGs than the type ast_flag_t is capable of holding. So either eliminate * the AST flag count or change the ast_flag_t typedef to a type large enough to accomodate * all the flags. */ typedef int static_assert_is_ast_flag_safe [((AST_FLAG_LAST) <= (ast_flag_t)(-1)) ? 1 : -1]; #endif