/* * Copyright (C) 2012 * Wolfgang Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished to do * so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "gmqcc.h" #include "ast.h" #define ast_instantiate(T, ctx, destroyfn) \ T* self = (T*)mem_a(sizeof(T)); \ if (!self) { \ return NULL; \ } \ ast_node_init((ast_node*)self, ctx); \ ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn /* It must not be possible to get here. */ static void _ast_node_destroy(ast_node *self) { fprintf(stderr, "ast node missing destroy()\n"); abort(); } /* Initialize main ast node aprts */ static void ast_node_init(ast_node *self, lex_ctx ctx) { self->node.context = ctx; self->node.destroy = &_ast_node_destroy; self->node.keep = false; } /* General expression initialization */ static void ast_expression_init(ast_expression *self, ast_expression_codegen *codegen) { self->expression.codegen = codegen; self->expression.vtype = TYPE_VOID; self->expression.next = NULL; } static void ast_expression_delete(ast_expression *self) { if (self->expression.next) ast_delete(self->expression.next); } static void ast_expression_delete_full(ast_expression *self) { ast_expression_delete(self); mem_d(self); } static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex) { const ast_expression_common *cpex; ast_expression_common *selfex; if (!ex) return NULL; else { ast_instantiate(ast_expression, ctx, ast_expression_delete_full); cpex = &ex->expression; selfex = &self->expression; selfex->vtype = cpex->vtype; if (cpex->next) { selfex->next = ast_type_copy(ctx, cpex->next); if (!selfex->next) { mem_d(self); return NULL; } } else selfex->next = NULL; /* This may never be codegen()d */ selfex->codegen = NULL; return self; } } ast_value* ast_value_new(lex_ctx ctx, const char *name, int t) { ast_instantiate(ast_value, ctx, ast_value_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_value_codegen); self->expression.node.keep = true; /* keep */ self->name = name ? util_strdup(name) : NULL; self->expression.vtype = t; self->expression.next = NULL; MEM_VECTOR_INIT(self, params); self->isconst = false; memset(&self->constval, 0, sizeof(self->constval)); self->ir_v = NULL; return self; } MEM_VEC_FUNCTIONS(ast_value, ast_value*, params) void ast_value_delete(ast_value* self) { size_t i; if (self->name) mem_d((void*)self->name); for (i = 0; i < self->params_count; ++i) ast_value_delete(self->params[i]); /* delete, the ast_function is expected to die first */ MEM_VECTOR_CLEAR(self, params); if (self->isconst) { switch (self->expression.vtype) { case TYPE_STRING: mem_d((void*)self->constval.vstring); break; case TYPE_FUNCTION: /* unlink us from the function node */ self->constval.vfunc->vtype = NULL; break; /* NOTE: delete function? currently collected in * the parser structure */ default: break; } } ast_expression_delete((ast_expression*)self); mem_d(self); } bool ast_value_set_name(ast_value *self, const char *name) { if (self->name) mem_d((void*)self->name); self->name = util_strdup(name); return !!self->name; } ast_binary* ast_binary_new(lex_ctx ctx, int op, ast_expression* left, ast_expression* right) { ast_instantiate(ast_binary, ctx, ast_binary_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen); self->op = op; self->left = left; self->right = right; return self; } void ast_binary_delete(ast_binary *self) { ast_unref(self->left); ast_unref(self->right); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field) { const ast_expression *outtype; ast_instantiate(ast_entfield, ctx, ast_entfield_delete); if (field->expression.vtype != TYPE_FIELD) { mem_d(self); return NULL; } outtype = field->expression.next; if (!outtype) { mem_d(self); /* Error: field has no type... */ return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen); self->expression.vtype = outtype->expression.vtype; self->expression.next = ast_type_copy(ctx, outtype->expression.next); self->entity = entity; self->field = field; return self; } void ast_entfield_delete(ast_entfield *self) { ast_unref(self->entity); ast_unref(self->field); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse) { ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete); if (!ontrue && !onfalse) { /* because it is invalid */ mem_d(self); return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen); self->cond = cond; self->on_true = ontrue; self->on_false = onfalse; return self; } void ast_ifthen_delete(ast_ifthen *self) { ast_unref(self->cond); if (self->on_true) ast_unref(self->on_true); if (self->on_flase) ast_unref(self->on_false); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse) { ast_instantiate(ast_ternary, ctx, ast_ternary_delete); /* This time NEITHER must be NULL */ if (!ontrue || !onfalse) { mem_d(self); return NULL; } ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen); self->cond = cond; self->on_true = ontrue; self->on_false = onfalse; self->phi_out = NULL; return self; } void ast_ternary_delete(ast_ternary *self) { ast_unref(self->cond); ast_unref(self->on_true); ast_unref(self->on_false); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_loop* ast_loop_new(lex_ctx ctx, ast_expression *initexpr, ast_expression *precond, ast_expression *postcond, ast_expression *increment) { ast_instantiate(ast_loop, ctx, ast_loop_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen); self->initexpr = initexpr; self->precond = precond; self->postcond = postcond; self->increment = increment; return self; } void ast_loop_delete(ast_loop *self) { if (self->initexpr) ast_unref(self->initexpr); if (self->precond) ast_unref(self->precond); if (self->postcond) ast_unref(self->postcond); if (self->increment) ast_unref(self->increment); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_store* ast_store_new(lex_ctx ctx, int op, ast_value *dest, ast_expression *source) { ast_instantiate(ast_store, ctx, ast_store_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen); self->op = op; self->dest = dest; self->source = source; return self; } void ast_store_delete(ast_store *self) { ast_unref(self->dest); ast_unref(self->source); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_block* ast_block_new(lex_ctx ctx) { ast_instantiate(ast_block, ctx, ast_block_delete); ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_block_codegen); MEM_VECTOR_INIT(self, locals); MEM_VECTOR_INIT(self, exprs); return self; } MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals) MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs) void ast_block_delete(ast_block *self) { size_t i; for (i = 0; i < self->exprs_count; ++i) ast_unref(self->exprs[i]); MEM_VECTOR_CLEAR(self, exprs); for (i = 0; i < self->locals_count; ++i) ast_delete(self->locals[i]); MEM_VECTOR_CLEAR(self, locals); ast_expression_delete((ast_expression*)self); mem_d(self); } ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype) { ast_instantiate(ast_function, ctx, ast_function_delete); if (!vtype || vtype->isconst || vtype->expression.vtype != TYPE_FUNCTION) { mem_d(self); return NULL; } self->vtype = vtype; self->name = name ? util_strdup(name) : NULL; MEM_VECTOR_INIT(self, blocks); self->labelcount = 0; self->ir_func = NULL; self->curblock = NULL; vtype->isconst = true; vtype->constval.vfunc = self; return self; } MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks) void ast_function_delete(ast_function *self) { size_t i; if (self->name) mem_d((void*)self->name); if (self->vtype) { /* ast_value_delete(self->vtype); */ self->vtype->isconst = false; self->vtype->constval.vfunc = NULL; /* We use unref - if it was stored in a global table it is supposed * to be deleted from *there* */ ast_unref(self->vtype); } for (i = 0; i < self->blocks_count; ++i) ast_delete(self->blocks[i]); MEM_VECTOR_CLEAR(self, blocks); mem_d(self); } static void ast_util_hexitoa(char *buf, size_t size, unsigned int num) { unsigned int base = 10; #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0) #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0) if (size < 1) return; checknul(); if (!num) addch('0'); else { while (num) { int digit = num % base; num /= base; addch('0' + digit); } } *buf = 0; #undef addch #undef checknul } const char* ast_function_label(ast_function *self, const char *prefix) { size_t id = (self->labelcount++); size_t len = strlen(prefix); strncpy(self->labelbuf, prefix, sizeof(self->labelbuf)); ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id); return self->labelbuf; } /*********************************************************************/ /* AST codegen part * by convention you must never pass NULL to the 'ir_value **out' * parameter. If you really don't care about the output, pass a dummy. * But I can't imagine a pituation where the output is truly unnecessary. */ bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out) { /* NOTE: This is the codegen for a variable used in an expression. * It is not the codegen to generate the value. For this purpose, * ast_local_codegen and ast_global_codegen are to be used before this * is executed. ast_function_codegen should take care of its locals, * and the ast-user should take care of ast_global_codegen to be used * on all the globals. */ if (!self->ir_v) return false; *out = self->ir_v; return true; } bool ast_global_codegen(ast_value *self, ir_builder *ir) { ir_value *v = NULL; if (self->isconst && self->expression.vtype == TYPE_FUNCTION) { ir_function *func = ir_builder_create_function(ir, self->name); if (!func) return false; self->constval.vfunc->ir_func = func; /* The function is filled later on ast_function_codegen... */ return true; } v = ir_builder_create_global(ir, self->name, self->expression.vtype); if (!v) return false; if (self->isconst) { switch (self->expression.vtype) { case TYPE_FLOAT: if (!ir_value_set_float(v, self->constval.vfloat)) goto error; break; case TYPE_VECTOR: if (!ir_value_set_vector(v, self->constval.vvec)) goto error; break; case TYPE_STRING: if (!ir_value_set_string(v, self->constval.vstring)) goto error; break; case TYPE_FUNCTION: /* Cannot generate an IR value for a function, * need a pointer pointing to a function rather. */ goto error; default: printf("TODO: global constant type %i\n", self->expression.vtype); break; } } /* link us to the ir_value */ self->ir_v = v; return true; error: /* clean up */ ir_value_delete(v); return false; } bool ast_local_codegen(ast_value *self, ir_function *func) { ir_value *v = NULL; if (self->isconst && self->expression.vtype == TYPE_FUNCTION) { /* Do we allow local functions? I think not... * this is NOT a function pointer atm. */ return false; } v = ir_function_create_local(func, self->name, self->expression.vtype); if (!v) return false; /* A constant local... hmmm... * I suppose the IR will have to deal with this */ if (self->isconst) { switch (self->expression.vtype) { case TYPE_FLOAT: if (!ir_value_set_float(v, self->constval.vfloat)) goto error; break; case TYPE_VECTOR: if (!ir_value_set_vector(v, self->constval.vvec)) goto error; break; case TYPE_STRING: if (!ir_value_set_string(v, self->constval.vstring)) goto error; break; default: printf("TODO: global constant type %i\n", self->expression.vtype); break; } } /* link us to the ir_value */ self->ir_v = v; return true; error: /* clean up */ ir_value_delete(v); return false; } bool ast_function_codegen(ast_function *self, ir_builder *ir) { ir_function *irf; ir_value *dummy; size_t i; irf = self->ir_func; if (!irf) { printf("ast_function's related ast_value was not generated yet\n"); return false; } self->curblock = ir_function_create_block(irf, "entry"); if (!self->curblock) return false; for (i = 0; i < self->blocks_count; ++i) { ast_expression_codegen *gen = self->blocks[i]->expression.codegen; if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy)) return false; } /* TODO: check return types */ if (!self->curblock->is_return) { if (!self->vtype->expression.next || self->vtype->expression.next->expression.vtype == TYPE_VOID) return ir_block_create_return(self->curblock, NULL); else { /* error("missing return"); */ return false; } } return true; } /* Note, you will not see ast_block_codegen generate ir_blocks. * To the AST and the IR, blocks are 2 different things. * In the AST it represents a block of code, usually enclosed in * curly braces {...}. * While in the IR it represents a block in terms of control-flow. */ bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out) { size_t i; /* We don't use this * Note: an ast-representation using the comma-operator * of the form: (a, b, c) = x should not assign to c... */ (void)lvalue; /* output is NULL at first, we'll have each expression * assign to out output, thus, a comma-operator represention * using an ast_block will return the last generated value, * so: (b, c) + a executed both b and c, and returns c, * which is then added to a. */ *out = NULL; /* generate locals */ for (i = 0; i < self->locals_count; ++i) { if (!ast_local_codegen(self->locals[i], func->ir_func)) return false; } for (i = 0; i < self->exprs_count; ++i) { ast_expression_codegen *gen = self->exprs[i]->expression.codegen; if (!(*gen)(self->exprs[i], func, false, out)) return false; } return true; } bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *left, *right; cgen = self->dest->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->dest), func, true, &left)) return false; cgen = self->source->expression.codegen; /* rvalue! */ if (!(*cgen)((ast_expression*)(self->source), func, false, &right)) return false; if (!ir_block_create_store_op(func->curblock, self->op, left, right)) return false; /* Theoretically, an assinment returns its left side as an * lvalue, if we don't need an lvalue though, we return * the right side as an rvalue, otherwise we have to * somehow know whether or not we need to dereference the pointer * on the left side - that is: OP_LOAD if it was an address. * Also: in original QC we cannot OP_LOADP *anyway*. */ *out = (lvalue ? left : right); return true; } bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *left, *right; /* In the context of a binary operation, we can disregard * the lvalue flag. */ (void)lvalue; cgen = self->left->expression.codegen; /* lvalue! */ if (!(*cgen)((ast_expression*)(self->left), func, false, &left)) return false; cgen = self->right->expression.codegen; /* rvalue! */ if (!(*cgen)((ast_expression*)(self->right), func, false, &right)) return false; *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"), self->op, left, right); if (!*out) return false; return true; } bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *ent, *field; /* This function needs to take the 'lvalue' flag into account! * As lvalue we provide a field-pointer, as rvalue we provide the * value in a temp. */ cgen = self->entity->expression.codegen; if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent)) return false; cgen = self->field->expression.codegen; if (!(*cgen)((ast_expression*)(self->field), func, false, &field)) return false; if (lvalue) { /* address! */ *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"), ent, field); } else { *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"), ent, field, self->expression.vtype); } if (!*out) return false; /* Hm that should be it... */ return true; } bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *condval; ir_value *dummy; ir_block *cond = func->curblock; ir_block *ontrue; ir_block *onfalse; ir_block *merge; /* We don't output any value, thus also don't care about r/lvalue */ (void)out; (void)lvalue; /* create blocks first, it's nicer if they're ordered */ if (self->on_true) { /* create on-true block */ ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue")); if (!ontrue) return false; } else ontrue = NULL; if (self->on_false) { /* create on-false block */ onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse")); if (!onfalse) return false; } else onfalse = NULL; merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif")); if (!merge) return NULL; /* generate the condition */ func->curblock = cond; cgen = self->cond->expression.codegen; if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval)) return false; if (!ir_block_create_if(cond, condval, (ontrue ? ontrue : merge), (onfalse ? onfalse : merge))) { return false; } /* on-true path */ if (ontrue) { /* enter the block */ func->curblock = ontrue; /* generate */ cgen = self->on_true->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy)) return false; /* jump to merge block */ if (!ir_block_create_jump(ontrue, merge)) return false; } /* on-false path */ if (onfalse) { /* enter the block */ func->curblock = onfalse; /* generate */ cgen = self->on_false->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy)) return false; /* jump to merge block */ if (!ir_block_create_jump(ontrue, merge)) return false; } /* Now enter the merge block */ func->curblock = merge; return true; } bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out) { ast_expression_codegen *cgen; ir_value *condval; ir_value *trueval, *falseval; ir_instr *phi; ir_block *cond = func->curblock; ir_block *ontrue; ir_block *onfalse; ir_block *merge; /* In theory it shouldn't be possible to pass through a node twice, but * in case we add any kind of optimization pass for the AST itself, it * may still happen, thus we remember a created ir_value and simply return one * if it already exists. */ if (self->phi_out) { *out = self->phi_out; return true; } /* Ternary can never create an lvalue... */ if (lvalue) return false; /* In the following, contraty to ast_ifthen, we assume both paths exist. */ /* create on-true block */ ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T")); if (!ontrue) return false; /* create on-false block */ onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F")); if (!onfalse) return false; merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out")); if (!merge) return NULL; /* generate the condition */ func->curblock = cond; cgen = self->cond->expression.codegen; if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval)) return false; if (!ir_block_create_if(cond, condval, ontrue, onfalse)) return false; /* on-true path */ /* enter the block */ func->curblock = ontrue; /* generate */ cgen = self->on_true->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval)) return false; /* jump to merge block */ if (!ir_block_create_jump(ontrue, merge)) return false; /* on-false path */ /* enter the block */ func->curblock = onfalse; /* generate */ cgen = self->on_false->expression.codegen; if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval)) return false; /* jump to merge block */ if (!ir_block_create_jump(ontrue, merge)) return false; /* Now enter the merge block */ func->curblock = merge; /* Here, now, we need a PHI node * but first some sanity checking... */ if (trueval->vtype != falseval->vtype) { /* error("ternary with different types on the two sides"); */ return false; } /* create PHI */ phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype); if (!phi || !ir_phi_add(phi, ontrue, trueval) || !ir_phi_add(phi, onfalse, falseval)) { return false; } self->phi_out = ir_phi_value(phi); *out = self->phi_out; return true; } bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out) { return false; }