]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
removing a goto loop
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdlib.h>
24 #include <string.h>
25 #include "gmqcc.h"
26 #include "ir.h"
27
28 /***********************************************************************
29  * Type sizes used at multiple points in the IR codegen
30  */
31
32 const char *type_name[TYPE_COUNT] = {
33     "void",
34     "string",
35     "float",
36     "vector",
37     "entity",
38     "field",
39     "function",
40     "pointer",
41     "integer",
42     "variant",
43     "struct",
44     "union",
45     "array",
46
47     "nil",
48     "<no-expression>"
49 };
50
51 size_t type_sizeof_[TYPE_COUNT] = {
52     1, /* TYPE_VOID     */
53     1, /* TYPE_STRING   */
54     1, /* TYPE_FLOAT    */
55     3, /* TYPE_VECTOR   */
56     1, /* TYPE_ENTITY   */
57     1, /* TYPE_FIELD    */
58     1, /* TYPE_FUNCTION */
59     1, /* TYPE_POINTER  */
60     1, /* TYPE_INTEGER  */
61     3, /* TYPE_VARIANT  */
62     0, /* TYPE_STRUCT   */
63     0, /* TYPE_UNION    */
64     0, /* TYPE_ARRAY    */
65     0, /* TYPE_NIL      */
66     0, /* TYPE_NOESPR   */
67 };
68
69 uint16_t type_store_instr[TYPE_COUNT] = {
70     INSTR_STORE_F, /* should use I when having integer support */
71     INSTR_STORE_S,
72     INSTR_STORE_F,
73     INSTR_STORE_V,
74     INSTR_STORE_ENT,
75     INSTR_STORE_FLD,
76     INSTR_STORE_FNC,
77     INSTR_STORE_ENT, /* should use I */
78 #if 0
79     INSTR_STORE_I, /* integer type */
80 #else
81     INSTR_STORE_F,
82 #endif
83
84     INSTR_STORE_V, /* variant, should never be accessed */
85
86     AINSTR_END, /* struct */
87     AINSTR_END, /* union  */
88     AINSTR_END, /* array  */
89     AINSTR_END, /* nil    */
90     AINSTR_END, /* noexpr */
91 };
92
93 uint16_t field_store_instr[TYPE_COUNT] = {
94     INSTR_STORE_FLD,
95     INSTR_STORE_FLD,
96     INSTR_STORE_FLD,
97     INSTR_STORE_V,
98     INSTR_STORE_FLD,
99     INSTR_STORE_FLD,
100     INSTR_STORE_FLD,
101     INSTR_STORE_FLD,
102 #if 0
103     INSTR_STORE_FLD, /* integer type */
104 #else
105     INSTR_STORE_FLD,
106 #endif
107
108     INSTR_STORE_V, /* variant, should never be accessed */
109
110     AINSTR_END, /* struct */
111     AINSTR_END, /* union  */
112     AINSTR_END, /* array  */
113     AINSTR_END, /* nil    */
114     AINSTR_END, /* noexpr */
115 };
116
117 uint16_t type_storep_instr[TYPE_COUNT] = {
118     INSTR_STOREP_F, /* should use I when having integer support */
119     INSTR_STOREP_S,
120     INSTR_STOREP_F,
121     INSTR_STOREP_V,
122     INSTR_STOREP_ENT,
123     INSTR_STOREP_FLD,
124     INSTR_STOREP_FNC,
125     INSTR_STOREP_ENT, /* should use I */
126 #if 0
127     INSTR_STOREP_ENT, /* integer type */
128 #else
129     INSTR_STOREP_F,
130 #endif
131
132     INSTR_STOREP_V, /* variant, should never be accessed */
133
134     AINSTR_END, /* struct */
135     AINSTR_END, /* union  */
136     AINSTR_END, /* array  */
137     AINSTR_END, /* nil    */
138     AINSTR_END, /* noexpr */
139 };
140
141 uint16_t type_eq_instr[TYPE_COUNT] = {
142     INSTR_EQ_F, /* should use I when having integer support */
143     INSTR_EQ_S,
144     INSTR_EQ_F,
145     INSTR_EQ_V,
146     INSTR_EQ_E,
147     INSTR_EQ_E, /* FLD has no comparison */
148     INSTR_EQ_FNC,
149     INSTR_EQ_E, /* should use I */
150 #if 0
151     INSTR_EQ_I,
152 #else
153     INSTR_EQ_F,
154 #endif
155
156     INSTR_EQ_V, /* variant, should never be accessed */
157
158     AINSTR_END, /* struct */
159     AINSTR_END, /* union  */
160     AINSTR_END, /* array  */
161     AINSTR_END, /* nil    */
162     AINSTR_END, /* noexpr */
163 };
164
165 uint16_t type_ne_instr[TYPE_COUNT] = {
166     INSTR_NE_F, /* should use I when having integer support */
167     INSTR_NE_S,
168     INSTR_NE_F,
169     INSTR_NE_V,
170     INSTR_NE_E,
171     INSTR_NE_E, /* FLD has no comparison */
172     INSTR_NE_FNC,
173     INSTR_NE_E, /* should use I */
174 #if 0
175     INSTR_NE_I,
176 #else
177     INSTR_NE_F,
178 #endif
179
180     INSTR_NE_V, /* variant, should never be accessed */
181
182     AINSTR_END, /* struct */
183     AINSTR_END, /* union  */
184     AINSTR_END, /* array  */
185     AINSTR_END, /* nil    */
186     AINSTR_END, /* noexpr */
187 };
188
189 uint16_t type_not_instr[TYPE_COUNT] = {
190     INSTR_NOT_F, /* should use I when having integer support */
191     INSTR_NOT_S,
192     INSTR_NOT_F,
193     INSTR_NOT_V,
194     INSTR_NOT_ENT,
195     INSTR_NOT_ENT,
196     INSTR_NOT_FNC,
197     INSTR_NOT_ENT, /* should use I */
198 #if 0
199     INSTR_NOT_I, /* integer type */
200 #else
201     INSTR_NOT_F,
202 #endif
203
204     INSTR_NOT_V, /* variant, should never be accessed */
205
206     AINSTR_END, /* struct */
207     AINSTR_END, /* union  */
208     AINSTR_END, /* array  */
209     AINSTR_END, /* nil    */
210     AINSTR_END, /* noexpr */
211 };
212
213 /* protos */
214 static ir_value* ir_gen_extparam_proto(ir_builder *ir);
215 static void      ir_gen_extparam      (ir_builder *ir);
216
217 /* error functions */
218
219 static void irerror(lex_ctx ctx, const char *msg, ...)
220 {
221     va_list ap;
222     va_start(ap, msg);
223     con_cvprintmsg((void*)&ctx, LVL_ERROR, "internal error", msg, ap);
224     va_end(ap);
225 }
226
227 static bool irwarning(lex_ctx ctx, int warntype, const char *fmt, ...)
228 {
229     bool    r;
230     va_list ap;
231     va_start(ap, fmt);
232     r = vcompile_warning(ctx, warntype, fmt, ap);
233     va_end(ap);
234     return r;
235 }
236
237 /***********************************************************************
238  * Vector utility functions
239  */
240
241 bool GMQCC_WARN vec_ir_value_find(ir_value **vec, const ir_value *what, size_t *idx)
242 {
243     size_t i;
244     size_t len = vec_size(vec);
245     for (i = 0; i < len; ++i) {
246         if (vec[i] == what) {
247             if (idx) *idx = i;
248             return true;
249         }
250     }
251     return false;
252 }
253
254 bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
255 {
256     size_t i;
257     size_t len = vec_size(vec);
258     for (i = 0; i < len; ++i) {
259         if (vec[i] == what) {
260             if (idx) *idx = i;
261             return true;
262         }
263     }
264     return false;
265 }
266
267 bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
268 {
269     size_t i;
270     size_t len = vec_size(vec);
271     for (i = 0; i < len; ++i) {
272         if (vec[i] == what) {
273             if (idx) *idx = i;
274             return true;
275         }
276     }
277     return false;
278 }
279
280 /***********************************************************************
281  * IR Builder
282  */
283
284 static void ir_block_delete_quick(ir_block* self);
285 static void ir_instr_delete_quick(ir_instr *self);
286 static void ir_function_delete_quick(ir_function *self);
287
288 ir_builder* ir_builder_new(const char *modulename)
289 {
290     ir_builder* self;
291
292     self = (ir_builder*)mem_a(sizeof(*self));
293     if (!self)
294         return NULL;
295
296     self->functions   = NULL;
297     self->globals     = NULL;
298     self->fields      = NULL;
299     self->filenames   = NULL;
300     self->filestrings = NULL;
301     self->htglobals   = util_htnew(IR_HT_SIZE);
302     self->htfields    = util_htnew(IR_HT_SIZE);
303     self->htfunctions = util_htnew(IR_HT_SIZE);
304
305     self->extparams       = NULL;
306     self->extparam_protos = NULL;
307
308     self->first_common_globaltemp = 0;
309     self->max_globaltemps         = 0;
310     self->first_common_local      = 0;
311     self->max_locals              = 0;
312
313     self->str_immediate = 0;
314     self->name = NULL;
315     if (!ir_builder_set_name(self, modulename)) {
316         mem_d(self);
317         return NULL;
318     }
319
320     self->nil = ir_value_var("nil", store_value, TYPE_NIL);
321     self->nil->cvq = CV_CONST;
322
323     return self;
324 }
325
326 void ir_builder_delete(ir_builder* self)
327 {
328     size_t i;
329     util_htdel(self->htglobals);
330     util_htdel(self->htfields);
331     util_htdel(self->htfunctions);
332     mem_d((void*)self->name);
333     for (i = 0; i != vec_size(self->functions); ++i) {
334         ir_function_delete_quick(self->functions[i]);
335     }
336     vec_free(self->functions);
337     for (i = 0; i != vec_size(self->extparams); ++i) {
338         ir_value_delete(self->extparams[i]);
339     }
340     vec_free(self->extparams);
341     for (i = 0; i != vec_size(self->globals); ++i) {
342         ir_value_delete(self->globals[i]);
343     }
344     vec_free(self->globals);
345     for (i = 0; i != vec_size(self->fields); ++i) {
346         ir_value_delete(self->fields[i]);
347     }
348     ir_value_delete(self->nil);
349     vec_free(self->fields);
350     vec_free(self->filenames);
351     vec_free(self->filestrings);
352     mem_d(self);
353 }
354
355 bool ir_builder_set_name(ir_builder *self, const char *name)
356 {
357     if (self->name)
358         mem_d((void*)self->name);
359     self->name = util_strdup(name);
360     return !!self->name;
361 }
362
363 ir_function* ir_builder_get_function(ir_builder *self, const char *name)
364 {
365     return (ir_function*)util_htget(self->htfunctions, name);
366 }
367
368 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
369 {
370     ir_function *fn = ir_builder_get_function(self, name);
371     if (fn) {
372         return NULL;
373     }
374
375     fn = ir_function_new(self, outtype);
376     if (!ir_function_set_name(fn, name))
377     {
378         ir_function_delete(fn);
379         return NULL;
380     }
381     vec_push(self->functions, fn);
382     util_htset(self->htfunctions, name, fn);
383
384     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
385     if (!fn->value) {
386         ir_function_delete(fn);
387         return NULL;
388     }
389
390     fn->value->hasvalue = true;
391     fn->value->outtype = outtype;
392     fn->value->constval.vfunc = fn;
393     fn->value->context = fn->context;
394
395     return fn;
396 }
397
398 ir_value* ir_builder_get_global(ir_builder *self, const char *name)
399 {
400     return (ir_value*)util_htget(self->htglobals, name);
401 }
402
403 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
404 {
405     ir_value *ve;
406
407     if (name && name[0] != '#')
408     {
409         ve = ir_builder_get_global(self, name);
410         if (ve) {
411             return NULL;
412         }
413     }
414
415     ve = ir_value_var(name, store_global, vtype);
416     vec_push(self->globals, ve);
417     util_htset(self->htglobals, name, ve);
418     return ve;
419 }
420
421 ir_value* ir_builder_get_field(ir_builder *self, const char *name)
422 {
423     return (ir_value*)util_htget(self->htfields, name);
424 }
425
426
427 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
428 {
429     ir_value *ve = ir_builder_get_field(self, name);
430     if (ve) {
431         return NULL;
432     }
433
434     ve = ir_value_var(name, store_global, TYPE_FIELD);
435     ve->fieldtype = vtype;
436     vec_push(self->fields, ve);
437     util_htset(self->htfields, name, ve);
438     return ve;
439 }
440
441 /***********************************************************************
442  *IR Function
443  */
444
445 bool ir_function_naive_phi(ir_function*);
446 void ir_function_enumerate(ir_function*);
447 bool ir_function_calculate_liferanges(ir_function*);
448 bool ir_function_allocate_locals(ir_function*);
449
450 ir_function* ir_function_new(ir_builder* owner, int outtype)
451 {
452     ir_function *self;
453     self = (ir_function*)mem_a(sizeof(*self));
454
455     if (!self)
456         return NULL;
457
458     memset(self, 0, sizeof(*self));
459
460     self->name = NULL;
461     if (!ir_function_set_name(self, "<@unnamed>")) {
462         mem_d(self);
463         return NULL;
464     }
465     self->flags = 0;
466
467     self->owner = owner;
468     self->context.file = "<@no context>";
469     self->context.line = 0;
470     self->outtype = outtype;
471     self->value = NULL;
472     self->builtin = 0;
473
474     self->params = NULL;
475     self->blocks = NULL;
476     self->values = NULL;
477     self->locals = NULL;
478
479     self->code_function_def = -1;
480     self->allocated_locals = 0;
481     self->globaltemps      = 0;
482
483     self->run_id = 0;
484     return self;
485 }
486
487 bool ir_function_set_name(ir_function *self, const char *name)
488 {
489     if (self->name)
490         mem_d((void*)self->name);
491     self->name = util_strdup(name);
492     return !!self->name;
493 }
494
495 static void ir_function_delete_quick(ir_function *self)
496 {
497     size_t i;
498     mem_d((void*)self->name);
499
500     for (i = 0; i != vec_size(self->blocks); ++i)
501         ir_block_delete_quick(self->blocks[i]);
502     vec_free(self->blocks);
503
504     vec_free(self->params);
505
506     for (i = 0; i != vec_size(self->values); ++i)
507         ir_value_delete(self->values[i]);
508     vec_free(self->values);
509
510     for (i = 0; i != vec_size(self->locals); ++i)
511         ir_value_delete(self->locals[i]);
512     vec_free(self->locals);
513
514     /* self->value is deleted by the builder */
515
516     mem_d(self);
517 }
518
519 void ir_function_delete(ir_function *self)
520 {
521     size_t i;
522     mem_d((void*)self->name);
523
524     for (i = 0; i != vec_size(self->blocks); ++i)
525         ir_block_delete(self->blocks[i]);
526     vec_free(self->blocks);
527
528     vec_free(self->params);
529
530     for (i = 0; i != vec_size(self->values); ++i)
531         ir_value_delete(self->values[i]);
532     vec_free(self->values);
533
534     for (i = 0; i != vec_size(self->locals); ++i)
535         ir_value_delete(self->locals[i]);
536     vec_free(self->locals);
537
538     /* self->value is deleted by the builder */
539
540     mem_d(self);
541 }
542
543 void ir_function_collect_value(ir_function *self, ir_value *v)
544 {
545     vec_push(self->values, v);
546 }
547
548 ir_block* ir_function_create_block(lex_ctx ctx, ir_function *self, const char *label)
549 {
550     ir_block* bn = ir_block_new(self, label);
551     bn->context = ctx;
552     vec_push(self->blocks, bn);
553     return bn;
554 }
555
556 static bool instr_is_operation(uint16_t op)
557 {
558     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
559              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
560              (op == INSTR_ADDRESS) ||
561              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
562              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
563              (op >= INSTR_CALL0  && op <= INSTR_CALL8) );
564 }
565
566 bool ir_function_pass_peephole(ir_function *self)
567 {
568     size_t b;
569
570     for (b = 0; b < vec_size(self->blocks); ++b) {
571         size_t    i;
572         ir_block *block = self->blocks[b];
573
574         for (i = 0; i < vec_size(block->instr); ++i) {
575             ir_instr *inst;
576             inst = block->instr[i];
577
578             if (i >= 1 &&
579                 (inst->opcode >= INSTR_STORE_F &&
580                  inst->opcode <= INSTR_STORE_FNC))
581             {
582                 ir_instr *store;
583                 ir_instr *oper;
584                 ir_value *value;
585
586                 store = inst;
587
588                 oper  = block->instr[i-1];
589                 if (!instr_is_operation(oper->opcode))
590                     continue;
591
592                 value = oper->_ops[0];
593
594                 /* only do it for SSA values */
595                 if (value->store != store_value)
596                     continue;
597
598                 /* don't optimize out the temp if it's used later again */
599                 if (vec_size(value->reads) != 1)
600                     continue;
601
602                 /* The very next store must use this value */
603                 if (value->reads[0] != store)
604                     continue;
605
606                 /* And of course the store must _read_ from it, so it's in
607                  * OP 1 */
608                 if (store->_ops[1] != value)
609                     continue;
610
611                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
612                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
613
614                 vec_remove(block->instr, i, 1);
615                 ir_instr_delete(store);
616             }
617             else if (inst->opcode == VINSTR_COND)
618             {
619                 /* COND on a value resulting from a NOT could
620                  * remove the NOT and swap its operands
621                  */
622                 while (true) {
623                     ir_block *tmp;
624                     size_t    inotid;
625                     ir_instr *inot;
626                     ir_value *value;
627                     value = inst->_ops[0];
628
629                     if (value->store != store_value ||
630                         vec_size(value->reads) != 1 ||
631                         value->reads[0] != inst)
632                     {
633                         break;
634                     }
635
636                     inot = value->writes[0];
637                     if (inot->_ops[0] != value ||
638                         inot->opcode < INSTR_NOT_F ||
639                         inot->opcode > INSTR_NOT_FNC ||
640                         inot->opcode == INSTR_NOT_V || /* can't do these */
641                         inot->opcode == INSTR_NOT_S)
642                     {
643                         break;
644                     }
645
646                     /* count */
647                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
648                     /* change operand */
649                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
650                     /* remove NOT */
651                     tmp = inot->owner;
652                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
653                         if (tmp->instr[inotid] == inot)
654                             break;
655                     }
656                     if (inotid >= vec_size(tmp->instr)) {
657                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
658                         return false;
659                     }
660                     vec_remove(tmp->instr, inotid, 1);
661                     ir_instr_delete(inot);
662                     /* swap ontrue/onfalse */
663                     tmp = inst->bops[0];
664                     inst->bops[0] = inst->bops[1];
665                     inst->bops[1] = tmp;
666                 }
667                 continue;
668             }
669         }
670     }
671
672     return true;
673 }
674
675 bool ir_function_pass_tailrecursion(ir_function *self)
676 {
677     size_t b, p;
678
679     for (b = 0; b < vec_size(self->blocks); ++b) {
680         ir_value *funcval;
681         ir_instr *ret, *call, *store = NULL;
682         ir_block *block = self->blocks[b];
683
684         if (!block->final || vec_size(block->instr) < 2)
685             continue;
686
687         ret = block->instr[vec_size(block->instr)-1];
688         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
689             continue;
690
691         call = block->instr[vec_size(block->instr)-2];
692         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
693             /* account for the unoptimized
694              * CALL
695              * STORE %return, %tmp
696              * RETURN %tmp
697              * version
698              */
699             if (vec_size(block->instr) < 3)
700                 continue;
701
702             store = call;
703             call = block->instr[vec_size(block->instr)-3];
704         }
705
706         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
707             continue;
708
709         if (store) {
710             /* optimize out the STORE */
711             if (ret->_ops[0]   &&
712                 ret->_ops[0]   == store->_ops[0] &&
713                 store->_ops[1] == call->_ops[0])
714             {
715                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
716                 call->_ops[0] = store->_ops[0];
717                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
718                 ir_instr_delete(store);
719             }
720             else
721                 continue;
722         }
723
724         if (!call->_ops[0])
725             continue;
726
727         funcval = call->_ops[1];
728         if (!funcval)
729             continue;
730         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
731             continue;
732
733         /* now we have a CALL and a RET, check if it's a tailcall */
734         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
735             continue;
736
737         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
738         vec_shrinkby(block->instr, 2);
739
740         block->final = false; /* open it back up */
741
742         /* emite parameter-stores */
743         for (p = 0; p < vec_size(call->params); ++p) {
744             /* assert(call->params_count <= self->locals_count); */
745             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
746                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
747                 return false;
748             }
749         }
750         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
751             irerror(call->context, "failed to create tailcall jump");
752             return false;
753         }
754
755         ir_instr_delete(call);
756         ir_instr_delete(ret);
757     }
758
759     return true;
760 }
761
762 bool ir_function_finalize(ir_function *self)
763 {
764     size_t i;
765
766     if (self->builtin)
767         return true;
768
769     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
770         if (!ir_function_pass_peephole(self)) {
771             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
772             return false;
773         }
774     }
775
776     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
777         if (!ir_function_pass_tailrecursion(self)) {
778             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
779             return false;
780         }
781     }
782
783     if (!ir_function_naive_phi(self)) {
784         irerror(self->context, "internal error: ir_function_naive_phi failed");
785         return false;
786     }
787
788     for (i = 0; i < vec_size(self->locals); ++i) {
789         ir_value *v = self->locals[i];
790         if (v->vtype == TYPE_VECTOR ||
791             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
792         {
793             ir_value_vector_member(v, 0);
794             ir_value_vector_member(v, 1);
795             ir_value_vector_member(v, 2);
796         }
797     }
798     for (i = 0; i < vec_size(self->values); ++i) {
799         ir_value *v = self->values[i];
800         if (v->vtype == TYPE_VECTOR ||
801             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
802         {
803             ir_value_vector_member(v, 0);
804             ir_value_vector_member(v, 1);
805             ir_value_vector_member(v, 2);
806         }
807     }
808
809     ir_function_enumerate(self);
810
811     if (!ir_function_calculate_liferanges(self))
812         return false;
813     if (!ir_function_allocate_locals(self))
814         return false;
815     return true;
816 }
817
818 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
819 {
820     ir_value *ve;
821
822     if (param &&
823         vec_size(self->locals) &&
824         self->locals[vec_size(self->locals)-1]->store != store_param) {
825         irerror(self->context, "cannot add parameters after adding locals");
826         return NULL;
827     }
828
829     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
830     if (param)
831         ve->locked = true;
832     vec_push(self->locals, ve);
833     return ve;
834 }
835
836 /***********************************************************************
837  *IR Block
838  */
839
840 ir_block* ir_block_new(ir_function* owner, const char *name)
841 {
842     ir_block *self;
843     self = (ir_block*)mem_a(sizeof(*self));
844     if (!self)
845         return NULL;
846
847     memset(self, 0, sizeof(*self));
848
849     self->label = NULL;
850     if (name && !ir_block_set_label(self, name)) {
851         mem_d(self);
852         return NULL;
853     }
854     self->owner = owner;
855     self->context.file = "<@no context>";
856     self->context.line = 0;
857     self->final = false;
858
859     self->instr   = NULL;
860     self->entries = NULL;
861     self->exits   = NULL;
862
863     self->eid = 0;
864     self->is_return = false;
865     self->run_id = 0;
866
867     self->living = NULL;
868
869     self->generated = false;
870
871     return self;
872 }
873
874 static void ir_block_delete_quick(ir_block* self)
875 {
876     size_t i;
877     if (self->label) mem_d(self->label);
878     for (i = 0; i != vec_size(self->instr); ++i)
879         ir_instr_delete_quick(self->instr[i]);
880     vec_free(self->instr);
881     vec_free(self->entries);
882     vec_free(self->exits);
883     vec_free(self->living);
884     mem_d(self);
885 }
886
887 void ir_block_delete(ir_block* self)
888 {
889     size_t i;
890     if (self->label) mem_d(self->label);
891     for (i = 0; i != vec_size(self->instr); ++i)
892         ir_instr_delete(self->instr[i]);
893     vec_free(self->instr);
894     vec_free(self->entries);
895     vec_free(self->exits);
896     vec_free(self->living);
897     mem_d(self);
898 }
899
900 bool ir_block_set_label(ir_block *self, const char *name)
901 {
902     if (self->label)
903         mem_d((void*)self->label);
904     self->label = util_strdup(name);
905     return !!self->label;
906 }
907
908 /***********************************************************************
909  *IR Instructions
910  */
911
912 ir_instr* ir_instr_new(lex_ctx ctx, ir_block* owner, int op)
913 {
914     ir_instr *self;
915     self = (ir_instr*)mem_a(sizeof(*self));
916     if (!self)
917         return NULL;
918
919     self->owner = owner;
920     self->context = ctx;
921     self->opcode = op;
922     self->_ops[0] = NULL;
923     self->_ops[1] = NULL;
924     self->_ops[2] = NULL;
925     self->bops[0] = NULL;
926     self->bops[1] = NULL;
927
928     self->phi    = NULL;
929     self->params = NULL;
930
931     self->eid = 0;
932
933     self->likely = true;
934     return self;
935 }
936
937 static void ir_instr_delete_quick(ir_instr *self)
938 {
939     vec_free(self->phi);
940     vec_free(self->params);
941     mem_d(self);
942 }
943
944 void ir_instr_delete(ir_instr *self)
945 {
946     size_t i;
947     /* The following calls can only delete from
948      * vectors, we still want to delete this instruction
949      * so ignore the return value. Since with the warn_unused_result attribute
950      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
951      * I have to improvise here and use if(foo());
952      */
953     for (i = 0; i < vec_size(self->phi); ++i) {
954         size_t idx;
955         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
956             vec_remove(self->phi[i].value->writes, idx, 1);
957         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
958             vec_remove(self->phi[i].value->reads, idx, 1);
959     }
960     vec_free(self->phi);
961     for (i = 0; i < vec_size(self->params); ++i) {
962         size_t idx;
963         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
964             vec_remove(self->params[i]->writes, idx, 1);
965         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
966             vec_remove(self->params[i]->reads, idx, 1);
967     }
968     vec_free(self->params);
969     (void)!ir_instr_op(self, 0, NULL, false);
970     (void)!ir_instr_op(self, 1, NULL, false);
971     (void)!ir_instr_op(self, 2, NULL, false);
972     mem_d(self);
973 }
974
975 bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
976 {
977     if (self->_ops[op]) {
978         size_t idx;
979         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
980             vec_remove(self->_ops[op]->writes, idx, 1);
981         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
982             vec_remove(self->_ops[op]->reads, idx, 1);
983     }
984     if (v) {
985         if (writing)
986             vec_push(v->writes, self);
987         else
988             vec_push(v->reads, self);
989     }
990     self->_ops[op] = v;
991     return true;
992 }
993
994 /***********************************************************************
995  *IR Value
996  */
997
998 void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
999 {
1000     self->code.globaladdr = gaddr;
1001     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
1002     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
1003     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
1004 }
1005
1006 int32_t ir_value_code_addr(const ir_value *self)
1007 {
1008     if (self->store == store_return)
1009         return OFS_RETURN + self->code.addroffset;
1010     return self->code.globaladdr + self->code.addroffset;
1011 }
1012
1013 ir_value* ir_value_var(const char *name, int storetype, int vtype)
1014 {
1015     ir_value *self;
1016     self = (ir_value*)mem_a(sizeof(*self));
1017     self->vtype = vtype;
1018     self->fieldtype = TYPE_VOID;
1019     self->outtype = TYPE_VOID;
1020     self->store = storetype;
1021
1022     self->reads  = NULL;
1023     self->writes = NULL;
1024
1025     self->cvq          = CV_NONE;
1026     self->hasvalue     = false;
1027     self->context.file = "<@no context>";
1028     self->context.line = 0;
1029     self->name = NULL;
1030     if (name && !ir_value_set_name(self, name)) {
1031         irerror(self->context, "out of memory");
1032         mem_d(self);
1033         return NULL;
1034     }
1035
1036     memset(&self->constval, 0, sizeof(self->constval));
1037     memset(&self->code,     0, sizeof(self->code));
1038
1039     self->members[0] = NULL;
1040     self->members[1] = NULL;
1041     self->members[2] = NULL;
1042     self->memberof = NULL;
1043
1044     self->unique_life = false;
1045     self->locked      = false;
1046     self->callparam   = false;
1047
1048     self->life = NULL;
1049     return self;
1050 }
1051
1052 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
1053 {
1054     char     *name;
1055     size_t    len;
1056     ir_value *m;
1057     if (member >= 3)
1058         return NULL;
1059
1060     if (self->members[member])
1061         return self->members[member];
1062
1063     if (self->name) {
1064         len = strlen(self->name);
1065         name = (char*)mem_a(len + 3);
1066         memcpy(name, self->name, len);
1067         name[len+0] = '_';
1068         name[len+1] = 'x' + member;
1069         name[len+2] = '\0';
1070     }
1071     else
1072         name = NULL;
1073
1074     if (self->vtype == TYPE_VECTOR)
1075     {
1076         m = ir_value_var(name, self->store, TYPE_FLOAT);
1077         if (name)
1078             mem_d(name);
1079         if (!m)
1080             return NULL;
1081         m->context = self->context;
1082
1083         self->members[member] = m;
1084         m->code.addroffset = member;
1085     }
1086     else if (self->vtype == TYPE_FIELD)
1087     {
1088         if (self->fieldtype != TYPE_VECTOR)
1089             return NULL;
1090         m = ir_value_var(name, self->store, TYPE_FIELD);
1091         if (name)
1092             mem_d(name);
1093         if (!m)
1094             return NULL;
1095         m->fieldtype = TYPE_FLOAT;
1096         m->context = self->context;
1097
1098         self->members[member] = m;
1099         m->code.addroffset = member;
1100     }
1101     else
1102     {
1103         irerror(self->context, "invalid member access on %s", self->name);
1104         return NULL;
1105     }
1106
1107     m->memberof = self;
1108     return m;
1109 }
1110
1111 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1112 {
1113     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1114         return type_sizeof_[TYPE_VECTOR];
1115     return type_sizeof_[self->vtype];
1116 }
1117
1118 ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1119 {
1120     ir_value *v = ir_value_var(name, storetype, vtype);
1121     if (!v)
1122         return NULL;
1123     ir_function_collect_value(owner, v);
1124     return v;
1125 }
1126
1127 void ir_value_delete(ir_value* self)
1128 {
1129     size_t i;
1130     if (self->name)
1131         mem_d((void*)self->name);
1132     if (self->hasvalue)
1133     {
1134         if (self->vtype == TYPE_STRING)
1135             mem_d((void*)self->constval.vstring);
1136     }
1137     for (i = 0; i < 3; ++i) {
1138         if (self->members[i])
1139             ir_value_delete(self->members[i]);
1140     }
1141     vec_free(self->reads);
1142     vec_free(self->writes);
1143     vec_free(self->life);
1144     mem_d(self);
1145 }
1146
1147 bool ir_value_set_name(ir_value *self, const char *name)
1148 {
1149     if (self->name)
1150         mem_d((void*)self->name);
1151     self->name = util_strdup(name);
1152     return !!self->name;
1153 }
1154
1155 bool ir_value_set_float(ir_value *self, float f)
1156 {
1157     if (self->vtype != TYPE_FLOAT)
1158         return false;
1159     self->constval.vfloat = f;
1160     self->hasvalue = true;
1161     return true;
1162 }
1163
1164 bool ir_value_set_func(ir_value *self, int f)
1165 {
1166     if (self->vtype != TYPE_FUNCTION)
1167         return false;
1168     self->constval.vint = f;
1169     self->hasvalue = true;
1170     return true;
1171 }
1172
1173 bool ir_value_set_vector(ir_value *self, vector v)
1174 {
1175     if (self->vtype != TYPE_VECTOR)
1176         return false;
1177     self->constval.vvec = v;
1178     self->hasvalue = true;
1179     return true;
1180 }
1181
1182 bool ir_value_set_field(ir_value *self, ir_value *fld)
1183 {
1184     if (self->vtype != TYPE_FIELD)
1185         return false;
1186     self->constval.vpointer = fld;
1187     self->hasvalue = true;
1188     return true;
1189 }
1190
1191 static char *ir_strdup(const char *str)
1192 {
1193     if (str && !*str) {
1194         /* actually dup empty strings */
1195         char *out = (char*)mem_a(1);
1196         *out = 0;
1197         return out;
1198     }
1199     return util_strdup(str);
1200 }
1201
1202 bool ir_value_set_string(ir_value *self, const char *str)
1203 {
1204     if (self->vtype != TYPE_STRING)
1205         return false;
1206     self->constval.vstring = ir_strdup(str);
1207     self->hasvalue = true;
1208     return true;
1209 }
1210
1211 #if 0
1212 bool ir_value_set_int(ir_value *self, int i)
1213 {
1214     if (self->vtype != TYPE_INTEGER)
1215         return false;
1216     self->constval.vint = i;
1217     self->hasvalue = true;
1218     return true;
1219 }
1220 #endif
1221
1222 bool ir_value_lives(ir_value *self, size_t at)
1223 {
1224     size_t i;
1225     for (i = 0; i < vec_size(self->life); ++i)
1226     {
1227         ir_life_entry_t *life = &self->life[i];
1228         if (life->start <= at && at <= life->end)
1229             return true;
1230         if (life->start > at) /* since it's ordered */
1231             return false;
1232     }
1233     return false;
1234 }
1235
1236 bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1237 {
1238     size_t k;
1239     vec_push(self->life, e);
1240     for (k = vec_size(self->life)-1; k > idx; --k)
1241         self->life[k] = self->life[k-1];
1242     self->life[idx] = e;
1243     return true;
1244 }
1245
1246 bool ir_value_life_merge(ir_value *self, size_t s)
1247 {
1248     size_t i;
1249     ir_life_entry_t *life = NULL;
1250     ir_life_entry_t *before = NULL;
1251     ir_life_entry_t new_entry;
1252
1253     /* Find the first range >= s */
1254     for (i = 0; i < vec_size(self->life); ++i)
1255     {
1256         before = life;
1257         life = &self->life[i];
1258         if (life->start > s)
1259             break;
1260     }
1261     /* nothing found? append */
1262     if (i == vec_size(self->life)) {
1263         ir_life_entry_t e;
1264         if (life && life->end+1 == s)
1265         {
1266             /* previous life range can be merged in */
1267             life->end++;
1268             return true;
1269         }
1270         if (life && life->end >= s)
1271             return false;
1272         e.start = e.end = s;
1273         vec_push(self->life, e);
1274         return true;
1275     }
1276     /* found */
1277     if (before)
1278     {
1279         if (before->end + 1 == s &&
1280             life->start - 1 == s)
1281         {
1282             /* merge */
1283             before->end = life->end;
1284             vec_remove(self->life, i, 1);
1285             return true;
1286         }
1287         if (before->end + 1 == s)
1288         {
1289             /* extend before */
1290             before->end++;
1291             return true;
1292         }
1293         /* already contained */
1294         if (before->end >= s)
1295             return false;
1296     }
1297     /* extend */
1298     if (life->start - 1 == s)
1299     {
1300         life->start--;
1301         return true;
1302     }
1303     /* insert a new entry */
1304     new_entry.start = new_entry.end = s;
1305     return ir_value_life_insert(self, i, new_entry);
1306 }
1307
1308 bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1309 {
1310     size_t i, myi;
1311
1312     if (!vec_size(other->life))
1313         return true;
1314
1315     if (!vec_size(self->life)) {
1316         size_t count = vec_size(other->life);
1317         ir_life_entry_t *life = vec_add(self->life, count);
1318         memcpy(life, other->life, count * sizeof(*life));
1319         return true;
1320     }
1321
1322     myi = 0;
1323     for (i = 0; i < vec_size(other->life); ++i)
1324     {
1325         const ir_life_entry_t *life = &other->life[i];
1326         while (true)
1327         {
1328             ir_life_entry_t *entry = &self->life[myi];
1329
1330             if (life->end+1 < entry->start)
1331             {
1332                 /* adding an interval before entry */
1333                 if (!ir_value_life_insert(self, myi, *life))
1334                     return false;
1335                 ++myi;
1336                 break;
1337             }
1338
1339             if (life->start <  entry->start &&
1340                 life->end+1 >= entry->start)
1341             {
1342                 /* starts earlier and overlaps */
1343                 entry->start = life->start;
1344             }
1345
1346             if (life->end   >  entry->end &&
1347                 life->start <= entry->end+1)
1348             {
1349                 /* ends later and overlaps */
1350                 entry->end = life->end;
1351             }
1352
1353             /* see if our change combines it with the next ranges */
1354             while (myi+1 < vec_size(self->life) &&
1355                    entry->end+1 >= self->life[1+myi].start)
1356             {
1357                 /* overlaps with (myi+1) */
1358                 if (entry->end < self->life[1+myi].end)
1359                     entry->end = self->life[1+myi].end;
1360                 vec_remove(self->life, myi+1, 1);
1361                 entry = &self->life[myi];
1362             }
1363
1364             /* see if we're after the entry */
1365             if (life->start > entry->end)
1366             {
1367                 ++myi;
1368                 /* append if we're at the end */
1369                 if (myi >= vec_size(self->life)) {
1370                     vec_push(self->life, *life);
1371                     break;
1372                 }
1373                 /* otherweise check the next range */
1374                 continue;
1375             }
1376             break;
1377         }
1378     }
1379     return true;
1380 }
1381
1382 bool ir_values_overlap(const ir_value *a, const ir_value *b)
1383 {
1384     /* For any life entry in A see if it overlaps with
1385      * any life entry in B.
1386      * Note that the life entries are orderes, so we can make a
1387      * more efficient algorithm there than naively translating the
1388      * statement above.
1389      */
1390
1391     ir_life_entry_t *la, *lb, *enda, *endb;
1392
1393     /* first of all, if either has no life range, they cannot clash */
1394     if (!vec_size(a->life) || !vec_size(b->life))
1395         return false;
1396
1397     la = a->life;
1398     lb = b->life;
1399     enda = la + vec_size(a->life);
1400     endb = lb + vec_size(b->life);
1401     while (true)
1402     {
1403         /* check if the entries overlap, for that,
1404          * both must start before the other one ends.
1405          */
1406         if (la->start < lb->end &&
1407             lb->start < la->end)
1408         {
1409             return true;
1410         }
1411
1412         /* entries are ordered
1413          * one entry is earlier than the other
1414          * that earlier entry will be moved forward
1415          */
1416         if (la->start < lb->start)
1417         {
1418             /* order: A B, move A forward
1419              * check if we hit the end with A
1420              */
1421             if (++la == enda)
1422                 break;
1423         }
1424         else /* if (lb->start < la->start)  actually <= */
1425         {
1426             /* order: B A, move B forward
1427              * check if we hit the end with B
1428              */
1429             if (++lb == endb)
1430                 break;
1431         }
1432     }
1433     return false;
1434 }
1435
1436 /***********************************************************************
1437  *IR main operations
1438  */
1439
1440 static bool ir_check_unreachable(ir_block *self)
1441 {
1442     /* The IR should never have to deal with unreachable code */
1443     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1444         return true;
1445     irerror(self->context, "unreachable statement (%s)", self->label);
1446     return false;
1447 }
1448
1449 bool ir_block_create_store_op(ir_block *self, lex_ctx ctx, int op, ir_value *target, ir_value *what)
1450 {
1451     ir_instr *in;
1452     if (!ir_check_unreachable(self))
1453         return false;
1454
1455     if (target->store == store_value &&
1456         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1457     {
1458         irerror(self->context, "cannot store to an SSA value");
1459         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1460         irerror(self->context, "instruction: %s", asm_instr[op].m);
1461         return false;
1462     }
1463
1464     in = ir_instr_new(ctx, self, op);
1465     if (!in)
1466         return false;
1467
1468     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1469         !ir_instr_op(in, 1, what, false))
1470     {
1471         ir_instr_delete(in);
1472         return false;
1473     }
1474     vec_push(self->instr, in);
1475     return true;
1476 }
1477
1478 bool ir_block_create_store(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1479 {
1480     int op = 0;
1481     int vtype;
1482     if (target->vtype == TYPE_VARIANT)
1483         vtype = what->vtype;
1484     else
1485         vtype = target->vtype;
1486
1487 #if 0
1488     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1489         op = INSTR_CONV_ITOF;
1490     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1491         op = INSTR_CONV_FTOI;
1492 #endif
1493         op = type_store_instr[vtype];
1494
1495     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1496         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1497             op = INSTR_STORE_V;
1498     }
1499
1500     return ir_block_create_store_op(self, ctx, op, target, what);
1501 }
1502
1503 bool ir_block_create_storep(ir_block *self, lex_ctx ctx, ir_value *target, ir_value *what)
1504 {
1505     int op = 0;
1506     int vtype;
1507
1508     if (target->vtype != TYPE_POINTER)
1509         return false;
1510
1511     /* storing using pointer - target is a pointer, type must be
1512      * inferred from source
1513      */
1514     vtype = what->vtype;
1515
1516     op = type_storep_instr[vtype];
1517     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1518         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1519             op = INSTR_STOREP_V;
1520     }
1521
1522     return ir_block_create_store_op(self, ctx, op, target, what);
1523 }
1524
1525 bool ir_block_create_return(ir_block *self, lex_ctx ctx, ir_value *v)
1526 {
1527     ir_instr *in;
1528     if (!ir_check_unreachable(self))
1529         return false;
1530     self->final = true;
1531     self->is_return = true;
1532     in = ir_instr_new(ctx, self, INSTR_RETURN);
1533     if (!in)
1534         return false;
1535
1536     if (v && !ir_instr_op(in, 0, v, false)) {
1537         ir_instr_delete(in);
1538         return false;
1539     }
1540
1541     vec_push(self->instr, in);
1542     return true;
1543 }
1544
1545 bool ir_block_create_if(ir_block *self, lex_ctx ctx, ir_value *v,
1546                         ir_block *ontrue, ir_block *onfalse)
1547 {
1548     ir_instr *in;
1549     if (!ir_check_unreachable(self))
1550         return false;
1551     self->final = true;
1552     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1553     in = ir_instr_new(ctx, self, VINSTR_COND);
1554     if (!in)
1555         return false;
1556
1557     if (!ir_instr_op(in, 0, v, false)) {
1558         ir_instr_delete(in);
1559         return false;
1560     }
1561
1562     in->bops[0] = ontrue;
1563     in->bops[1] = onfalse;
1564
1565     vec_push(self->instr, in);
1566
1567     vec_push(self->exits, ontrue);
1568     vec_push(self->exits, onfalse);
1569     vec_push(ontrue->entries,  self);
1570     vec_push(onfalse->entries, self);
1571     return true;
1572 }
1573
1574 bool ir_block_create_jump(ir_block *self, lex_ctx ctx, ir_block *to)
1575 {
1576     ir_instr *in;
1577     if (!ir_check_unreachable(self))
1578         return false;
1579     self->final = true;
1580     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1581     if (!in)
1582         return false;
1583
1584     in->bops[0] = to;
1585     vec_push(self->instr, in);
1586
1587     vec_push(self->exits, to);
1588     vec_push(to->entries, self);
1589     return true;
1590 }
1591
1592 bool ir_block_create_goto(ir_block *self, lex_ctx ctx, ir_block *to)
1593 {
1594     self->owner->flags |= IR_FLAG_HAS_GOTO;
1595     return ir_block_create_jump(self, ctx, to);
1596 }
1597
1598 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx ctx, const char *label, int ot)
1599 {
1600     ir_value *out;
1601     ir_instr *in;
1602     if (!ir_check_unreachable(self))
1603         return NULL;
1604     in = ir_instr_new(ctx, self, VINSTR_PHI);
1605     if (!in)
1606         return NULL;
1607     out = ir_value_out(self->owner, label, store_value, ot);
1608     if (!out) {
1609         ir_instr_delete(in);
1610         return NULL;
1611     }
1612     if (!ir_instr_op(in, 0, out, true)) {
1613         ir_instr_delete(in);
1614         ir_value_delete(out);
1615         return NULL;
1616     }
1617     vec_push(self->instr, in);
1618     return in;
1619 }
1620
1621 ir_value* ir_phi_value(ir_instr *self)
1622 {
1623     return self->_ops[0];
1624 }
1625
1626 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1627 {
1628     ir_phi_entry_t pe;
1629
1630     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1631         /* Must not be possible to cause this, otherwise the AST
1632          * is doing something wrong.
1633          */
1634         irerror(self->context, "Invalid entry block for PHI");
1635         abort();
1636     }
1637
1638     pe.value = v;
1639     pe.from = b;
1640     vec_push(v->reads, self);
1641     vec_push(self->phi, pe);
1642 }
1643
1644 /* call related code */
1645 ir_instr* ir_block_create_call(ir_block *self, lex_ctx ctx, const char *label, ir_value *func, bool noreturn)
1646 {
1647     ir_value *out;
1648     ir_instr *in;
1649     if (!ir_check_unreachable(self))
1650         return NULL;
1651     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1652     if (!in)
1653         return NULL;
1654     if (noreturn) {
1655         self->final = true;
1656         self->is_return = true;
1657     }
1658     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1659     if (!out) {
1660         ir_instr_delete(in);
1661         return NULL;
1662     }
1663     if (!ir_instr_op(in, 0, out, true) ||
1664         !ir_instr_op(in, 1, func, false))
1665     {
1666         ir_instr_delete(in);
1667         ir_value_delete(out);
1668         return NULL;
1669     }
1670     vec_push(self->instr, in);
1671     /*
1672     if (noreturn) {
1673         if (!ir_block_create_return(self, ctx, NULL)) {
1674             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1675             ir_instr_delete(in);
1676             return NULL;
1677         }
1678     }
1679     */
1680     return in;
1681 }
1682
1683 ir_value* ir_call_value(ir_instr *self)
1684 {
1685     return self->_ops[0];
1686 }
1687
1688 void ir_call_param(ir_instr* self, ir_value *v)
1689 {
1690     vec_push(self->params, v);
1691     vec_push(v->reads, self);
1692 }
1693
1694 /* binary op related code */
1695
1696 ir_value* ir_block_create_binop(ir_block *self, lex_ctx ctx,
1697                                 const char *label, int opcode,
1698                                 ir_value *left, ir_value *right)
1699 {
1700     int ot = TYPE_VOID;
1701     switch (opcode) {
1702         case INSTR_ADD_F:
1703         case INSTR_SUB_F:
1704         case INSTR_DIV_F:
1705         case INSTR_MUL_F:
1706         case INSTR_MUL_V:
1707         case INSTR_AND:
1708         case INSTR_OR:
1709 #if 0
1710         case INSTR_AND_I:
1711         case INSTR_AND_IF:
1712         case INSTR_AND_FI:
1713         case INSTR_OR_I:
1714         case INSTR_OR_IF:
1715         case INSTR_OR_FI:
1716 #endif
1717         case INSTR_BITAND:
1718         case INSTR_BITOR:
1719 #if 0
1720         case INSTR_SUB_S: /* -- offset of string as float */
1721         case INSTR_MUL_IF:
1722         case INSTR_MUL_FI:
1723         case INSTR_DIV_IF:
1724         case INSTR_DIV_FI:
1725         case INSTR_BITOR_IF:
1726         case INSTR_BITOR_FI:
1727         case INSTR_BITAND_FI:
1728         case INSTR_BITAND_IF:
1729         case INSTR_EQ_I:
1730         case INSTR_NE_I:
1731 #endif
1732             ot = TYPE_FLOAT;
1733             break;
1734 #if 0
1735         case INSTR_ADD_I:
1736         case INSTR_ADD_IF:
1737         case INSTR_ADD_FI:
1738         case INSTR_SUB_I:
1739         case INSTR_SUB_FI:
1740         case INSTR_SUB_IF:
1741         case INSTR_MUL_I:
1742         case INSTR_DIV_I:
1743         case INSTR_BITAND_I:
1744         case INSTR_BITOR_I:
1745         case INSTR_XOR_I:
1746         case INSTR_RSHIFT_I:
1747         case INSTR_LSHIFT_I:
1748             ot = TYPE_INTEGER;
1749             break;
1750 #endif
1751         case INSTR_ADD_V:
1752         case INSTR_SUB_V:
1753         case INSTR_MUL_VF:
1754         case INSTR_MUL_FV:
1755 #if 0
1756         case INSTR_DIV_VF:
1757         case INSTR_MUL_IV:
1758         case INSTR_MUL_VI:
1759 #endif
1760             ot = TYPE_VECTOR;
1761             break;
1762 #if 0
1763         case INSTR_ADD_SF:
1764             ot = TYPE_POINTER;
1765             break;
1766 #endif
1767         default:
1768             /* ranges: */
1769             /* boolean operations result in floats */
1770             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1771                 ot = TYPE_FLOAT;
1772             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1773                 ot = TYPE_FLOAT;
1774 #if 0
1775             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1776                 ot = TYPE_FLOAT;
1777 #endif
1778             break;
1779     };
1780     if (ot == TYPE_VOID) {
1781         /* The AST or parser were supposed to check this! */
1782         return NULL;
1783     }
1784
1785     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1786 }
1787
1788 ir_value* ir_block_create_unary(ir_block *self, lex_ctx ctx,
1789                                 const char *label, int opcode,
1790                                 ir_value *operand)
1791 {
1792     int ot = TYPE_FLOAT;
1793     switch (opcode) {
1794         case INSTR_NOT_F:
1795         case INSTR_NOT_V:
1796         case INSTR_NOT_S:
1797         case INSTR_NOT_ENT:
1798         case INSTR_NOT_FNC:
1799 #if 0
1800         case INSTR_NOT_I:
1801 #endif
1802             ot = TYPE_FLOAT;
1803             break;
1804         /* QC doesn't have other unary operations. We expect extensions to fill
1805          * the above list, otherwise we assume out-type = in-type, eg for an
1806          * unary minus
1807          */
1808         default:
1809             ot = operand->vtype;
1810             break;
1811     };
1812     if (ot == TYPE_VOID) {
1813         /* The AST or parser were supposed to check this! */
1814         return NULL;
1815     }
1816
1817     /* let's use the general instruction creator and pass NULL for OPB */
1818     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1819 }
1820
1821 ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx ctx, const char *label,
1822                                         int op, ir_value *a, ir_value *b, int outype)
1823 {
1824     ir_instr *instr;
1825     ir_value *out;
1826
1827     out = ir_value_out(self->owner, label, store_value, outype);
1828     if (!out)
1829         return NULL;
1830
1831     instr = ir_instr_new(ctx, self, op);
1832     if (!instr) {
1833         ir_value_delete(out);
1834         return NULL;
1835     }
1836
1837     if (!ir_instr_op(instr, 0, out, true) ||
1838         !ir_instr_op(instr, 1, a, false) ||
1839         !ir_instr_op(instr, 2, b, false) )
1840     {
1841         goto on_error;
1842     }
1843
1844     vec_push(self->instr, instr);
1845
1846     return out;
1847 on_error:
1848     ir_instr_delete(instr);
1849     ir_value_delete(out);
1850     return NULL;
1851 }
1852
1853 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field)
1854 {
1855     ir_value *v;
1856
1857     /* Support for various pointer types todo if so desired */
1858     if (ent->vtype != TYPE_ENTITY)
1859         return NULL;
1860
1861     if (field->vtype != TYPE_FIELD)
1862         return NULL;
1863
1864     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1865     v->fieldtype = field->fieldtype;
1866     return v;
1867 }
1868
1869 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1870 {
1871     int op;
1872     if (ent->vtype != TYPE_ENTITY)
1873         return NULL;
1874
1875     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1876     if (field->vtype != TYPE_FIELD)
1877         return NULL;
1878
1879     switch (outype)
1880     {
1881         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1882         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1883         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1884         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1885         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1886         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1887 #if 0
1888         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1889         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1890 #endif
1891         default:
1892             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1893             return NULL;
1894     }
1895
1896     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1897 }
1898
1899 /* PHI resolving breaks the SSA, and must thus be the last
1900  * step before life-range calculation.
1901  */
1902
1903 static bool ir_block_naive_phi(ir_block *self);
1904 bool ir_function_naive_phi(ir_function *self)
1905 {
1906     size_t i;
1907
1908     for (i = 0; i < vec_size(self->blocks); ++i)
1909     {
1910         if (!ir_block_naive_phi(self->blocks[i]))
1911             return false;
1912     }
1913     return true;
1914 }
1915
1916 static bool ir_block_naive_phi(ir_block *self)
1917 {
1918     size_t i, p; /*, w;*/
1919     /* FIXME: optionally, create_phi can add the phis
1920      * to a list so we don't need to loop through blocks
1921      * - anyway: "don't optimize YET"
1922      */
1923     for (i = 0; i < vec_size(self->instr); ++i)
1924     {
1925         ir_instr *instr = self->instr[i];
1926         if (instr->opcode != VINSTR_PHI)
1927             continue;
1928
1929         vec_remove(self->instr, i, 1);
1930         --i; /* NOTE: i+1 below */
1931
1932         for (p = 0; p < vec_size(instr->phi); ++p)
1933         {
1934             ir_value *v = instr->phi[p].value;
1935             ir_block *b = instr->phi[p].from;
1936
1937             if (v->store == store_value &&
1938                 vec_size(v->reads) == 1 &&
1939                 vec_size(v->writes) == 1)
1940             {
1941                 /* replace the value */
1942                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
1943                     return false;
1944             }
1945             else
1946             {
1947                 /* force a move instruction */
1948                 ir_instr *prevjump = vec_last(b->instr);
1949                 vec_pop(b->instr);
1950                 b->final = false;
1951                 instr->_ops[0]->store = store_global;
1952                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
1953                     return false;
1954                 instr->_ops[0]->store = store_value;
1955                 vec_push(b->instr, prevjump);
1956                 b->final = true;
1957             }
1958         }
1959         ir_instr_delete(instr);
1960     }
1961     return true;
1962 }
1963
1964 /***********************************************************************
1965  *IR Temp allocation code
1966  * Propagating value life ranges by walking through the function backwards
1967  * until no more changes are made.
1968  * In theory this should happen once more than once for every nested loop
1969  * level.
1970  * Though this implementation might run an additional time for if nests.
1971  */
1972
1973 /* Enumerate instructions used by value's life-ranges
1974  */
1975 static void ir_block_enumerate(ir_block *self, size_t *_eid)
1976 {
1977     size_t i;
1978     size_t eid = *_eid;
1979     for (i = 0; i < vec_size(self->instr); ++i)
1980     {
1981         self->instr[i]->eid = eid++;
1982     }
1983     *_eid = eid;
1984 }
1985
1986 /* Enumerate blocks and instructions.
1987  * The block-enumeration is unordered!
1988  * We do not really use the block enumreation, however
1989  * the instruction enumeration is important for life-ranges.
1990  */
1991 void ir_function_enumerate(ir_function *self)
1992 {
1993     size_t i;
1994     size_t instruction_id = 0;
1995     for (i = 0; i < vec_size(self->blocks); ++i)
1996     {
1997         /* each block now gets an additional "entry" instruction id
1998          * we can use to avoid point-life issues
1999          */
2000         ++instruction_id;
2001
2002         self->blocks[i]->eid = i;
2003         self->blocks[i]->run_id = 0;
2004         ir_block_enumerate(self->blocks[i], &instruction_id);
2005     }
2006 }
2007
2008 static bool ir_block_life_propagate(ir_block *b, ir_block *prev, bool *changed);
2009 bool ir_function_calculate_liferanges(ir_function *self)
2010 {
2011     size_t i, s;
2012     bool changed;
2013
2014     /* parameters live at 0 */
2015     for (i = 0; i < vec_size(self->params); ++i)
2016         ir_value_life_merge(self->locals[i], 0);
2017
2018     do {
2019         self->run_id++;
2020         changed = false;
2021         for (i = 0; i != vec_size(self->blocks); ++i)
2022         {
2023             if (self->blocks[i]->is_return)
2024             {
2025                 vec_free(self->blocks[i]->living);
2026                 if (!ir_block_life_propagate(self->blocks[i], NULL, &changed))
2027                     return false;
2028             }
2029         }
2030     } while (changed);
2031     if (vec_size(self->blocks)) {
2032         ir_block *block = self->blocks[0];
2033         for (i = 0; i < vec_size(block->living); ++i) {
2034             ir_value *v = block->living[i];
2035             if (v->store != store_local)
2036                 continue;
2037             if (v->vtype == TYPE_VECTOR)
2038                 continue;
2039             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2040             /* find the instruction reading from it */
2041             for (s = 0; s < vec_size(v->reads); ++s) {
2042                 if (v->reads[s]->eid == v->life[0].end)
2043                     break;
2044             }
2045             if (s < vec_size(v->reads)) {
2046                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2047                               "variable `%s` may be used uninitialized in this function\n"
2048                               " -> %s:%i",
2049                               v->name,
2050                               v->reads[s]->context.file, v->reads[s]->context.line)
2051                    )
2052                 {
2053                     return false;
2054                 }
2055                 continue;
2056             }
2057             if (v->memberof) {
2058                 ir_value *vec = v->memberof;
2059                 for (s = 0; s < vec_size(vec->reads); ++s) {
2060                     if (vec->reads[s]->eid == v->life[0].end)
2061                         break;
2062                 }
2063                 if (s < vec_size(vec->reads)) {
2064                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2065                                   "variable `%s` may be used uninitialized in this function\n"
2066                                   " -> %s:%i",
2067                                   v->name,
2068                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2069                        )
2070                     {
2071                         return false;
2072                     }
2073                     continue;
2074                 }
2075             }
2076             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2077                           "variable `%s` may be used uninitialized in this function", v->name))
2078             {
2079                 return false;
2080             }
2081         }
2082     }
2083     return true;
2084 }
2085
2086 /* Local-value allocator
2087  * After finishing creating the liferange of all values used in a function
2088  * we can allocate their global-positions.
2089  * This is the counterpart to register-allocation in register machines.
2090  */
2091 typedef struct {
2092     ir_value **locals;
2093     size_t    *sizes;
2094     size_t    *positions;
2095     bool      *unique;
2096 } function_allocator;
2097
2098 static bool function_allocator_alloc(function_allocator *alloc, ir_value *var)
2099 {
2100     ir_value *slot;
2101     size_t vsize = ir_value_sizeof(var);
2102
2103     var->code.local = vec_size(alloc->locals);
2104
2105     slot = ir_value_var("reg", store_global, var->vtype);
2106     if (!slot)
2107         return false;
2108
2109     if (!ir_value_life_merge_into(slot, var))
2110         goto localerror;
2111
2112     vec_push(alloc->locals, slot);
2113     vec_push(alloc->sizes, vsize);
2114     vec_push(alloc->unique, var->unique_life);
2115
2116     return true;
2117
2118 localerror:
2119     ir_value_delete(slot);
2120     return false;
2121 }
2122
2123 static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v)
2124 {
2125     size_t a;
2126     ir_value *slot;
2127
2128     if (v->unique_life)
2129         return function_allocator_alloc(alloc, v);
2130
2131     for (a = 0; a < vec_size(alloc->locals); ++a)
2132     {
2133         /* if it's reserved for a unique liferange: skip */
2134         if (alloc->unique[a])
2135             continue;
2136
2137         slot = alloc->locals[a];
2138
2139         /* never resize parameters
2140          * will be required later when overlapping temps + locals
2141          */
2142         if (a < vec_size(self->params) &&
2143             alloc->sizes[a] < ir_value_sizeof(v))
2144         {
2145             continue;
2146         }
2147
2148         if (ir_values_overlap(v, slot))
2149             continue;
2150
2151         if (!ir_value_life_merge_into(slot, v))
2152             return false;
2153
2154         /* adjust size for this slot */
2155         if (alloc->sizes[a] < ir_value_sizeof(v))
2156             alloc->sizes[a] = ir_value_sizeof(v);
2157
2158         v->code.local = a;
2159         return true;
2160     }
2161     if (a >= vec_size(alloc->locals)) {
2162         if (!function_allocator_alloc(alloc, v))
2163             return false;
2164     }
2165     return true;
2166 }
2167
2168 bool ir_function_allocate_locals(ir_function *self)
2169 {
2170     size_t i;
2171     bool   retval = true;
2172     size_t pos;
2173     bool   opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS);
2174
2175     ir_value *v;
2176
2177     function_allocator lockalloc, globalloc;
2178
2179     if (!vec_size(self->locals) && !vec_size(self->values))
2180         return true;
2181
2182     globalloc.locals    = NULL;
2183     globalloc.sizes     = NULL;
2184     globalloc.positions = NULL;
2185     globalloc.unique    = NULL;
2186     lockalloc.locals    = NULL;
2187     lockalloc.sizes     = NULL;
2188     lockalloc.positions = NULL;
2189     lockalloc.unique    = NULL;
2190
2191     for (i = 0; i < vec_size(self->locals); ++i)
2192     {
2193         v = self->locals[i];
2194         if (!OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) {
2195             v->locked      = true;
2196             v->unique_life = true;
2197         }
2198         else if (i >= vec_size(self->params))
2199             break;
2200         else
2201             v->locked = true; /* lock parameters locals */
2202         if (!function_allocator_alloc((v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2203             goto error;
2204     }
2205     for (; i < vec_size(self->locals); ++i)
2206     {
2207         v = self->locals[i];
2208         if (!vec_size(v->life))
2209             continue;
2210         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2211             goto error;
2212     }
2213
2214     /* Allocate a slot for any value that still exists */
2215     for (i = 0; i < vec_size(self->values); ++i)
2216     {
2217         v = self->values[i];
2218
2219         if (!vec_size(v->life))
2220             continue;
2221
2222         /* CALL optimization:
2223          * If the value is a parameter-temp: 1 write, 1 read from a CALL
2224          * and it's not "locked", write it to the OFS_PARM directly.
2225          */
2226         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->locked && !v->unique_life) {
2227             if (vec_size(v->reads) == 1 && vec_size(v->writes) == 1 &&
2228                 (v->reads[0]->opcode == VINSTR_NRCALL ||
2229                  (v->reads[0]->opcode >= INSTR_CALL0 && v->reads[0]->opcode <= INSTR_CALL8)
2230                 )
2231                )
2232             {
2233                 size_t    param;
2234                 ir_instr *call = v->reads[0];
2235                 if (!vec_ir_value_find(call->params, v, &param)) {
2236                     irerror(call->context, "internal error: unlocked parameter %s not found", v->name);
2237                     goto error;
2238                 }
2239
2240                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2241                 v->callparam = true;
2242                 if (param < 8)
2243                     ir_value_code_setaddr(v, OFS_PARM0 + 3*param);
2244                 else {
2245                     ir_value *ep;
2246                     param -= 8;
2247                     if (vec_size(self->owner->extparam_protos) <= param)
2248                         ep = ir_gen_extparam_proto(self->owner);
2249                     else
2250                         ep = self->owner->extparam_protos[param];
2251                     ir_instr_op(v->writes[0], 0, ep, true);
2252                     call->params[param+8] = ep;
2253                 }
2254                 continue;
2255             }
2256             if (vec_size(v->writes) == 1 && v->writes[0]->opcode == INSTR_CALL0)
2257             {
2258                 v->store = store_return;
2259                 if (v->members[0]) v->members[0]->store = store_return;
2260                 if (v->members[1]) v->members[1]->store = store_return;
2261                 if (v->members[2]) v->members[2]->store = store_return;
2262                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2263                 continue;
2264             }
2265         }
2266
2267         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2268             goto error;
2269     }
2270
2271     if (!lockalloc.sizes && !globalloc.sizes) {
2272         goto cleanup;
2273     }
2274     vec_push(lockalloc.positions, 0);
2275     vec_push(globalloc.positions, 0);
2276
2277     /* Adjust slot positions based on sizes */
2278     if (lockalloc.sizes) {
2279         pos = (vec_size(lockalloc.sizes) ? lockalloc.positions[0] : 0);
2280         for (i = 1; i < vec_size(lockalloc.sizes); ++i)
2281         {
2282             pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1];
2283             vec_push(lockalloc.positions, pos);
2284         }
2285         self->allocated_locals = pos + vec_last(lockalloc.sizes);
2286     }
2287     if (globalloc.sizes) {
2288         pos = (vec_size(globalloc.sizes) ? globalloc.positions[0] : 0);
2289         for (i = 1; i < vec_size(globalloc.sizes); ++i)
2290         {
2291             pos = globalloc.positions[i-1] + globalloc.sizes[i-1];
2292             vec_push(globalloc.positions, pos);
2293         }
2294         self->globaltemps = pos + vec_last(globalloc.sizes);
2295     }
2296
2297     /* Locals need to know their new position */
2298     for (i = 0; i < vec_size(self->locals); ++i) {
2299         v = self->locals[i];
2300         if (i >= vec_size(self->params) && !vec_size(v->life))
2301             continue;
2302         if (v->locked || !opt_gt)
2303             v->code.local = lockalloc.positions[v->code.local];
2304         else
2305             v->code.local = globalloc.positions[v->code.local];
2306     }
2307     /* Take over the actual slot positions on values */
2308     for (i = 0; i < vec_size(self->values); ++i) {
2309         v = self->values[i];
2310         if (!vec_size(v->life))
2311             continue;
2312         if (v->locked || !opt_gt)
2313             v->code.local = lockalloc.positions[v->code.local];
2314         else
2315             v->code.local = globalloc.positions[v->code.local];
2316     }
2317
2318     goto cleanup;
2319
2320 error:
2321     retval = false;
2322 cleanup:
2323     for (i = 0; i < vec_size(lockalloc.locals); ++i)
2324         ir_value_delete(lockalloc.locals[i]);
2325     for (i = 0; i < vec_size(globalloc.locals); ++i)
2326         ir_value_delete(globalloc.locals[i]);
2327     vec_free(globalloc.unique);
2328     vec_free(globalloc.locals);
2329     vec_free(globalloc.sizes);
2330     vec_free(globalloc.positions);
2331     vec_free(lockalloc.unique);
2332     vec_free(lockalloc.locals);
2333     vec_free(lockalloc.sizes);
2334     vec_free(lockalloc.positions);
2335     return retval;
2336 }
2337
2338 /* Get information about which operand
2339  * is read from, or written to.
2340  */
2341 static void ir_op_read_write(int op, size_t *read, size_t *write)
2342 {
2343     switch (op)
2344     {
2345     case VINSTR_JUMP:
2346     case INSTR_GOTO:
2347         *write = 0;
2348         *read = 0;
2349         break;
2350     case INSTR_IF:
2351     case INSTR_IFNOT:
2352 #if 0
2353     case INSTR_IF_S:
2354     case INSTR_IFNOT_S:
2355 #endif
2356     case INSTR_RETURN:
2357     case VINSTR_COND:
2358         *write = 0;
2359         *read = 1;
2360         break;
2361     case INSTR_STOREP_F:
2362     case INSTR_STOREP_V:
2363     case INSTR_STOREP_S:
2364     case INSTR_STOREP_ENT:
2365     case INSTR_STOREP_FLD:
2366     case INSTR_STOREP_FNC:
2367         *write = 0;
2368         *read  = 7;
2369         break;
2370     default:
2371         *write = 1;
2372         *read = 6;
2373         break;
2374     };
2375 }
2376
2377 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2378 {
2379     size_t i;
2380     bool changed = false;
2381     bool tempbool;
2382     for (i = 0; i != vec_size(self->living); ++i)
2383     {
2384         tempbool = ir_value_life_merge(self->living[i], eid);
2385         changed = changed || tempbool;
2386     }
2387     return changed;
2388 }
2389
2390 static bool ir_block_living_lock(ir_block *self)
2391 {
2392     size_t i;
2393     bool changed = false;
2394     for (i = 0; i != vec_size(self->living); ++i)
2395     {
2396         if (!self->living[i]->locked) {
2397             self->living[i]->locked = true;
2398             changed = true;
2399         }
2400     }
2401     return changed;
2402 }
2403
2404 static bool ir_block_life_prop_previous(ir_block* self, ir_block *prev, bool *changed)
2405 {
2406     size_t i;
2407
2408     (void)changed;
2409
2410     /* values which have been read in a previous iteration are now
2411      * in the "living" array even if the previous block doesn't use them.
2412      * So we have to remove whatever does not exist in the previous block.
2413      * They will be re-added on-read, but the liferange merge won't cause
2414      * a change.
2415     for (i = 0; i < vec_size(self->living); ++i)
2416     {
2417         if (!vec_ir_value_find(prev->living, self->living[i], NULL)) {
2418             vec_remove(self->living, i, 1);
2419             --i;
2420         }
2421     }
2422      */
2423
2424     /* Whatever the previous block still has in its living set
2425      * must now be added to ours as well.
2426      */
2427     for (i = 0; i < vec_size(prev->living); ++i)
2428     {
2429         if (vec_ir_value_find(self->living, prev->living[i], NULL))
2430             continue;
2431         vec_push(self->living, prev->living[i]);
2432         /*
2433         irerror(self->contextt from prev: %s", self->label, prev->living[i]->_name);
2434         */
2435     }
2436     return true;
2437 }
2438
2439 static bool ir_block_life_propagate(ir_block *self, ir_block *prev, bool *changed)
2440 {
2441     ir_instr *instr;
2442     ir_value *value;
2443     bool  tempbool;
2444     size_t i, o, p, mem;
2445     /* bitmasks which operands are read from or written to */
2446     size_t read, write;
2447     char dbg_ind[16];
2448     dbg_ind[0] = '#';
2449     dbg_ind[1] = '0';
2450     (void)dbg_ind;
2451
2452     if (prev)
2453     {
2454         if (!ir_block_life_prop_previous(self, prev, changed))
2455             return false;
2456     }
2457
2458     i = vec_size(self->instr);
2459     while (i)
2460     { --i;
2461         instr = self->instr[i];
2462
2463         /* See which operands are read and write operands */
2464         ir_op_read_write(instr->opcode, &read, &write);
2465
2466         /* Go through the 3 main operands
2467          * writes first, then reads
2468          */
2469         for (o = 0; o < 3; ++o)
2470         {
2471             if (!instr->_ops[o]) /* no such operand */
2472                 continue;
2473
2474             value = instr->_ops[o];
2475
2476             /* We only care about locals */
2477             /* we also calculate parameter liferanges so that locals
2478              * can take up parameter slots */
2479             if (value->store != store_value &&
2480                 value->store != store_local &&
2481                 value->store != store_param)
2482                 continue;
2483
2484             /* write operands */
2485             /* When we write to a local, we consider it "dead" for the
2486              * remaining upper part of the function, since in SSA a value
2487              * can only be written once (== created)
2488              */
2489             if (write & (1<<o))
2490             {
2491                 size_t idx;
2492                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2493                 if (!in_living)
2494                 {
2495                     /* If the value isn't alive it hasn't been read before... */
2496                     /* TODO: See if the warning can be emitted during parsing or AST processing
2497                      * otherwise have warning printed here.
2498                      * IF printing a warning here: include filecontext_t,
2499                      * and make sure it's only printed once
2500                      * since this function is run multiple times.
2501                      */
2502                     /* con_err( "Value only written %s\n", value->name); */
2503                     tempbool = ir_value_life_merge(value, instr->eid);
2504                     *changed = *changed || tempbool;
2505                 } else {
2506                     /* since 'living' won't contain it
2507                      * anymore, merge the value, since
2508                      * (A) doesn't.
2509                      */
2510                     tempbool = ir_value_life_merge(value, instr->eid);
2511                     *changed = *changed || tempbool;
2512                     /* Then remove */
2513                     vec_remove(self->living, idx, 1);
2514                 }
2515                 /* Removing a vector removes all members */
2516                 for (mem = 0; mem < 3; ++mem) {
2517                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2518                         tempbool = ir_value_life_merge(value->members[mem], instr->eid);
2519                         *changed = *changed || tempbool;
2520                         vec_remove(self->living, idx, 1);
2521                     }
2522                 }
2523                 /* Removing the last member removes the vector */
2524                 if (value->memberof) {
2525                     value = value->memberof;
2526                     for (mem = 0; mem < 3; ++mem) {
2527                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2528                             break;
2529                     }
2530                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2531                         tempbool = ir_value_life_merge(value, instr->eid);
2532                         *changed = *changed || tempbool;
2533                         vec_remove(self->living, idx, 1);
2534                     }
2535                 }
2536             }
2537         }
2538
2539         if (instr->opcode == INSTR_MUL_VF)
2540         {
2541             value = instr->_ops[2];
2542             /* the float source will get an additional lifetime */
2543             if (ir_value_life_merge(value, instr->eid+1))
2544                 *changed = true;
2545             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2546                 *changed = true;
2547         }
2548         else if (instr->opcode == INSTR_MUL_FV)
2549         {
2550             value = instr->_ops[1];
2551             /* the float source will get an additional lifetime */
2552             if (ir_value_life_merge(value, instr->eid+1))
2553                 *changed = true;
2554             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2555                 *changed = true;
2556         }
2557
2558         for (o = 0; o < 3; ++o)
2559         {
2560             if (!instr->_ops[o]) /* no such operand */
2561                 continue;
2562
2563             value = instr->_ops[o];
2564
2565             /* We only care about locals */
2566             /* we also calculate parameter liferanges so that locals
2567              * can take up parameter slots */
2568             if (value->store != store_value &&
2569                 value->store != store_local &&
2570                 value->store != store_param)
2571                 continue;
2572
2573             /* read operands */
2574             if (read & (1<<o))
2575             {
2576                 if (!vec_ir_value_find(self->living, value, NULL))
2577                     vec_push(self->living, value);
2578                 /* reading adds the full vector */
2579                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2580                     vec_push(self->living, value->memberof);
2581                 for (mem = 0; mem < 3; ++mem) {
2582                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2583                         vec_push(self->living, value->members[mem]);
2584                 }
2585             }
2586         }
2587         /* PHI operands are always read operands */
2588         for (p = 0; p < vec_size(instr->phi); ++p)
2589         {
2590             value = instr->phi[p].value;
2591             if (!vec_ir_value_find(self->living, value, NULL))
2592                 vec_push(self->living, value);
2593             /* reading adds the full vector */
2594             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2595                 vec_push(self->living, value->memberof);
2596             for (mem = 0; mem < 3; ++mem) {
2597                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2598                     vec_push(self->living, value->members[mem]);
2599             }
2600         }
2601
2602         /* on a call, all these values must be "locked" */
2603         if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
2604             if (ir_block_living_lock(self))
2605                 *changed = true;
2606         }
2607         /* call params are read operands too */
2608         for (p = 0; p < vec_size(instr->params); ++p)
2609         {
2610             value = instr->params[p];
2611             if (!vec_ir_value_find(self->living, value, NULL))
2612                 vec_push(self->living, value);
2613             /* reading adds the full vector */
2614             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2615                 vec_push(self->living, value->memberof);
2616             for (mem = 0; mem < 3; ++mem) {
2617                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2618                     vec_push(self->living, value->members[mem]);
2619             }
2620         }
2621
2622         /* (A) */
2623         tempbool = ir_block_living_add_instr(self, instr->eid);
2624         /*con_err( "living added values\n");*/
2625         *changed = *changed || tempbool;
2626     }
2627     /* the "entry" instruction ID */
2628     tempbool = ir_block_living_add_instr(self, instr->eid-1);
2629     *changed = *changed || tempbool;
2630
2631     if (self->run_id == self->owner->run_id)
2632         return true;
2633
2634     self->run_id = self->owner->run_id;
2635
2636     for (i = 0; i < vec_size(self->entries); ++i)
2637     {
2638         ir_block *entry = self->entries[i];
2639         ir_block_life_propagate(entry, self, changed);
2640     }
2641
2642     return true;
2643 }
2644
2645 /***********************************************************************
2646  *IR Code-Generation
2647  *
2648  * Since the IR has the convention of putting 'write' operands
2649  * at the beginning, we have to rotate the operands of instructions
2650  * properly in order to generate valid QCVM code.
2651  *
2652  * Having destinations at a fixed position is more convenient. In QC
2653  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2654  * read from from OPA,  and store to OPB rather than OPC.   Which is
2655  * partially the reason why the implementation of these instructions
2656  * in darkplaces has been delayed for so long.
2657  *
2658  * Breaking conventions is annoying...
2659  */
2660 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal);
2661
2662 static bool gen_global_field(ir_value *global)
2663 {
2664     if (global->hasvalue)
2665     {
2666         ir_value *fld = global->constval.vpointer;
2667         if (!fld) {
2668             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2669             return false;
2670         }
2671
2672         /* copy the field's value */
2673         ir_value_code_setaddr(global, vec_size(code_globals));
2674         vec_push(code_globals, fld->code.fieldaddr);
2675         if (global->fieldtype == TYPE_VECTOR) {
2676             vec_push(code_globals, fld->code.fieldaddr+1);
2677             vec_push(code_globals, fld->code.fieldaddr+2);
2678         }
2679     }
2680     else
2681     {
2682         ir_value_code_setaddr(global, vec_size(code_globals));
2683         vec_push(code_globals, 0);
2684         if (global->fieldtype == TYPE_VECTOR) {
2685             vec_push(code_globals, 0);
2686             vec_push(code_globals, 0);
2687         }
2688     }
2689     if (global->code.globaladdr < 0)
2690         return false;
2691     return true;
2692 }
2693
2694 static bool gen_global_pointer(ir_value *global)
2695 {
2696     if (global->hasvalue)
2697     {
2698         ir_value *target = global->constval.vpointer;
2699         if (!target) {
2700             irerror(global->context, "Invalid pointer constant: %s", global->name);
2701             /* NULL pointers are pointing to the NULL constant, which also
2702              * sits at address 0, but still has an ir_value for itself.
2703              */
2704             return false;
2705         }
2706
2707         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2708          * void() foo; <- proto
2709          * void() *fooptr = &foo;
2710          * void() foo = { code }
2711          */
2712         if (!target->code.globaladdr) {
2713             /* FIXME: Check for the constant nullptr ir_value!
2714              * because then code.globaladdr being 0 is valid.
2715              */
2716             irerror(global->context, "FIXME: Relocation support");
2717             return false;
2718         }
2719
2720         ir_value_code_setaddr(global, vec_size(code_globals));
2721         vec_push(code_globals, target->code.globaladdr);
2722     }
2723     else
2724     {
2725         ir_value_code_setaddr(global, vec_size(code_globals));
2726         vec_push(code_globals, 0);
2727     }
2728     if (global->code.globaladdr < 0)
2729         return false;
2730     return true;
2731 }
2732
2733 static bool gen_blocks_recursive(ir_function *func, ir_block *block)
2734 {
2735     prog_section_statement stmt;
2736     ir_instr *instr;
2737     ir_block *target;
2738     ir_block *ontrue;
2739     ir_block *onfalse;
2740     size_t    stidx;
2741     size_t    i;
2742
2743     block->generated = true;
2744     block->code_start = vec_size(code_statements);
2745     for (i = 0; i < vec_size(block->instr); ++i)
2746     {
2747         instr = block->instr[i];
2748
2749         if (instr->opcode == VINSTR_PHI) {
2750             irerror(block->context, "cannot generate virtual instruction (phi)");
2751             return false;
2752         }
2753
2754         if (instr->opcode == VINSTR_JUMP) {
2755             target = instr->bops[0];
2756             /* for uncoditional jumps, if the target hasn't been generated
2757              * yet, we generate them right here.
2758              */
2759             if (!target->generated)
2760                 return gen_blocks_recursive(func, target);
2761
2762             /* otherwise we generate a jump instruction */
2763             stmt.opcode = INSTR_GOTO;
2764             stmt.o1.s1 = (target->code_start) - vec_size(code_statements);
2765             stmt.o2.s1 = 0;
2766             stmt.o3.s1 = 0;
2767             if (stmt.o1.s1 != 1)
2768                 code_push_statement(&stmt, instr->context.line);
2769
2770             /* no further instructions can be in this block */
2771             return true;
2772         }
2773
2774         if (instr->opcode == VINSTR_COND) {
2775             ontrue  = instr->bops[0];
2776             onfalse = instr->bops[1];
2777             /* TODO: have the AST signal which block should
2778              * come first: eg. optimize IFs without ELSE...
2779              */
2780
2781             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
2782             stmt.o2.u1 = 0;
2783             stmt.o3.s1 = 0;
2784
2785             if (ontrue->generated) {
2786                 stmt.opcode = INSTR_IF;
2787                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code_statements);
2788                 if (stmt.o2.s1 != 1)
2789                     code_push_statement(&stmt, instr->context.line);
2790             }
2791             if (onfalse->generated) {
2792                 stmt.opcode = INSTR_IFNOT;
2793                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code_statements);
2794                 if (stmt.o2.s1 != 1)
2795                     code_push_statement(&stmt, instr->context.line);
2796             }
2797             if (!ontrue->generated) {
2798                 if (onfalse->generated)
2799                     return gen_blocks_recursive(func, ontrue);
2800             }
2801             if (!onfalse->generated) {
2802                 if (ontrue->generated)
2803                     return gen_blocks_recursive(func, onfalse);
2804             }
2805             /* neither ontrue nor onfalse exist */
2806             stmt.opcode = INSTR_IFNOT;
2807             if (!instr->likely) {
2808                 /* Honor the likelyhood hint */
2809                 ir_block *tmp = onfalse;
2810                 stmt.opcode = INSTR_IF;
2811                 onfalse = ontrue;
2812                 ontrue = tmp;
2813             }
2814             stidx = vec_size(code_statements);
2815             code_push_statement(&stmt, instr->context.line);
2816             /* on false we jump, so add ontrue-path */
2817             if (!gen_blocks_recursive(func, ontrue))
2818                 return false;
2819             /* fixup the jump address */
2820             code_statements[stidx].o2.s1 = vec_size(code_statements) - stidx;
2821             /* generate onfalse path */
2822             if (onfalse->generated) {
2823                 /* fixup the jump address */
2824                 code_statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
2825                 if (stidx+2 == vec_size(code_statements) && code_statements[stidx].o2.s1 == 1) {
2826                     code_statements[stidx] = code_statements[stidx+1];
2827                     if (code_statements[stidx].o1.s1 < 0)
2828                         code_statements[stidx].o1.s1++;
2829                     code_pop_statement();
2830                 }
2831                 stmt.opcode = vec_last(code_statements).opcode;
2832                 if (stmt.opcode == INSTR_GOTO ||
2833                     stmt.opcode == INSTR_IF ||
2834                     stmt.opcode == INSTR_IFNOT ||
2835                     stmt.opcode == INSTR_RETURN ||
2836                     stmt.opcode == INSTR_DONE)
2837                 {
2838                     /* no use jumping from here */
2839                     return true;
2840                 }
2841                 /* may have been generated in the previous recursive call */
2842                 stmt.opcode = INSTR_GOTO;
2843                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code_statements);
2844                 stmt.o2.s1 = 0;
2845                 stmt.o3.s1 = 0;
2846                 if (stmt.o1.s1 != 1)
2847                     code_push_statement(&stmt, instr->context.line);
2848                 return true;
2849             }
2850             else if (stidx+2 == vec_size(code_statements) && code_statements[stidx].o2.s1 == 1) {
2851                 code_statements[stidx] = code_statements[stidx+1];
2852                 if (code_statements[stidx].o1.s1 < 0)
2853                     code_statements[stidx].o1.s1++;
2854                 code_pop_statement();
2855             }
2856             /* if not, generate now */
2857             return gen_blocks_recursive(func, onfalse);
2858         }
2859
2860         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
2861            || instr->opcode == VINSTR_NRCALL)
2862         {
2863             size_t p, first;
2864             ir_value *retvalue;
2865
2866             first = vec_size(instr->params);
2867             if (first > 8)
2868                 first = 8;
2869             for (p = 0; p < first; ++p)
2870             {
2871                 ir_value *param = instr->params[p];
2872                 if (param->callparam)
2873                     continue;
2874
2875                 stmt.opcode = INSTR_STORE_F;
2876                 stmt.o3.u1 = 0;
2877
2878                 if (param->vtype == TYPE_FIELD)
2879                     stmt.opcode = field_store_instr[param->fieldtype];
2880                 else if (param->vtype == TYPE_NIL)
2881                     stmt.opcode = INSTR_STORE_V;
2882                 else
2883                     stmt.opcode = type_store_instr[param->vtype];
2884                 stmt.o1.u1 = ir_value_code_addr(param);
2885                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
2886                 code_push_statement(&stmt, instr->context.line);
2887             }
2888             /* Now handle extparams */
2889             first = vec_size(instr->params);
2890             for (; p < first; ++p)
2891             {
2892                 ir_builder *ir = func->owner;
2893                 ir_value *param = instr->params[p];
2894                 ir_value *targetparam;
2895
2896                 if (param->callparam)
2897                     continue;
2898
2899                 if (p-8 >= vec_size(ir->extparams))
2900                     ir_gen_extparam(ir);
2901
2902                 targetparam = ir->extparams[p-8];
2903
2904                 stmt.opcode = INSTR_STORE_F;
2905                 stmt.o3.u1 = 0;
2906
2907                 if (param->vtype == TYPE_FIELD)
2908                     stmt.opcode = field_store_instr[param->fieldtype];
2909                 else if (param->vtype == TYPE_NIL)
2910                     stmt.opcode = INSTR_STORE_V;
2911                 else
2912                     stmt.opcode = type_store_instr[param->vtype];
2913                 stmt.o1.u1 = ir_value_code_addr(param);
2914                 stmt.o2.u1 = ir_value_code_addr(targetparam);
2915                 code_push_statement(&stmt, instr->context.line);
2916             }
2917
2918             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
2919             if (stmt.opcode > INSTR_CALL8)
2920                 stmt.opcode = INSTR_CALL8;
2921             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2922             stmt.o2.u1 = 0;
2923             stmt.o3.u1 = 0;
2924             code_push_statement(&stmt, instr->context.line);
2925
2926             retvalue = instr->_ops[0];
2927             if (retvalue && retvalue->store != store_return &&
2928                 (retvalue->store == store_global || vec_size(retvalue->life)))
2929             {
2930                 /* not to be kept in OFS_RETURN */
2931                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
2932                     stmt.opcode = field_store_instr[retvalue->fieldtype];
2933                 else
2934                     stmt.opcode = type_store_instr[retvalue->vtype];
2935                 stmt.o1.u1 = OFS_RETURN;
2936                 stmt.o2.u1 = ir_value_code_addr(retvalue);
2937                 stmt.o3.u1 = 0;
2938                 code_push_statement(&stmt, instr->context.line);
2939             }
2940             continue;
2941         }
2942
2943         if (instr->opcode == INSTR_STATE) {
2944             irerror(block->context, "TODO: state instruction");
2945             return false;
2946         }
2947
2948         stmt.opcode = instr->opcode;
2949         stmt.o1.u1 = 0;
2950         stmt.o2.u1 = 0;
2951         stmt.o3.u1 = 0;
2952
2953         /* This is the general order of operands */
2954         if (instr->_ops[0])
2955             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
2956
2957         if (instr->_ops[1])
2958             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
2959
2960         if (instr->_ops[2])
2961             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
2962
2963         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
2964         {
2965             stmt.o1.u1 = stmt.o3.u1;
2966             stmt.o3.u1 = 0;
2967         }
2968         else if ((stmt.opcode >= INSTR_STORE_F &&
2969                   stmt.opcode <= INSTR_STORE_FNC) ||
2970                  (stmt.opcode >= INSTR_STOREP_F &&
2971                   stmt.opcode <= INSTR_STOREP_FNC))
2972         {
2973             /* 2-operand instructions with A -> B */
2974             stmt.o2.u1 = stmt.o3.u1;
2975             stmt.o3.u1 = 0;
2976
2977             /* tiny optimization, don't output
2978              * STORE a, a
2979              */
2980             if (stmt.o2.u1 == stmt.o1.u1 &&
2981                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
2982             {
2983                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
2984                 continue;
2985             }
2986         }
2987
2988         code_push_statement(&stmt, instr->context.line);
2989     }
2990     return true;
2991 }
2992
2993 static bool gen_function_code(ir_function *self)
2994 {
2995     ir_block *block;
2996     prog_section_statement stmt, *retst;
2997
2998     /* Starting from entry point, we generate blocks "as they come"
2999      * for now. Dead blocks will not be translated obviously.
3000      */
3001     if (!vec_size(self->blocks)) {
3002         irerror(self->context, "Function '%s' declared without body.", self->name);
3003         return false;
3004     }
3005
3006     block = self->blocks[0];
3007     if (block->generated)
3008         return true;
3009
3010     if (!gen_blocks_recursive(self, block)) {
3011         irerror(self->context, "failed to generate blocks for '%s'", self->name);
3012         return false;
3013     }
3014
3015     /* code_write and qcvm -disasm need to know that the function ends here */
3016     retst = &vec_last(code_statements);
3017     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
3018         self->outtype == TYPE_VOID &&
3019         retst->opcode == INSTR_RETURN &&
3020         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
3021     {
3022         retst->opcode = INSTR_DONE;
3023         ++opts_optimizationcount[OPTIM_VOID_RETURN];
3024     } else {
3025         stmt.opcode = INSTR_DONE;
3026         stmt.o1.u1 = 0;
3027         stmt.o2.u1 = 0;
3028         stmt.o3.u1 = 0;
3029         code_push_statement(&stmt, vec_last(code_linenums));
3030     }
3031     return true;
3032 }
3033
3034 static qcint ir_builder_filestring(ir_builder *ir, const char *filename)
3035 {
3036     /* NOTE: filename pointers are copied, we never strdup them,
3037      * thus we can use pointer-comparison to find the string.
3038      */
3039     size_t i;
3040     qcint  str;
3041
3042     for (i = 0; i < vec_size(ir->filenames); ++i) {
3043         if (ir->filenames[i] == filename)
3044             return ir->filestrings[i];
3045     }
3046
3047     str = code_genstring(filename);
3048     vec_push(ir->filenames, filename);
3049     vec_push(ir->filestrings, str);
3050     return str;
3051 }
3052
3053 static bool gen_global_function(ir_builder *ir, ir_value *global)
3054 {
3055     prog_section_function fun;
3056     ir_function          *irfun;
3057
3058     size_t i;
3059
3060     if (!global->hasvalue || (!global->constval.vfunc))
3061     {
3062         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
3063         return false;
3064     }
3065
3066     irfun = global->constval.vfunc;
3067
3068     fun.name    = global->code.name;
3069     fun.file    = ir_builder_filestring(ir, global->context.file);
3070     fun.profile = 0; /* always 0 */
3071     fun.nargs   = vec_size(irfun->params);
3072     if (fun.nargs > 8)
3073         fun.nargs = 8;
3074
3075     for (i = 0;i < 8; ++i) {
3076         if ((int32_t)i >= fun.nargs)
3077             fun.argsize[i] = 0;
3078         else
3079             fun.argsize[i] = type_sizeof_[irfun->params[i]];
3080     }
3081
3082     fun.firstlocal = 0;
3083     fun.locals     = irfun->allocated_locals;
3084
3085     if (irfun->builtin)
3086         fun.entry = irfun->builtin+1;
3087     else {
3088         irfun->code_function_def = vec_size(code_functions);
3089         fun.entry = vec_size(code_statements);
3090     }
3091
3092     vec_push(code_functions, fun);
3093     return true;
3094 }
3095
3096 static ir_value* ir_gen_extparam_proto(ir_builder *ir)
3097 {
3098     ir_value *global;
3099     char      name[128];
3100
3101     snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparam_protos)+8));
3102     global = ir_value_var(name, store_global, TYPE_VECTOR);
3103
3104     vec_push(ir->extparam_protos, global);
3105     return global;
3106 }
3107
3108 static void ir_gen_extparam(ir_builder *ir)
3109 {
3110     prog_section_def def;
3111     ir_value        *global;
3112
3113     if (vec_size(ir->extparam_protos) < vec_size(ir->extparams)+1)
3114         global = ir_gen_extparam_proto(ir);
3115     else
3116         global = ir->extparam_protos[vec_size(ir->extparams)];
3117
3118     def.name = code_genstring(global->name);
3119     def.type = TYPE_VECTOR;
3120     def.offset = vec_size(code_globals);
3121
3122     vec_push(code_defs, def);
3123     ir_value_code_setaddr(global, def.offset);
3124     vec_push(code_globals, 0);
3125     vec_push(code_globals, 0);
3126     vec_push(code_globals, 0);
3127
3128     vec_push(ir->extparams, global);
3129 }
3130
3131 static bool gen_function_extparam_copy(ir_function *self)
3132 {
3133     size_t i, ext, numparams;
3134
3135     ir_builder *ir = self->owner;
3136     ir_value   *ep;
3137     prog_section_statement stmt;
3138
3139     numparams = vec_size(self->params);
3140     if (!numparams)
3141         return true;
3142
3143     stmt.opcode = INSTR_STORE_F;
3144     stmt.o3.s1 = 0;
3145     for (i = 8; i < numparams; ++i) {
3146         ext = i - 8;
3147         if (ext >= vec_size(ir->extparams))
3148             ir_gen_extparam(ir);
3149
3150         ep = ir->extparams[ext];
3151
3152         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3153         if (self->locals[i]->vtype == TYPE_FIELD &&
3154             self->locals[i]->fieldtype == TYPE_VECTOR)
3155         {
3156             stmt.opcode = INSTR_STORE_V;
3157         }
3158         stmt.o1.u1 = ir_value_code_addr(ep);
3159         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3160         code_push_statement(&stmt, self->context.line);
3161     }
3162
3163     return true;
3164 }
3165
3166 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3167 {
3168     prog_section_function *def;
3169     ir_function           *irfun;
3170     size_t                 i;
3171     uint32_t               firstlocal, firstglobal;
3172
3173     irfun = global->constval.vfunc;
3174     def   = code_functions + irfun->code_function_def;
3175
3176     if (opts.g || !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS) || (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3177         firstlocal = def->firstlocal = vec_size(code_globals);
3178     else {
3179         firstlocal = def->firstlocal = ir->first_common_local;
3180         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3181     }
3182
3183     firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? ir->first_common_globaltemp : firstlocal);
3184
3185     for (i = vec_size(code_globals); i < firstlocal + irfun->allocated_locals; ++i)
3186         vec_push(code_globals, 0);
3187     for (i = 0; i < vec_size(irfun->locals); ++i) {
3188         ir_value *v = irfun->locals[i];
3189         if (v->locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) {
3190             ir_value_code_setaddr(v, firstlocal + v->code.local);
3191             if (!ir_builder_gen_global(ir, irfun->locals[i], true)) {
3192                 irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3193                 return false;
3194             }
3195         }
3196         else
3197             ir_value_code_setaddr(v, firstglobal + v->code.local);
3198     }
3199     for (i = 0; i < vec_size(irfun->values); ++i)
3200     {
3201         ir_value *v = irfun->values[i];
3202         if (v->callparam)
3203             continue;
3204         if (v->locked)
3205             ir_value_code_setaddr(v, firstlocal + v->code.local);
3206         else
3207             ir_value_code_setaddr(v, firstglobal + v->code.local);
3208     }
3209     return true;
3210 }
3211
3212 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3213 {
3214     prog_section_function *fundef;
3215     ir_function           *irfun;
3216
3217     (void)ir;
3218
3219     irfun = global->constval.vfunc;
3220     if (!irfun) {
3221         if (global->cvq == CV_NONE) {
3222             irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3223                       "function `%s` has no body and in QC implicitly becomes a function-pointer", global->name);
3224         }
3225         /* this was a function pointer, don't generate code for those */
3226         return true;
3227     }
3228
3229     if (irfun->builtin)
3230         return true;
3231
3232     if (irfun->code_function_def < 0) {
3233         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3234         return false;
3235     }
3236     fundef = &code_functions[irfun->code_function_def];
3237
3238     fundef->entry = vec_size(code_statements);
3239     if (!gen_function_locals(ir, global)) {
3240         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3241         return false;
3242     }
3243     if (!gen_function_extparam_copy(irfun)) {
3244         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3245         return false;
3246     }
3247     if (!gen_function_code(irfun)) {
3248         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3249         return false;
3250     }
3251     return true;
3252 }
3253
3254 static void gen_vector_defs(prog_section_def def, const char *name)
3255 {
3256     char  *component;
3257     size_t len, i;
3258
3259     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3260         return;
3261
3262     def.type = TYPE_FLOAT;
3263
3264     len = strlen(name);
3265
3266     component = (char*)mem_a(len+3);
3267     memcpy(component, name, len);
3268     len += 2;
3269     component[len-0] = 0;
3270     component[len-2] = '_';
3271
3272     component[len-1] = 'x';
3273
3274     for (i = 0; i < 3; ++i) {
3275         def.name = code_genstring(component);
3276         vec_push(code_defs, def);
3277         def.offset++;
3278         component[len-1]++;
3279     }
3280 }
3281
3282 static void gen_vector_fields(prog_section_field fld, const char *name)
3283 {
3284     char  *component;
3285     size_t len, i;
3286
3287     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3288         return;
3289
3290     fld.type = TYPE_FLOAT;
3291
3292     len = strlen(name);
3293
3294     component = (char*)mem_a(len+3);
3295     memcpy(component, name, len);
3296     len += 2;
3297     component[len-0] = 0;
3298     component[len-2] = '_';
3299
3300     component[len-1] = 'x';
3301
3302     for (i = 0; i < 3; ++i) {
3303         fld.name = code_genstring(component);
3304         vec_push(code_fields, fld);
3305         fld.offset++;
3306         component[len-1]++;
3307     }
3308 }
3309
3310 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal)
3311 {
3312     size_t           i;
3313     int32_t         *iptr;
3314     prog_section_def def;
3315     bool             pushdef = false;
3316
3317     def.type   = global->vtype;
3318     def.offset = vec_size(code_globals);
3319     def.name   = 0;
3320     if (opts.g || !islocal)
3321     {
3322         pushdef = true;
3323
3324         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3325             (global->name[0] == '#' || global->cvq == CV_CONST))
3326         {
3327             pushdef = false;
3328         }
3329
3330         if (pushdef && global->name) {
3331             if (global->name[0] == '#') {
3332                 if (!self->str_immediate)
3333                     self->str_immediate = code_genstring("IMMEDIATE");
3334                 def.name = global->code.name = self->str_immediate;
3335             }
3336             else
3337                 def.name = global->code.name = code_genstring(global->name);
3338         }
3339         else
3340             def.name   = 0;
3341         if (islocal) {
3342             def.offset = ir_value_code_addr(global);
3343             vec_push(code_defs, def);
3344             if (global->vtype == TYPE_VECTOR)
3345                 gen_vector_defs(def, global->name);
3346             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3347                 gen_vector_defs(def, global->name);
3348             return true;
3349         }
3350     }
3351     if (islocal)
3352         return true;
3353
3354     switch (global->vtype)
3355     {
3356     case TYPE_VOID:
3357         if (!strcmp(global->name, "end_sys_globals")) {
3358             /* TODO: remember this point... all the defs before this one
3359              * should be checksummed and added to progdefs.h when we generate it.
3360              */
3361         }
3362         else if (!strcmp(global->name, "end_sys_fields")) {
3363             /* TODO: same as above but for entity-fields rather than globsl
3364              */
3365         }
3366         else
3367             irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3368                       global->name);
3369         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3370          * the system fields actually go? Though the engine knows this anyway...
3371          * Maybe this could be an -foption
3372          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3373          */
3374         ir_value_code_setaddr(global, vec_size(code_globals));
3375         vec_push(code_globals, 0);
3376         /* Add the def */
3377         if (pushdef) vec_push(code_defs, def);
3378         return true;
3379     case TYPE_POINTER:
3380         if (pushdef) vec_push(code_defs, def);
3381         return gen_global_pointer(global);
3382     case TYPE_FIELD:
3383         if (pushdef) {
3384             vec_push(code_defs, def);
3385             if (global->fieldtype == TYPE_VECTOR)
3386                 gen_vector_defs(def, global->name);
3387         }
3388         return gen_global_field(global);
3389     case TYPE_ENTITY:
3390         /* fall through */
3391     case TYPE_FLOAT:
3392     {
3393         ir_value_code_setaddr(global, vec_size(code_globals));
3394         if (global->hasvalue) {
3395             iptr = (int32_t*)&global->constval.ivec[0];
3396             vec_push(code_globals, *iptr);
3397         } else {
3398             vec_push(code_globals, 0);
3399         }
3400         if (!islocal && global->cvq != CV_CONST)
3401             def.type |= DEF_SAVEGLOBAL;
3402         if (pushdef) vec_push(code_defs, def);
3403
3404         return global->code.globaladdr >= 0;
3405     }
3406     case TYPE_STRING:
3407     {
3408         ir_value_code_setaddr(global, vec_size(code_globals));
3409         if (global->hasvalue) {
3410             vec_push(code_globals, code_genstring(global->constval.vstring));
3411         } else {
3412             vec_push(code_globals, 0);
3413         }
3414         if (!islocal && global->cvq != CV_CONST)
3415             def.type |= DEF_SAVEGLOBAL;
3416         if (pushdef) vec_push(code_defs, def);
3417         return global->code.globaladdr >= 0;
3418     }
3419     case TYPE_VECTOR:
3420     {
3421         size_t d;
3422         ir_value_code_setaddr(global, vec_size(code_globals));
3423         if (global->hasvalue) {
3424             iptr = (int32_t*)&global->constval.ivec[0];
3425             vec_push(code_globals, iptr[0]);
3426             if (global->code.globaladdr < 0)
3427                 return false;
3428             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3429                 vec_push(code_globals, iptr[d]);
3430             }
3431         } else {
3432             vec_push(code_globals, 0);
3433             if (global->code.globaladdr < 0)
3434                 return false;
3435             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3436                 vec_push(code_globals, 0);
3437             }
3438         }
3439         if (!islocal && global->cvq != CV_CONST)
3440             def.type |= DEF_SAVEGLOBAL;
3441
3442         if (pushdef) {
3443             vec_push(code_defs, def);
3444             def.type &= ~DEF_SAVEGLOBAL;
3445             gen_vector_defs(def, global->name);
3446         }
3447         return global->code.globaladdr >= 0;
3448     }
3449     case TYPE_FUNCTION:
3450         ir_value_code_setaddr(global, vec_size(code_globals));
3451         if (!global->hasvalue) {
3452             vec_push(code_globals, 0);
3453             if (global->code.globaladdr < 0)
3454                 return false;
3455         } else {
3456             vec_push(code_globals, vec_size(code_functions));
3457             if (!gen_global_function(self, global))
3458                 return false;
3459         }
3460         if (!islocal && global->cvq != CV_CONST)
3461             def.type |= DEF_SAVEGLOBAL;
3462         if (pushdef) vec_push(code_defs, def);
3463         return true;
3464     case TYPE_VARIANT:
3465         /* assume biggest type */
3466             ir_value_code_setaddr(global, vec_size(code_globals));
3467             vec_push(code_globals, 0);
3468             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3469                 vec_push(code_globals, 0);
3470             return true;
3471     default:
3472         /* refuse to create 'void' type or any other fancy business. */
3473         irerror(global->context, "Invalid type for global variable `%s`: %s",
3474                 global->name, type_name[global->vtype]);
3475         return false;
3476     }
3477 }
3478
3479 static void ir_builder_prepare_field(ir_value *field)
3480 {
3481     field->code.fieldaddr = code_alloc_field(type_sizeof_[field->fieldtype]);
3482 }
3483
3484 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3485 {
3486     prog_section_def def;
3487     prog_section_field fld;
3488
3489     (void)self;
3490
3491     def.type   = (uint16_t)field->vtype;
3492     def.offset = (uint16_t)vec_size(code_globals);
3493
3494     /* create a global named the same as the field */
3495     if (opts.standard == COMPILER_GMQCC) {
3496         /* in our standard, the global gets a dot prefix */
3497         size_t len = strlen(field->name);
3498         char name[1024];
3499
3500         /* we really don't want to have to allocate this, and 1024
3501          * bytes is more than enough for a variable/field name
3502          */
3503         if (len+2 >= sizeof(name)) {
3504             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3505             return false;
3506         }
3507
3508         name[0] = '.';
3509         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3510         name[len+1] = 0;
3511
3512         def.name = code_genstring(name);
3513         fld.name = def.name + 1; /* we reuse that string table entry */
3514     } else {
3515         /* in plain QC, there cannot be a global with the same name,
3516          * and so we also name the global the same.
3517          * FIXME: fteqcc should create a global as well
3518          * check if it actually uses the same name. Probably does
3519          */
3520         def.name = code_genstring(field->name);
3521         fld.name = def.name;
3522     }
3523
3524     field->code.name = def.name;
3525
3526     vec_push(code_defs, def);
3527
3528     fld.type = field->fieldtype;
3529
3530     if (fld.type == TYPE_VOID) {
3531         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3532         return false;
3533     }
3534
3535     fld.offset = field->code.fieldaddr;
3536
3537     vec_push(code_fields, fld);
3538
3539     ir_value_code_setaddr(field, vec_size(code_globals));
3540     vec_push(code_globals, fld.offset);
3541     if (fld.type == TYPE_VECTOR) {
3542         vec_push(code_globals, fld.offset+1);
3543         vec_push(code_globals, fld.offset+2);
3544     }
3545
3546     if (field->fieldtype == TYPE_VECTOR) {
3547         gen_vector_defs(def, field->name);
3548         gen_vector_fields(fld, field->name);
3549     }
3550
3551     return field->code.globaladdr >= 0;
3552 }
3553
3554 bool ir_builder_generate(ir_builder *self, const char *filename)
3555 {
3556     prog_section_statement stmt;
3557     size_t i;
3558     char  *lnofile = NULL;
3559
3560     code_init();
3561
3562     for (i = 0; i < vec_size(self->fields); ++i)
3563     {
3564         ir_builder_prepare_field(self->fields[i]);
3565     }
3566
3567     for (i = 0; i < vec_size(self->globals); ++i)
3568     {
3569         if (!ir_builder_gen_global(self, self->globals[i], false)) {
3570             return false;
3571         }
3572         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3573             ir_function *func = self->globals[i]->constval.vfunc;
3574             if (func && self->max_locals < func->allocated_locals &&
3575                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3576             {
3577                 self->max_locals = func->allocated_locals;
3578             }
3579             if (func && self->max_globaltemps < func->globaltemps)
3580                 self->max_globaltemps = func->globaltemps;
3581         }
3582     }
3583
3584     for (i = 0; i < vec_size(self->fields); ++i)
3585     {
3586         if (!ir_builder_gen_field(self, self->fields[i])) {
3587             return false;
3588         }
3589     }
3590
3591     /* generate nil */
3592     ir_value_code_setaddr(self->nil, vec_size(code_globals));
3593     vec_push(code_globals, 0);
3594     vec_push(code_globals, 0);
3595     vec_push(code_globals, 0);
3596
3597     /* generate global temps */
3598     self->first_common_globaltemp = vec_size(code_globals);
3599     for (i = 0; i < self->max_globaltemps; ++i) {
3600         vec_push(code_globals, 0);
3601     }
3602     /* generate common locals */
3603     self->first_common_local = vec_size(code_globals);
3604     for (i = 0; i < self->max_locals; ++i) {
3605         vec_push(code_globals, 0);
3606     }
3607
3608     /* generate function code */
3609     for (i = 0; i < vec_size(self->globals); ++i)
3610     {
3611         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3612             if (!gen_global_function_code(self, self->globals[i])) {
3613                 return false;
3614             }
3615         }
3616     }
3617
3618     if (vec_size(code_globals) >= 65536) {
3619         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3620         return false;
3621     }
3622
3623     /* DP errors if the last instruction is not an INSTR_DONE. */
3624     if (vec_last(code_statements).opcode != INSTR_DONE)
3625     {
3626         stmt.opcode = INSTR_DONE;
3627         stmt.o1.u1 = 0;
3628         stmt.o2.u1 = 0;
3629         stmt.o3.u1 = 0;
3630         code_push_statement(&stmt, vec_last(code_linenums));
3631     }
3632
3633     if (opts.pp_only)
3634         return true;
3635
3636     if (vec_size(code_statements) != vec_size(code_linenums)) {
3637         con_err("Linecounter wrong: %lu != %lu\n",
3638                 (unsigned long)vec_size(code_statements),
3639                 (unsigned long)vec_size(code_linenums));
3640     } else if (OPTS_FLAG(LNO)) {
3641         char *dot;
3642         size_t filelen = strlen(filename);
3643
3644         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3645         dot = strrchr(lnofile, '.');
3646         if (!dot) {
3647             vec_pop(lnofile);
3648         } else {
3649             vec_shrinkto(lnofile, dot - lnofile);
3650         }
3651         memcpy(vec_add(lnofile, 5), ".lno", 5);
3652     }
3653
3654     if (!opts.quiet) {
3655         if (lnofile)
3656             con_out("writing '%s' and '%s'...\n", filename, lnofile);
3657         else
3658             con_out("writing '%s'\n", filename);
3659     }
3660     if (!code_write(filename, lnofile)) {
3661         vec_free(lnofile);
3662         return false;
3663     }
3664     vec_free(lnofile);
3665     return true;
3666 }
3667
3668 /***********************************************************************
3669  *IR DEBUG Dump functions...
3670  */
3671
3672 #define IND_BUFSZ 1024
3673
3674 #ifdef _MSC_VER
3675 #   define strncat(dst, src, sz) strncat_s(dst, sz, src, _TRUNCATE)
3676 #endif
3677
3678 const char *qc_opname(int op)
3679 {
3680     if (op < 0) return "<INVALID>";
3681     if (op < (int)( sizeof(asm_instr) / sizeof(asm_instr[0]) ))
3682         return asm_instr[op].m;
3683     switch (op) {
3684         case VINSTR_PHI:  return "PHI";
3685         case VINSTR_JUMP: return "JUMP";
3686         case VINSTR_COND: return "COND";
3687         default:          return "<UNK>";
3688     }
3689 }
3690
3691 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
3692 {
3693     size_t i;
3694     char indent[IND_BUFSZ];
3695     indent[0] = '\t';
3696     indent[1] = 0;
3697
3698     oprintf("module %s\n", b->name);
3699     for (i = 0; i < vec_size(b->globals); ++i)
3700     {
3701         oprintf("global ");
3702         if (b->globals[i]->hasvalue)
3703             oprintf("%s = ", b->globals[i]->name);
3704         ir_value_dump(b->globals[i], oprintf);
3705         oprintf("\n");
3706     }
3707     for (i = 0; i < vec_size(b->functions); ++i)
3708         ir_function_dump(b->functions[i], indent, oprintf);
3709     oprintf("endmodule %s\n", b->name);
3710 }
3711
3712 static const char *storenames[] = {
3713     "[global]", "[local]", "[param]", "[value]", "[return]"
3714 };
3715
3716 void ir_function_dump(ir_function *f, char *ind,
3717                       int (*oprintf)(const char*, ...))
3718 {
3719     size_t i;
3720     if (f->builtin != 0) {
3721         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
3722         return;
3723     }
3724     oprintf("%sfunction %s\n", ind, f->name);
3725     strncat(ind, "\t", IND_BUFSZ);
3726     if (vec_size(f->locals))
3727     {
3728         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
3729         for (i = 0; i < vec_size(f->locals); ++i) {
3730             oprintf("%s\t", ind);
3731             ir_value_dump(f->locals[i], oprintf);
3732             oprintf("\n");
3733         }
3734     }
3735     oprintf("%sliferanges:\n", ind);
3736     for (i = 0; i < vec_size(f->locals); ++i) {
3737         const char *attr = "";
3738         size_t l, m;
3739         ir_value *v = f->locals[i];
3740         if (v->unique_life && v->locked)
3741             attr = "unique,locked ";
3742         else if (v->unique_life)
3743             attr = "unique ";
3744         else if (v->locked)
3745             attr = "locked ";
3746         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
3747                 storenames[v->store],
3748                 attr, (v->callparam ? "callparam " : ""),
3749                 (int)v->code.local);
3750         if (!v->life)
3751             oprintf("[null]");
3752         for (l = 0; l < vec_size(v->life); ++l) {
3753             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3754         }
3755         oprintf("\n");
3756         for (m = 0; m < 3; ++m) {
3757             ir_value *vm = v->members[m];
3758             if (!vm)
3759                 continue;
3760             oprintf("%s\t%s: @%i ", ind, vm->name, (int)vm->code.local);
3761             for (l = 0; l < vec_size(vm->life); ++l) {
3762                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3763             }
3764             oprintf("\n");
3765         }
3766     }
3767     for (i = 0; i < vec_size(f->values); ++i) {
3768         const char *attr = "";
3769         size_t l, m;
3770         ir_value *v = f->values[i];
3771         if (v->unique_life && v->locked)
3772             attr = "unique,locked ";
3773         else if (v->unique_life)
3774             attr = "unique ";
3775         else if (v->locked)
3776             attr = "locked ";
3777         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
3778                 storenames[v->store],
3779                 attr, (v->callparam ? "callparam " : ""),
3780                 (int)v->code.local);
3781         if (!v->life)
3782             oprintf("[null]");
3783         for (l = 0; l < vec_size(v->life); ++l) {
3784             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
3785         }
3786         oprintf("\n");
3787         for (m = 0; m < 3; ++m) {
3788             ir_value *vm = v->members[m];
3789             if (!vm)
3790                 continue;
3791             if (vm->unique_life && vm->locked)
3792                 attr = "unique,locked ";
3793             else if (vm->unique_life)
3794                 attr = "unique ";
3795             else if (vm->locked)
3796                 attr = "locked ";
3797             oprintf("%s\t%s: %s@%i ", ind, vm->name, attr, (int)vm->code.local);
3798             for (l = 0; l < vec_size(vm->life); ++l) {
3799                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
3800             }
3801             oprintf("\n");
3802         }
3803     }
3804     if (vec_size(f->blocks))
3805     {
3806         oprintf("%slife passes (check): %i\n", ind, (int)f->run_id);
3807         for (i = 0; i < vec_size(f->blocks); ++i) {
3808             if (f->blocks[i]->run_id != f->run_id) {
3809                 oprintf("%slife pass check fail! %i != %i\n", ind, (int)f->blocks[i]->run_id, (int)f->run_id);
3810             }
3811             ir_block_dump(f->blocks[i], ind, oprintf);
3812         }
3813
3814     }
3815     ind[strlen(ind)-1] = 0;
3816     oprintf("%sendfunction %s\n", ind, f->name);
3817 }
3818
3819 void ir_block_dump(ir_block* b, char *ind,
3820                    int (*oprintf)(const char*, ...))
3821 {
3822     size_t i;
3823     oprintf("%s:%s\n", ind, b->label);
3824     strncat(ind, "\t", IND_BUFSZ);
3825
3826     if (b->instr && b->instr[0])
3827         oprintf("%s (%i) [entry]\n", ind, (int)(b->instr[0]->eid-1));
3828     for (i = 0; i < vec_size(b->instr); ++i)
3829         ir_instr_dump(b->instr[i], ind, oprintf);
3830     ind[strlen(ind)-1] = 0;
3831 }
3832
3833 void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
3834 {
3835     size_t i;
3836     oprintf("%s <- phi ", in->_ops[0]->name);
3837     for (i = 0; i < vec_size(in->phi); ++i)
3838     {
3839         oprintf("([%s] : %s) ", in->phi[i].from->label,
3840                                 in->phi[i].value->name);
3841     }
3842     oprintf("\n");
3843 }
3844
3845 void ir_instr_dump(ir_instr *in, char *ind,
3846                        int (*oprintf)(const char*, ...))
3847 {
3848     size_t i;
3849     const char *comma = NULL;
3850
3851     oprintf("%s (%i) ", ind, (int)in->eid);
3852
3853     if (in->opcode == VINSTR_PHI) {
3854         dump_phi(in, oprintf);
3855         return;
3856     }
3857
3858     strncat(ind, "\t", IND_BUFSZ);
3859
3860     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
3861         ir_value_dump(in->_ops[0], oprintf);
3862         if (in->_ops[1] || in->_ops[2])
3863             oprintf(" <- ");
3864     }
3865     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
3866         oprintf("CALL%i\t", vec_size(in->params));
3867     } else
3868         oprintf("%s\t", qc_opname(in->opcode));
3869
3870     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
3871         ir_value_dump(in->_ops[0], oprintf);
3872         comma = ",\t";
3873     }
3874     else
3875     {
3876         for (i = 1; i != 3; ++i) {
3877             if (in->_ops[i]) {
3878                 if (comma)
3879                     oprintf(comma);
3880                 ir_value_dump(in->_ops[i], oprintf);
3881                 comma = ",\t";
3882             }
3883         }
3884     }
3885     if (in->bops[0]) {
3886         if (comma)
3887             oprintf(comma);
3888         oprintf("[%s]", in->bops[0]->label);
3889         comma = ",\t";
3890     }
3891     if (in->bops[1])
3892         oprintf("%s[%s]", comma, in->bops[1]->label);
3893     if (vec_size(in->params)) {
3894         oprintf("\tparams: ");
3895         for (i = 0; i != vec_size(in->params); ++i) {
3896             oprintf("%s, ", in->params[i]->name);
3897         }
3898     }
3899     oprintf("\n");
3900     ind[strlen(ind)-1] = 0;
3901 }
3902
3903 void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
3904 {
3905     oprintf("\"");
3906     for (; *str; ++str) {
3907         switch (*str) {
3908             case '\n': oprintf("\\n"); break;
3909             case '\r': oprintf("\\r"); break;
3910             case '\t': oprintf("\\t"); break;
3911             case '\v': oprintf("\\v"); break;
3912             case '\f': oprintf("\\f"); break;
3913             case '\b': oprintf("\\b"); break;
3914             case '\a': oprintf("\\a"); break;
3915             case '\\': oprintf("\\\\"); break;
3916             case '"': oprintf("\\\""); break;
3917             default: oprintf("%c", *str); break;
3918         }
3919     }
3920     oprintf("\"");
3921 }
3922
3923 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
3924 {
3925     if (v->hasvalue) {
3926         switch (v->vtype) {
3927             default:
3928             case TYPE_VOID:
3929                 oprintf("(void)");
3930                 break;
3931             case TYPE_FUNCTION:
3932                 oprintf("fn:%s", v->name);
3933                 break;
3934             case TYPE_FLOAT:
3935                 oprintf("%g", v->constval.vfloat);
3936                 break;
3937             case TYPE_VECTOR:
3938                 oprintf("'%g %g %g'",
3939                         v->constval.vvec.x,
3940                         v->constval.vvec.y,
3941                         v->constval.vvec.z);
3942                 break;
3943             case TYPE_ENTITY:
3944                 oprintf("(entity)");
3945                 break;
3946             case TYPE_STRING:
3947                 ir_value_dump_string(v->constval.vstring, oprintf);
3948                 break;
3949 #if 0
3950             case TYPE_INTEGER:
3951                 oprintf("%i", v->constval.vint);
3952                 break;
3953 #endif
3954             case TYPE_POINTER:
3955                 oprintf("&%s",
3956                     v->constval.vpointer->name);
3957                 break;
3958         }
3959     } else {
3960         oprintf("%s", v->name);
3961     }
3962 }
3963
3964 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
3965 {
3966     size_t i;
3967     oprintf("Life of %12s:", self->name);
3968     for (i = 0; i < vec_size(self->life); ++i)
3969     {
3970         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
3971     }
3972 }