]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
fbb79f2e6cd0e03005cb7c5167fe229279e485bc
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ir.h"
29
30 /***********************************************************************
31  * Type sizes used at multiple points in the IR codegen
32  */
33
34 const char *type_name[TYPE_COUNT] = {
35     "void",
36     "string",
37     "float",
38     "vector",
39     "entity",
40     "field",
41     "function",
42     "pointer",
43     "integer",
44     "variant",
45     "struct",
46     "union",
47     "array",
48
49     "nil",
50     "<no-expression>"
51 };
52
53 static size_t type_sizeof_[TYPE_COUNT] = {
54     1, /* TYPE_VOID     */
55     1, /* TYPE_STRING   */
56     1, /* TYPE_FLOAT    */
57     3, /* TYPE_VECTOR   */
58     1, /* TYPE_ENTITY   */
59     1, /* TYPE_FIELD    */
60     1, /* TYPE_FUNCTION */
61     1, /* TYPE_POINTER  */
62     1, /* TYPE_INTEGER  */
63     3, /* TYPE_VARIANT  */
64     0, /* TYPE_STRUCT   */
65     0, /* TYPE_UNION    */
66     0, /* TYPE_ARRAY    */
67     0, /* TYPE_NIL      */
68     0, /* TYPE_NOESPR   */
69 };
70
71 const uint16_t type_store_instr[TYPE_COUNT] = {
72     INSTR_STORE_F, /* should use I when having integer support */
73     INSTR_STORE_S,
74     INSTR_STORE_F,
75     INSTR_STORE_V,
76     INSTR_STORE_ENT,
77     INSTR_STORE_FLD,
78     INSTR_STORE_FNC,
79     INSTR_STORE_ENT, /* should use I */
80 #if 0
81     INSTR_STORE_I, /* integer type */
82 #else
83     INSTR_STORE_F,
84 #endif
85
86     INSTR_STORE_V, /* variant, should never be accessed */
87
88     VINSTR_END, /* struct */
89     VINSTR_END, /* union  */
90     VINSTR_END, /* array  */
91     VINSTR_END, /* nil    */
92     VINSTR_END, /* noexpr */
93 };
94
95 const uint16_t field_store_instr[TYPE_COUNT] = {
96     INSTR_STORE_FLD,
97     INSTR_STORE_FLD,
98     INSTR_STORE_FLD,
99     INSTR_STORE_V,
100     INSTR_STORE_FLD,
101     INSTR_STORE_FLD,
102     INSTR_STORE_FLD,
103     INSTR_STORE_FLD,
104 #if 0
105     INSTR_STORE_FLD, /* integer type */
106 #else
107     INSTR_STORE_FLD,
108 #endif
109
110     INSTR_STORE_V, /* variant, should never be accessed */
111
112     VINSTR_END, /* struct */
113     VINSTR_END, /* union  */
114     VINSTR_END, /* array  */
115     VINSTR_END, /* nil    */
116     VINSTR_END, /* noexpr */
117 };
118
119 const uint16_t type_storep_instr[TYPE_COUNT] = {
120     INSTR_STOREP_F, /* should use I when having integer support */
121     INSTR_STOREP_S,
122     INSTR_STOREP_F,
123     INSTR_STOREP_V,
124     INSTR_STOREP_ENT,
125     INSTR_STOREP_FLD,
126     INSTR_STOREP_FNC,
127     INSTR_STOREP_ENT, /* should use I */
128 #if 0
129     INSTR_STOREP_ENT, /* integer type */
130 #else
131     INSTR_STOREP_F,
132 #endif
133
134     INSTR_STOREP_V, /* variant, should never be accessed */
135
136     VINSTR_END, /* struct */
137     VINSTR_END, /* union  */
138     VINSTR_END, /* array  */
139     VINSTR_END, /* nil    */
140     VINSTR_END, /* noexpr */
141 };
142
143 const uint16_t type_eq_instr[TYPE_COUNT] = {
144     INSTR_EQ_F, /* should use I when having integer support */
145     INSTR_EQ_S,
146     INSTR_EQ_F,
147     INSTR_EQ_V,
148     INSTR_EQ_E,
149     INSTR_EQ_E, /* FLD has no comparison */
150     INSTR_EQ_FNC,
151     INSTR_EQ_E, /* should use I */
152 #if 0
153     INSTR_EQ_I,
154 #else
155     INSTR_EQ_F,
156 #endif
157
158     INSTR_EQ_V, /* variant, should never be accessed */
159
160     VINSTR_END, /* struct */
161     VINSTR_END, /* union  */
162     VINSTR_END, /* array  */
163     VINSTR_END, /* nil    */
164     VINSTR_END, /* noexpr */
165 };
166
167 const uint16_t type_ne_instr[TYPE_COUNT] = {
168     INSTR_NE_F, /* should use I when having integer support */
169     INSTR_NE_S,
170     INSTR_NE_F,
171     INSTR_NE_V,
172     INSTR_NE_E,
173     INSTR_NE_E, /* FLD has no comparison */
174     INSTR_NE_FNC,
175     INSTR_NE_E, /* should use I */
176 #if 0
177     INSTR_NE_I,
178 #else
179     INSTR_NE_F,
180 #endif
181
182     INSTR_NE_V, /* variant, should never be accessed */
183
184     VINSTR_END, /* struct */
185     VINSTR_END, /* union  */
186     VINSTR_END, /* array  */
187     VINSTR_END, /* nil    */
188     VINSTR_END, /* noexpr */
189 };
190
191 const uint16_t type_not_instr[TYPE_COUNT] = {
192     INSTR_NOT_F, /* should use I when having integer support */
193     VINSTR_END,  /* not to be used, depends on string related -f flags */
194     INSTR_NOT_F,
195     INSTR_NOT_V,
196     INSTR_NOT_ENT,
197     INSTR_NOT_ENT,
198     INSTR_NOT_FNC,
199     INSTR_NOT_ENT, /* should use I */
200 #if 0
201     INSTR_NOT_I, /* integer type */
202 #else
203     INSTR_NOT_F,
204 #endif
205
206     INSTR_NOT_V, /* variant, should never be accessed */
207
208     VINSTR_END, /* struct */
209     VINSTR_END, /* union  */
210     VINSTR_END, /* array  */
211     VINSTR_END, /* nil    */
212     VINSTR_END, /* noexpr */
213 };
214
215 /* protos */
216 static ir_value*       ir_value_var(const char *name, int st, int vtype);
217 static bool            ir_value_set_name(ir_value*, const char *name);
218 static void            ir_value_dump(ir_value*, int (*oprintf)(const char*,...));
219
220 static ir_value*       ir_gen_extparam_proto(ir_builder *ir);
221 static void            ir_gen_extparam      (ir_builder *ir);
222
223 static bool            ir_builder_set_name(ir_builder *self, const char *name);
224
225 static ir_function*    ir_function_new(struct ir_builder_s *owner, int returntype);
226 static bool            ir_function_set_name(ir_function*, const char *name);
227 static void            ir_function_delete(ir_function*);
228 static void            ir_function_dump(ir_function*, char *ind, int (*oprintf)(const char*,...));
229
230 static ir_value*       ir_block_create_general_instr(ir_block *self, lex_ctx_t, const char *label,
231                                         int op, ir_value *a, ir_value *b, int outype);
232 static void            ir_block_delete(ir_block*);
233 static ir_block*       ir_block_new(struct ir_function_s *owner, const char *label);
234 static bool GMQCC_WARN ir_block_create_store(ir_block*, lex_ctx_t, ir_value *target, ir_value *what);
235 static bool            ir_block_set_label(ir_block*, const char *label);
236 static void            ir_block_dump(ir_block*, char *ind, int (*oprintf)(const char*,...));
237
238 static bool            ir_instr_op(ir_instr*, int op, ir_value *value, bool writing);
239 static void            ir_instr_delete(ir_instr*);
240 static void            ir_instr_dump(ir_instr* in, char *ind, int (*oprintf)(const char*,...));
241 /* error functions */
242
243 static void irerror(lex_ctx_t ctx, const char *msg, ...)
244 {
245     va_list ap;
246     va_start(ap, msg);
247     con_cvprintmsg(ctx, LVL_ERROR, "internal error", msg, ap);
248     va_end(ap);
249 }
250
251 static bool GMQCC_WARN irwarning(lex_ctx_t ctx, int warntype, const char *fmt, ...)
252 {
253     bool    r;
254     va_list ap;
255     va_start(ap, fmt);
256     r = vcompile_warning(ctx, warntype, fmt, ap);
257     va_end(ap);
258     return r;
259 }
260
261 /***********************************************************************
262  * Vector utility functions
263  */
264
265 static bool GMQCC_WARN vec_ir_value_find(ir_value **vec, const ir_value *what, size_t *idx)
266 {
267     size_t i;
268     size_t len = vec_size(vec);
269     for (i = 0; i < len; ++i) {
270         if (vec[i] == what) {
271             if (idx) *idx = i;
272             return true;
273         }
274     }
275     return false;
276 }
277
278 static bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
279 {
280     size_t i;
281     size_t len = vec_size(vec);
282     for (i = 0; i < len; ++i) {
283         if (vec[i] == what) {
284             if (idx) *idx = i;
285             return true;
286         }
287     }
288     return false;
289 }
290
291 static bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
292 {
293     size_t i;
294     size_t len = vec_size(vec);
295     for (i = 0; i < len; ++i) {
296         if (vec[i] == what) {
297             if (idx) *idx = i;
298             return true;
299         }
300     }
301     return false;
302 }
303
304 /***********************************************************************
305  * IR Builder
306  */
307
308 static void ir_block_delete_quick(ir_block* self);
309 static void ir_instr_delete_quick(ir_instr *self);
310 static void ir_function_delete_quick(ir_function *self);
311
312 ir_builder* ir_builder_new(const char *modulename)
313 {
314     ir_builder* self;
315     size_t      i;
316
317     self = (ir_builder*)mem_a(sizeof(*self));
318     if (!self)
319         return NULL;
320
321     self->functions   = NULL;
322     self->globals     = NULL;
323     self->fields      = NULL;
324     self->filenames   = NULL;
325     self->filestrings = NULL;
326     self->htglobals   = util_htnew(IR_HT_SIZE);
327     self->htfields    = util_htnew(IR_HT_SIZE);
328     self->htfunctions = util_htnew(IR_HT_SIZE);
329
330     self->extparams       = NULL;
331     self->extparam_protos = NULL;
332
333     self->first_common_globaltemp = 0;
334     self->max_globaltemps         = 0;
335     self->first_common_local      = 0;
336     self->max_locals              = 0;
337
338     self->str_immediate = 0;
339     self->name = NULL;
340     if (!ir_builder_set_name(self, modulename)) {
341         mem_d(self);
342         return NULL;
343     }
344
345     self->nil = ir_value_var("nil", store_value, TYPE_NIL);
346     self->nil->cvq = CV_CONST;
347
348     for (i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
349         /* we write to them, but they're not supposed to be used outside the IR, so
350          * let's not allow the generation of ir_instrs which use these.
351          * So it's a constant noexpr.
352          */
353         self->vinstr_temp[i] = ir_value_var("vinstr_temp", store_value, TYPE_NOEXPR);
354         self->vinstr_temp[i]->cvq = CV_CONST;
355     }
356
357     self->reserved_va_count = NULL;
358     self->code              = code_init();
359
360     return self;
361 }
362
363 void ir_builder_delete(ir_builder* self)
364 {
365     size_t i;
366     util_htdel(self->htglobals);
367     util_htdel(self->htfields);
368     util_htdel(self->htfunctions);
369     mem_d((void*)self->name);
370     for (i = 0; i != vec_size(self->functions); ++i) {
371         ir_function_delete_quick(self->functions[i]);
372     }
373     vec_free(self->functions);
374     for (i = 0; i != vec_size(self->extparams); ++i) {
375         ir_value_delete(self->extparams[i]);
376     }
377     vec_free(self->extparams);
378     vec_free(self->extparam_protos);
379     for (i = 0; i != vec_size(self->globals); ++i) {
380         ir_value_delete(self->globals[i]);
381     }
382     vec_free(self->globals);
383     for (i = 0; i != vec_size(self->fields); ++i) {
384         ir_value_delete(self->fields[i]);
385     }
386     ir_value_delete(self->nil);
387     for (i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
388         ir_value_delete(self->vinstr_temp[i]);
389     }
390     vec_free(self->fields);
391     vec_free(self->filenames);
392     vec_free(self->filestrings);
393
394     code_cleanup(self->code);
395     mem_d(self);
396 }
397
398 bool ir_builder_set_name(ir_builder *self, const char *name)
399 {
400     if (self->name)
401         mem_d((void*)self->name);
402     self->name = util_strdup(name);
403     return !!self->name;
404 }
405
406 static ir_function* ir_builder_get_function(ir_builder *self, const char *name)
407 {
408     return (ir_function*)util_htget(self->htfunctions, name);
409 }
410
411 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
412 {
413     ir_function *fn = ir_builder_get_function(self, name);
414     if (fn) {
415         return NULL;
416     }
417
418     fn = ir_function_new(self, outtype);
419     if (!ir_function_set_name(fn, name))
420     {
421         ir_function_delete(fn);
422         return NULL;
423     }
424     vec_push(self->functions, fn);
425     util_htset(self->htfunctions, name, fn);
426
427     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
428     if (!fn->value) {
429         ir_function_delete(fn);
430         return NULL;
431     }
432
433     fn->value->hasvalue = true;
434     fn->value->outtype = outtype;
435     fn->value->constval.vfunc = fn;
436     fn->value->context = fn->context;
437
438     return fn;
439 }
440
441 static ir_value* ir_builder_get_global(ir_builder *self, const char *name)
442 {
443     return (ir_value*)util_htget(self->htglobals, name);
444 }
445
446 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
447 {
448     ir_value *ve;
449
450     if (name[0] != '#')
451     {
452         ve = ir_builder_get_global(self, name);
453         if (ve) {
454             return NULL;
455         }
456     }
457
458     ve = ir_value_var(name, store_global, vtype);
459     vec_push(self->globals, ve);
460     util_htset(self->htglobals, name, ve);
461     return ve;
462 }
463
464 ir_value* ir_builder_get_va_count(ir_builder *self)
465 {
466     if (self->reserved_va_count)
467         return self->reserved_va_count;
468     return (self->reserved_va_count = ir_builder_create_global(self, "reserved:va_count", TYPE_FLOAT));
469 }
470
471 static ir_value* ir_builder_get_field(ir_builder *self, const char *name)
472 {
473     return (ir_value*)util_htget(self->htfields, name);
474 }
475
476
477 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
478 {
479     ir_value *ve = ir_builder_get_field(self, name);
480     if (ve) {
481         return NULL;
482     }
483
484     ve = ir_value_var(name, store_global, TYPE_FIELD);
485     ve->fieldtype = vtype;
486     vec_push(self->fields, ve);
487     util_htset(self->htfields, name, ve);
488     return ve;
489 }
490
491 /***********************************************************************
492  *IR Function
493  */
494
495 static bool ir_function_naive_phi(ir_function*);
496 static void ir_function_enumerate(ir_function*);
497 static bool ir_function_calculate_liferanges(ir_function*);
498 static bool ir_function_allocate_locals(ir_function*);
499
500 ir_function* ir_function_new(ir_builder* owner, int outtype)
501 {
502     ir_function *self;
503     self = (ir_function*)mem_a(sizeof(*self));
504
505     if (!self)
506         return NULL;
507
508     memset(self, 0, sizeof(*self));
509
510     self->name = NULL;
511     if (!ir_function_set_name(self, "<@unnamed>")) {
512         mem_d(self);
513         return NULL;
514     }
515     self->flags = 0;
516
517     self->owner = owner;
518     self->context.file = "<@no context>";
519     self->context.line = 0;
520     self->outtype = outtype;
521     self->value = NULL;
522     self->builtin = 0;
523
524     self->params = NULL;
525     self->blocks = NULL;
526     self->values = NULL;
527     self->locals = NULL;
528
529     self->max_varargs = 0;
530
531     self->code_function_def = -1;
532     self->allocated_locals = 0;
533     self->globaltemps      = 0;
534
535     self->run_id = 0;
536     return self;
537 }
538
539 bool ir_function_set_name(ir_function *self, const char *name)
540 {
541     if (self->name)
542         mem_d((void*)self->name);
543     self->name = util_strdup(name);
544     return !!self->name;
545 }
546
547 static void ir_function_delete_quick(ir_function *self)
548 {
549     size_t i;
550     mem_d((void*)self->name);
551
552     for (i = 0; i != vec_size(self->blocks); ++i)
553         ir_block_delete_quick(self->blocks[i]);
554     vec_free(self->blocks);
555
556     vec_free(self->params);
557
558     for (i = 0; i != vec_size(self->values); ++i)
559         ir_value_delete(self->values[i]);
560     vec_free(self->values);
561
562     for (i = 0; i != vec_size(self->locals); ++i)
563         ir_value_delete(self->locals[i]);
564     vec_free(self->locals);
565
566     /* self->value is deleted by the builder */
567
568     mem_d(self);
569 }
570
571 void ir_function_delete(ir_function *self)
572 {
573     size_t i;
574     mem_d((void*)self->name);
575
576     for (i = 0; i != vec_size(self->blocks); ++i)
577         ir_block_delete(self->blocks[i]);
578     vec_free(self->blocks);
579
580     vec_free(self->params);
581
582     for (i = 0; i != vec_size(self->values); ++i)
583         ir_value_delete(self->values[i]);
584     vec_free(self->values);
585
586     for (i = 0; i != vec_size(self->locals); ++i)
587         ir_value_delete(self->locals[i]);
588     vec_free(self->locals);
589
590     /* self->value is deleted by the builder */
591
592     mem_d(self);
593 }
594
595 static void ir_function_collect_value(ir_function *self, ir_value *v)
596 {
597     vec_push(self->values, v);
598 }
599
600 ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function *self, const char *label)
601 {
602     ir_block* bn = ir_block_new(self, label);
603     bn->context = ctx;
604     vec_push(self->blocks, bn);
605     return bn;
606 }
607
608 static bool instr_is_operation(uint16_t op)
609 {
610     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
611              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
612              (op == INSTR_ADDRESS) ||
613              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
614              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
615              (op >= INSTR_CALL0  && op <= INSTR_CALL8) ||
616              (op >= VINSTR_BITAND_V && op <= VINSTR_NEG_V) );
617 }
618
619 static bool ir_function_pass_peephole(ir_function *self)
620 {
621     size_t b;
622
623     for (b = 0; b < vec_size(self->blocks); ++b) {
624         size_t    i;
625         ir_block *block = self->blocks[b];
626
627         for (i = 0; i < vec_size(block->instr); ++i) {
628             ir_instr *inst;
629             inst = block->instr[i];
630
631             if (i >= 1 &&
632                 (inst->opcode >= INSTR_STORE_F &&
633                  inst->opcode <= INSTR_STORE_FNC))
634             {
635                 ir_instr *store;
636                 ir_instr *oper;
637                 ir_value *value;
638
639                 store = inst;
640
641                 oper  = block->instr[i-1];
642                 if (!instr_is_operation(oper->opcode))
643                     continue;
644
645                 /* Don't change semantics of MUL_VF in engines where these may not alias. */
646                 if (OPTS_FLAG(LEGACY_VECTOR_MATHS)) {
647                     if (oper->opcode == INSTR_MUL_VF && oper->_ops[2]->memberof == oper->_ops[1])
648                         continue;
649                     if (oper->opcode == INSTR_MUL_FV && oper->_ops[1]->memberof == oper->_ops[2])
650                         continue;
651                 }
652
653                 value = oper->_ops[0];
654
655                 /* only do it for SSA values */
656                 if (value->store != store_value)
657                     continue;
658
659                 /* don't optimize out the temp if it's used later again */
660                 if (vec_size(value->reads) != 1)
661                     continue;
662
663                 /* The very next store must use this value */
664                 if (value->reads[0] != store)
665                     continue;
666
667                 /* And of course the store must _read_ from it, so it's in
668                  * OP 1 */
669                 if (store->_ops[1] != value)
670                     continue;
671
672                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
673                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
674
675                 vec_remove(block->instr, i, 1);
676                 ir_instr_delete(store);
677             }
678             else if (inst->opcode == VINSTR_COND)
679             {
680                 /* COND on a value resulting from a NOT could
681                  * remove the NOT and swap its operands
682                  */
683                 while (true) {
684                     ir_block *tmp;
685                     size_t    inotid;
686                     ir_instr *inot;
687                     ir_value *value;
688                     value = inst->_ops[0];
689
690                     if (value->store != store_value ||
691                         vec_size(value->reads) != 1 ||
692                         value->reads[0] != inst)
693                     {
694                         break;
695                     }
696
697                     inot = value->writes[0];
698                     if (inot->_ops[0] != value ||
699                         inot->opcode < INSTR_NOT_F ||
700                         inot->opcode > INSTR_NOT_FNC ||
701                         inot->opcode == INSTR_NOT_V || /* can't do these */
702                         inot->opcode == INSTR_NOT_S)
703                     {
704                         break;
705                     }
706
707                     /* count */
708                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
709                     /* change operand */
710                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
711                     /* remove NOT */
712                     tmp = inot->owner;
713                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
714                         if (tmp->instr[inotid] == inot)
715                             break;
716                     }
717                     if (inotid >= vec_size(tmp->instr)) {
718                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
719                         return false;
720                     }
721                     vec_remove(tmp->instr, inotid, 1);
722                     ir_instr_delete(inot);
723                     /* swap ontrue/onfalse */
724                     tmp = inst->bops[0];
725                     inst->bops[0] = inst->bops[1];
726                     inst->bops[1] = tmp;
727                 }
728                 continue;
729             }
730         }
731     }
732
733     return true;
734 }
735
736 static bool ir_function_pass_tailrecursion(ir_function *self)
737 {
738     size_t b, p;
739
740     for (b = 0; b < vec_size(self->blocks); ++b) {
741         ir_value *funcval;
742         ir_instr *ret, *call, *store = NULL;
743         ir_block *block = self->blocks[b];
744
745         if (!block->final || vec_size(block->instr) < 2)
746             continue;
747
748         ret = block->instr[vec_size(block->instr)-1];
749         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
750             continue;
751
752         call = block->instr[vec_size(block->instr)-2];
753         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
754             /* account for the unoptimized
755              * CALL
756              * STORE %return, %tmp
757              * RETURN %tmp
758              * version
759              */
760             if (vec_size(block->instr) < 3)
761                 continue;
762
763             store = call;
764             call = block->instr[vec_size(block->instr)-3];
765         }
766
767         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
768             continue;
769
770         if (store) {
771             /* optimize out the STORE */
772             if (ret->_ops[0]   &&
773                 ret->_ops[0]   == store->_ops[0] &&
774                 store->_ops[1] == call->_ops[0])
775             {
776                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
777                 call->_ops[0] = store->_ops[0];
778                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
779                 ir_instr_delete(store);
780             }
781             else
782                 continue;
783         }
784
785         if (!call->_ops[0])
786             continue;
787
788         funcval = call->_ops[1];
789         if (!funcval)
790             continue;
791         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
792             continue;
793
794         /* now we have a CALL and a RET, check if it's a tailcall */
795         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
796             continue;
797
798         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
799         vec_shrinkby(block->instr, 2);
800
801         block->final = false; /* open it back up */
802
803         /* emite parameter-stores */
804         for (p = 0; p < vec_size(call->params); ++p) {
805             /* assert(call->params_count <= self->locals_count); */
806             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
807                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
808                 return false;
809             }
810         }
811         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
812             irerror(call->context, "failed to create tailcall jump");
813             return false;
814         }
815
816         ir_instr_delete(call);
817         ir_instr_delete(ret);
818     }
819
820     return true;
821 }
822
823 bool ir_function_finalize(ir_function *self)
824 {
825     size_t i;
826
827     if (self->builtin)
828         return true;
829
830     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
831         if (!ir_function_pass_peephole(self)) {
832             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
833             return false;
834         }
835     }
836
837     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
838         if (!ir_function_pass_tailrecursion(self)) {
839             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
840             return false;
841         }
842     }
843
844     if (!ir_function_naive_phi(self)) {
845         irerror(self->context, "internal error: ir_function_naive_phi failed");
846         return false;
847     }
848
849     for (i = 0; i < vec_size(self->locals); ++i) {
850         ir_value *v = self->locals[i];
851         if (v->vtype == TYPE_VECTOR ||
852             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
853         {
854             ir_value_vector_member(v, 0);
855             ir_value_vector_member(v, 1);
856             ir_value_vector_member(v, 2);
857         }
858     }
859     for (i = 0; i < vec_size(self->values); ++i) {
860         ir_value *v = self->values[i];
861         if (v->vtype == TYPE_VECTOR ||
862             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
863         {
864             ir_value_vector_member(v, 0);
865             ir_value_vector_member(v, 1);
866             ir_value_vector_member(v, 2);
867         }
868     }
869
870     ir_function_enumerate(self);
871
872     if (!ir_function_calculate_liferanges(self))
873         return false;
874     if (!ir_function_allocate_locals(self))
875         return false;
876     return true;
877 }
878
879 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
880 {
881     ir_value *ve;
882
883     if (param &&
884         vec_size(self->locals) &&
885         self->locals[vec_size(self->locals)-1]->store != store_param) {
886         irerror(self->context, "cannot add parameters after adding locals");
887         return NULL;
888     }
889
890     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
891     if (param)
892         ve->locked = true;
893     vec_push(self->locals, ve);
894     return ve;
895 }
896
897 /***********************************************************************
898  *IR Block
899  */
900
901 ir_block* ir_block_new(ir_function* owner, const char *name)
902 {
903     ir_block *self;
904     self = (ir_block*)mem_a(sizeof(*self));
905     if (!self)
906         return NULL;
907
908     memset(self, 0, sizeof(*self));
909
910     self->label = NULL;
911     if (name && !ir_block_set_label(self, name)) {
912         mem_d(self);
913         return NULL;
914     }
915     self->owner = owner;
916     self->context.file = "<@no context>";
917     self->context.line = 0;
918     self->final = false;
919
920     self->instr   = NULL;
921     self->entries = NULL;
922     self->exits   = NULL;
923
924     self->eid = 0;
925     self->is_return = false;
926
927     self->living = NULL;
928
929     self->generated = false;
930
931     return self;
932 }
933
934 static void ir_block_delete_quick(ir_block* self)
935 {
936     size_t i;
937     if (self->label) mem_d(self->label);
938     for (i = 0; i != vec_size(self->instr); ++i)
939         ir_instr_delete_quick(self->instr[i]);
940     vec_free(self->instr);
941     vec_free(self->entries);
942     vec_free(self->exits);
943     vec_free(self->living);
944     mem_d(self);
945 }
946
947 void ir_block_delete(ir_block* self)
948 {
949     size_t i;
950     if (self->label) mem_d(self->label);
951     for (i = 0; i != vec_size(self->instr); ++i)
952         ir_instr_delete(self->instr[i]);
953     vec_free(self->instr);
954     vec_free(self->entries);
955     vec_free(self->exits);
956     vec_free(self->living);
957     mem_d(self);
958 }
959
960 bool ir_block_set_label(ir_block *self, const char *name)
961 {
962     if (self->label)
963         mem_d((void*)self->label);
964     self->label = util_strdup(name);
965     return !!self->label;
966 }
967
968 /***********************************************************************
969  *IR Instructions
970  */
971
972 static ir_instr* ir_instr_new(lex_ctx_t ctx, ir_block* owner, int op)
973 {
974     ir_instr *self;
975     self = (ir_instr*)mem_a(sizeof(*self));
976     if (!self)
977         return NULL;
978
979     self->owner = owner;
980     self->context = ctx;
981     self->opcode = op;
982     self->_ops[0] = NULL;
983     self->_ops[1] = NULL;
984     self->_ops[2] = NULL;
985     self->bops[0] = NULL;
986     self->bops[1] = NULL;
987
988     self->phi    = NULL;
989     self->params = NULL;
990
991     self->eid = 0;
992
993     self->likely = true;
994     return self;
995 }
996
997 static void ir_instr_delete_quick(ir_instr *self)
998 {
999     vec_free(self->phi);
1000     vec_free(self->params);
1001     mem_d(self);
1002 }
1003
1004 static void ir_instr_delete(ir_instr *self)
1005 {
1006     size_t i;
1007     /* The following calls can only delete from
1008      * vectors, we still want to delete this instruction
1009      * so ignore the return value. Since with the warn_unused_result attribute
1010      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
1011      * I have to improvise here and use if(foo());
1012      */
1013     for (i = 0; i < vec_size(self->phi); ++i) {
1014         size_t idx;
1015         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
1016             vec_remove(self->phi[i].value->writes, idx, 1);
1017         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
1018             vec_remove(self->phi[i].value->reads, idx, 1);
1019     }
1020     vec_free(self->phi);
1021     for (i = 0; i < vec_size(self->params); ++i) {
1022         size_t idx;
1023         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
1024             vec_remove(self->params[i]->writes, idx, 1);
1025         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
1026             vec_remove(self->params[i]->reads, idx, 1);
1027     }
1028     vec_free(self->params);
1029     (void)!ir_instr_op(self, 0, NULL, false);
1030     (void)!ir_instr_op(self, 1, NULL, false);
1031     (void)!ir_instr_op(self, 2, NULL, false);
1032     mem_d(self);
1033 }
1034
1035 static bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
1036 {
1037     if (v && v->vtype == TYPE_NOEXPR) {
1038         irerror(self->context, "tried to use a NOEXPR value");
1039         return false;
1040     }
1041
1042     if (self->_ops[op]) {
1043         size_t idx;
1044         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
1045             vec_remove(self->_ops[op]->writes, idx, 1);
1046         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
1047             vec_remove(self->_ops[op]->reads, idx, 1);
1048     }
1049     if (v) {
1050         if (writing)
1051             vec_push(v->writes, self);
1052         else
1053             vec_push(v->reads, self);
1054     }
1055     self->_ops[op] = v;
1056     return true;
1057 }
1058
1059 /***********************************************************************
1060  *IR Value
1061  */
1062
1063 static void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
1064 {
1065     self->code.globaladdr = gaddr;
1066     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
1067     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
1068     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
1069 }
1070
1071 static int32_t ir_value_code_addr(const ir_value *self)
1072 {
1073     if (self->store == store_return)
1074         return OFS_RETURN + self->code.addroffset;
1075     return self->code.globaladdr + self->code.addroffset;
1076 }
1077
1078 ir_value* ir_value_var(const char *name, int storetype, int vtype)
1079 {
1080     ir_value *self;
1081     self = (ir_value*)mem_a(sizeof(*self));
1082     self->vtype = vtype;
1083     self->fieldtype = TYPE_VOID;
1084     self->outtype = TYPE_VOID;
1085     self->store = storetype;
1086     self->flags = 0;
1087
1088     self->reads  = NULL;
1089     self->writes = NULL;
1090
1091     self->cvq          = CV_NONE;
1092     self->hasvalue     = false;
1093     self->context.file = "<@no context>";
1094     self->context.line = 0;
1095     self->name = NULL;
1096     if (name && !ir_value_set_name(self, name)) {
1097         irerror(self->context, "out of memory");
1098         mem_d(self);
1099         return NULL;
1100     }
1101
1102     memset(&self->constval, 0, sizeof(self->constval));
1103     memset(&self->code,     0, sizeof(self->code));
1104
1105     self->members[0] = NULL;
1106     self->members[1] = NULL;
1107     self->members[2] = NULL;
1108     self->memberof = NULL;
1109
1110     self->unique_life = false;
1111     self->locked      = false;
1112     self->callparam   = false;
1113
1114     self->life = NULL;
1115     return self;
1116 }
1117
1118 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
1119 {
1120     char     *name;
1121     size_t    len;
1122     ir_value *m;
1123     if (member >= 3)
1124         return NULL;
1125
1126     if (self->members[member])
1127         return self->members[member];
1128
1129     if (self->name) {
1130         len = strlen(self->name);
1131         name = (char*)mem_a(len + 3);
1132         memcpy(name, self->name, len);
1133         name[len+0] = '_';
1134         name[len+1] = 'x' + member;
1135         name[len+2] = '\0';
1136     }
1137     else
1138         name = NULL;
1139
1140     if (self->vtype == TYPE_VECTOR)
1141     {
1142         m = ir_value_var(name, self->store, TYPE_FLOAT);
1143         if (name)
1144             mem_d(name);
1145         if (!m)
1146             return NULL;
1147         m->context = self->context;
1148
1149         self->members[member] = m;
1150         m->code.addroffset = member;
1151     }
1152     else if (self->vtype == TYPE_FIELD)
1153     {
1154         if (self->fieldtype != TYPE_VECTOR)
1155             return NULL;
1156         m = ir_value_var(name, self->store, TYPE_FIELD);
1157         if (name)
1158             mem_d(name);
1159         if (!m)
1160             return NULL;
1161         m->fieldtype = TYPE_FLOAT;
1162         m->context = self->context;
1163
1164         self->members[member] = m;
1165         m->code.addroffset = member;
1166     }
1167     else
1168     {
1169         irerror(self->context, "invalid member access on %s", self->name);
1170         return NULL;
1171     }
1172
1173     m->memberof = self;
1174     return m;
1175 }
1176
1177 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1178 {
1179     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1180         return type_sizeof_[TYPE_VECTOR];
1181     return type_sizeof_[self->vtype];
1182 }
1183
1184 static ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1185 {
1186     ir_value *v = ir_value_var(name, storetype, vtype);
1187     if (!v)
1188         return NULL;
1189     ir_function_collect_value(owner, v);
1190     return v;
1191 }
1192
1193 void ir_value_delete(ir_value* self)
1194 {
1195     size_t i;
1196     if (self->name)
1197         mem_d((void*)self->name);
1198     if (self->hasvalue)
1199     {
1200         if (self->vtype == TYPE_STRING)
1201             mem_d((void*)self->constval.vstring);
1202     }
1203     for (i = 0; i < 3; ++i) {
1204         if (self->members[i])
1205             ir_value_delete(self->members[i]);
1206     }
1207     vec_free(self->reads);
1208     vec_free(self->writes);
1209     vec_free(self->life);
1210     mem_d(self);
1211 }
1212
1213 bool ir_value_set_name(ir_value *self, const char *name)
1214 {
1215     if (self->name)
1216         mem_d((void*)self->name);
1217     self->name = util_strdup(name);
1218     return !!self->name;
1219 }
1220
1221 bool ir_value_set_float(ir_value *self, float f)
1222 {
1223     if (self->vtype != TYPE_FLOAT)
1224         return false;
1225     self->constval.vfloat = f;
1226     self->hasvalue = true;
1227     return true;
1228 }
1229
1230 bool ir_value_set_func(ir_value *self, int f)
1231 {
1232     if (self->vtype != TYPE_FUNCTION)
1233         return false;
1234     self->constval.vint = f;
1235     self->hasvalue = true;
1236     return true;
1237 }
1238
1239 bool ir_value_set_vector(ir_value *self, vec3_t v)
1240 {
1241     if (self->vtype != TYPE_VECTOR)
1242         return false;
1243     self->constval.vvec = v;
1244     self->hasvalue = true;
1245     return true;
1246 }
1247
1248 bool ir_value_set_field(ir_value *self, ir_value *fld)
1249 {
1250     if (self->vtype != TYPE_FIELD)
1251         return false;
1252     self->constval.vpointer = fld;
1253     self->hasvalue = true;
1254     return true;
1255 }
1256
1257 bool ir_value_set_string(ir_value *self, const char *str)
1258 {
1259     if (self->vtype != TYPE_STRING)
1260         return false;
1261     self->constval.vstring = util_strdupe(str);
1262     self->hasvalue = true;
1263     return true;
1264 }
1265
1266 #if 0
1267 bool ir_value_set_int(ir_value *self, int i)
1268 {
1269     if (self->vtype != TYPE_INTEGER)
1270         return false;
1271     self->constval.vint = i;
1272     self->hasvalue = true;
1273     return true;
1274 }
1275 #endif
1276
1277 bool ir_value_lives(ir_value *self, size_t at)
1278 {
1279     size_t i;
1280     for (i = 0; i < vec_size(self->life); ++i)
1281     {
1282         ir_life_entry_t *life = &self->life[i];
1283         if (life->start <= at && at <= life->end)
1284             return true;
1285         if (life->start > at) /* since it's ordered */
1286             return false;
1287     }
1288     return false;
1289 }
1290
1291 static bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1292 {
1293     size_t k;
1294     vec_push(self->life, e);
1295     for (k = vec_size(self->life)-1; k > idx; --k)
1296         self->life[k] = self->life[k-1];
1297     self->life[idx] = e;
1298     return true;
1299 }
1300
1301 static bool ir_value_life_merge(ir_value *self, size_t s)
1302 {
1303     size_t i;
1304     const size_t vs = vec_size(self->life);
1305     ir_life_entry_t *life = NULL;
1306     ir_life_entry_t *before = NULL;
1307     ir_life_entry_t new_entry;
1308
1309     /* Find the first range >= s */
1310     for (i = 0; i < vs; ++i)
1311     {
1312         before = life;
1313         life = &self->life[i];
1314         if (life->start > s)
1315             break;
1316     }
1317     /* nothing found? append */
1318     if (i == vs) {
1319         ir_life_entry_t e;
1320         if (life && life->end+1 == s)
1321         {
1322             /* previous life range can be merged in */
1323             life->end++;
1324             return true;
1325         }
1326         if (life && life->end >= s)
1327             return false;
1328         e.start = e.end = s;
1329         vec_push(self->life, e);
1330         return true;
1331     }
1332     /* found */
1333     if (before)
1334     {
1335         if (before->end + 1 == s &&
1336             life->start - 1 == s)
1337         {
1338             /* merge */
1339             before->end = life->end;
1340             vec_remove(self->life, i, 1);
1341             return true;
1342         }
1343         if (before->end + 1 == s)
1344         {
1345             /* extend before */
1346             before->end++;
1347             return true;
1348         }
1349         /* already contained */
1350         if (before->end >= s)
1351             return false;
1352     }
1353     /* extend */
1354     if (life->start - 1 == s)
1355     {
1356         life->start--;
1357         return true;
1358     }
1359     /* insert a new entry */
1360     new_entry.start = new_entry.end = s;
1361     return ir_value_life_insert(self, i, new_entry);
1362 }
1363
1364 static bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1365 {
1366     size_t i, myi;
1367
1368     if (!vec_size(other->life))
1369         return true;
1370
1371     if (!vec_size(self->life)) {
1372         size_t count = vec_size(other->life);
1373         ir_life_entry_t *life = vec_add(self->life, count);
1374         memcpy(life, other->life, count * sizeof(*life));
1375         return true;
1376     }
1377
1378     myi = 0;
1379     for (i = 0; i < vec_size(other->life); ++i)
1380     {
1381         const ir_life_entry_t *life = &other->life[i];
1382         while (true)
1383         {
1384             ir_life_entry_t *entry = &self->life[myi];
1385
1386             if (life->end+1 < entry->start)
1387             {
1388                 /* adding an interval before entry */
1389                 if (!ir_value_life_insert(self, myi, *life))
1390                     return false;
1391                 ++myi;
1392                 break;
1393             }
1394
1395             if (life->start <  entry->start &&
1396                 life->end+1 >= entry->start)
1397             {
1398                 /* starts earlier and overlaps */
1399                 entry->start = life->start;
1400             }
1401
1402             if (life->end   >  entry->end &&
1403                 life->start <= entry->end+1)
1404             {
1405                 /* ends later and overlaps */
1406                 entry->end = life->end;
1407             }
1408
1409             /* see if our change combines it with the next ranges */
1410             while (myi+1 < vec_size(self->life) &&
1411                    entry->end+1 >= self->life[1+myi].start)
1412             {
1413                 /* overlaps with (myi+1) */
1414                 if (entry->end < self->life[1+myi].end)
1415                     entry->end = self->life[1+myi].end;
1416                 vec_remove(self->life, myi+1, 1);
1417                 entry = &self->life[myi];
1418             }
1419
1420             /* see if we're after the entry */
1421             if (life->start > entry->end)
1422             {
1423                 ++myi;
1424                 /* append if we're at the end */
1425                 if (myi >= vec_size(self->life)) {
1426                     vec_push(self->life, *life);
1427                     break;
1428                 }
1429                 /* otherweise check the next range */
1430                 continue;
1431             }
1432             break;
1433         }
1434     }
1435     return true;
1436 }
1437
1438 static bool ir_values_overlap(const ir_value *a, const ir_value *b)
1439 {
1440     /* For any life entry in A see if it overlaps with
1441      * any life entry in B.
1442      * Note that the life entries are orderes, so we can make a
1443      * more efficient algorithm there than naively translating the
1444      * statement above.
1445      */
1446
1447     ir_life_entry_t *la, *lb, *enda, *endb;
1448
1449     /* first of all, if either has no life range, they cannot clash */
1450     if (!vec_size(a->life) || !vec_size(b->life))
1451         return false;
1452
1453     la = a->life;
1454     lb = b->life;
1455     enda = la + vec_size(a->life);
1456     endb = lb + vec_size(b->life);
1457     while (true)
1458     {
1459         /* check if the entries overlap, for that,
1460          * both must start before the other one ends.
1461          */
1462         if (la->start < lb->end &&
1463             lb->start < la->end)
1464         {
1465             return true;
1466         }
1467
1468         /* entries are ordered
1469          * one entry is earlier than the other
1470          * that earlier entry will be moved forward
1471          */
1472         if (la->start < lb->start)
1473         {
1474             /* order: A B, move A forward
1475              * check if we hit the end with A
1476              */
1477             if (++la == enda)
1478                 break;
1479         }
1480         else /* if (lb->start < la->start)  actually <= */
1481         {
1482             /* order: B A, move B forward
1483              * check if we hit the end with B
1484              */
1485             if (++lb == endb)
1486                 break;
1487         }
1488     }
1489     return false;
1490 }
1491
1492 /***********************************************************************
1493  *IR main operations
1494  */
1495
1496 static bool ir_check_unreachable(ir_block *self)
1497 {
1498     /* The IR should never have to deal with unreachable code */
1499     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1500         return true;
1501     irerror(self->context, "unreachable statement (%s)", self->label);
1502     return false;
1503 }
1504
1505 bool ir_block_create_store_op(ir_block *self, lex_ctx_t ctx, int op, ir_value *target, ir_value *what)
1506 {
1507     ir_instr *in;
1508     if (!ir_check_unreachable(self))
1509         return false;
1510
1511     if (target->store == store_value &&
1512         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1513     {
1514         irerror(self->context, "cannot store to an SSA value");
1515         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1516         irerror(self->context, "instruction: %s", util_instr_str[op]);
1517         return false;
1518     }
1519
1520     in = ir_instr_new(ctx, self, op);
1521     if (!in)
1522         return false;
1523
1524     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1525         !ir_instr_op(in, 1, what, false))
1526     {
1527         ir_instr_delete(in);
1528         return false;
1529     }
1530     vec_push(self->instr, in);
1531     return true;
1532 }
1533
1534 static bool ir_block_create_store(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1535 {
1536     int op = 0;
1537     int vtype;
1538     if (target->vtype == TYPE_VARIANT)
1539         vtype = what->vtype;
1540     else
1541         vtype = target->vtype;
1542
1543 #if 0
1544     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1545         op = INSTR_CONV_ITOF;
1546     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1547         op = INSTR_CONV_FTOI;
1548 #endif
1549         op = type_store_instr[vtype];
1550
1551     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1552         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1553             op = INSTR_STORE_V;
1554     }
1555
1556     return ir_block_create_store_op(self, ctx, op, target, what);
1557 }
1558
1559 bool ir_block_create_storep(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1560 {
1561     int op = 0;
1562     int vtype;
1563
1564     if (target->vtype != TYPE_POINTER)
1565         return false;
1566
1567     /* storing using pointer - target is a pointer, type must be
1568      * inferred from source
1569      */
1570     vtype = what->vtype;
1571
1572     op = type_storep_instr[vtype];
1573     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1574         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1575             op = INSTR_STOREP_V;
1576     }
1577
1578     return ir_block_create_store_op(self, ctx, op, target, what);
1579 }
1580
1581 bool ir_block_create_return(ir_block *self, lex_ctx_t ctx, ir_value *v)
1582 {
1583     ir_instr *in;
1584     if (!ir_check_unreachable(self))
1585         return false;
1586
1587     self->final = true;
1588
1589     /* can eliminate the return instructions for accumulation */
1590     if (self->owner->flags & IR_FLAG_ACCUMULATE)
1591         return true;
1592
1593     self->is_return = true;
1594     in = ir_instr_new(ctx, self, INSTR_RETURN);
1595     if (!in)
1596         return false;
1597
1598     if (v && !ir_instr_op(in, 0, v, false)) {
1599         ir_instr_delete(in);
1600         return false;
1601     }
1602
1603     vec_push(self->instr, in);
1604     return true;
1605 }
1606
1607 bool ir_block_create_if(ir_block *self, lex_ctx_t ctx, ir_value *v,
1608                         ir_block *ontrue, ir_block *onfalse)
1609 {
1610     ir_instr *in;
1611     if (!ir_check_unreachable(self))
1612         return false;
1613     self->final = true;
1614     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1615     in = ir_instr_new(ctx, self, VINSTR_COND);
1616     if (!in)
1617         return false;
1618
1619     if (!ir_instr_op(in, 0, v, false)) {
1620         ir_instr_delete(in);
1621         return false;
1622     }
1623
1624     in->bops[0] = ontrue;
1625     in->bops[1] = onfalse;
1626
1627     vec_push(self->instr, in);
1628
1629     vec_push(self->exits, ontrue);
1630     vec_push(self->exits, onfalse);
1631     vec_push(ontrue->entries,  self);
1632     vec_push(onfalse->entries, self);
1633     return true;
1634 }
1635
1636 bool ir_block_create_jump(ir_block *self, lex_ctx_t ctx, ir_block *to)
1637 {
1638     ir_instr *in;
1639     if (!ir_check_unreachable(self))
1640         return false;
1641     self->final = true;
1642     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1643     if (!in)
1644         return false;
1645
1646     in->bops[0] = to;
1647     vec_push(self->instr, in);
1648
1649     vec_push(self->exits, to);
1650     vec_push(to->entries, self);
1651     return true;
1652 }
1653
1654 bool ir_block_create_goto(ir_block *self, lex_ctx_t ctx, ir_block *to)
1655 {
1656     self->owner->flags |= IR_FLAG_HAS_GOTO;
1657     return ir_block_create_jump(self, ctx, to);
1658 }
1659
1660 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx_t ctx, const char *label, int ot)
1661 {
1662     ir_value *out;
1663     ir_instr *in;
1664     if (!ir_check_unreachable(self))
1665         return NULL;
1666     in = ir_instr_new(ctx, self, VINSTR_PHI);
1667     if (!in)
1668         return NULL;
1669     out = ir_value_out(self->owner, label, store_value, ot);
1670     if (!out) {
1671         ir_instr_delete(in);
1672         return NULL;
1673     }
1674     if (!ir_instr_op(in, 0, out, true)) {
1675         ir_instr_delete(in);
1676         ir_value_delete(out);
1677         return NULL;
1678     }
1679     vec_push(self->instr, in);
1680     return in;
1681 }
1682
1683 ir_value* ir_phi_value(ir_instr *self)
1684 {
1685     return self->_ops[0];
1686 }
1687
1688 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1689 {
1690     ir_phi_entry_t pe;
1691
1692     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1693         /* Must not be possible to cause this, otherwise the AST
1694          * is doing something wrong.
1695          */
1696         irerror(self->context, "Invalid entry block for PHI");
1697         exit(EXIT_FAILURE);
1698     }
1699
1700     pe.value = v;
1701     pe.from = b;
1702     vec_push(v->reads, self);
1703     vec_push(self->phi, pe);
1704 }
1705
1706 /* call related code */
1707 ir_instr* ir_block_create_call(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *func, bool noreturn)
1708 {
1709     ir_value *out;
1710     ir_instr *in;
1711     if (!ir_check_unreachable(self))
1712         return NULL;
1713     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1714     if (!in)
1715         return NULL;
1716     if (noreturn) {
1717         self->final = true;
1718         self->is_return = true;
1719     }
1720     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1721     if (!out) {
1722         ir_instr_delete(in);
1723         return NULL;
1724     }
1725     if (!ir_instr_op(in, 0, out, true) ||
1726         !ir_instr_op(in, 1, func, false))
1727     {
1728         ir_instr_delete(in);
1729         ir_value_delete(out);
1730         return NULL;
1731     }
1732     vec_push(self->instr, in);
1733     /*
1734     if (noreturn) {
1735         if (!ir_block_create_return(self, ctx, NULL)) {
1736             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1737             ir_instr_delete(in);
1738             return NULL;
1739         }
1740     }
1741     */
1742     return in;
1743 }
1744
1745 ir_value* ir_call_value(ir_instr *self)
1746 {
1747     return self->_ops[0];
1748 }
1749
1750 void ir_call_param(ir_instr* self, ir_value *v)
1751 {
1752     vec_push(self->params, v);
1753     vec_push(v->reads, self);
1754 }
1755
1756 /* binary op related code */
1757
1758 ir_value* ir_block_create_binop(ir_block *self, lex_ctx_t ctx,
1759                                 const char *label, int opcode,
1760                                 ir_value *left, ir_value *right)
1761 {
1762     int ot = TYPE_VOID;
1763     switch (opcode) {
1764         case INSTR_ADD_F:
1765         case INSTR_SUB_F:
1766         case INSTR_DIV_F:
1767         case INSTR_MUL_F:
1768         case INSTR_MUL_V:
1769         case INSTR_AND:
1770         case INSTR_OR:
1771 #if 0
1772         case INSTR_AND_I:
1773         case INSTR_AND_IF:
1774         case INSTR_AND_FI:
1775         case INSTR_OR_I:
1776         case INSTR_OR_IF:
1777         case INSTR_OR_FI:
1778 #endif
1779         case INSTR_BITAND:
1780         case INSTR_BITOR:
1781         case VINSTR_BITXOR:
1782 #if 0
1783         case INSTR_SUB_S: /* -- offset of string as float */
1784         case INSTR_MUL_IF:
1785         case INSTR_MUL_FI:
1786         case INSTR_DIV_IF:
1787         case INSTR_DIV_FI:
1788         case INSTR_BITOR_IF:
1789         case INSTR_BITOR_FI:
1790         case INSTR_BITAND_FI:
1791         case INSTR_BITAND_IF:
1792         case INSTR_EQ_I:
1793         case INSTR_NE_I:
1794 #endif
1795             ot = TYPE_FLOAT;
1796             break;
1797 #if 0
1798         case INSTR_ADD_I:
1799         case INSTR_ADD_IF:
1800         case INSTR_ADD_FI:
1801         case INSTR_SUB_I:
1802         case INSTR_SUB_FI:
1803         case INSTR_SUB_IF:
1804         case INSTR_MUL_I:
1805         case INSTR_DIV_I:
1806         case INSTR_BITAND_I:
1807         case INSTR_BITOR_I:
1808         case INSTR_XOR_I:
1809         case INSTR_RSHIFT_I:
1810         case INSTR_LSHIFT_I:
1811             ot = TYPE_INTEGER;
1812             break;
1813 #endif
1814         case INSTR_ADD_V:
1815         case INSTR_SUB_V:
1816         case INSTR_MUL_VF:
1817         case INSTR_MUL_FV:
1818         case VINSTR_BITAND_V:
1819         case VINSTR_BITOR_V:
1820         case VINSTR_BITXOR_V:
1821         case VINSTR_BITAND_VF:
1822         case VINSTR_BITOR_VF:
1823         case VINSTR_BITXOR_VF:
1824         case VINSTR_CROSS:
1825 #if 0
1826         case INSTR_DIV_VF:
1827         case INSTR_MUL_IV:
1828         case INSTR_MUL_VI:
1829 #endif
1830             ot = TYPE_VECTOR;
1831             break;
1832 #if 0
1833         case INSTR_ADD_SF:
1834             ot = TYPE_POINTER;
1835             break;
1836 #endif
1837     /*
1838      * after the following default case, the value of opcode can never
1839      * be 1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65
1840      */
1841         default:
1842             /* ranges: */
1843             /* boolean operations result in floats */
1844
1845             /*
1846              * opcode >= 10 takes true branch opcode is at least 10
1847              * opcode <= 23 takes false branch opcode is at least 24
1848              */
1849             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1850                 ot = TYPE_FLOAT;
1851
1852             /*
1853              * At condition "opcode <= 23", the value of "opcode" must be
1854              * at least 24.
1855              * At condition "opcode <= 23", the value of "opcode" cannot be
1856              * equal to any of {1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65}.
1857              * The condition "opcode <= 23" cannot be true.
1858              *
1859              * Thus ot=2 (TYPE_FLOAT) can never be true
1860              */
1861 #if 0
1862             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1863                 ot = TYPE_FLOAT;
1864             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1865                 ot = TYPE_FLOAT;
1866 #endif
1867             break;
1868     };
1869     if (ot == TYPE_VOID) {
1870         /* The AST or parser were supposed to check this! */
1871         return NULL;
1872     }
1873
1874     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1875 }
1876
1877 ir_value* ir_block_create_unary(ir_block *self, lex_ctx_t ctx,
1878                                 const char *label, int opcode,
1879                                 ir_value *operand)
1880 {
1881     int ot = TYPE_FLOAT;
1882     switch (opcode) {
1883         case INSTR_NOT_F:
1884         case INSTR_NOT_V:
1885         case INSTR_NOT_S:
1886         case INSTR_NOT_ENT:
1887         case INSTR_NOT_FNC: /*
1888         case INSTR_NOT_I:   */
1889             ot = TYPE_FLOAT;
1890             break;
1891
1892         /*
1893          * Negation for virtual instructions is emulated with 0-value. Thankfully
1894          * the operand for 0 already exists so we just source it from here.
1895          */
1896         case VINSTR_NEG_F:
1897             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_F, NULL, operand, ot);
1898         case VINSTR_NEG_V:
1899             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_V, NULL, operand, ot);
1900
1901         default:
1902             ot = operand->vtype;
1903             break;
1904     };
1905     if (ot == TYPE_VOID) {
1906         /* The AST or parser were supposed to check this! */
1907         return NULL;
1908     }
1909
1910     /* let's use the general instruction creator and pass NULL for OPB */
1911     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1912 }
1913
1914 static ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx_t ctx, const char *label,
1915                                         int op, ir_value *a, ir_value *b, int outype)
1916 {
1917     ir_instr *instr;
1918     ir_value *out;
1919
1920     out = ir_value_out(self->owner, label, store_value, outype);
1921     if (!out)
1922         return NULL;
1923
1924     instr = ir_instr_new(ctx, self, op);
1925     if (!instr) {
1926         ir_value_delete(out);
1927         return NULL;
1928     }
1929
1930     if (!ir_instr_op(instr, 0, out, true) ||
1931         !ir_instr_op(instr, 1, a, false) ||
1932         !ir_instr_op(instr, 2, b, false) )
1933     {
1934         goto on_error;
1935     }
1936
1937     vec_push(self->instr, instr);
1938
1939     return out;
1940 on_error:
1941     ir_instr_delete(instr);
1942     ir_value_delete(out);
1943     return NULL;
1944 }
1945
1946 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field)
1947 {
1948     ir_value *v;
1949
1950     /* Support for various pointer types todo if so desired */
1951     if (ent->vtype != TYPE_ENTITY)
1952         return NULL;
1953
1954     if (field->vtype != TYPE_FIELD)
1955         return NULL;
1956
1957     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1958     v->fieldtype = field->fieldtype;
1959     return v;
1960 }
1961
1962 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1963 {
1964     int op;
1965     if (ent->vtype != TYPE_ENTITY)
1966         return NULL;
1967
1968     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1969     if (field->vtype != TYPE_FIELD)
1970         return NULL;
1971
1972     switch (outype)
1973     {
1974         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1975         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1976         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1977         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1978         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1979         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1980 #if 0
1981         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1982         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1983 #endif
1984         default:
1985             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1986             return NULL;
1987     }
1988
1989     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1990 }
1991
1992 /* PHI resolving breaks the SSA, and must thus be the last
1993  * step before life-range calculation.
1994  */
1995
1996 static bool ir_block_naive_phi(ir_block *self);
1997 bool ir_function_naive_phi(ir_function *self)
1998 {
1999     size_t i;
2000
2001     for (i = 0; i < vec_size(self->blocks); ++i)
2002     {
2003         if (!ir_block_naive_phi(self->blocks[i]))
2004             return false;
2005     }
2006     return true;
2007 }
2008
2009 static bool ir_block_naive_phi(ir_block *self)
2010 {
2011     size_t i, p; /*, w;*/
2012     /* FIXME: optionally, create_phi can add the phis
2013      * to a list so we don't need to loop through blocks
2014      * - anyway: "don't optimize YET"
2015      */
2016     for (i = 0; i < vec_size(self->instr); ++i)
2017     {
2018         ir_instr *instr = self->instr[i];
2019         if (instr->opcode != VINSTR_PHI)
2020             continue;
2021
2022         vec_remove(self->instr, i, 1);
2023         --i; /* NOTE: i+1 below */
2024
2025         for (p = 0; p < vec_size(instr->phi); ++p)
2026         {
2027             ir_value *v = instr->phi[p].value;
2028             ir_block *b = instr->phi[p].from;
2029
2030             if (v->store == store_value &&
2031                 vec_size(v->reads) == 1 &&
2032                 vec_size(v->writes) == 1)
2033             {
2034                 /* replace the value */
2035                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
2036                     return false;
2037             }
2038             else
2039             {
2040                 /* force a move instruction */
2041                 ir_instr *prevjump = vec_last(b->instr);
2042                 vec_pop(b->instr);
2043                 b->final = false;
2044                 instr->_ops[0]->store = store_global;
2045                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
2046                     return false;
2047                 instr->_ops[0]->store = store_value;
2048                 vec_push(b->instr, prevjump);
2049                 b->final = true;
2050             }
2051         }
2052         ir_instr_delete(instr);
2053     }
2054     return true;
2055 }
2056
2057 /***********************************************************************
2058  *IR Temp allocation code
2059  * Propagating value life ranges by walking through the function backwards
2060  * until no more changes are made.
2061  * In theory this should happen once more than once for every nested loop
2062  * level.
2063  * Though this implementation might run an additional time for if nests.
2064  */
2065
2066 /* Enumerate instructions used by value's life-ranges
2067  */
2068 static void ir_block_enumerate(ir_block *self, size_t *_eid)
2069 {
2070     size_t i;
2071     size_t eid = *_eid;
2072     for (i = 0; i < vec_size(self->instr); ++i)
2073     {
2074         self->instr[i]->eid = eid++;
2075     }
2076     *_eid = eid;
2077 }
2078
2079 /* Enumerate blocks and instructions.
2080  * The block-enumeration is unordered!
2081  * We do not really use the block enumreation, however
2082  * the instruction enumeration is important for life-ranges.
2083  */
2084 void ir_function_enumerate(ir_function *self)
2085 {
2086     size_t i;
2087     size_t instruction_id = 0;
2088     for (i = 0; i < vec_size(self->blocks); ++i)
2089     {
2090         /* each block now gets an additional "entry" instruction id
2091          * we can use to avoid point-life issues
2092          */
2093         self->blocks[i]->entry_id = instruction_id;
2094         ++instruction_id;
2095
2096         self->blocks[i]->eid = i;
2097         ir_block_enumerate(self->blocks[i], &instruction_id);
2098     }
2099 }
2100
2101 /* Local-value allocator
2102  * After finishing creating the liferange of all values used in a function
2103  * we can allocate their global-positions.
2104  * This is the counterpart to register-allocation in register machines.
2105  */
2106 typedef struct {
2107     ir_value **locals;
2108     size_t    *sizes;
2109     size_t    *positions;
2110     bool      *unique;
2111 } function_allocator;
2112
2113 static bool function_allocator_alloc(function_allocator *alloc, ir_value *var)
2114 {
2115     ir_value *slot;
2116     size_t vsize = ir_value_sizeof(var);
2117
2118     var->code.local = vec_size(alloc->locals);
2119
2120     slot = ir_value_var("reg", store_global, var->vtype);
2121     if (!slot)
2122         return false;
2123
2124     if (!ir_value_life_merge_into(slot, var))
2125         goto localerror;
2126
2127     vec_push(alloc->locals, slot);
2128     vec_push(alloc->sizes, vsize);
2129     vec_push(alloc->unique, var->unique_life);
2130
2131     return true;
2132
2133 localerror:
2134     ir_value_delete(slot);
2135     return false;
2136 }
2137
2138 static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v)
2139 {
2140     size_t a;
2141     ir_value *slot;
2142
2143     if (v->unique_life)
2144         return function_allocator_alloc(alloc, v);
2145
2146     for (a = 0; a < vec_size(alloc->locals); ++a)
2147     {
2148         /* if it's reserved for a unique liferange: skip */
2149         if (alloc->unique[a])
2150             continue;
2151
2152         slot = alloc->locals[a];
2153
2154         /* never resize parameters
2155          * will be required later when overlapping temps + locals
2156          */
2157         if (a < vec_size(self->params) &&
2158             alloc->sizes[a] < ir_value_sizeof(v))
2159         {
2160             continue;
2161         }
2162
2163         if (ir_values_overlap(v, slot))
2164             continue;
2165
2166         if (!ir_value_life_merge_into(slot, v))
2167             return false;
2168
2169         /* adjust size for this slot */
2170         if (alloc->sizes[a] < ir_value_sizeof(v))
2171             alloc->sizes[a] = ir_value_sizeof(v);
2172
2173         v->code.local = a;
2174         return true;
2175     }
2176     if (a >= vec_size(alloc->locals)) {
2177         if (!function_allocator_alloc(alloc, v))
2178             return false;
2179     }
2180     return true;
2181 }
2182
2183 bool ir_function_allocate_locals(ir_function *self)
2184 {
2185     size_t i;
2186     bool   retval = true;
2187     size_t pos;
2188     bool   opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS);
2189
2190     ir_value *v;
2191
2192     function_allocator lockalloc, globalloc;
2193
2194     if (!vec_size(self->locals) && !vec_size(self->values))
2195         return true;
2196
2197     globalloc.locals    = NULL;
2198     globalloc.sizes     = NULL;
2199     globalloc.positions = NULL;
2200     globalloc.unique    = NULL;
2201     lockalloc.locals    = NULL;
2202     lockalloc.sizes     = NULL;
2203     lockalloc.positions = NULL;
2204     lockalloc.unique    = NULL;
2205
2206     for (i = 0; i < vec_size(self->locals); ++i)
2207     {
2208         v = self->locals[i];
2209         if ((self->flags & IR_FLAG_MASK_NO_LOCAL_TEMPS) || !OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) {
2210             v->locked      = true;
2211             v->unique_life = true;
2212         }
2213         else if (i >= vec_size(self->params))
2214             break;
2215         else
2216             v->locked = true; /* lock parameters locals */
2217         if (!function_allocator_alloc((v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2218             goto error;
2219     }
2220     for (; i < vec_size(self->locals); ++i)
2221     {
2222         v = self->locals[i];
2223         if (!vec_size(v->life))
2224             continue;
2225         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2226             goto error;
2227     }
2228
2229     /* Allocate a slot for any value that still exists */
2230     for (i = 0; i < vec_size(self->values); ++i)
2231     {
2232         v = self->values[i];
2233
2234         if (!vec_size(v->life))
2235             continue;
2236
2237         /* CALL optimization:
2238          * If the value is a parameter-temp: 1 write, 1 read from a CALL
2239          * and it's not "locked", write it to the OFS_PARM directly.
2240          */
2241         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->locked && !v->unique_life) {
2242             if (vec_size(v->reads) == 1 && vec_size(v->writes) == 1 &&
2243                 (v->reads[0]->opcode == VINSTR_NRCALL ||
2244                  (v->reads[0]->opcode >= INSTR_CALL0 && v->reads[0]->opcode <= INSTR_CALL8)
2245                 )
2246                )
2247             {
2248                 size_t    param;
2249                 ir_instr *call = v->reads[0];
2250                 if (!vec_ir_value_find(call->params, v, &param)) {
2251                     irerror(call->context, "internal error: unlocked parameter %s not found", v->name);
2252                     goto error;
2253                 }
2254                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2255                 v->callparam = true;
2256                 if (param < 8)
2257                     ir_value_code_setaddr(v, OFS_PARM0 + 3*param);
2258                 else {
2259                     size_t nprotos = vec_size(self->owner->extparam_protos);
2260                     ir_value *ep;
2261                     param -= 8;
2262                     if (nprotos > param)
2263                         ep = self->owner->extparam_protos[param];
2264                     else
2265                     {
2266                         ep = ir_gen_extparam_proto(self->owner);
2267                         while (++nprotos <= param)
2268                             ep = ir_gen_extparam_proto(self->owner);
2269                     }
2270                     ir_instr_op(v->writes[0], 0, ep, true);
2271                     call->params[param+8] = ep;
2272                 }
2273                 continue;
2274             }
2275             if (vec_size(v->writes) == 1 && v->writes[0]->opcode == INSTR_CALL0)
2276             {
2277                 v->store = store_return;
2278                 if (v->members[0]) v->members[0]->store = store_return;
2279                 if (v->members[1]) v->members[1]->store = store_return;
2280                 if (v->members[2]) v->members[2]->store = store_return;
2281                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2282                 continue;
2283             }
2284         }
2285
2286         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2287             goto error;
2288     }
2289
2290     if (!lockalloc.sizes && !globalloc.sizes) {
2291         goto cleanup;
2292     }
2293     vec_push(lockalloc.positions, 0);
2294     vec_push(globalloc.positions, 0);
2295
2296     /* Adjust slot positions based on sizes */
2297     if (lockalloc.sizes) {
2298         pos = (vec_size(lockalloc.sizes) ? lockalloc.positions[0] : 0);
2299         for (i = 1; i < vec_size(lockalloc.sizes); ++i)
2300         {
2301             pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1];
2302             vec_push(lockalloc.positions, pos);
2303         }
2304         self->allocated_locals = pos + vec_last(lockalloc.sizes);
2305     }
2306     if (globalloc.sizes) {
2307         pos = (vec_size(globalloc.sizes) ? globalloc.positions[0] : 0);
2308         for (i = 1; i < vec_size(globalloc.sizes); ++i)
2309         {
2310             pos = globalloc.positions[i-1] + globalloc.sizes[i-1];
2311             vec_push(globalloc.positions, pos);
2312         }
2313         self->globaltemps = pos + vec_last(globalloc.sizes);
2314     }
2315
2316     /* Locals need to know their new position */
2317     for (i = 0; i < vec_size(self->locals); ++i) {
2318         v = self->locals[i];
2319         if (v->locked || !opt_gt)
2320             v->code.local = lockalloc.positions[v->code.local];
2321         else
2322             v->code.local = globalloc.positions[v->code.local];
2323     }
2324     /* Take over the actual slot positions on values */
2325     for (i = 0; i < vec_size(self->values); ++i) {
2326         v = self->values[i];
2327         if (v->locked || !opt_gt)
2328             v->code.local = lockalloc.positions[v->code.local];
2329         else
2330             v->code.local = globalloc.positions[v->code.local];
2331     }
2332
2333     goto cleanup;
2334
2335 error:
2336     retval = false;
2337 cleanup:
2338     for (i = 0; i < vec_size(lockalloc.locals); ++i)
2339         ir_value_delete(lockalloc.locals[i]);
2340     for (i = 0; i < vec_size(globalloc.locals); ++i)
2341         ir_value_delete(globalloc.locals[i]);
2342     vec_free(globalloc.unique);
2343     vec_free(globalloc.locals);
2344     vec_free(globalloc.sizes);
2345     vec_free(globalloc.positions);
2346     vec_free(lockalloc.unique);
2347     vec_free(lockalloc.locals);
2348     vec_free(lockalloc.sizes);
2349     vec_free(lockalloc.positions);
2350     return retval;
2351 }
2352
2353 /* Get information about which operand
2354  * is read from, or written to.
2355  */
2356 static void ir_op_read_write(int op, size_t *read, size_t *write)
2357 {
2358     switch (op)
2359     {
2360     case VINSTR_JUMP:
2361     case INSTR_GOTO:
2362         *write = 0;
2363         *read = 0;
2364         break;
2365     case INSTR_IF:
2366     case INSTR_IFNOT:
2367 #if 0
2368     case INSTR_IF_S:
2369     case INSTR_IFNOT_S:
2370 #endif
2371     case INSTR_RETURN:
2372     case VINSTR_COND:
2373         *write = 0;
2374         *read = 1;
2375         break;
2376     case INSTR_STOREP_F:
2377     case INSTR_STOREP_V:
2378     case INSTR_STOREP_S:
2379     case INSTR_STOREP_ENT:
2380     case INSTR_STOREP_FLD:
2381     case INSTR_STOREP_FNC:
2382         *write = 0;
2383         *read  = 7;
2384         break;
2385     default:
2386         *write = 1;
2387         *read = 6;
2388         break;
2389     };
2390 }
2391
2392 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2393 {
2394     size_t       i;
2395     const size_t vs = vec_size(self->living);
2396     bool         changed = false;
2397     for (i = 0; i != vs; ++i)
2398     {
2399         if (ir_value_life_merge(self->living[i], eid))
2400             changed = true;
2401     }
2402     return changed;
2403 }
2404
2405 static bool ir_block_living_lock(ir_block *self)
2406 {
2407     size_t i;
2408     bool changed = false;
2409     for (i = 0; i != vec_size(self->living); ++i)
2410     {
2411         if (!self->living[i]->locked) {
2412             self->living[i]->locked = true;
2413             changed = true;
2414         }
2415     }
2416     return changed;
2417 }
2418
2419 static bool ir_block_life_propagate(ir_block *self, bool *changed)
2420 {
2421     ir_instr *instr;
2422     ir_value *value;
2423     size_t i, o, p, mem, cnt;
2424     /* bitmasks which operands are read from or written to */
2425     size_t read, write;
2426     char dbg_ind[16];
2427     dbg_ind[0] = '#';
2428     dbg_ind[1] = '0';
2429     (void)dbg_ind;
2430
2431     vec_free(self->living);
2432
2433     p = vec_size(self->exits);
2434     for (i = 0; i < p; ++i) {
2435         ir_block *prev = self->exits[i];
2436         cnt = vec_size(prev->living);
2437         for (o = 0; o < cnt; ++o) {
2438             if (!vec_ir_value_find(self->living, prev->living[o], NULL))
2439                 vec_push(self->living, prev->living[o]);
2440         }
2441     }
2442
2443     i = vec_size(self->instr);
2444     while (i)
2445     { --i;
2446         instr = self->instr[i];
2447
2448         /* See which operands are read and write operands */
2449         ir_op_read_write(instr->opcode, &read, &write);
2450
2451         /* Go through the 3 main operands
2452          * writes first, then reads
2453          */
2454         for (o = 0; o < 3; ++o)
2455         {
2456             if (!instr->_ops[o]) /* no such operand */
2457                 continue;
2458
2459             value = instr->_ops[o];
2460
2461             /* We only care about locals */
2462             /* we also calculate parameter liferanges so that locals
2463              * can take up parameter slots */
2464             if (value->store != store_value &&
2465                 value->store != store_local &&
2466                 value->store != store_param)
2467                 continue;
2468
2469             /* write operands */
2470             /* When we write to a local, we consider it "dead" for the
2471              * remaining upper part of the function, since in SSA a value
2472              * can only be written once (== created)
2473              */
2474             if (write & (1<<o))
2475             {
2476                 size_t idx;
2477                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2478                 if (!in_living)
2479                 {
2480                     /* If the value isn't alive it hasn't been read before... */
2481                     /* TODO: See if the warning can be emitted during parsing or AST processing
2482                      * otherwise have warning printed here.
2483                      * IF printing a warning here: include filecontext_t,
2484                      * and make sure it's only printed once
2485                      * since this function is run multiple times.
2486                      */
2487                     /* con_err( "Value only written %s\n", value->name); */
2488                     if (ir_value_life_merge(value, instr->eid))
2489                         *changed = true;
2490                 } else {
2491                     /* since 'living' won't contain it
2492                      * anymore, merge the value, since
2493                      * (A) doesn't.
2494                      */
2495                     if (ir_value_life_merge(value, instr->eid))
2496                         *changed = true;
2497                     /* Then remove */
2498                     vec_remove(self->living, idx, 1);
2499                 }
2500                 /* Removing a vector removes all members */
2501                 for (mem = 0; mem < 3; ++mem) {
2502                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2503                         if (ir_value_life_merge(value->members[mem], instr->eid))
2504                             *changed = true;
2505                         vec_remove(self->living, idx, 1);
2506                     }
2507                 }
2508                 /* Removing the last member removes the vector */
2509                 if (value->memberof) {
2510                     value = value->memberof;
2511                     for (mem = 0; mem < 3; ++mem) {
2512                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2513                             break;
2514                     }
2515                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2516                         if (ir_value_life_merge(value, instr->eid))
2517                             *changed = true;
2518                         vec_remove(self->living, idx, 1);
2519                     }
2520                 }
2521             }
2522         }
2523
2524         /* These operations need a special case as they can break when using
2525          * same source and destination operand otherwise, as the engine may
2526          * read the source multiple times. */
2527         if (instr->opcode == INSTR_MUL_VF ||
2528             instr->opcode == VINSTR_BITAND_VF ||
2529             instr->opcode == VINSTR_BITOR_VF ||
2530             instr->opcode == VINSTR_BITXOR ||
2531             instr->opcode == VINSTR_BITXOR_VF ||
2532             instr->opcode == VINSTR_BITXOR_V ||
2533             instr->opcode == VINSTR_CROSS)
2534         {
2535             value = instr->_ops[2];
2536             /* the float source will get an additional lifetime */
2537             if (ir_value_life_merge(value, instr->eid+1))
2538                 *changed = true;
2539             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2540                 *changed = true;
2541         }
2542
2543         if (instr->opcode == INSTR_MUL_FV ||
2544             instr->opcode == INSTR_LOAD_V ||
2545             instr->opcode == VINSTR_BITXOR ||
2546             instr->opcode == VINSTR_BITXOR_VF ||
2547             instr->opcode == VINSTR_BITXOR_V ||
2548             instr->opcode == VINSTR_CROSS)
2549         {
2550             value = instr->_ops[1];
2551             /* the float source will get an additional lifetime */
2552             if (ir_value_life_merge(value, instr->eid+1))
2553                 *changed = true;
2554             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2555                 *changed = true;
2556         }
2557
2558         for (o = 0; o < 3; ++o)
2559         {
2560             if (!instr->_ops[o]) /* no such operand */
2561                 continue;
2562
2563             value = instr->_ops[o];
2564
2565             /* We only care about locals */
2566             /* we also calculate parameter liferanges so that locals
2567              * can take up parameter slots */
2568             if (value->store != store_value &&
2569                 value->store != store_local &&
2570                 value->store != store_param)
2571                 continue;
2572
2573             /* read operands */
2574             if (read & (1<<o))
2575             {
2576                 if (!vec_ir_value_find(self->living, value, NULL))
2577                     vec_push(self->living, value);
2578                 /* reading adds the full vector */
2579                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2580                     vec_push(self->living, value->memberof);
2581                 for (mem = 0; mem < 3; ++mem) {
2582                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2583                         vec_push(self->living, value->members[mem]);
2584                 }
2585             }
2586         }
2587         /* PHI operands are always read operands */
2588         for (p = 0; p < vec_size(instr->phi); ++p)
2589         {
2590             value = instr->phi[p].value;
2591             if (!vec_ir_value_find(self->living, value, NULL))
2592                 vec_push(self->living, value);
2593             /* reading adds the full vector */
2594             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2595                 vec_push(self->living, value->memberof);
2596             for (mem = 0; mem < 3; ++mem) {
2597                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2598                     vec_push(self->living, value->members[mem]);
2599             }
2600         }
2601
2602         /* on a call, all these values must be "locked" */
2603         if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
2604             if (ir_block_living_lock(self))
2605                 *changed = true;
2606         }
2607         /* call params are read operands too */
2608         for (p = 0; p < vec_size(instr->params); ++p)
2609         {
2610             value = instr->params[p];
2611             if (!vec_ir_value_find(self->living, value, NULL))
2612                 vec_push(self->living, value);
2613             /* reading adds the full vector */
2614             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2615                 vec_push(self->living, value->memberof);
2616             for (mem = 0; mem < 3; ++mem) {
2617                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2618                     vec_push(self->living, value->members[mem]);
2619             }
2620         }
2621
2622         /* (A) */
2623         if (ir_block_living_add_instr(self, instr->eid))
2624             *changed = true;
2625     }
2626     /* the "entry" instruction ID */
2627     if (ir_block_living_add_instr(self, self->entry_id))
2628         *changed = true;
2629
2630     return true;
2631 }
2632
2633 bool ir_function_calculate_liferanges(ir_function *self)
2634 {
2635     size_t i, s;
2636     bool changed;
2637
2638     /* parameters live at 0 */
2639     for (i = 0; i < vec_size(self->params); ++i)
2640         if (!ir_value_life_merge(self->locals[i], 0))
2641             compile_error(self->context, "internal error: failed value-life merging");
2642
2643     do {
2644         self->run_id++;
2645         changed = false;
2646         i = vec_size(self->blocks);
2647         while (i--) {
2648             ir_block_life_propagate(self->blocks[i], &changed);
2649         }
2650     } while (changed);
2651
2652     if (vec_size(self->blocks)) {
2653         ir_block *block = self->blocks[0];
2654         for (i = 0; i < vec_size(block->living); ++i) {
2655             ir_value *v = block->living[i];
2656             if (v->store != store_local)
2657                 continue;
2658             if (v->vtype == TYPE_VECTOR)
2659                 continue;
2660             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2661             /* find the instruction reading from it */
2662             for (s = 0; s < vec_size(v->reads); ++s) {
2663                 if (v->reads[s]->eid == v->life[0].end)
2664                     break;
2665             }
2666             if (s < vec_size(v->reads)) {
2667                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2668                               "variable `%s` may be used uninitialized in this function\n"
2669                               " -> %s:%i",
2670                               v->name,
2671                               v->reads[s]->context.file, v->reads[s]->context.line)
2672                    )
2673                 {
2674                     return false;
2675                 }
2676                 continue;
2677             }
2678             if (v->memberof) {
2679                 ir_value *vec = v->memberof;
2680                 for (s = 0; s < vec_size(vec->reads); ++s) {
2681                     if (vec->reads[s]->eid == v->life[0].end)
2682                         break;
2683                 }
2684                 if (s < vec_size(vec->reads)) {
2685                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2686                                   "variable `%s` may be used uninitialized in this function\n"
2687                                   " -> %s:%i",
2688                                   v->name,
2689                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2690                        )
2691                     {
2692                         return false;
2693                     }
2694                     continue;
2695                 }
2696             }
2697             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2698                           "variable `%s` may be used uninitialized in this function", v->name))
2699             {
2700                 return false;
2701             }
2702         }
2703     }
2704     return true;
2705 }
2706
2707 /***********************************************************************
2708  *IR Code-Generation
2709  *
2710  * Since the IR has the convention of putting 'write' operands
2711  * at the beginning, we have to rotate the operands of instructions
2712  * properly in order to generate valid QCVM code.
2713  *
2714  * Having destinations at a fixed position is more convenient. In QC
2715  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2716  * read from from OPA,  and store to OPB rather than OPC.   Which is
2717  * partially the reason why the implementation of these instructions
2718  * in darkplaces has been delayed for so long.
2719  *
2720  * Breaking conventions is annoying...
2721  */
2722 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal);
2723
2724 static bool gen_global_field(code_t *code, ir_value *global)
2725 {
2726     if (global->hasvalue)
2727     {
2728         ir_value *fld = global->constval.vpointer;
2729         if (!fld) {
2730             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2731             return false;
2732         }
2733
2734         /* copy the field's value */
2735         ir_value_code_setaddr(global, vec_size(code->globals));
2736         vec_push(code->globals, fld->code.fieldaddr);
2737         if (global->fieldtype == TYPE_VECTOR) {
2738             vec_push(code->globals, fld->code.fieldaddr+1);
2739             vec_push(code->globals, fld->code.fieldaddr+2);
2740         }
2741     }
2742     else
2743     {
2744         ir_value_code_setaddr(global, vec_size(code->globals));
2745         vec_push(code->globals, 0);
2746         if (global->fieldtype == TYPE_VECTOR) {
2747             vec_push(code->globals, 0);
2748             vec_push(code->globals, 0);
2749         }
2750     }
2751     if (global->code.globaladdr < 0)
2752         return false;
2753     return true;
2754 }
2755
2756 static bool gen_global_pointer(code_t *code, ir_value *global)
2757 {
2758     if (global->hasvalue)
2759     {
2760         ir_value *target = global->constval.vpointer;
2761         if (!target) {
2762             irerror(global->context, "Invalid pointer constant: %s", global->name);
2763             /* NULL pointers are pointing to the NULL constant, which also
2764              * sits at address 0, but still has an ir_value for itself.
2765              */
2766             return false;
2767         }
2768
2769         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2770          * void() foo; <- proto
2771          * void() *fooptr = &foo;
2772          * void() foo = { code }
2773          */
2774         if (!target->code.globaladdr) {
2775             /* FIXME: Check for the constant nullptr ir_value!
2776              * because then code.globaladdr being 0 is valid.
2777              */
2778             irerror(global->context, "FIXME: Relocation support");
2779             return false;
2780         }
2781
2782         ir_value_code_setaddr(global, vec_size(code->globals));
2783         vec_push(code->globals, target->code.globaladdr);
2784     }
2785     else
2786     {
2787         ir_value_code_setaddr(global, vec_size(code->globals));
2788         vec_push(code->globals, 0);
2789     }
2790     if (global->code.globaladdr < 0)
2791         return false;
2792     return true;
2793 }
2794
2795 static bool gen_blocks_recursive(code_t *code, ir_function *func, ir_block *block)
2796 {
2797     prog_section_statement_t stmt;
2798     ir_instr *instr;
2799     ir_block *target;
2800     ir_block *ontrue;
2801     ir_block *onfalse;
2802     size_t    stidx;
2803     size_t    i;
2804     int       j;
2805
2806     block->generated = true;
2807     block->code_start = vec_size(code->statements);
2808     for (i = 0; i < vec_size(block->instr); ++i)
2809     {
2810         instr = block->instr[i];
2811
2812         if (instr->opcode == VINSTR_PHI) {
2813             irerror(block->context, "cannot generate virtual instruction (phi)");
2814             return false;
2815         }
2816
2817         if (instr->opcode == VINSTR_JUMP) {
2818             target = instr->bops[0];
2819             /* for uncoditional jumps, if the target hasn't been generated
2820              * yet, we generate them right here.
2821              */
2822             if (!target->generated)
2823                 return gen_blocks_recursive(code, func, target);
2824
2825             /* otherwise we generate a jump instruction */
2826             stmt.opcode = INSTR_GOTO;
2827             stmt.o1.s1 = (target->code_start) - vec_size(code->statements);
2828             stmt.o2.s1 = 0;
2829             stmt.o3.s1 = 0;
2830             if (stmt.o1.s1 != 1)
2831                 code_push_statement(code, &stmt, instr->context);
2832
2833             /* no further instructions can be in this block */
2834             return true;
2835         }
2836
2837         if (instr->opcode == VINSTR_BITXOR) {
2838             stmt.opcode = INSTR_BITOR;
2839             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2840             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2841             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2842             code_push_statement(code, &stmt, instr->context);
2843             stmt.opcode = INSTR_BITAND;
2844             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2845             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2846             stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2847             code_push_statement(code, &stmt, instr->context);
2848             stmt.opcode = INSTR_SUB_F;
2849             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2850             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2851             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2852             code_push_statement(code, &stmt, instr->context);
2853
2854             /* instruction generated */
2855             continue;
2856         }
2857
2858         if (instr->opcode == VINSTR_BITAND_V) {
2859             stmt.opcode = INSTR_BITAND;
2860             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2861             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2862             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2863             code_push_statement(code, &stmt, instr->context);
2864             ++stmt.o1.s1;
2865             ++stmt.o2.s1;
2866             ++stmt.o3.s1;
2867             code_push_statement(code, &stmt, instr->context);
2868             ++stmt.o1.s1;
2869             ++stmt.o2.s1;
2870             ++stmt.o3.s1;
2871             code_push_statement(code, &stmt, instr->context);
2872
2873             /* instruction generated */
2874             continue;
2875         }
2876
2877         if (instr->opcode == VINSTR_BITOR_V) {
2878             stmt.opcode = INSTR_BITOR;
2879             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2880             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2881             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2882             code_push_statement(code, &stmt, instr->context);
2883             ++stmt.o1.s1;
2884             ++stmt.o2.s1;
2885             ++stmt.o3.s1;
2886             code_push_statement(code, &stmt, instr->context);
2887             ++stmt.o1.s1;
2888             ++stmt.o2.s1;
2889             ++stmt.o3.s1;
2890             code_push_statement(code, &stmt, instr->context);
2891
2892             /* instruction generated */
2893             continue;
2894         }
2895
2896         if (instr->opcode == VINSTR_BITXOR_V) {
2897             for (j = 0; j < 3; ++j) {
2898                 stmt.opcode = INSTR_BITOR;
2899                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2900                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + j;
2901                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2902                 code_push_statement(code, &stmt, instr->context);
2903                 stmt.opcode = INSTR_BITAND;
2904                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2905                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + j;
2906                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2907                 code_push_statement(code, &stmt, instr->context);
2908             }
2909             stmt.opcode = INSTR_SUB_V;
2910             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2911             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2912             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2913             code_push_statement(code, &stmt, instr->context);
2914
2915             /* instruction generated */
2916             continue;
2917         }
2918
2919         if (instr->opcode == VINSTR_BITAND_VF) {
2920             stmt.opcode = INSTR_BITAND;
2921             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2922             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2923             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2924             code_push_statement(code, &stmt, instr->context);
2925             ++stmt.o1.s1;
2926             ++stmt.o3.s1;
2927             code_push_statement(code, &stmt, instr->context);
2928             ++stmt.o1.s1;
2929             ++stmt.o3.s1;
2930             code_push_statement(code, &stmt, instr->context);
2931
2932             /* instruction generated */
2933             continue;
2934         }
2935
2936         if (instr->opcode == VINSTR_BITOR_VF) {
2937             stmt.opcode = INSTR_BITOR;
2938             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2939             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2940             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2941             code_push_statement(code, &stmt, instr->context);
2942             ++stmt.o1.s1;
2943             ++stmt.o3.s1;
2944             code_push_statement(code, &stmt, instr->context);
2945             ++stmt.o1.s1;
2946             ++stmt.o3.s1;
2947             code_push_statement(code, &stmt, instr->context);
2948
2949             /* instruction generated */
2950             continue;
2951         }
2952
2953         if (instr->opcode == VINSTR_BITXOR_VF) {
2954             for (j = 0; j < 3; ++j) {
2955                 stmt.opcode = INSTR_BITOR;
2956                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2957                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2958                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2959                 code_push_statement(code, &stmt, instr->context);
2960                 stmt.opcode = INSTR_BITAND;
2961                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2962                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2963                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2964                 code_push_statement(code, &stmt, instr->context);
2965             }
2966             stmt.opcode = INSTR_SUB_V;
2967             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2968             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2969             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2970             code_push_statement(code, &stmt, instr->context);
2971
2972             /* instruction generated */
2973             continue;
2974         }
2975
2976         if (instr->opcode == VINSTR_CROSS) {
2977             stmt.opcode = INSTR_MUL_F;
2978             for (j = 0; j < 3; ++j) {
2979                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + (j + 1) % 3;
2980                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + (j + 2) % 3;
2981                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2982                 code_push_statement(code, &stmt, instr->context);
2983                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + (j + 2) % 3;
2984                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + (j + 1) % 3;
2985                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2986                 code_push_statement(code, &stmt, instr->context);
2987             }
2988             stmt.opcode = INSTR_SUB_V;
2989             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2990             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2991             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2992             code_push_statement(code, &stmt, instr->context);
2993
2994             /* instruction generated */
2995             continue;
2996         }
2997
2998         if (instr->opcode == VINSTR_COND) {
2999             ontrue  = instr->bops[0];
3000             onfalse = instr->bops[1];
3001             /* TODO: have the AST signal which block should
3002              * come first: eg. optimize IFs without ELSE...
3003              */
3004
3005             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
3006             stmt.o2.u1 = 0;
3007             stmt.o3.s1 = 0;
3008
3009             if (ontrue->generated) {
3010                 stmt.opcode = INSTR_IF;
3011                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code->statements);
3012                 if (stmt.o2.s1 != 1)
3013                     code_push_statement(code, &stmt, instr->context);
3014             }
3015             if (onfalse->generated) {
3016                 stmt.opcode = INSTR_IFNOT;
3017                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code->statements);
3018                 if (stmt.o2.s1 != 1)
3019                     code_push_statement(code, &stmt, instr->context);
3020             }
3021             if (!ontrue->generated) {
3022                 if (onfalse->generated)
3023                     return gen_blocks_recursive(code, func, ontrue);
3024             }
3025             if (!onfalse->generated) {
3026                 if (ontrue->generated)
3027                     return gen_blocks_recursive(code, func, onfalse);
3028             }
3029             /* neither ontrue nor onfalse exist */
3030             stmt.opcode = INSTR_IFNOT;
3031             if (!instr->likely) {
3032                 /* Honor the likelyhood hint */
3033                 ir_block *tmp = onfalse;
3034                 stmt.opcode = INSTR_IF;
3035                 onfalse = ontrue;
3036                 ontrue = tmp;
3037             }
3038             stidx = vec_size(code->statements);
3039             code_push_statement(code, &stmt, instr->context);
3040             /* on false we jump, so add ontrue-path */
3041             if (!gen_blocks_recursive(code, func, ontrue))
3042                 return false;
3043             /* fixup the jump address */
3044             code->statements[stidx].o2.s1 = vec_size(code->statements) - stidx;
3045             /* generate onfalse path */
3046             if (onfalse->generated) {
3047                 /* fixup the jump address */
3048                 code->statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
3049                 if (stidx+2 == vec_size(code->statements) && code->statements[stidx].o2.s1 == 1) {
3050                     code->statements[stidx] = code->statements[stidx+1];
3051                     if (code->statements[stidx].o1.s1 < 0)
3052                         code->statements[stidx].o1.s1++;
3053                     code_pop_statement(code);
3054                 }
3055                 stmt.opcode = vec_last(code->statements).opcode;
3056                 if (stmt.opcode == INSTR_GOTO ||
3057                     stmt.opcode == INSTR_IF ||
3058                     stmt.opcode == INSTR_IFNOT ||
3059                     stmt.opcode == INSTR_RETURN ||
3060                     stmt.opcode == INSTR_DONE)
3061                 {
3062                     /* no use jumping from here */
3063                     return true;
3064                 }
3065                 /* may have been generated in the previous recursive call */
3066                 stmt.opcode = INSTR_GOTO;
3067                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code->statements);
3068                 stmt.o2.s1 = 0;
3069                 stmt.o3.s1 = 0;
3070                 if (stmt.o1.s1 != 1)
3071                     code_push_statement(code, &stmt, instr->context);
3072                 return true;
3073             }
3074             else if (stidx+2 == vec_size(code->statements) && code->statements[stidx].o2.s1 == 1) {
3075                 code->statements[stidx] = code->statements[stidx+1];
3076                 if (code->statements[stidx].o1.s1 < 0)
3077                     code->statements[stidx].o1.s1++;
3078                 code_pop_statement(code);
3079             }
3080             /* if not, generate now */
3081             return gen_blocks_recursive(code, func, onfalse);
3082         }
3083
3084         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
3085            || instr->opcode == VINSTR_NRCALL)
3086         {
3087             size_t p, first;
3088             ir_value *retvalue;
3089
3090             first = vec_size(instr->params);
3091             if (first > 8)
3092                 first = 8;
3093             for (p = 0; p < first; ++p)
3094             {
3095                 ir_value *param = instr->params[p];
3096                 if (param->callparam)
3097                     continue;
3098
3099                 stmt.opcode = INSTR_STORE_F;
3100                 stmt.o3.u1 = 0;
3101
3102                 if (param->vtype == TYPE_FIELD)
3103                     stmt.opcode = field_store_instr[param->fieldtype];
3104                 else if (param->vtype == TYPE_NIL)
3105                     stmt.opcode = INSTR_STORE_V;
3106                 else
3107                     stmt.opcode = type_store_instr[param->vtype];
3108                 stmt.o1.u1 = ir_value_code_addr(param);
3109                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
3110                 code_push_statement(code, &stmt, instr->context);
3111             }
3112             /* Now handle extparams */
3113             first = vec_size(instr->params);
3114             for (; p < first; ++p)
3115             {
3116                 ir_builder *ir = func->owner;
3117                 ir_value *param = instr->params[p];
3118                 ir_value *targetparam;
3119
3120                 if (param->callparam)
3121                     continue;
3122
3123                 if (p-8 >= vec_size(ir->extparams))
3124                     ir_gen_extparam(ir);
3125
3126                 targetparam = ir->extparams[p-8];
3127
3128                 stmt.opcode = INSTR_STORE_F;
3129                 stmt.o3.u1 = 0;
3130
3131                 if (param->vtype == TYPE_FIELD)
3132                     stmt.opcode = field_store_instr[param->fieldtype];
3133                 else if (param->vtype == TYPE_NIL)
3134                     stmt.opcode = INSTR_STORE_V;
3135                 else
3136                     stmt.opcode = type_store_instr[param->vtype];
3137                 stmt.o1.u1 = ir_value_code_addr(param);
3138                 stmt.o2.u1 = ir_value_code_addr(targetparam);
3139                 code_push_statement(code, &stmt, instr->context);
3140             }
3141
3142             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
3143             if (stmt.opcode > INSTR_CALL8)
3144                 stmt.opcode = INSTR_CALL8;
3145             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
3146             stmt.o2.u1 = 0;
3147             stmt.o3.u1 = 0;
3148             code_push_statement(code, &stmt, instr->context);
3149
3150             retvalue = instr->_ops[0];
3151             if (retvalue && retvalue->store != store_return &&
3152                 (retvalue->store == store_global || vec_size(retvalue->life)))
3153             {
3154                 /* not to be kept in OFS_RETURN */
3155                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
3156                     stmt.opcode = field_store_instr[retvalue->fieldtype];
3157                 else
3158                     stmt.opcode = type_store_instr[retvalue->vtype];
3159                 stmt.o1.u1 = OFS_RETURN;
3160                 stmt.o2.u1 = ir_value_code_addr(retvalue);
3161                 stmt.o3.u1 = 0;
3162                 code_push_statement(code, &stmt, instr->context);
3163             }
3164             continue;
3165         }
3166
3167         if (instr->opcode == INSTR_STATE) {
3168             irerror(block->context, "TODO: state instruction");
3169             return false;
3170         }
3171
3172         stmt.opcode = instr->opcode;
3173         stmt.o1.u1 = 0;
3174         stmt.o2.u1 = 0;
3175         stmt.o3.u1 = 0;
3176
3177         /* This is the general order of operands */
3178         if (instr->_ops[0])
3179             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
3180
3181         if (instr->_ops[1])
3182             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
3183
3184         if (instr->_ops[2])
3185             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
3186
3187         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
3188         {
3189             stmt.o1.u1 = stmt.o3.u1;
3190             stmt.o3.u1 = 0;
3191         }
3192         else if ((stmt.opcode >= INSTR_STORE_F &&
3193                   stmt.opcode <= INSTR_STORE_FNC) ||
3194                  (stmt.opcode >= INSTR_STOREP_F &&
3195                   stmt.opcode <= INSTR_STOREP_FNC))
3196         {
3197             /* 2-operand instructions with A -> B */
3198             stmt.o2.u1 = stmt.o3.u1;
3199             stmt.o3.u1 = 0;
3200
3201             /* tiny optimization, don't output
3202              * STORE a, a
3203              */
3204             if (stmt.o2.u1 == stmt.o1.u1 &&
3205                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
3206             {
3207                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
3208                 continue;
3209             }
3210         }
3211         code_push_statement(code, &stmt, instr->context);
3212     }
3213     return true;
3214 }
3215
3216 static bool gen_function_code(code_t *code, ir_function *self)
3217 {
3218     ir_block *block;
3219     prog_section_statement_t stmt, *retst;
3220
3221     /* Starting from entry point, we generate blocks "as they come"
3222      * for now. Dead blocks will not be translated obviously.
3223      */
3224     if (!vec_size(self->blocks)) {
3225         irerror(self->context, "Function '%s' declared without body.", self->name);
3226         return false;
3227     }
3228
3229     block = self->blocks[0];
3230     if (block->generated)
3231         return true;
3232
3233     if (!gen_blocks_recursive(code, self, block)) {
3234         irerror(self->context, "failed to generate blocks for '%s'", self->name);
3235         return false;
3236     }
3237
3238     /* code_write and qcvm -disasm need to know that the function ends here */
3239     retst = &vec_last(code->statements);
3240     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
3241         self->outtype == TYPE_VOID &&
3242         retst->opcode == INSTR_RETURN &&
3243         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
3244     {
3245         retst->opcode = INSTR_DONE;
3246         ++opts_optimizationcount[OPTIM_VOID_RETURN];
3247     } else {
3248         lex_ctx_t last;
3249
3250         stmt.opcode = INSTR_DONE;
3251         stmt.o1.u1  = 0;
3252         stmt.o2.u1  = 0;
3253         stmt.o3.u1  = 0;
3254         last.line   = vec_last(code->linenums);
3255         last.column = vec_last(code->columnnums);
3256
3257         code_push_statement(code, &stmt, last);
3258     }
3259     return true;
3260 }
3261
3262 static qcint_t ir_builder_filestring(ir_builder *ir, const char *filename)
3263 {
3264     /* NOTE: filename pointers are copied, we never strdup them,
3265      * thus we can use pointer-comparison to find the string.
3266      */
3267     size_t i;
3268     qcint_t  str;
3269
3270     for (i = 0; i < vec_size(ir->filenames); ++i) {
3271         if (ir->filenames[i] == filename)
3272             return ir->filestrings[i];
3273     }
3274
3275     str = code_genstring(ir->code, filename);
3276     vec_push(ir->filenames, filename);
3277     vec_push(ir->filestrings, str);
3278     return str;
3279 }
3280
3281 static bool gen_global_function(ir_builder *ir, ir_value *global)
3282 {
3283     prog_section_function_t fun;
3284     ir_function            *irfun;
3285
3286     size_t i;
3287
3288     if (!global->hasvalue || (!global->constval.vfunc))
3289     {
3290         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
3291         return false;
3292     }
3293
3294     irfun = global->constval.vfunc;
3295
3296     fun.name    = global->code.name;
3297     fun.file    = ir_builder_filestring(ir, global->context.file);
3298     fun.profile = 0; /* always 0 */
3299     fun.nargs   = vec_size(irfun->params);
3300     if (fun.nargs > 8)
3301         fun.nargs = 8;
3302
3303     for (i = 0;i < 8; ++i) {
3304         if ((int32_t)i >= fun.nargs)
3305             fun.argsize[i] = 0;
3306         else
3307             fun.argsize[i] = type_sizeof_[irfun->params[i]];
3308     }
3309
3310     fun.firstlocal = 0;
3311     fun.locals     = irfun->allocated_locals;
3312
3313     if (irfun->builtin)
3314         fun.entry = irfun->builtin+1;
3315     else {
3316         irfun->code_function_def = vec_size(ir->code->functions);
3317         fun.entry                = vec_size(ir->code->statements);
3318     }
3319
3320     vec_push(ir->code->functions, fun);
3321     return true;
3322 }
3323
3324 static ir_value* ir_gen_extparam_proto(ir_builder *ir)
3325 {
3326     ir_value *global;
3327     char      name[128];
3328
3329     util_snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparam_protos)));
3330     global = ir_value_var(name, store_global, TYPE_VECTOR);
3331
3332     vec_push(ir->extparam_protos, global);
3333     return global;
3334 }
3335
3336 static void ir_gen_extparam(ir_builder *ir)
3337 {
3338     prog_section_def_t def;
3339     ir_value          *global;
3340
3341     if (vec_size(ir->extparam_protos) < vec_size(ir->extparams)+1)
3342         global = ir_gen_extparam_proto(ir);
3343     else
3344         global = ir->extparam_protos[vec_size(ir->extparams)];
3345
3346     def.name   = code_genstring(ir->code, global->name);
3347     def.type   = TYPE_VECTOR;
3348     def.offset = vec_size(ir->code->globals);
3349
3350     vec_push(ir->code->defs, def);
3351
3352     ir_value_code_setaddr(global, def.offset);
3353
3354     vec_push(ir->code->globals, 0);
3355     vec_push(ir->code->globals, 0);
3356     vec_push(ir->code->globals, 0);
3357
3358     vec_push(ir->extparams, global);
3359 }
3360
3361 static bool gen_function_extparam_copy(code_t *code, ir_function *self)
3362 {
3363     size_t i, ext, numparams;
3364
3365     ir_builder *ir = self->owner;
3366     ir_value   *ep;
3367     prog_section_statement_t stmt;
3368
3369     numparams = vec_size(self->params);
3370     if (!numparams)
3371         return true;
3372
3373     stmt.opcode = INSTR_STORE_F;
3374     stmt.o3.s1 = 0;
3375     for (i = 8; i < numparams; ++i) {
3376         ext = i - 8;
3377         if (ext >= vec_size(ir->extparams))
3378             ir_gen_extparam(ir);
3379
3380         ep = ir->extparams[ext];
3381
3382         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3383         if (self->locals[i]->vtype == TYPE_FIELD &&
3384             self->locals[i]->fieldtype == TYPE_VECTOR)
3385         {
3386             stmt.opcode = INSTR_STORE_V;
3387         }
3388         stmt.o1.u1 = ir_value_code_addr(ep);
3389         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3390         code_push_statement(code, &stmt, self->context);
3391     }
3392
3393     return true;
3394 }
3395
3396 static bool gen_function_varargs_copy(code_t *code, ir_function *self)
3397 {
3398     size_t i, ext, numparams, maxparams;
3399
3400     ir_builder *ir = self->owner;
3401     ir_value   *ep;
3402     prog_section_statement_t stmt;
3403
3404     numparams = vec_size(self->params);
3405     if (!numparams)
3406         return true;
3407
3408     stmt.opcode = INSTR_STORE_V;
3409     stmt.o3.s1 = 0;
3410     maxparams = numparams + self->max_varargs;
3411     for (i = numparams; i < maxparams; ++i) {
3412         if (i < 8) {
3413             stmt.o1.u1 = OFS_PARM0 + 3*i;
3414             stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3415             code_push_statement(code, &stmt, self->context);
3416             continue;
3417         }
3418         ext = i - 8;
3419         while (ext >= vec_size(ir->extparams))
3420             ir_gen_extparam(ir);
3421
3422         ep = ir->extparams[ext];
3423
3424         stmt.o1.u1 = ir_value_code_addr(ep);
3425         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3426         code_push_statement(code, &stmt, self->context);
3427     }
3428
3429     return true;
3430 }
3431
3432 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3433 {
3434     prog_section_function_t *def;
3435     ir_function             *irfun;
3436     size_t                   i;
3437     uint32_t                 firstlocal, firstglobal;
3438
3439     irfun = global->constval.vfunc;
3440     def   = ir->code->functions + irfun->code_function_def;
3441
3442     if (OPTS_OPTION_BOOL(OPTION_G) ||
3443         !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS)        ||
3444         (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3445     {
3446         firstlocal = def->firstlocal = vec_size(ir->code->globals);
3447     } else {
3448         firstlocal = def->firstlocal = ir->first_common_local;
3449         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3450     }
3451
3452     firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? ir->first_common_globaltemp : firstlocal);
3453
3454     for (i = vec_size(ir->code->globals); i < firstlocal + irfun->allocated_locals; ++i)
3455         vec_push(ir->code->globals, 0);
3456     for (i = 0; i < vec_size(irfun->locals); ++i) {
3457         ir_value *v = irfun->locals[i];
3458         if (v->locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) {
3459             ir_value_code_setaddr(v, firstlocal + v->code.local);
3460             if (!ir_builder_gen_global(ir, irfun->locals[i], true)) {
3461                 irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3462                 return false;
3463             }
3464         }
3465         else
3466             ir_value_code_setaddr(v, firstglobal + v->code.local);
3467     }
3468     for (i = 0; i < vec_size(irfun->values); ++i)
3469     {
3470         ir_value *v = irfun->values[i];
3471         if (v->callparam)
3472             continue;
3473         if (v->locked)
3474             ir_value_code_setaddr(v, firstlocal + v->code.local);
3475         else
3476             ir_value_code_setaddr(v, firstglobal + v->code.local);
3477     }
3478     return true;
3479 }
3480
3481 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3482 {
3483     prog_section_function_t *fundef;
3484     ir_function             *irfun;
3485
3486     (void)ir;
3487
3488     irfun = global->constval.vfunc;
3489     if (!irfun) {
3490         if (global->cvq == CV_NONE) {
3491             if (irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3492                           "function `%s` has no body and in QC implicitly becomes a function-pointer",
3493                           global->name))
3494             {
3495                 /* Not bailing out just now. If this happens a lot you don't want to have
3496                  * to rerun gmqcc for each such function.
3497                  */
3498
3499                 /* return false; */
3500             }
3501         }
3502         /* this was a function pointer, don't generate code for those */
3503         return true;
3504     }
3505
3506     if (irfun->builtin)
3507         return true;
3508
3509     /*
3510      * If there is no definition and the thing is eraseable, we can ignore
3511      * outputting the function to begin with.
3512      */
3513     if (global->flags & IR_FLAG_ERASEABLE && irfun->code_function_def < 0) {
3514         return true;
3515     }
3516
3517     if (irfun->code_function_def < 0) {
3518         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3519         return false;
3520     }
3521     fundef = &ir->code->functions[irfun->code_function_def];
3522
3523     fundef->entry = vec_size(ir->code->statements);
3524     if (!gen_function_locals(ir, global)) {
3525         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3526         return false;
3527     }
3528     if (!gen_function_extparam_copy(ir->code, irfun)) {
3529         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3530         return false;
3531     }
3532     if (irfun->max_varargs && !gen_function_varargs_copy(ir->code, irfun)) {
3533         irerror(irfun->context, "Failed to generate vararg-copy code for function %s", irfun->name);
3534         return false;
3535     }
3536     if (!gen_function_code(ir->code, irfun)) {
3537         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3538         return false;
3539     }
3540     return true;
3541 }
3542
3543 static void gen_vector_defs(code_t *code, prog_section_def_t def, const char *name)
3544 {
3545     char  *component;
3546     size_t len, i;
3547
3548     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3549         return;
3550
3551     def.type = TYPE_FLOAT;
3552
3553     len = strlen(name);
3554
3555     component = (char*)mem_a(len+3);
3556     memcpy(component, name, len);
3557     len += 2;
3558     component[len-0] = 0;
3559     component[len-2] = '_';
3560
3561     component[len-1] = 'x';
3562
3563     for (i = 0; i < 3; ++i) {
3564         def.name = code_genstring(code, component);
3565         vec_push(code->defs, def);
3566         def.offset++;
3567         component[len-1]++;
3568     }
3569
3570     mem_d(component);
3571 }
3572
3573 static void gen_vector_fields(code_t *code, prog_section_field_t fld, const char *name)
3574 {
3575     char  *component;
3576     size_t len, i;
3577
3578     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3579         return;
3580
3581     fld.type = TYPE_FLOAT;
3582
3583     len = strlen(name);
3584
3585     component = (char*)mem_a(len+3);
3586     memcpy(component, name, len);
3587     len += 2;
3588     component[len-0] = 0;
3589     component[len-2] = '_';
3590
3591     component[len-1] = 'x';
3592
3593     for (i = 0; i < 3; ++i) {
3594         fld.name = code_genstring(code, component);
3595         vec_push(code->fields, fld);
3596         fld.offset++;
3597         component[len-1]++;
3598     }
3599
3600     mem_d(component);
3601 }
3602
3603 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal)
3604 {
3605     size_t             i;
3606     int32_t           *iptr;
3607     prog_section_def_t def;
3608     bool               pushdef = opts.optimizeoff;
3609
3610     def.type   = global->vtype;
3611     def.offset = vec_size(self->code->globals);
3612     def.name   = 0;
3613     if (OPTS_OPTION_BOOL(OPTION_G) || !islocal)
3614     {
3615         pushdef = true;
3616
3617         /*
3618          * if we're eraseable and the function isn't referenced ignore outputting
3619          * the function.
3620          */
3621         if (global->flags & IR_FLAG_ERASEABLE && vec_size(global->reads) == 0) {
3622             return true;
3623         }
3624
3625         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3626             !(global->flags & IR_FLAG_INCLUDE_DEF) &&
3627             (global->name[0] == '#' || global->cvq == CV_CONST))
3628         {
3629             pushdef = false;
3630         }
3631
3632         if (pushdef) {
3633             if (global->name[0] == '#') {
3634                 if (!self->str_immediate)
3635                     self->str_immediate = code_genstring(self->code, "IMMEDIATE");
3636                 def.name = global->code.name = self->str_immediate;
3637             }
3638             else
3639                 def.name = global->code.name = code_genstring(self->code, global->name);
3640         }
3641         else
3642             def.name   = 0;
3643         if (islocal) {
3644             def.offset = ir_value_code_addr(global);
3645             vec_push(self->code->defs, def);
3646             if (global->vtype == TYPE_VECTOR)
3647                 gen_vector_defs(self->code, def, global->name);
3648             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3649                 gen_vector_defs(self->code, def, global->name);
3650             return true;
3651         }
3652     }
3653     if (islocal)
3654         return true;
3655
3656     switch (global->vtype)
3657     {
3658     case TYPE_VOID:
3659         if (!strcmp(global->name, "end_sys_globals")) {
3660             /* TODO: remember this point... all the defs before this one
3661              * should be checksummed and added to progdefs.h when we generate it.
3662              */
3663         }
3664         else if (!strcmp(global->name, "end_sys_fields")) {
3665             /* TODO: same as above but for entity-fields rather than globsl
3666              */
3667         }
3668         else if(irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3669                           global->name))
3670         {
3671             /* Not bailing out */
3672             /* return false; */
3673         }
3674         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3675          * the system fields actually go? Though the engine knows this anyway...
3676          * Maybe this could be an -foption
3677          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3678          */
3679         ir_value_code_setaddr(global, vec_size(self->code->globals));
3680         vec_push(self->code->globals, 0);
3681         /* Add the def */
3682         if (pushdef) vec_push(self->code->defs, def);
3683         return true;
3684     case TYPE_POINTER:
3685         if (pushdef) vec_push(self->code->defs, def);
3686         return gen_global_pointer(self->code, global);
3687     case TYPE_FIELD:
3688         if (pushdef) {
3689             vec_push(self->code->defs, def);
3690             if (global->fieldtype == TYPE_VECTOR)
3691                 gen_vector_defs(self->code, def, global->name);
3692         }
3693         return gen_global_field(self->code, global);
3694     case TYPE_ENTITY:
3695         /* fall through */
3696     case TYPE_FLOAT:
3697     {
3698         ir_value_code_setaddr(global, vec_size(self->code->globals));
3699         if (global->hasvalue) {
3700             iptr = (int32_t*)&global->constval.ivec[0];
3701             vec_push(self->code->globals, *iptr);
3702         } else {
3703             vec_push(self->code->globals, 0);
3704         }
3705         if (!islocal && global->cvq != CV_CONST)
3706             def.type |= DEF_SAVEGLOBAL;
3707         if (pushdef) vec_push(self->code->defs, def);
3708
3709         return global->code.globaladdr >= 0;
3710     }
3711     case TYPE_STRING:
3712     {
3713         ir_value_code_setaddr(global, vec_size(self->code->globals));
3714         if (global->hasvalue) {
3715             uint32_t load = code_genstring(self->code, global->constval.vstring);
3716             vec_push(self->code->globals, load);
3717         } else {
3718             vec_push(self->code->globals, 0);
3719         }
3720         if (!islocal && global->cvq != CV_CONST)
3721             def.type |= DEF_SAVEGLOBAL;
3722         if (pushdef) vec_push(self->code->defs, def);
3723         return global->code.globaladdr >= 0;
3724     }
3725     case TYPE_VECTOR:
3726     {
3727         size_t d;
3728         ir_value_code_setaddr(global, vec_size(self->code->globals));
3729         if (global->hasvalue) {
3730             iptr = (int32_t*)&global->constval.ivec[0];
3731             vec_push(self->code->globals, iptr[0]);
3732             if (global->code.globaladdr < 0)
3733                 return false;
3734             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3735                 vec_push(self->code->globals, iptr[d]);
3736             }
3737         } else {
3738             vec_push(self->code->globals, 0);
3739             if (global->code.globaladdr < 0)
3740                 return false;
3741             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3742                 vec_push(self->code->globals, 0);
3743             }
3744         }
3745         if (!islocal && global->cvq != CV_CONST)
3746             def.type |= DEF_SAVEGLOBAL;
3747
3748         if (pushdef) {
3749             vec_push(self->code->defs, def);
3750             def.type &= ~DEF_SAVEGLOBAL;
3751             gen_vector_defs(self->code, def, global->name);
3752         }
3753         return global->code.globaladdr >= 0;
3754     }
3755     case TYPE_FUNCTION:
3756         ir_value_code_setaddr(global, vec_size(self->code->globals));
3757         if (!global->hasvalue) {
3758             vec_push(self->code->globals, 0);
3759             if (global->code.globaladdr < 0)
3760                 return false;
3761         } else {
3762             vec_push(self->code->globals, vec_size(self->code->functions));
3763             if (!gen_global_function(self, global))
3764                 return false;
3765         }
3766         if (!islocal && global->cvq != CV_CONST)
3767             def.type |= DEF_SAVEGLOBAL;
3768         if (pushdef) vec_push(self->code->defs, def);
3769         return true;
3770     case TYPE_VARIANT:
3771         /* assume biggest type */
3772             ir_value_code_setaddr(global, vec_size(self->code->globals));
3773             vec_push(self->code->globals, 0);
3774             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3775                 vec_push(self->code->globals, 0);
3776             return true;
3777     default:
3778         /* refuse to create 'void' type or any other fancy business. */
3779         irerror(global->context, "Invalid type for global variable `%s`: %s",
3780                 global->name, type_name[global->vtype]);
3781         return false;
3782     }
3783 }
3784
3785 static GMQCC_INLINE void ir_builder_prepare_field(code_t *code, ir_value *field)
3786 {
3787     field->code.fieldaddr = code_alloc_field(code, type_sizeof_[field->fieldtype]);
3788 }
3789
3790 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3791 {
3792     prog_section_def_t def;
3793     prog_section_field_t fld;
3794
3795     (void)self;
3796
3797     def.type   = (uint16_t)field->vtype;
3798     def.offset = (uint16_t)vec_size(self->code->globals);
3799
3800     /* create a global named the same as the field */
3801     if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_GMQCC) {
3802         /* in our standard, the global gets a dot prefix */
3803         size_t len = strlen(field->name);
3804         char name[1024];
3805
3806         /* we really don't want to have to allocate this, and 1024
3807          * bytes is more than enough for a variable/field name
3808          */
3809         if (len+2 >= sizeof(name)) {
3810             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3811             return false;
3812         }
3813
3814         name[0] = '.';
3815         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3816         name[len+1] = 0;
3817
3818         def.name = code_genstring(self->code, name);
3819         fld.name = def.name + 1; /* we reuse that string table entry */
3820     } else {
3821         /* in plain QC, there cannot be a global with the same name,
3822          * and so we also name the global the same.
3823          * FIXME: fteqcc should create a global as well
3824          * check if it actually uses the same name. Probably does
3825          */
3826         def.name = code_genstring(self->code, field->name);
3827         fld.name = def.name;
3828     }
3829
3830     field->code.name = def.name;
3831
3832     vec_push(self->code->defs, def);
3833
3834     fld.type = field->fieldtype;
3835
3836     if (fld.type == TYPE_VOID) {
3837         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3838         return false;
3839     }
3840
3841     fld.offset = field->code.fieldaddr;
3842
3843     vec_push(self->code->fields, fld);
3844
3845     ir_value_code_setaddr(field, vec_size(self->code->globals));
3846     vec_push(self->code->globals, fld.offset);
3847     if (fld.type == TYPE_VECTOR) {
3848         vec_push(self->code->globals, fld.offset+1);
3849         vec_push(self->code->globals, fld.offset+2);
3850     }
3851
3852     if (field->fieldtype == TYPE_VECTOR) {
3853         gen_vector_defs  (self->code, def, field->name);
3854         gen_vector_fields(self->code, fld, field->name);
3855     }
3856
3857     return field->code.globaladdr >= 0;
3858 }
3859
3860 bool ir_builder_generate(ir_builder *self, const char *filename)
3861 {
3862     prog_section_statement_t stmt;
3863     size_t i;
3864     char  *lnofile = NULL;
3865
3866     for (i = 0; i < vec_size(self->fields); ++i)
3867     {
3868         ir_builder_prepare_field(self->code, self->fields[i]);
3869     }
3870
3871     for (i = 0; i < vec_size(self->globals); ++i)
3872     {
3873         if (!ir_builder_gen_global(self, self->globals[i], false)) {
3874             return false;
3875         }
3876         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3877             ir_function *func = self->globals[i]->constval.vfunc;
3878             if (func && self->max_locals < func->allocated_locals &&
3879                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3880             {
3881                 self->max_locals = func->allocated_locals;
3882             }
3883             if (func && self->max_globaltemps < func->globaltemps)
3884                 self->max_globaltemps = func->globaltemps;
3885         }
3886     }
3887
3888     for (i = 0; i < vec_size(self->fields); ++i)
3889     {
3890         if (!ir_builder_gen_field(self, self->fields[i])) {
3891             return false;
3892         }
3893     }
3894
3895     /* generate nil */
3896     ir_value_code_setaddr(self->nil, vec_size(self->code->globals));
3897     vec_push(self->code->globals, 0);
3898     vec_push(self->code->globals, 0);
3899     vec_push(self->code->globals, 0);
3900
3901     /* generate virtual-instruction temps */
3902     for (i = 0; i < IR_MAX_VINSTR_TEMPS; ++i) {
3903         ir_value_code_setaddr(self->vinstr_temp[i], vec_size(self->code->globals));
3904         vec_push(self->code->globals, 0);
3905         vec_push(self->code->globals, 0);
3906         vec_push(self->code->globals, 0);
3907     }
3908
3909     /* generate global temps */
3910     self->first_common_globaltemp = vec_size(self->code->globals);
3911     for (i = 0; i < self->max_globaltemps; ++i) {
3912         vec_push(self->code->globals, 0);
3913     }
3914     /* generate common locals */
3915     self->first_common_local = vec_size(self->code->globals);
3916     for (i = 0; i < self->max_locals; ++i) {
3917         vec_push(self->code->globals, 0);
3918     }
3919
3920     /* generate function code */
3921     for (i = 0; i < vec_size(self->globals); ++i)
3922     {
3923         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3924             if (!gen_global_function_code(self, self->globals[i])) {
3925                 return false;
3926             }
3927         }
3928     }
3929
3930     if (vec_size(self->code->globals) >= 65536) {
3931         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3932         return false;
3933     }
3934
3935     /* DP errors if the last instruction is not an INSTR_DONE. */
3936     if (vec_last(self->code->statements).opcode != INSTR_DONE)
3937     {
3938         lex_ctx_t last;
3939
3940         stmt.opcode = INSTR_DONE;
3941         stmt.o1.u1  = 0;
3942         stmt.o2.u1  = 0;
3943         stmt.o3.u1  = 0;
3944         last.line   = vec_last(self->code->linenums);
3945         last.column = vec_last(self->code->columnnums);
3946
3947         code_push_statement(self->code, &stmt, last);
3948     }
3949
3950     if (OPTS_OPTION_BOOL(OPTION_PP_ONLY))
3951         return true;
3952
3953     if (vec_size(self->code->statements) != vec_size(self->code->linenums)) {
3954         con_err("Linecounter wrong: %lu != %lu\n",
3955                 (unsigned long)vec_size(self->code->statements),
3956                 (unsigned long)vec_size(self->code->linenums));
3957     } else if (OPTS_FLAG(LNO)) {
3958         char  *dot;
3959         size_t filelen = strlen(filename);
3960
3961         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3962         dot = strrchr(lnofile, '.');
3963         if (!dot) {
3964             vec_pop(lnofile);
3965         } else {
3966             vec_shrinkto(lnofile, dot - lnofile);
3967         }
3968         memcpy(vec_add(lnofile, 5), ".lno", 5);
3969     }
3970
3971     if (!code_write(self->code, filename, lnofile)) {
3972         vec_free(lnofile);
3973         return false;
3974     }
3975
3976     vec_free(lnofile);
3977     return true;
3978 }
3979
3980 /***********************************************************************
3981  *IR DEBUG Dump functions...
3982  */
3983
3984 #define IND_BUFSZ 1024
3985
3986 static const char *qc_opname(int op)
3987 {
3988     if (op < 0) return "<INVALID>";
3989     if (op < VINSTR_END)
3990         return util_instr_str[op];
3991     switch (op) {
3992         case VINSTR_END:       return "END";
3993         case VINSTR_PHI:       return "PHI";
3994         case VINSTR_JUMP:      return "JUMP";
3995         case VINSTR_COND:      return "COND";
3996         case VINSTR_BITXOR:    return "BITXOR";
3997         case VINSTR_BITAND_V:  return "BITAND_V";
3998         case VINSTR_BITOR_V:   return "BITOR_V";
3999         case VINSTR_BITXOR_V:  return "BITXOR_V";
4000         case VINSTR_BITAND_VF: return "BITAND_VF";
4001         case VINSTR_BITOR_VF:  return "BITOR_VF";
4002         case VINSTR_BITXOR_VF: return "BITXOR_VF";
4003         case VINSTR_CROSS:     return "CROSS";
4004         case VINSTR_NEG_F:     return "NEG_F";
4005         case VINSTR_NEG_V:     return "NEG_V";
4006         default:               return "<UNK>";
4007     }
4008 }
4009
4010 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
4011 {
4012     size_t i;
4013     char indent[IND_BUFSZ];
4014     indent[0] = '\t';
4015     indent[1] = 0;
4016
4017     oprintf("module %s\n", b->name);
4018     for (i = 0; i < vec_size(b->globals); ++i)
4019     {
4020         oprintf("global ");
4021         if (b->globals[i]->hasvalue)
4022             oprintf("%s = ", b->globals[i]->name);
4023         ir_value_dump(b->globals[i], oprintf);
4024         oprintf("\n");
4025     }
4026     for (i = 0; i < vec_size(b->functions); ++i)
4027         ir_function_dump(b->functions[i], indent, oprintf);
4028     oprintf("endmodule %s\n", b->name);
4029 }
4030
4031 static const char *storenames[] = {
4032     "[global]", "[local]", "[param]", "[value]", "[return]"
4033 };
4034
4035 void ir_function_dump(ir_function *f, char *ind,
4036                       int (*oprintf)(const char*, ...))
4037 {
4038     size_t i;
4039     if (f->builtin != 0) {
4040         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
4041         return;
4042     }
4043     oprintf("%sfunction %s\n", ind, f->name);
4044     util_strncat(ind, "\t", IND_BUFSZ-1);
4045     if (vec_size(f->locals))
4046     {
4047         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
4048         for (i = 0; i < vec_size(f->locals); ++i) {
4049             oprintf("%s\t", ind);
4050             ir_value_dump(f->locals[i], oprintf);
4051             oprintf("\n");
4052         }
4053     }
4054     oprintf("%sliferanges:\n", ind);
4055     for (i = 0; i < vec_size(f->locals); ++i) {
4056         const char *attr = "";
4057         size_t l, m;
4058         ir_value *v = f->locals[i];
4059         if (v->unique_life && v->locked)
4060             attr = "unique,locked ";
4061         else if (v->unique_life)
4062             attr = "unique ";
4063         else if (v->locked)
4064             attr = "locked ";
4065         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
4066                 storenames[v->store],
4067                 attr, (v->callparam ? "callparam " : ""),
4068                 (int)v->code.local);
4069         if (!v->life)
4070             oprintf("[null]");
4071         for (l = 0; l < vec_size(v->life); ++l) {
4072             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
4073         }
4074         oprintf("\n");
4075         for (m = 0; m < 3; ++m) {
4076             ir_value *vm = v->members[m];
4077             if (!vm)
4078                 continue;
4079             oprintf("%s\t%s: @%i ", ind, vm->name, (int)vm->code.local);
4080             for (l = 0; l < vec_size(vm->life); ++l) {
4081                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
4082             }
4083             oprintf("\n");
4084         }
4085     }
4086     for (i = 0; i < vec_size(f->values); ++i) {
4087         const char *attr = "";
4088         size_t l, m;
4089         ir_value *v = f->values[i];
4090         if (v->unique_life && v->locked)
4091             attr = "unique,locked ";
4092         else if (v->unique_life)
4093             attr = "unique ";
4094         else if (v->locked)
4095             attr = "locked ";
4096         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
4097                 storenames[v->store],
4098                 attr, (v->callparam ? "callparam " : ""),
4099                 (int)v->code.local);
4100         if (!v->life)
4101             oprintf("[null]");
4102         for (l = 0; l < vec_size(v->life); ++l) {
4103             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
4104         }
4105         oprintf("\n");
4106         for (m = 0; m < 3; ++m) {
4107             ir_value *vm = v->members[m];
4108             if (!vm)
4109                 continue;
4110             if (vm->unique_life && vm->locked)
4111                 attr = "unique,locked ";
4112             else if (vm->unique_life)
4113                 attr = "unique ";
4114             else if (vm->locked)
4115                 attr = "locked ";
4116             oprintf("%s\t%s: %s@%i ", ind, vm->name, attr, (int)vm->code.local);
4117             for (l = 0; l < vec_size(vm->life); ++l) {
4118                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
4119             }
4120             oprintf("\n");
4121         }
4122     }
4123     if (vec_size(f->blocks))
4124     {
4125         oprintf("%slife passes: %i\n", ind, (int)f->run_id);
4126         for (i = 0; i < vec_size(f->blocks); ++i) {
4127             ir_block_dump(f->blocks[i], ind, oprintf);
4128         }
4129
4130     }
4131     ind[strlen(ind)-1] = 0;
4132     oprintf("%sendfunction %s\n", ind, f->name);
4133 }
4134
4135 void ir_block_dump(ir_block* b, char *ind,
4136                    int (*oprintf)(const char*, ...))
4137 {
4138     size_t i;
4139     oprintf("%s:%s\n", ind, b->label);
4140     util_strncat(ind, "\t", IND_BUFSZ-1);
4141
4142     if (b->instr && b->instr[0])
4143         oprintf("%s (%i) [entry]\n", ind, (int)(b->instr[0]->eid-1));
4144     for (i = 0; i < vec_size(b->instr); ++i)
4145         ir_instr_dump(b->instr[i], ind, oprintf);
4146     ind[strlen(ind)-1] = 0;
4147 }
4148
4149 static void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
4150 {
4151     size_t i;
4152     oprintf("%s <- phi ", in->_ops[0]->name);
4153     for (i = 0; i < vec_size(in->phi); ++i)
4154     {
4155         oprintf("([%s] : %s) ", in->phi[i].from->label,
4156                                 in->phi[i].value->name);
4157     }
4158     oprintf("\n");
4159 }
4160
4161 void ir_instr_dump(ir_instr *in, char *ind,
4162                        int (*oprintf)(const char*, ...))
4163 {
4164     size_t i;
4165     const char *comma = NULL;
4166
4167     oprintf("%s (%i) ", ind, (int)in->eid);
4168
4169     if (in->opcode == VINSTR_PHI) {
4170         dump_phi(in, oprintf);
4171         return;
4172     }
4173
4174     util_strncat(ind, "\t", IND_BUFSZ-1);
4175
4176     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
4177         ir_value_dump(in->_ops[0], oprintf);
4178         if (in->_ops[1] || in->_ops[2])
4179             oprintf(" <- ");
4180     }
4181     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
4182         oprintf("CALL%i\t", vec_size(in->params));
4183     } else
4184         oprintf("%s\t", qc_opname(in->opcode));
4185
4186     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
4187         ir_value_dump(in->_ops[0], oprintf);
4188         comma = ",\t";
4189     }
4190     else
4191     {
4192         for (i = 1; i != 3; ++i) {
4193             if (in->_ops[i]) {
4194                 if (comma)
4195                     oprintf(comma);
4196                 ir_value_dump(in->_ops[i], oprintf);
4197                 comma = ",\t";
4198             }
4199         }
4200     }
4201     if (in->bops[0]) {
4202         if (comma)
4203             oprintf(comma);
4204         oprintf("[%s]", in->bops[0]->label);
4205         comma = ",\t";
4206     }
4207     if (in->bops[1])
4208         oprintf("%s[%s]", comma, in->bops[1]->label);
4209     if (vec_size(in->params)) {
4210         oprintf("\tparams: ");
4211         for (i = 0; i != vec_size(in->params); ++i) {
4212             oprintf("%s, ", in->params[i]->name);
4213         }
4214     }
4215     oprintf("\n");
4216     ind[strlen(ind)-1] = 0;
4217 }
4218
4219 static void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
4220 {
4221     oprintf("\"");
4222     for (; *str; ++str) {
4223         switch (*str) {
4224             case '\n': oprintf("\\n"); break;
4225             case '\r': oprintf("\\r"); break;
4226             case '\t': oprintf("\\t"); break;
4227             case '\v': oprintf("\\v"); break;
4228             case '\f': oprintf("\\f"); break;
4229             case '\b': oprintf("\\b"); break;
4230             case '\a': oprintf("\\a"); break;
4231             case '\\': oprintf("\\\\"); break;
4232             case '"': oprintf("\\\""); break;
4233             default: oprintf("%c", *str); break;
4234         }
4235     }
4236     oprintf("\"");
4237 }
4238
4239 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
4240 {
4241     if (v->hasvalue) {
4242         switch (v->vtype) {
4243             default:
4244             case TYPE_VOID:
4245                 oprintf("(void)");
4246                 break;
4247             case TYPE_FUNCTION:
4248                 oprintf("fn:%s", v->name);
4249                 break;
4250             case TYPE_FLOAT:
4251                 oprintf("%g", v->constval.vfloat);
4252                 break;
4253             case TYPE_VECTOR:
4254                 oprintf("'%g %g %g'",
4255                         v->constval.vvec.x,
4256                         v->constval.vvec.y,
4257                         v->constval.vvec.z);
4258                 break;
4259             case TYPE_ENTITY:
4260                 oprintf("(entity)");
4261                 break;
4262             case TYPE_STRING:
4263                 ir_value_dump_string(v->constval.vstring, oprintf);
4264                 break;
4265 #if 0
4266             case TYPE_INTEGER:
4267                 oprintf("%i", v->constval.vint);
4268                 break;
4269 #endif
4270             case TYPE_POINTER:
4271                 oprintf("&%s",
4272                     v->constval.vpointer->name);
4273                 break;
4274         }
4275     } else {
4276         oprintf("%s", v->name);
4277     }
4278 }
4279
4280 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
4281 {
4282     size_t i;
4283     oprintf("Life of %12s:", self->name);
4284     for (i = 0; i < vec_size(self->life); ++i)
4285     {
4286         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
4287     }
4288 }