]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ir.c
Merge pull request #142 from CurrentResident/big_endian_testsuite
[xonotic/gmqcc.git] / ir.c
1 /*
2  * Copyright (C) 2012, 2013, 2014
3  *     Wolfgang Bumiller
4  *     Dale Weiler
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ir.h"
29
30 /***********************************************************************
31  * Type sizes used at multiple points in the IR codegen
32  */
33
34 const char *type_name[TYPE_COUNT] = {
35     "void",
36     "string",
37     "float",
38     "vector",
39     "entity",
40     "field",
41     "function",
42     "pointer",
43     "integer",
44     "variant",
45     "struct",
46     "union",
47     "array",
48
49     "nil",
50     "<no-expression>"
51 };
52
53 static size_t type_sizeof_[TYPE_COUNT] = {
54     1, /* TYPE_VOID     */
55     1, /* TYPE_STRING   */
56     1, /* TYPE_FLOAT    */
57     3, /* TYPE_VECTOR   */
58     1, /* TYPE_ENTITY   */
59     1, /* TYPE_FIELD    */
60     1, /* TYPE_FUNCTION */
61     1, /* TYPE_POINTER  */
62     1, /* TYPE_INTEGER  */
63     3, /* TYPE_VARIANT  */
64     0, /* TYPE_STRUCT   */
65     0, /* TYPE_UNION    */
66     0, /* TYPE_ARRAY    */
67     0, /* TYPE_NIL      */
68     0, /* TYPE_NOESPR   */
69 };
70
71 const uint16_t type_store_instr[TYPE_COUNT] = {
72     INSTR_STORE_F, /* should use I when having integer support */
73     INSTR_STORE_S,
74     INSTR_STORE_F,
75     INSTR_STORE_V,
76     INSTR_STORE_ENT,
77     INSTR_STORE_FLD,
78     INSTR_STORE_FNC,
79     INSTR_STORE_ENT, /* should use I */
80 #if 0
81     INSTR_STORE_I, /* integer type */
82 #else
83     INSTR_STORE_F,
84 #endif
85
86     INSTR_STORE_V, /* variant, should never be accessed */
87
88     VINSTR_END, /* struct */
89     VINSTR_END, /* union  */
90     VINSTR_END, /* array  */
91     VINSTR_END, /* nil    */
92     VINSTR_END, /* noexpr */
93 };
94
95 const uint16_t field_store_instr[TYPE_COUNT] = {
96     INSTR_STORE_FLD,
97     INSTR_STORE_FLD,
98     INSTR_STORE_FLD,
99     INSTR_STORE_V,
100     INSTR_STORE_FLD,
101     INSTR_STORE_FLD,
102     INSTR_STORE_FLD,
103     INSTR_STORE_FLD,
104 #if 0
105     INSTR_STORE_FLD, /* integer type */
106 #else
107     INSTR_STORE_FLD,
108 #endif
109
110     INSTR_STORE_V, /* variant, should never be accessed */
111
112     VINSTR_END, /* struct */
113     VINSTR_END, /* union  */
114     VINSTR_END, /* array  */
115     VINSTR_END, /* nil    */
116     VINSTR_END, /* noexpr */
117 };
118
119 const uint16_t type_storep_instr[TYPE_COUNT] = {
120     INSTR_STOREP_F, /* should use I when having integer support */
121     INSTR_STOREP_S,
122     INSTR_STOREP_F,
123     INSTR_STOREP_V,
124     INSTR_STOREP_ENT,
125     INSTR_STOREP_FLD,
126     INSTR_STOREP_FNC,
127     INSTR_STOREP_ENT, /* should use I */
128 #if 0
129     INSTR_STOREP_ENT, /* integer type */
130 #else
131     INSTR_STOREP_F,
132 #endif
133
134     INSTR_STOREP_V, /* variant, should never be accessed */
135
136     VINSTR_END, /* struct */
137     VINSTR_END, /* union  */
138     VINSTR_END, /* array  */
139     VINSTR_END, /* nil    */
140     VINSTR_END, /* noexpr */
141 };
142
143 const uint16_t type_eq_instr[TYPE_COUNT] = {
144     INSTR_EQ_F, /* should use I when having integer support */
145     INSTR_EQ_S,
146     INSTR_EQ_F,
147     INSTR_EQ_V,
148     INSTR_EQ_E,
149     INSTR_EQ_E, /* FLD has no comparison */
150     INSTR_EQ_FNC,
151     INSTR_EQ_E, /* should use I */
152 #if 0
153     INSTR_EQ_I,
154 #else
155     INSTR_EQ_F,
156 #endif
157
158     INSTR_EQ_V, /* variant, should never be accessed */
159
160     VINSTR_END, /* struct */
161     VINSTR_END, /* union  */
162     VINSTR_END, /* array  */
163     VINSTR_END, /* nil    */
164     VINSTR_END, /* noexpr */
165 };
166
167 const uint16_t type_ne_instr[TYPE_COUNT] = {
168     INSTR_NE_F, /* should use I when having integer support */
169     INSTR_NE_S,
170     INSTR_NE_F,
171     INSTR_NE_V,
172     INSTR_NE_E,
173     INSTR_NE_E, /* FLD has no comparison */
174     INSTR_NE_FNC,
175     INSTR_NE_E, /* should use I */
176 #if 0
177     INSTR_NE_I,
178 #else
179     INSTR_NE_F,
180 #endif
181
182     INSTR_NE_V, /* variant, should never be accessed */
183
184     VINSTR_END, /* struct */
185     VINSTR_END, /* union  */
186     VINSTR_END, /* array  */
187     VINSTR_END, /* nil    */
188     VINSTR_END, /* noexpr */
189 };
190
191 const uint16_t type_not_instr[TYPE_COUNT] = {
192     INSTR_NOT_F, /* should use I when having integer support */
193     VINSTR_END,  /* not to be used, depends on string related -f flags */
194     INSTR_NOT_F,
195     INSTR_NOT_V,
196     INSTR_NOT_ENT,
197     INSTR_NOT_ENT,
198     INSTR_NOT_FNC,
199     INSTR_NOT_ENT, /* should use I */
200 #if 0
201     INSTR_NOT_I, /* integer type */
202 #else
203     INSTR_NOT_F,
204 #endif
205
206     INSTR_NOT_V, /* variant, should never be accessed */
207
208     VINSTR_END, /* struct */
209     VINSTR_END, /* union  */
210     VINSTR_END, /* array  */
211     VINSTR_END, /* nil    */
212     VINSTR_END, /* noexpr */
213 };
214
215 /* protos */
216 static ir_value*       ir_value_var(const char *name, int st, int vtype);
217 static bool            ir_value_set_name(ir_value*, const char *name);
218 static void            ir_value_dump(ir_value*, int (*oprintf)(const char*,...));
219
220 static ir_value*       ir_gen_extparam_proto(ir_builder *ir);
221 static void            ir_gen_extparam      (ir_builder *ir);
222
223 static bool            ir_builder_set_name(ir_builder *self, const char *name);
224
225 static ir_function*    ir_function_new(struct ir_builder_s *owner, int returntype);
226 static bool            ir_function_set_name(ir_function*, const char *name);
227 static void            ir_function_delete(ir_function*);
228 static void            ir_function_dump(ir_function*, char *ind, int (*oprintf)(const char*,...));
229
230 static ir_value*       ir_block_create_general_instr(ir_block *self, lex_ctx_t, const char *label,
231                                         int op, ir_value *a, ir_value *b, int outype);
232 static void            ir_block_delete(ir_block*);
233 static ir_block*       ir_block_new(struct ir_function_s *owner, const char *label);
234 static bool GMQCC_WARN ir_block_create_store(ir_block*, lex_ctx_t, ir_value *target, ir_value *what);
235 static bool            ir_block_set_label(ir_block*, const char *label);
236 static void            ir_block_dump(ir_block*, char *ind, int (*oprintf)(const char*,...));
237
238 static bool            ir_instr_op(ir_instr*, int op, ir_value *value, bool writing);
239 static void            ir_instr_delete(ir_instr*);
240 static void            ir_instr_dump(ir_instr* in, char *ind, int (*oprintf)(const char*,...));
241 /* error functions */
242
243 static void irerror(lex_ctx_t ctx, const char *msg, ...)
244 {
245     va_list ap;
246     va_start(ap, msg);
247     con_cvprintmsg(ctx, LVL_ERROR, "internal error", msg, ap);
248     va_end(ap);
249 }
250
251 static bool GMQCC_WARN irwarning(lex_ctx_t ctx, int warntype, const char *fmt, ...)
252 {
253     bool    r;
254     va_list ap;
255     va_start(ap, fmt);
256     r = vcompile_warning(ctx, warntype, fmt, ap);
257     va_end(ap);
258     return r;
259 }
260
261 /***********************************************************************
262  * Vector utility functions
263  */
264
265 static bool GMQCC_WARN vec_ir_value_find(ir_value **vec, const ir_value *what, size_t *idx)
266 {
267     size_t i;
268     size_t len = vec_size(vec);
269     for (i = 0; i < len; ++i) {
270         if (vec[i] == what) {
271             if (idx) *idx = i;
272             return true;
273         }
274     }
275     return false;
276 }
277
278 static bool GMQCC_WARN vec_ir_block_find(ir_block **vec, ir_block *what, size_t *idx)
279 {
280     size_t i;
281     size_t len = vec_size(vec);
282     for (i = 0; i < len; ++i) {
283         if (vec[i] == what) {
284             if (idx) *idx = i;
285             return true;
286         }
287     }
288     return false;
289 }
290
291 static bool GMQCC_WARN vec_ir_instr_find(ir_instr **vec, ir_instr *what, size_t *idx)
292 {
293     size_t i;
294     size_t len = vec_size(vec);
295     for (i = 0; i < len; ++i) {
296         if (vec[i] == what) {
297             if (idx) *idx = i;
298             return true;
299         }
300     }
301     return false;
302 }
303
304 /***********************************************************************
305  * IR Builder
306  */
307
308 static void ir_block_delete_quick(ir_block* self);
309 static void ir_instr_delete_quick(ir_instr *self);
310 static void ir_function_delete_quick(ir_function *self);
311
312 ir_builder* ir_builder_new(const char *modulename)
313 {
314     ir_builder* self;
315     size_t      i;
316
317     self = (ir_builder*)mem_a(sizeof(*self));
318     if (!self)
319         return NULL;
320
321     self->functions   = NULL;
322     self->globals     = NULL;
323     self->fields      = NULL;
324     self->filenames   = NULL;
325     self->filestrings = NULL;
326     self->htglobals   = util_htnew(IR_HT_SIZE);
327     self->htfields    = util_htnew(IR_HT_SIZE);
328     self->htfunctions = util_htnew(IR_HT_SIZE);
329
330     self->extparams       = NULL;
331     self->extparam_protos = NULL;
332
333     self->first_common_globaltemp = 0;
334     self->max_globaltemps         = 0;
335     self->first_common_local      = 0;
336     self->max_locals              = 0;
337
338     self->str_immediate = 0;
339     self->name = NULL;
340     if (!ir_builder_set_name(self, modulename)) {
341         mem_d(self);
342         return NULL;
343     }
344
345     self->nil = ir_value_var("nil", store_value, TYPE_NIL);
346     self->nil->cvq = CV_CONST;
347
348     for (i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
349         /* we write to them, but they're not supposed to be used outside the IR, so
350          * let's not allow the generation of ir_instrs which use these.
351          * So it's a constant noexpr.
352          */
353         self->vinstr_temp[i] = ir_value_var("vinstr_temp", store_value, TYPE_NOEXPR);
354         self->vinstr_temp[i]->cvq = CV_CONST;
355     }
356
357     self->reserved_va_count = NULL;
358     self->coverage_func     = NULL;
359
360     self->code              = code_init();
361
362     return self;
363 }
364
365 void ir_builder_delete(ir_builder* self)
366 {
367     size_t i;
368     util_htdel(self->htglobals);
369     util_htdel(self->htfields);
370     util_htdel(self->htfunctions);
371     mem_d((void*)self->name);
372     for (i = 0; i != vec_size(self->functions); ++i) {
373         ir_function_delete_quick(self->functions[i]);
374     }
375     vec_free(self->functions);
376     for (i = 0; i != vec_size(self->extparams); ++i) {
377         ir_value_delete(self->extparams[i]);
378     }
379     vec_free(self->extparams);
380     vec_free(self->extparam_protos);
381     for (i = 0; i != vec_size(self->globals); ++i) {
382         ir_value_delete(self->globals[i]);
383     }
384     vec_free(self->globals);
385     for (i = 0; i != vec_size(self->fields); ++i) {
386         ir_value_delete(self->fields[i]);
387     }
388     ir_value_delete(self->nil);
389     for (i = 0; i != IR_MAX_VINSTR_TEMPS; ++i) {
390         ir_value_delete(self->vinstr_temp[i]);
391     }
392     vec_free(self->fields);
393     vec_free(self->filenames);
394     vec_free(self->filestrings);
395
396     code_cleanup(self->code);
397     mem_d(self);
398 }
399
400 bool ir_builder_set_name(ir_builder *self, const char *name)
401 {
402     if (self->name)
403         mem_d((void*)self->name);
404     self->name = util_strdup(name);
405     return !!self->name;
406 }
407
408 static ir_function* ir_builder_get_function(ir_builder *self, const char *name)
409 {
410     return (ir_function*)util_htget(self->htfunctions, name);
411 }
412
413 ir_function* ir_builder_create_function(ir_builder *self, const char *name, int outtype)
414 {
415     ir_function *fn = ir_builder_get_function(self, name);
416     if (fn) {
417         return NULL;
418     }
419
420     fn = ir_function_new(self, outtype);
421     if (!ir_function_set_name(fn, name))
422     {
423         ir_function_delete(fn);
424         return NULL;
425     }
426     vec_push(self->functions, fn);
427     util_htset(self->htfunctions, name, fn);
428
429     fn->value = ir_builder_create_global(self, fn->name, TYPE_FUNCTION);
430     if (!fn->value) {
431         ir_function_delete(fn);
432         return NULL;
433     }
434
435     fn->value->hasvalue = true;
436     fn->value->outtype = outtype;
437     fn->value->constval.vfunc = fn;
438     fn->value->context = fn->context;
439
440     return fn;
441 }
442
443 static ir_value* ir_builder_get_global(ir_builder *self, const char *name)
444 {
445     return (ir_value*)util_htget(self->htglobals, name);
446 }
447
448 ir_value* ir_builder_create_global(ir_builder *self, const char *name, int vtype)
449 {
450     ir_value *ve;
451
452     if (name[0] != '#')
453     {
454         ve = ir_builder_get_global(self, name);
455         if (ve) {
456             return NULL;
457         }
458     }
459
460     ve = ir_value_var(name, store_global, vtype);
461     vec_push(self->globals, ve);
462     util_htset(self->htglobals, name, ve);
463     return ve;
464 }
465
466 ir_value* ir_builder_get_va_count(ir_builder *self)
467 {
468     if (self->reserved_va_count)
469         return self->reserved_va_count;
470     return (self->reserved_va_count = ir_builder_create_global(self, "reserved:va_count", TYPE_FLOAT));
471 }
472
473 static ir_value* ir_builder_get_field(ir_builder *self, const char *name)
474 {
475     return (ir_value*)util_htget(self->htfields, name);
476 }
477
478
479 ir_value* ir_builder_create_field(ir_builder *self, const char *name, int vtype)
480 {
481     ir_value *ve = ir_builder_get_field(self, name);
482     if (ve) {
483         return NULL;
484     }
485
486     ve = ir_value_var(name, store_global, TYPE_FIELD);
487     ve->fieldtype = vtype;
488     vec_push(self->fields, ve);
489     util_htset(self->htfields, name, ve);
490     return ve;
491 }
492
493 /***********************************************************************
494  *IR Function
495  */
496
497 static bool ir_function_naive_phi(ir_function*);
498 static void ir_function_enumerate(ir_function*);
499 static bool ir_function_calculate_liferanges(ir_function*);
500 static bool ir_function_allocate_locals(ir_function*);
501
502 ir_function* ir_function_new(ir_builder* owner, int outtype)
503 {
504     ir_function *self;
505     self = (ir_function*)mem_a(sizeof(*self));
506
507     if (!self)
508         return NULL;
509
510     memset(self, 0, sizeof(*self));
511
512     self->name = NULL;
513     if (!ir_function_set_name(self, "<@unnamed>")) {
514         mem_d(self);
515         return NULL;
516     }
517     self->flags = 0;
518
519     self->owner = owner;
520     self->context.file = "<@no context>";
521     self->context.line = 0;
522     self->outtype = outtype;
523     self->value = NULL;
524     self->builtin = 0;
525
526     self->params = NULL;
527     self->blocks = NULL;
528     self->values = NULL;
529     self->locals = NULL;
530
531     self->max_varargs = 0;
532
533     self->code_function_def = -1;
534     self->allocated_locals = 0;
535     self->globaltemps      = 0;
536
537     self->run_id = 0;
538     return self;
539 }
540
541 bool ir_function_set_name(ir_function *self, const char *name)
542 {
543     if (self->name)
544         mem_d((void*)self->name);
545     self->name = util_strdup(name);
546     return !!self->name;
547 }
548
549 static void ir_function_delete_quick(ir_function *self)
550 {
551     size_t i;
552     mem_d((void*)self->name);
553
554     for (i = 0; i != vec_size(self->blocks); ++i)
555         ir_block_delete_quick(self->blocks[i]);
556     vec_free(self->blocks);
557
558     vec_free(self->params);
559
560     for (i = 0; i != vec_size(self->values); ++i)
561         ir_value_delete(self->values[i]);
562     vec_free(self->values);
563
564     for (i = 0; i != vec_size(self->locals); ++i)
565         ir_value_delete(self->locals[i]);
566     vec_free(self->locals);
567
568     /* self->value is deleted by the builder */
569
570     mem_d(self);
571 }
572
573 void ir_function_delete(ir_function *self)
574 {
575     size_t i;
576     mem_d((void*)self->name);
577
578     for (i = 0; i != vec_size(self->blocks); ++i)
579         ir_block_delete(self->blocks[i]);
580     vec_free(self->blocks);
581
582     vec_free(self->params);
583
584     for (i = 0; i != vec_size(self->values); ++i)
585         ir_value_delete(self->values[i]);
586     vec_free(self->values);
587
588     for (i = 0; i != vec_size(self->locals); ++i)
589         ir_value_delete(self->locals[i]);
590     vec_free(self->locals);
591
592     /* self->value is deleted by the builder */
593
594     mem_d(self);
595 }
596
597 static void ir_function_collect_value(ir_function *self, ir_value *v)
598 {
599     vec_push(self->values, v);
600 }
601
602 ir_block* ir_function_create_block(lex_ctx_t ctx, ir_function *self, const char *label)
603 {
604     ir_block* bn = ir_block_new(self, label);
605     bn->context = ctx;
606     vec_push(self->blocks, bn);
607
608     if ((self->flags & IR_FLAG_BLOCK_COVERAGE) && self->owner->coverage_func)
609         (void)ir_block_create_call(bn, ctx, NULL, self->owner->coverage_func, false);
610
611     return bn;
612 }
613
614 static bool instr_is_operation(uint16_t op)
615 {
616     return ( (op >= INSTR_MUL_F  && op <= INSTR_GT) ||
617              (op >= INSTR_LOAD_F && op <= INSTR_LOAD_FNC) ||
618              (op == INSTR_ADDRESS) ||
619              (op >= INSTR_NOT_F  && op <= INSTR_NOT_FNC) ||
620              (op >= INSTR_AND    && op <= INSTR_BITOR) ||
621              (op >= INSTR_CALL0  && op <= INSTR_CALL8) ||
622              (op >= VINSTR_BITAND_V && op <= VINSTR_NEG_V) );
623 }
624
625 static bool ir_function_pass_peephole(ir_function *self)
626 {
627     size_t b;
628
629     for (b = 0; b < vec_size(self->blocks); ++b) {
630         size_t    i;
631         ir_block *block = self->blocks[b];
632
633         for (i = 0; i < vec_size(block->instr); ++i) {
634             ir_instr *inst;
635             inst = block->instr[i];
636
637             if (i >= 1 &&
638                 (inst->opcode >= INSTR_STORE_F &&
639                  inst->opcode <= INSTR_STORE_FNC))
640             {
641                 ir_instr *store;
642                 ir_instr *oper;
643                 ir_value *value;
644
645                 store = inst;
646
647                 oper  = block->instr[i-1];
648                 if (!instr_is_operation(oper->opcode))
649                     continue;
650
651                 /* Don't change semantics of MUL_VF in engines where these may not alias. */
652                 if (OPTS_FLAG(LEGACY_VECTOR_MATHS)) {
653                     if (oper->opcode == INSTR_MUL_VF && oper->_ops[2]->memberof == oper->_ops[1])
654                         continue;
655                     if (oper->opcode == INSTR_MUL_FV && oper->_ops[1]->memberof == oper->_ops[2])
656                         continue;
657                 }
658
659                 value = oper->_ops[0];
660
661                 /* only do it for SSA values */
662                 if (value->store != store_value)
663                     continue;
664
665                 /* don't optimize out the temp if it's used later again */
666                 if (vec_size(value->reads) != 1)
667                     continue;
668
669                 /* The very next store must use this value */
670                 if (value->reads[0] != store)
671                     continue;
672
673                 /* And of course the store must _read_ from it, so it's in
674                  * OP 1 */
675                 if (store->_ops[1] != value)
676                     continue;
677
678                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
679                 (void)!ir_instr_op(oper, 0, store->_ops[0], true);
680
681                 vec_remove(block->instr, i, 1);
682                 ir_instr_delete(store);
683             }
684             else if (inst->opcode == VINSTR_COND)
685             {
686                 /* COND on a value resulting from a NOT could
687                  * remove the NOT and swap its operands
688                  */
689                 while (true) {
690                     ir_block *tmp;
691                     size_t    inotid;
692                     ir_instr *inot;
693                     ir_value *value;
694                     value = inst->_ops[0];
695
696                     if (value->store != store_value ||
697                         vec_size(value->reads) != 1 ||
698                         value->reads[0] != inst)
699                     {
700                         break;
701                     }
702
703                     inot = value->writes[0];
704                     if (inot->_ops[0] != value ||
705                         inot->opcode < INSTR_NOT_F ||
706                         inot->opcode > INSTR_NOT_FNC ||
707                         inot->opcode == INSTR_NOT_V || /* can't do these */
708                         inot->opcode == INSTR_NOT_S)
709                     {
710                         break;
711                     }
712
713                     /* count */
714                     ++opts_optimizationcount[OPTIM_PEEPHOLE];
715                     /* change operand */
716                     (void)!ir_instr_op(inst, 0, inot->_ops[1], false);
717                     /* remove NOT */
718                     tmp = inot->owner;
719                     for (inotid = 0; inotid < vec_size(tmp->instr); ++inotid) {
720                         if (tmp->instr[inotid] == inot)
721                             break;
722                     }
723                     if (inotid >= vec_size(tmp->instr)) {
724                         compile_error(inst->context, "sanity-check failed: failed to find instruction to optimize out");
725                         return false;
726                     }
727                     vec_remove(tmp->instr, inotid, 1);
728                     ir_instr_delete(inot);
729                     /* swap ontrue/onfalse */
730                     tmp = inst->bops[0];
731                     inst->bops[0] = inst->bops[1];
732                     inst->bops[1] = tmp;
733                 }
734                 continue;
735             }
736         }
737     }
738
739     return true;
740 }
741
742 static bool ir_function_pass_tailrecursion(ir_function *self)
743 {
744     size_t b, p;
745
746     for (b = 0; b < vec_size(self->blocks); ++b) {
747         ir_value *funcval;
748         ir_instr *ret, *call, *store = NULL;
749         ir_block *block = self->blocks[b];
750
751         if (!block->final || vec_size(block->instr) < 2)
752             continue;
753
754         ret = block->instr[vec_size(block->instr)-1];
755         if (ret->opcode != INSTR_DONE && ret->opcode != INSTR_RETURN)
756             continue;
757
758         call = block->instr[vec_size(block->instr)-2];
759         if (call->opcode >= INSTR_STORE_F && call->opcode <= INSTR_STORE_FNC) {
760             /* account for the unoptimized
761              * CALL
762              * STORE %return, %tmp
763              * RETURN %tmp
764              * version
765              */
766             if (vec_size(block->instr) < 3)
767                 continue;
768
769             store = call;
770             call = block->instr[vec_size(block->instr)-3];
771         }
772
773         if (call->opcode < INSTR_CALL0 || call->opcode > INSTR_CALL8)
774             continue;
775
776         if (store) {
777             /* optimize out the STORE */
778             if (ret->_ops[0]   &&
779                 ret->_ops[0]   == store->_ops[0] &&
780                 store->_ops[1] == call->_ops[0])
781             {
782                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
783                 call->_ops[0] = store->_ops[0];
784                 vec_remove(block->instr, vec_size(block->instr) - 2, 1);
785                 ir_instr_delete(store);
786             }
787             else
788                 continue;
789         }
790
791         if (!call->_ops[0])
792             continue;
793
794         funcval = call->_ops[1];
795         if (!funcval)
796             continue;
797         if (funcval->vtype != TYPE_FUNCTION || funcval->constval.vfunc != self)
798             continue;
799
800         /* now we have a CALL and a RET, check if it's a tailcall */
801         if (ret->_ops[0] && call->_ops[0] != ret->_ops[0])
802             continue;
803
804         ++opts_optimizationcount[OPTIM_TAIL_RECURSION];
805         vec_shrinkby(block->instr, 2);
806
807         block->final = false; /* open it back up */
808
809         /* emite parameter-stores */
810         for (p = 0; p < vec_size(call->params); ++p) {
811             /* assert(call->params_count <= self->locals_count); */
812             if (!ir_block_create_store(block, call->context, self->locals[p], call->params[p])) {
813                 irerror(call->context, "failed to create tailcall store instruction for parameter %i", (int)p);
814                 return false;
815             }
816         }
817         if (!ir_block_create_jump(block, call->context, self->blocks[0])) {
818             irerror(call->context, "failed to create tailcall jump");
819             return false;
820         }
821
822         ir_instr_delete(call);
823         ir_instr_delete(ret);
824     }
825
826     return true;
827 }
828
829 bool ir_function_finalize(ir_function *self)
830 {
831     size_t i;
832
833     if (self->builtin)
834         return true;
835
836     if (OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
837         if (!ir_function_pass_peephole(self)) {
838             irerror(self->context, "generic optimization pass broke something in `%s`", self->name);
839             return false;
840         }
841     }
842
843     if (OPTS_OPTIMIZATION(OPTIM_TAIL_RECURSION)) {
844         if (!ir_function_pass_tailrecursion(self)) {
845             irerror(self->context, "tail-recursion optimization pass broke something in `%s`", self->name);
846             return false;
847         }
848     }
849
850     if (!ir_function_naive_phi(self)) {
851         irerror(self->context, "internal error: ir_function_naive_phi failed");
852         return false;
853     }
854
855     for (i = 0; i < vec_size(self->locals); ++i) {
856         ir_value *v = self->locals[i];
857         if (v->vtype == TYPE_VECTOR ||
858             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
859         {
860             ir_value_vector_member(v, 0);
861             ir_value_vector_member(v, 1);
862             ir_value_vector_member(v, 2);
863         }
864     }
865     for (i = 0; i < vec_size(self->values); ++i) {
866         ir_value *v = self->values[i];
867         if (v->vtype == TYPE_VECTOR ||
868             (v->vtype == TYPE_FIELD && v->outtype == TYPE_VECTOR))
869         {
870             ir_value_vector_member(v, 0);
871             ir_value_vector_member(v, 1);
872             ir_value_vector_member(v, 2);
873         }
874     }
875
876     ir_function_enumerate(self);
877
878     if (!ir_function_calculate_liferanges(self))
879         return false;
880     if (!ir_function_allocate_locals(self))
881         return false;
882     return true;
883 }
884
885 ir_value* ir_function_create_local(ir_function *self, const char *name, int vtype, bool param)
886 {
887     ir_value *ve;
888
889     if (param &&
890         vec_size(self->locals) &&
891         self->locals[vec_size(self->locals)-1]->store != store_param) {
892         irerror(self->context, "cannot add parameters after adding locals");
893         return NULL;
894     }
895
896     ve = ir_value_var(name, (param ? store_param : store_local), vtype);
897     if (param)
898         ve->locked = true;
899     vec_push(self->locals, ve);
900     return ve;
901 }
902
903 /***********************************************************************
904  *IR Block
905  */
906
907 ir_block* ir_block_new(ir_function* owner, const char *name)
908 {
909     ir_block *self;
910     self = (ir_block*)mem_a(sizeof(*self));
911     if (!self)
912         return NULL;
913
914     memset(self, 0, sizeof(*self));
915
916     self->label = NULL;
917     if (name && !ir_block_set_label(self, name)) {
918         mem_d(self);
919         return NULL;
920     }
921     self->owner = owner;
922     self->context.file = "<@no context>";
923     self->context.line = 0;
924     self->final = false;
925
926     self->instr   = NULL;
927     self->entries = NULL;
928     self->exits   = NULL;
929
930     self->eid = 0;
931     self->is_return = false;
932
933     self->living = NULL;
934
935     self->generated = false;
936
937     return self;
938 }
939
940 static void ir_block_delete_quick(ir_block* self)
941 {
942     size_t i;
943     if (self->label) mem_d(self->label);
944     for (i = 0; i != vec_size(self->instr); ++i)
945         ir_instr_delete_quick(self->instr[i]);
946     vec_free(self->instr);
947     vec_free(self->entries);
948     vec_free(self->exits);
949     vec_free(self->living);
950     mem_d(self);
951 }
952
953 void ir_block_delete(ir_block* self)
954 {
955     size_t i;
956     if (self->label) mem_d(self->label);
957     for (i = 0; i != vec_size(self->instr); ++i)
958         ir_instr_delete(self->instr[i]);
959     vec_free(self->instr);
960     vec_free(self->entries);
961     vec_free(self->exits);
962     vec_free(self->living);
963     mem_d(self);
964 }
965
966 bool ir_block_set_label(ir_block *self, const char *name)
967 {
968     if (self->label)
969         mem_d((void*)self->label);
970     self->label = util_strdup(name);
971     return !!self->label;
972 }
973
974 /***********************************************************************
975  *IR Instructions
976  */
977
978 static ir_instr* ir_instr_new(lex_ctx_t ctx, ir_block* owner, int op)
979 {
980     ir_instr *self;
981     self = (ir_instr*)mem_a(sizeof(*self));
982     if (!self)
983         return NULL;
984
985     self->owner = owner;
986     self->context = ctx;
987     self->opcode = op;
988     self->_ops[0] = NULL;
989     self->_ops[1] = NULL;
990     self->_ops[2] = NULL;
991     self->bops[0] = NULL;
992     self->bops[1] = NULL;
993
994     self->phi    = NULL;
995     self->params = NULL;
996
997     self->eid = 0;
998
999     self->likely = true;
1000     return self;
1001 }
1002
1003 static void ir_instr_delete_quick(ir_instr *self)
1004 {
1005     vec_free(self->phi);
1006     vec_free(self->params);
1007     mem_d(self);
1008 }
1009
1010 static void ir_instr_delete(ir_instr *self)
1011 {
1012     size_t i;
1013     /* The following calls can only delete from
1014      * vectors, we still want to delete this instruction
1015      * so ignore the return value. Since with the warn_unused_result attribute
1016      * gcc doesn't care about an explicit: (void)foo(); to ignore the result,
1017      * I have to improvise here and use if(foo());
1018      */
1019     for (i = 0; i < vec_size(self->phi); ++i) {
1020         size_t idx;
1021         if (vec_ir_instr_find(self->phi[i].value->writes, self, &idx))
1022             vec_remove(self->phi[i].value->writes, idx, 1);
1023         if (vec_ir_instr_find(self->phi[i].value->reads, self, &idx))
1024             vec_remove(self->phi[i].value->reads, idx, 1);
1025     }
1026     vec_free(self->phi);
1027     for (i = 0; i < vec_size(self->params); ++i) {
1028         size_t idx;
1029         if (vec_ir_instr_find(self->params[i]->writes, self, &idx))
1030             vec_remove(self->params[i]->writes, idx, 1);
1031         if (vec_ir_instr_find(self->params[i]->reads, self, &idx))
1032             vec_remove(self->params[i]->reads, idx, 1);
1033     }
1034     vec_free(self->params);
1035     (void)!ir_instr_op(self, 0, NULL, false);
1036     (void)!ir_instr_op(self, 1, NULL, false);
1037     (void)!ir_instr_op(self, 2, NULL, false);
1038     mem_d(self);
1039 }
1040
1041 static bool ir_instr_op(ir_instr *self, int op, ir_value *v, bool writing)
1042 {
1043     if (v && v->vtype == TYPE_NOEXPR) {
1044         irerror(self->context, "tried to use a NOEXPR value");
1045         return false;
1046     }
1047
1048     if (self->_ops[op]) {
1049         size_t idx;
1050         if (writing && vec_ir_instr_find(self->_ops[op]->writes, self, &idx))
1051             vec_remove(self->_ops[op]->writes, idx, 1);
1052         else if (vec_ir_instr_find(self->_ops[op]->reads, self, &idx))
1053             vec_remove(self->_ops[op]->reads, idx, 1);
1054     }
1055     if (v) {
1056         if (writing)
1057             vec_push(v->writes, self);
1058         else
1059             vec_push(v->reads, self);
1060     }
1061     self->_ops[op] = v;
1062     return true;
1063 }
1064
1065 /***********************************************************************
1066  *IR Value
1067  */
1068
1069 static void ir_value_code_setaddr(ir_value *self, int32_t gaddr)
1070 {
1071     self->code.globaladdr = gaddr;
1072     if (self->members[0]) self->members[0]->code.globaladdr = gaddr;
1073     if (self->members[1]) self->members[1]->code.globaladdr = gaddr;
1074     if (self->members[2]) self->members[2]->code.globaladdr = gaddr;
1075 }
1076
1077 static int32_t ir_value_code_addr(const ir_value *self)
1078 {
1079     if (self->store == store_return)
1080         return OFS_RETURN + self->code.addroffset;
1081     return self->code.globaladdr + self->code.addroffset;
1082 }
1083
1084 ir_value* ir_value_var(const char *name, int storetype, int vtype)
1085 {
1086     ir_value *self;
1087     self = (ir_value*)mem_a(sizeof(*self));
1088     self->vtype = vtype;
1089     self->fieldtype = TYPE_VOID;
1090     self->outtype = TYPE_VOID;
1091     self->store = storetype;
1092     self->flags = 0;
1093
1094     self->reads  = NULL;
1095     self->writes = NULL;
1096
1097     self->cvq          = CV_NONE;
1098     self->hasvalue     = false;
1099     self->context.file = "<@no context>";
1100     self->context.line = 0;
1101     self->name = NULL;
1102     if (name && !ir_value_set_name(self, name)) {
1103         irerror(self->context, "out of memory");
1104         mem_d(self);
1105         return NULL;
1106     }
1107
1108     memset(&self->constval, 0, sizeof(self->constval));
1109     memset(&self->code,     0, sizeof(self->code));
1110
1111     self->members[0] = NULL;
1112     self->members[1] = NULL;
1113     self->members[2] = NULL;
1114     self->memberof = NULL;
1115
1116     self->unique_life = false;
1117     self->locked      = false;
1118     self->callparam   = false;
1119
1120     self->life = NULL;
1121     return self;
1122 }
1123
1124 ir_value* ir_value_vector_member(ir_value *self, unsigned int member)
1125 {
1126     char     *name;
1127     size_t    len;
1128     ir_value *m;
1129     if (member >= 3)
1130         return NULL;
1131
1132     if (self->members[member])
1133         return self->members[member];
1134
1135     if (self->name) {
1136         len = strlen(self->name);
1137         name = (char*)mem_a(len + 3);
1138         memcpy(name, self->name, len);
1139         name[len+0] = '_';
1140         name[len+1] = 'x' + member;
1141         name[len+2] = '\0';
1142     }
1143     else
1144         name = NULL;
1145
1146     if (self->vtype == TYPE_VECTOR)
1147     {
1148         m = ir_value_var(name, self->store, TYPE_FLOAT);
1149         if (name)
1150             mem_d(name);
1151         if (!m)
1152             return NULL;
1153         m->context = self->context;
1154
1155         self->members[member] = m;
1156         m->code.addroffset = member;
1157     }
1158     else if (self->vtype == TYPE_FIELD)
1159     {
1160         if (self->fieldtype != TYPE_VECTOR)
1161             return NULL;
1162         m = ir_value_var(name, self->store, TYPE_FIELD);
1163         if (name)
1164             mem_d(name);
1165         if (!m)
1166             return NULL;
1167         m->fieldtype = TYPE_FLOAT;
1168         m->context = self->context;
1169
1170         self->members[member] = m;
1171         m->code.addroffset = member;
1172     }
1173     else
1174     {
1175         irerror(self->context, "invalid member access on %s", self->name);
1176         return NULL;
1177     }
1178
1179     m->memberof = self;
1180     return m;
1181 }
1182
1183 static GMQCC_INLINE size_t ir_value_sizeof(const ir_value *self)
1184 {
1185     if (self->vtype == TYPE_FIELD && self->fieldtype == TYPE_VECTOR)
1186         return type_sizeof_[TYPE_VECTOR];
1187     return type_sizeof_[self->vtype];
1188 }
1189
1190 static ir_value* ir_value_out(ir_function *owner, const char *name, int storetype, int vtype)
1191 {
1192     ir_value *v = ir_value_var(name, storetype, vtype);
1193     if (!v)
1194         return NULL;
1195     ir_function_collect_value(owner, v);
1196     return v;
1197 }
1198
1199 void ir_value_delete(ir_value* self)
1200 {
1201     size_t i;
1202     if (self->name)
1203         mem_d((void*)self->name);
1204     if (self->hasvalue)
1205     {
1206         if (self->vtype == TYPE_STRING)
1207             mem_d((void*)self->constval.vstring);
1208     }
1209     for (i = 0; i < 3; ++i) {
1210         if (self->members[i])
1211             ir_value_delete(self->members[i]);
1212     }
1213     vec_free(self->reads);
1214     vec_free(self->writes);
1215     vec_free(self->life);
1216     mem_d(self);
1217 }
1218
1219 bool ir_value_set_name(ir_value *self, const char *name)
1220 {
1221     if (self->name)
1222         mem_d((void*)self->name);
1223     self->name = util_strdup(name);
1224     return !!self->name;
1225 }
1226
1227 bool ir_value_set_float(ir_value *self, float f)
1228 {
1229     if (self->vtype != TYPE_FLOAT)
1230         return false;
1231     self->constval.vfloat = f;
1232     self->hasvalue = true;
1233     return true;
1234 }
1235
1236 bool ir_value_set_func(ir_value *self, int f)
1237 {
1238     if (self->vtype != TYPE_FUNCTION)
1239         return false;
1240     self->constval.vint = f;
1241     self->hasvalue = true;
1242     return true;
1243 }
1244
1245 bool ir_value_set_vector(ir_value *self, vec3_t v)
1246 {
1247     if (self->vtype != TYPE_VECTOR)
1248         return false;
1249     self->constval.vvec = v;
1250     self->hasvalue = true;
1251     return true;
1252 }
1253
1254 bool ir_value_set_field(ir_value *self, ir_value *fld)
1255 {
1256     if (self->vtype != TYPE_FIELD)
1257         return false;
1258     self->constval.vpointer = fld;
1259     self->hasvalue = true;
1260     return true;
1261 }
1262
1263 bool ir_value_set_string(ir_value *self, const char *str)
1264 {
1265     if (self->vtype != TYPE_STRING)
1266         return false;
1267     self->constval.vstring = util_strdupe(str);
1268     self->hasvalue = true;
1269     return true;
1270 }
1271
1272 #if 0
1273 bool ir_value_set_int(ir_value *self, int i)
1274 {
1275     if (self->vtype != TYPE_INTEGER)
1276         return false;
1277     self->constval.vint = i;
1278     self->hasvalue = true;
1279     return true;
1280 }
1281 #endif
1282
1283 bool ir_value_lives(ir_value *self, size_t at)
1284 {
1285     size_t i;
1286     for (i = 0; i < vec_size(self->life); ++i)
1287     {
1288         ir_life_entry_t *life = &self->life[i];
1289         if (life->start <= at && at <= life->end)
1290             return true;
1291         if (life->start > at) /* since it's ordered */
1292             return false;
1293     }
1294     return false;
1295 }
1296
1297 static bool ir_value_life_insert(ir_value *self, size_t idx, ir_life_entry_t e)
1298 {
1299     size_t k;
1300     vec_push(self->life, e);
1301     for (k = vec_size(self->life)-1; k > idx; --k)
1302         self->life[k] = self->life[k-1];
1303     self->life[idx] = e;
1304     return true;
1305 }
1306
1307 static bool ir_value_life_merge(ir_value *self, size_t s)
1308 {
1309     size_t i;
1310     const size_t vs = vec_size(self->life);
1311     ir_life_entry_t *life = NULL;
1312     ir_life_entry_t *before = NULL;
1313     ir_life_entry_t new_entry;
1314
1315     /* Find the first range >= s */
1316     for (i = 0; i < vs; ++i)
1317     {
1318         before = life;
1319         life = &self->life[i];
1320         if (life->start > s)
1321             break;
1322     }
1323     /* nothing found? append */
1324     if (i == vs) {
1325         ir_life_entry_t e;
1326         if (life && life->end+1 == s)
1327         {
1328             /* previous life range can be merged in */
1329             life->end++;
1330             return true;
1331         }
1332         if (life && life->end >= s)
1333             return false;
1334         e.start = e.end = s;
1335         vec_push(self->life, e);
1336         return true;
1337     }
1338     /* found */
1339     if (before)
1340     {
1341         if (before->end + 1 == s &&
1342             life->start - 1 == s)
1343         {
1344             /* merge */
1345             before->end = life->end;
1346             vec_remove(self->life, i, 1);
1347             return true;
1348         }
1349         if (before->end + 1 == s)
1350         {
1351             /* extend before */
1352             before->end++;
1353             return true;
1354         }
1355         /* already contained */
1356         if (before->end >= s)
1357             return false;
1358     }
1359     /* extend */
1360     if (life->start - 1 == s)
1361     {
1362         life->start--;
1363         return true;
1364     }
1365     /* insert a new entry */
1366     new_entry.start = new_entry.end = s;
1367     return ir_value_life_insert(self, i, new_entry);
1368 }
1369
1370 static bool ir_value_life_merge_into(ir_value *self, const ir_value *other)
1371 {
1372     size_t i, myi;
1373
1374     if (!vec_size(other->life))
1375         return true;
1376
1377     if (!vec_size(self->life)) {
1378         size_t count = vec_size(other->life);
1379         ir_life_entry_t *life = vec_add(self->life, count);
1380         memcpy(life, other->life, count * sizeof(*life));
1381         return true;
1382     }
1383
1384     myi = 0;
1385     for (i = 0; i < vec_size(other->life); ++i)
1386     {
1387         const ir_life_entry_t *life = &other->life[i];
1388         while (true)
1389         {
1390             ir_life_entry_t *entry = &self->life[myi];
1391
1392             if (life->end+1 < entry->start)
1393             {
1394                 /* adding an interval before entry */
1395                 if (!ir_value_life_insert(self, myi, *life))
1396                     return false;
1397                 ++myi;
1398                 break;
1399             }
1400
1401             if (life->start <  entry->start &&
1402                 life->end+1 >= entry->start)
1403             {
1404                 /* starts earlier and overlaps */
1405                 entry->start = life->start;
1406             }
1407
1408             if (life->end   >  entry->end &&
1409                 life->start <= entry->end+1)
1410             {
1411                 /* ends later and overlaps */
1412                 entry->end = life->end;
1413             }
1414
1415             /* see if our change combines it with the next ranges */
1416             while (myi+1 < vec_size(self->life) &&
1417                    entry->end+1 >= self->life[1+myi].start)
1418             {
1419                 /* overlaps with (myi+1) */
1420                 if (entry->end < self->life[1+myi].end)
1421                     entry->end = self->life[1+myi].end;
1422                 vec_remove(self->life, myi+1, 1);
1423                 entry = &self->life[myi];
1424             }
1425
1426             /* see if we're after the entry */
1427             if (life->start > entry->end)
1428             {
1429                 ++myi;
1430                 /* append if we're at the end */
1431                 if (myi >= vec_size(self->life)) {
1432                     vec_push(self->life, *life);
1433                     break;
1434                 }
1435                 /* otherweise check the next range */
1436                 continue;
1437             }
1438             break;
1439         }
1440     }
1441     return true;
1442 }
1443
1444 static bool ir_values_overlap(const ir_value *a, const ir_value *b)
1445 {
1446     /* For any life entry in A see if it overlaps with
1447      * any life entry in B.
1448      * Note that the life entries are orderes, so we can make a
1449      * more efficient algorithm there than naively translating the
1450      * statement above.
1451      */
1452
1453     ir_life_entry_t *la, *lb, *enda, *endb;
1454
1455     /* first of all, if either has no life range, they cannot clash */
1456     if (!vec_size(a->life) || !vec_size(b->life))
1457         return false;
1458
1459     la = a->life;
1460     lb = b->life;
1461     enda = la + vec_size(a->life);
1462     endb = lb + vec_size(b->life);
1463     while (true)
1464     {
1465         /* check if the entries overlap, for that,
1466          * both must start before the other one ends.
1467          */
1468         if (la->start < lb->end &&
1469             lb->start < la->end)
1470         {
1471             return true;
1472         }
1473
1474         /* entries are ordered
1475          * one entry is earlier than the other
1476          * that earlier entry will be moved forward
1477          */
1478         if (la->start < lb->start)
1479         {
1480             /* order: A B, move A forward
1481              * check if we hit the end with A
1482              */
1483             if (++la == enda)
1484                 break;
1485         }
1486         else /* if (lb->start < la->start)  actually <= */
1487         {
1488             /* order: B A, move B forward
1489              * check if we hit the end with B
1490              */
1491             if (++lb == endb)
1492                 break;
1493         }
1494     }
1495     return false;
1496 }
1497
1498 /***********************************************************************
1499  *IR main operations
1500  */
1501
1502 static bool ir_check_unreachable(ir_block *self)
1503 {
1504     /* The IR should never have to deal with unreachable code */
1505     if (!self->final/* || OPTS_FLAG(ALLOW_UNREACHABLE_CODE)*/)
1506         return true;
1507     irerror(self->context, "unreachable statement (%s)", self->label);
1508     return false;
1509 }
1510
1511 bool ir_block_create_store_op(ir_block *self, lex_ctx_t ctx, int op, ir_value *target, ir_value *what)
1512 {
1513     ir_instr *in;
1514     if (!ir_check_unreachable(self))
1515         return false;
1516
1517     if (target->store == store_value &&
1518         (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC))
1519     {
1520         irerror(self->context, "cannot store to an SSA value");
1521         irerror(self->context, "trying to store: %s <- %s", target->name, what->name);
1522         irerror(self->context, "instruction: %s", util_instr_str[op]);
1523         return false;
1524     }
1525
1526     in = ir_instr_new(ctx, self, op);
1527     if (!in)
1528         return false;
1529
1530     if (!ir_instr_op(in, 0, target, (op < INSTR_STOREP_F || op > INSTR_STOREP_FNC)) ||
1531         !ir_instr_op(in, 1, what, false))
1532     {
1533         ir_instr_delete(in);
1534         return false;
1535     }
1536     vec_push(self->instr, in);
1537     return true;
1538 }
1539
1540 static bool ir_block_create_store(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1541 {
1542     int op = 0;
1543     int vtype;
1544     if (target->vtype == TYPE_VARIANT)
1545         vtype = what->vtype;
1546     else
1547         vtype = target->vtype;
1548
1549 #if 0
1550     if      (vtype == TYPE_FLOAT   && what->vtype == TYPE_INTEGER)
1551         op = INSTR_CONV_ITOF;
1552     else if (vtype == TYPE_INTEGER && what->vtype == TYPE_FLOAT)
1553         op = INSTR_CONV_FTOI;
1554 #endif
1555         op = type_store_instr[vtype];
1556
1557     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1558         if (op == INSTR_STORE_FLD && what->fieldtype == TYPE_VECTOR)
1559             op = INSTR_STORE_V;
1560     }
1561
1562     return ir_block_create_store_op(self, ctx, op, target, what);
1563 }
1564
1565 bool ir_block_create_storep(ir_block *self, lex_ctx_t ctx, ir_value *target, ir_value *what)
1566 {
1567     int op = 0;
1568     int vtype;
1569
1570     if (target->vtype != TYPE_POINTER)
1571         return false;
1572
1573     /* storing using pointer - target is a pointer, type must be
1574      * inferred from source
1575      */
1576     vtype = what->vtype;
1577
1578     op = type_storep_instr[vtype];
1579     if (OPTS_FLAG(ADJUST_VECTOR_FIELDS)) {
1580         if (op == INSTR_STOREP_FLD && what->fieldtype == TYPE_VECTOR)
1581             op = INSTR_STOREP_V;
1582     }
1583
1584     return ir_block_create_store_op(self, ctx, op, target, what);
1585 }
1586
1587 bool ir_block_create_return(ir_block *self, lex_ctx_t ctx, ir_value *v)
1588 {
1589     ir_instr *in;
1590     if (!ir_check_unreachable(self))
1591         return false;
1592
1593     self->final = true;
1594
1595     self->is_return = true;
1596     in = ir_instr_new(ctx, self, INSTR_RETURN);
1597     if (!in)
1598         return false;
1599
1600     if (v && !ir_instr_op(in, 0, v, false)) {
1601         ir_instr_delete(in);
1602         return false;
1603     }
1604
1605     vec_push(self->instr, in);
1606     return true;
1607 }
1608
1609 bool ir_block_create_if(ir_block *self, lex_ctx_t ctx, ir_value *v,
1610                         ir_block *ontrue, ir_block *onfalse)
1611 {
1612     ir_instr *in;
1613     if (!ir_check_unreachable(self))
1614         return false;
1615     self->final = true;
1616     /*in = ir_instr_new(ctx, self, (v->vtype == TYPE_STRING ? INSTR_IF_S : INSTR_IF_F));*/
1617     in = ir_instr_new(ctx, self, VINSTR_COND);
1618     if (!in)
1619         return false;
1620
1621     if (!ir_instr_op(in, 0, v, false)) {
1622         ir_instr_delete(in);
1623         return false;
1624     }
1625
1626     in->bops[0] = ontrue;
1627     in->bops[1] = onfalse;
1628
1629     vec_push(self->instr, in);
1630
1631     vec_push(self->exits, ontrue);
1632     vec_push(self->exits, onfalse);
1633     vec_push(ontrue->entries,  self);
1634     vec_push(onfalse->entries, self);
1635     return true;
1636 }
1637
1638 bool ir_block_create_jump(ir_block *self, lex_ctx_t ctx, ir_block *to)
1639 {
1640     ir_instr *in;
1641     if (!ir_check_unreachable(self))
1642         return false;
1643     self->final = true;
1644     in = ir_instr_new(ctx, self, VINSTR_JUMP);
1645     if (!in)
1646         return false;
1647
1648     in->bops[0] = to;
1649     vec_push(self->instr, in);
1650
1651     vec_push(self->exits, to);
1652     vec_push(to->entries, self);
1653     return true;
1654 }
1655
1656 bool ir_block_create_goto(ir_block *self, lex_ctx_t ctx, ir_block *to)
1657 {
1658     self->owner->flags |= IR_FLAG_HAS_GOTO;
1659     return ir_block_create_jump(self, ctx, to);
1660 }
1661
1662 ir_instr* ir_block_create_phi(ir_block *self, lex_ctx_t ctx, const char *label, int ot)
1663 {
1664     ir_value *out;
1665     ir_instr *in;
1666     if (!ir_check_unreachable(self))
1667         return NULL;
1668     in = ir_instr_new(ctx, self, VINSTR_PHI);
1669     if (!in)
1670         return NULL;
1671     out = ir_value_out(self->owner, label, store_value, ot);
1672     if (!out) {
1673         ir_instr_delete(in);
1674         return NULL;
1675     }
1676     if (!ir_instr_op(in, 0, out, true)) {
1677         ir_instr_delete(in);
1678         ir_value_delete(out);
1679         return NULL;
1680     }
1681     vec_push(self->instr, in);
1682     return in;
1683 }
1684
1685 ir_value* ir_phi_value(ir_instr *self)
1686 {
1687     return self->_ops[0];
1688 }
1689
1690 void ir_phi_add(ir_instr* self, ir_block *b, ir_value *v)
1691 {
1692     ir_phi_entry_t pe;
1693
1694     if (!vec_ir_block_find(self->owner->entries, b, NULL)) {
1695         /* Must not be possible to cause this, otherwise the AST
1696          * is doing something wrong.
1697          */
1698         irerror(self->context, "Invalid entry block for PHI");
1699         exit(EXIT_FAILURE);
1700     }
1701
1702     pe.value = v;
1703     pe.from = b;
1704     vec_push(v->reads, self);
1705     vec_push(self->phi, pe);
1706 }
1707
1708 /* call related code */
1709 ir_instr* ir_block_create_call(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *func, bool noreturn)
1710 {
1711     ir_value *out;
1712     ir_instr *in;
1713     if (!ir_check_unreachable(self))
1714         return NULL;
1715     in = ir_instr_new(ctx, self, (noreturn ? VINSTR_NRCALL : INSTR_CALL0));
1716     if (!in)
1717         return NULL;
1718     if (noreturn) {
1719         self->final = true;
1720         self->is_return = true;
1721     }
1722     out = ir_value_out(self->owner, label, (func->outtype == TYPE_VOID) ? store_return : store_value, func->outtype);
1723     if (!out) {
1724         ir_instr_delete(in);
1725         return NULL;
1726     }
1727     if (!ir_instr_op(in, 0, out, true) ||
1728         !ir_instr_op(in, 1, func, false))
1729     {
1730         ir_instr_delete(in);
1731         ir_value_delete(out);
1732         return NULL;
1733     }
1734     vec_push(self->instr, in);
1735     /*
1736     if (noreturn) {
1737         if (!ir_block_create_return(self, ctx, NULL)) {
1738             compile_error(ctx, "internal error: failed to generate dummy-return instruction");
1739             ir_instr_delete(in);
1740             return NULL;
1741         }
1742     }
1743     */
1744     return in;
1745 }
1746
1747 ir_value* ir_call_value(ir_instr *self)
1748 {
1749     return self->_ops[0];
1750 }
1751
1752 void ir_call_param(ir_instr* self, ir_value *v)
1753 {
1754     vec_push(self->params, v);
1755     vec_push(v->reads, self);
1756 }
1757
1758 /* binary op related code */
1759
1760 ir_value* ir_block_create_binop(ir_block *self, lex_ctx_t ctx,
1761                                 const char *label, int opcode,
1762                                 ir_value *left, ir_value *right)
1763 {
1764     int ot = TYPE_VOID;
1765     switch (opcode) {
1766         case INSTR_ADD_F:
1767         case INSTR_SUB_F:
1768         case INSTR_DIV_F:
1769         case INSTR_MUL_F:
1770         case INSTR_MUL_V:
1771         case INSTR_AND:
1772         case INSTR_OR:
1773 #if 0
1774         case INSTR_AND_I:
1775         case INSTR_AND_IF:
1776         case INSTR_AND_FI:
1777         case INSTR_OR_I:
1778         case INSTR_OR_IF:
1779         case INSTR_OR_FI:
1780 #endif
1781         case INSTR_BITAND:
1782         case INSTR_BITOR:
1783         case VINSTR_BITXOR:
1784 #if 0
1785         case INSTR_SUB_S: /* -- offset of string as float */
1786         case INSTR_MUL_IF:
1787         case INSTR_MUL_FI:
1788         case INSTR_DIV_IF:
1789         case INSTR_DIV_FI:
1790         case INSTR_BITOR_IF:
1791         case INSTR_BITOR_FI:
1792         case INSTR_BITAND_FI:
1793         case INSTR_BITAND_IF:
1794         case INSTR_EQ_I:
1795         case INSTR_NE_I:
1796 #endif
1797             ot = TYPE_FLOAT;
1798             break;
1799 #if 0
1800         case INSTR_ADD_I:
1801         case INSTR_ADD_IF:
1802         case INSTR_ADD_FI:
1803         case INSTR_SUB_I:
1804         case INSTR_SUB_FI:
1805         case INSTR_SUB_IF:
1806         case INSTR_MUL_I:
1807         case INSTR_DIV_I:
1808         case INSTR_BITAND_I:
1809         case INSTR_BITOR_I:
1810         case INSTR_XOR_I:
1811         case INSTR_RSHIFT_I:
1812         case INSTR_LSHIFT_I:
1813             ot = TYPE_INTEGER;
1814             break;
1815 #endif
1816         case INSTR_ADD_V:
1817         case INSTR_SUB_V:
1818         case INSTR_MUL_VF:
1819         case INSTR_MUL_FV:
1820         case VINSTR_BITAND_V:
1821         case VINSTR_BITOR_V:
1822         case VINSTR_BITXOR_V:
1823         case VINSTR_BITAND_VF:
1824         case VINSTR_BITOR_VF:
1825         case VINSTR_BITXOR_VF:
1826         case VINSTR_CROSS:
1827 #if 0
1828         case INSTR_DIV_VF:
1829         case INSTR_MUL_IV:
1830         case INSTR_MUL_VI:
1831 #endif
1832             ot = TYPE_VECTOR;
1833             break;
1834 #if 0
1835         case INSTR_ADD_SF:
1836             ot = TYPE_POINTER;
1837             break;
1838 #endif
1839     /*
1840      * after the following default case, the value of opcode can never
1841      * be 1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65
1842      */
1843         default:
1844             /* ranges: */
1845             /* boolean operations result in floats */
1846
1847             /*
1848              * opcode >= 10 takes true branch opcode is at least 10
1849              * opcode <= 23 takes false branch opcode is at least 24
1850              */
1851             if (opcode >= INSTR_EQ_F && opcode <= INSTR_GT)
1852                 ot = TYPE_FLOAT;
1853
1854             /*
1855              * At condition "opcode <= 23", the value of "opcode" must be
1856              * at least 24.
1857              * At condition "opcode <= 23", the value of "opcode" cannot be
1858              * equal to any of {1, 2, 3, 4, 5, 6, 7, 8, 9, 62, 63, 64, 65}.
1859              * The condition "opcode <= 23" cannot be true.
1860              *
1861              * Thus ot=2 (TYPE_FLOAT) can never be true
1862              */
1863 #if 0
1864             else if (opcode >= INSTR_LE && opcode <= INSTR_GT)
1865                 ot = TYPE_FLOAT;
1866             else if (opcode >= INSTR_LE_I && opcode <= INSTR_EQ_FI)
1867                 ot = TYPE_FLOAT;
1868 #endif
1869             break;
1870     };
1871     if (ot == TYPE_VOID) {
1872         /* The AST or parser were supposed to check this! */
1873         return NULL;
1874     }
1875
1876     return ir_block_create_general_instr(self, ctx, label, opcode, left, right, ot);
1877 }
1878
1879 ir_value* ir_block_create_unary(ir_block *self, lex_ctx_t ctx,
1880                                 const char *label, int opcode,
1881                                 ir_value *operand)
1882 {
1883     int ot = TYPE_FLOAT;
1884     switch (opcode) {
1885         case INSTR_NOT_F:
1886         case INSTR_NOT_V:
1887         case INSTR_NOT_S:
1888         case INSTR_NOT_ENT:
1889         case INSTR_NOT_FNC: /*
1890         case INSTR_NOT_I:   */
1891             ot = TYPE_FLOAT;
1892             break;
1893
1894         /*
1895          * Negation for virtual instructions is emulated with 0-value. Thankfully
1896          * the operand for 0 already exists so we just source it from here.
1897          */
1898         case VINSTR_NEG_F:
1899             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_F, NULL, operand, ot);
1900         case VINSTR_NEG_V:
1901             return ir_block_create_general_instr(self, ctx, label, INSTR_SUB_V, NULL, operand, TYPE_VECTOR);
1902
1903         default:
1904             ot = operand->vtype;
1905             break;
1906     };
1907     if (ot == TYPE_VOID) {
1908         /* The AST or parser were supposed to check this! */
1909         return NULL;
1910     }
1911
1912     /* let's use the general instruction creator and pass NULL for OPB */
1913     return ir_block_create_general_instr(self, ctx, label, opcode, operand, NULL, ot);
1914 }
1915
1916 static ir_value* ir_block_create_general_instr(ir_block *self, lex_ctx_t ctx, const char *label,
1917                                         int op, ir_value *a, ir_value *b, int outype)
1918 {
1919     ir_instr *instr;
1920     ir_value *out;
1921
1922     out = ir_value_out(self->owner, label, store_value, outype);
1923     if (!out)
1924         return NULL;
1925
1926     instr = ir_instr_new(ctx, self, op);
1927     if (!instr) {
1928         ir_value_delete(out);
1929         return NULL;
1930     }
1931
1932     if (!ir_instr_op(instr, 0, out, true) ||
1933         !ir_instr_op(instr, 1, a, false) ||
1934         !ir_instr_op(instr, 2, b, false) )
1935     {
1936         goto on_error;
1937     }
1938
1939     vec_push(self->instr, instr);
1940
1941     return out;
1942 on_error:
1943     ir_instr_delete(instr);
1944     ir_value_delete(out);
1945     return NULL;
1946 }
1947
1948 ir_value* ir_block_create_fieldaddress(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field)
1949 {
1950     ir_value *v;
1951
1952     /* Support for various pointer types todo if so desired */
1953     if (ent->vtype != TYPE_ENTITY)
1954         return NULL;
1955
1956     if (field->vtype != TYPE_FIELD)
1957         return NULL;
1958
1959     v = ir_block_create_general_instr(self, ctx, label, INSTR_ADDRESS, ent, field, TYPE_POINTER);
1960     v->fieldtype = field->fieldtype;
1961     return v;
1962 }
1963
1964 ir_value* ir_block_create_load_from_ent(ir_block *self, lex_ctx_t ctx, const char *label, ir_value *ent, ir_value *field, int outype)
1965 {
1966     int op;
1967     if (ent->vtype != TYPE_ENTITY)
1968         return NULL;
1969
1970     /* at some point we could redirect for TYPE_POINTER... but that could lead to carelessness */
1971     if (field->vtype != TYPE_FIELD)
1972         return NULL;
1973
1974     switch (outype)
1975     {
1976         case TYPE_FLOAT:    op = INSTR_LOAD_F;   break;
1977         case TYPE_VECTOR:   op = INSTR_LOAD_V;   break;
1978         case TYPE_STRING:   op = INSTR_LOAD_S;   break;
1979         case TYPE_FIELD:    op = INSTR_LOAD_FLD; break;
1980         case TYPE_ENTITY:   op = INSTR_LOAD_ENT; break;
1981         case TYPE_FUNCTION: op = INSTR_LOAD_FNC; break;
1982 #if 0
1983         case TYPE_POINTER: op = INSTR_LOAD_I;   break;
1984         case TYPE_INTEGER: op = INSTR_LOAD_I;   break;
1985 #endif
1986         default:
1987             irerror(self->context, "invalid type for ir_block_create_load_from_ent: %s", type_name[outype]);
1988             return NULL;
1989     }
1990
1991     return ir_block_create_general_instr(self, ctx, label, op, ent, field, outype);
1992 }
1993
1994 /* PHI resolving breaks the SSA, and must thus be the last
1995  * step before life-range calculation.
1996  */
1997
1998 static bool ir_block_naive_phi(ir_block *self);
1999 bool ir_function_naive_phi(ir_function *self)
2000 {
2001     size_t i;
2002
2003     for (i = 0; i < vec_size(self->blocks); ++i)
2004     {
2005         if (!ir_block_naive_phi(self->blocks[i]))
2006             return false;
2007     }
2008     return true;
2009 }
2010
2011 static bool ir_block_naive_phi(ir_block *self)
2012 {
2013     size_t i, p; /*, w;*/
2014     /* FIXME: optionally, create_phi can add the phis
2015      * to a list so we don't need to loop through blocks
2016      * - anyway: "don't optimize YET"
2017      */
2018     for (i = 0; i < vec_size(self->instr); ++i)
2019     {
2020         ir_instr *instr = self->instr[i];
2021         if (instr->opcode != VINSTR_PHI)
2022             continue;
2023
2024         vec_remove(self->instr, i, 1);
2025         --i; /* NOTE: i+1 below */
2026
2027         for (p = 0; p < vec_size(instr->phi); ++p)
2028         {
2029             ir_value *v = instr->phi[p].value;
2030             ir_block *b = instr->phi[p].from;
2031
2032             if (v->store == store_value &&
2033                 vec_size(v->reads) == 1 &&
2034                 vec_size(v->writes) == 1)
2035             {
2036                 /* replace the value */
2037                 if (!ir_instr_op(v->writes[0], 0, instr->_ops[0], true))
2038                     return false;
2039             }
2040             else
2041             {
2042                 /* force a move instruction */
2043                 ir_instr *prevjump = vec_last(b->instr);
2044                 vec_pop(b->instr);
2045                 b->final = false;
2046                 instr->_ops[0]->store = store_global;
2047                 if (!ir_block_create_store(b, instr->context, instr->_ops[0], v))
2048                     return false;
2049                 instr->_ops[0]->store = store_value;
2050                 vec_push(b->instr, prevjump);
2051                 b->final = true;
2052             }
2053         }
2054         ir_instr_delete(instr);
2055     }
2056     return true;
2057 }
2058
2059 /***********************************************************************
2060  *IR Temp allocation code
2061  * Propagating value life ranges by walking through the function backwards
2062  * until no more changes are made.
2063  * In theory this should happen once more than once for every nested loop
2064  * level.
2065  * Though this implementation might run an additional time for if nests.
2066  */
2067
2068 /* Enumerate instructions used by value's life-ranges
2069  */
2070 static void ir_block_enumerate(ir_block *self, size_t *_eid)
2071 {
2072     size_t i;
2073     size_t eid = *_eid;
2074     for (i = 0; i < vec_size(self->instr); ++i)
2075     {
2076         self->instr[i]->eid = eid++;
2077     }
2078     *_eid = eid;
2079 }
2080
2081 /* Enumerate blocks and instructions.
2082  * The block-enumeration is unordered!
2083  * We do not really use the block enumreation, however
2084  * the instruction enumeration is important for life-ranges.
2085  */
2086 void ir_function_enumerate(ir_function *self)
2087 {
2088     size_t i;
2089     size_t instruction_id = 0;
2090     for (i = 0; i < vec_size(self->blocks); ++i)
2091     {
2092         /* each block now gets an additional "entry" instruction id
2093          * we can use to avoid point-life issues
2094          */
2095         self->blocks[i]->entry_id = instruction_id;
2096         ++instruction_id;
2097
2098         self->blocks[i]->eid = i;
2099         ir_block_enumerate(self->blocks[i], &instruction_id);
2100     }
2101 }
2102
2103 /* Local-value allocator
2104  * After finishing creating the liferange of all values used in a function
2105  * we can allocate their global-positions.
2106  * This is the counterpart to register-allocation in register machines.
2107  */
2108 typedef struct {
2109     ir_value **locals;
2110     size_t    *sizes;
2111     size_t    *positions;
2112     bool      *unique;
2113 } function_allocator;
2114
2115 static bool function_allocator_alloc(function_allocator *alloc, ir_value *var)
2116 {
2117     ir_value *slot;
2118     size_t vsize = ir_value_sizeof(var);
2119
2120     var->code.local = vec_size(alloc->locals);
2121
2122     slot = ir_value_var("reg", store_global, var->vtype);
2123     if (!slot)
2124         return false;
2125
2126     if (!ir_value_life_merge_into(slot, var))
2127         goto localerror;
2128
2129     vec_push(alloc->locals, slot);
2130     vec_push(alloc->sizes, vsize);
2131     vec_push(alloc->unique, var->unique_life);
2132
2133     return true;
2134
2135 localerror:
2136     ir_value_delete(slot);
2137     return false;
2138 }
2139
2140 static bool ir_function_allocator_assign(ir_function *self, function_allocator *alloc, ir_value *v)
2141 {
2142     size_t a;
2143     ir_value *slot;
2144
2145     if (v->unique_life)
2146         return function_allocator_alloc(alloc, v);
2147
2148     for (a = 0; a < vec_size(alloc->locals); ++a)
2149     {
2150         /* if it's reserved for a unique liferange: skip */
2151         if (alloc->unique[a])
2152             continue;
2153
2154         slot = alloc->locals[a];
2155
2156         /* never resize parameters
2157          * will be required later when overlapping temps + locals
2158          */
2159         if (a < vec_size(self->params) &&
2160             alloc->sizes[a] < ir_value_sizeof(v))
2161         {
2162             continue;
2163         }
2164
2165         if (ir_values_overlap(v, slot))
2166             continue;
2167
2168         if (!ir_value_life_merge_into(slot, v))
2169             return false;
2170
2171         /* adjust size for this slot */
2172         if (alloc->sizes[a] < ir_value_sizeof(v))
2173             alloc->sizes[a] = ir_value_sizeof(v);
2174
2175         v->code.local = a;
2176         return true;
2177     }
2178     if (a >= vec_size(alloc->locals)) {
2179         if (!function_allocator_alloc(alloc, v))
2180             return false;
2181     }
2182     return true;
2183 }
2184
2185 bool ir_function_allocate_locals(ir_function *self)
2186 {
2187     size_t i;
2188     bool   retval = true;
2189     size_t pos;
2190     bool   opt_gt = OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS);
2191
2192     ir_value *v;
2193
2194     function_allocator lockalloc, globalloc;
2195
2196     if (!vec_size(self->locals) && !vec_size(self->values))
2197         return true;
2198
2199     globalloc.locals    = NULL;
2200     globalloc.sizes     = NULL;
2201     globalloc.positions = NULL;
2202     globalloc.unique    = NULL;
2203     lockalloc.locals    = NULL;
2204     lockalloc.sizes     = NULL;
2205     lockalloc.positions = NULL;
2206     lockalloc.unique    = NULL;
2207
2208     for (i = 0; i < vec_size(self->locals); ++i)
2209     {
2210         v = self->locals[i];
2211         if ((self->flags & IR_FLAG_MASK_NO_LOCAL_TEMPS) || !OPTS_OPTIMIZATION(OPTIM_LOCAL_TEMPS)) {
2212             v->locked      = true;
2213             v->unique_life = true;
2214         }
2215         else if (i >= vec_size(self->params))
2216             break;
2217         else
2218             v->locked = true; /* lock parameters locals */
2219         if (!function_allocator_alloc((v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2220             goto error;
2221     }
2222     for (; i < vec_size(self->locals); ++i)
2223     {
2224         v = self->locals[i];
2225         if (!vec_size(v->life))
2226             continue;
2227         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2228             goto error;
2229     }
2230
2231     /* Allocate a slot for any value that still exists */
2232     for (i = 0; i < vec_size(self->values); ++i)
2233     {
2234         v = self->values[i];
2235
2236         if (!vec_size(v->life))
2237             continue;
2238
2239         /* CALL optimization:
2240          * If the value is a parameter-temp: 1 write, 1 read from a CALL
2241          * and it's not "locked", write it to the OFS_PARM directly.
2242          */
2243         if (OPTS_OPTIMIZATION(OPTIM_CALL_STORES) && !v->locked && !v->unique_life) {
2244             if (vec_size(v->reads) == 1 && vec_size(v->writes) == 1 &&
2245                 (v->reads[0]->opcode == VINSTR_NRCALL ||
2246                  (v->reads[0]->opcode >= INSTR_CALL0 && v->reads[0]->opcode <= INSTR_CALL8)
2247                 )
2248                )
2249             {
2250                 size_t    param;
2251                 ir_instr *call = v->reads[0];
2252                 if (!vec_ir_value_find(call->params, v, &param)) {
2253                     irerror(call->context, "internal error: unlocked parameter %s not found", v->name);
2254                     goto error;
2255                 }
2256                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2257                 v->callparam = true;
2258                 if (param < 8)
2259                     ir_value_code_setaddr(v, OFS_PARM0 + 3*param);
2260                 else {
2261                     size_t nprotos = vec_size(self->owner->extparam_protos);
2262                     ir_value *ep;
2263                     param -= 8;
2264                     if (nprotos > param)
2265                         ep = self->owner->extparam_protos[param];
2266                     else
2267                     {
2268                         ep = ir_gen_extparam_proto(self->owner);
2269                         while (++nprotos <= param)
2270                             ep = ir_gen_extparam_proto(self->owner);
2271                     }
2272                     ir_instr_op(v->writes[0], 0, ep, true);
2273                     call->params[param+8] = ep;
2274                 }
2275                 continue;
2276             }
2277             if (vec_size(v->writes) == 1 && v->writes[0]->opcode == INSTR_CALL0)
2278             {
2279                 v->store = store_return;
2280                 if (v->members[0]) v->members[0]->store = store_return;
2281                 if (v->members[1]) v->members[1]->store = store_return;
2282                 if (v->members[2]) v->members[2]->store = store_return;
2283                 ++opts_optimizationcount[OPTIM_CALL_STORES];
2284                 continue;
2285             }
2286         }
2287
2288         if (!ir_function_allocator_assign(self, (v->locked || !opt_gt ? &lockalloc : &globalloc), v))
2289             goto error;
2290     }
2291
2292     if (!lockalloc.sizes && !globalloc.sizes) {
2293         goto cleanup;
2294     }
2295     vec_push(lockalloc.positions, 0);
2296     vec_push(globalloc.positions, 0);
2297
2298     /* Adjust slot positions based on sizes */
2299     if (lockalloc.sizes) {
2300         pos = (vec_size(lockalloc.sizes) ? lockalloc.positions[0] : 0);
2301         for (i = 1; i < vec_size(lockalloc.sizes); ++i)
2302         {
2303             pos = lockalloc.positions[i-1] + lockalloc.sizes[i-1];
2304             vec_push(lockalloc.positions, pos);
2305         }
2306         self->allocated_locals = pos + vec_last(lockalloc.sizes);
2307     }
2308     if (globalloc.sizes) {
2309         pos = (vec_size(globalloc.sizes) ? globalloc.positions[0] : 0);
2310         for (i = 1; i < vec_size(globalloc.sizes); ++i)
2311         {
2312             pos = globalloc.positions[i-1] + globalloc.sizes[i-1];
2313             vec_push(globalloc.positions, pos);
2314         }
2315         self->globaltemps = pos + vec_last(globalloc.sizes);
2316     }
2317
2318     /* Locals need to know their new position */
2319     for (i = 0; i < vec_size(self->locals); ++i) {
2320         v = self->locals[i];
2321         if (v->locked || !opt_gt)
2322             v->code.local = lockalloc.positions[v->code.local];
2323         else
2324             v->code.local = globalloc.positions[v->code.local];
2325     }
2326     /* Take over the actual slot positions on values */
2327     for (i = 0; i < vec_size(self->values); ++i) {
2328         v = self->values[i];
2329         if (v->locked || !opt_gt)
2330             v->code.local = lockalloc.positions[v->code.local];
2331         else
2332             v->code.local = globalloc.positions[v->code.local];
2333     }
2334
2335     goto cleanup;
2336
2337 error:
2338     retval = false;
2339 cleanup:
2340     for (i = 0; i < vec_size(lockalloc.locals); ++i)
2341         ir_value_delete(lockalloc.locals[i]);
2342     for (i = 0; i < vec_size(globalloc.locals); ++i)
2343         ir_value_delete(globalloc.locals[i]);
2344     vec_free(globalloc.unique);
2345     vec_free(globalloc.locals);
2346     vec_free(globalloc.sizes);
2347     vec_free(globalloc.positions);
2348     vec_free(lockalloc.unique);
2349     vec_free(lockalloc.locals);
2350     vec_free(lockalloc.sizes);
2351     vec_free(lockalloc.positions);
2352     return retval;
2353 }
2354
2355 /* Get information about which operand
2356  * is read from, or written to.
2357  */
2358 static void ir_op_read_write(int op, size_t *read, size_t *write)
2359 {
2360     switch (op)
2361     {
2362     case VINSTR_JUMP:
2363     case INSTR_GOTO:
2364         *write = 0;
2365         *read = 0;
2366         break;
2367     case INSTR_IF:
2368     case INSTR_IFNOT:
2369 #if 0
2370     case INSTR_IF_S:
2371     case INSTR_IFNOT_S:
2372 #endif
2373     case INSTR_RETURN:
2374     case VINSTR_COND:
2375         *write = 0;
2376         *read = 1;
2377         break;
2378     case INSTR_STOREP_F:
2379     case INSTR_STOREP_V:
2380     case INSTR_STOREP_S:
2381     case INSTR_STOREP_ENT:
2382     case INSTR_STOREP_FLD:
2383     case INSTR_STOREP_FNC:
2384         *write = 0;
2385         *read  = 7;
2386         break;
2387     default:
2388         *write = 1;
2389         *read = 6;
2390         break;
2391     };
2392 }
2393
2394 static bool ir_block_living_add_instr(ir_block *self, size_t eid)
2395 {
2396     size_t       i;
2397     const size_t vs = vec_size(self->living);
2398     bool         changed = false;
2399     for (i = 0; i != vs; ++i)
2400     {
2401         if (ir_value_life_merge(self->living[i], eid))
2402             changed = true;
2403     }
2404     return changed;
2405 }
2406
2407 static bool ir_block_living_lock(ir_block *self)
2408 {
2409     size_t i;
2410     bool changed = false;
2411     for (i = 0; i != vec_size(self->living); ++i)
2412     {
2413         if (!self->living[i]->locked) {
2414             self->living[i]->locked = true;
2415             changed = true;
2416         }
2417     }
2418     return changed;
2419 }
2420
2421 static bool ir_block_life_propagate(ir_block *self, bool *changed)
2422 {
2423     ir_instr *instr;
2424     ir_value *value;
2425     size_t i, o, p, mem, cnt;
2426     /* bitmasks which operands are read from or written to */
2427     size_t read, write;
2428     char dbg_ind[16];
2429     dbg_ind[0] = '#';
2430     dbg_ind[1] = '0';
2431     (void)dbg_ind;
2432
2433     vec_free(self->living);
2434
2435     p = vec_size(self->exits);
2436     for (i = 0; i < p; ++i) {
2437         ir_block *prev = self->exits[i];
2438         cnt = vec_size(prev->living);
2439         for (o = 0; o < cnt; ++o) {
2440             if (!vec_ir_value_find(self->living, prev->living[o], NULL))
2441                 vec_push(self->living, prev->living[o]);
2442         }
2443     }
2444
2445     i = vec_size(self->instr);
2446     while (i)
2447     { --i;
2448         instr = self->instr[i];
2449
2450         /* See which operands are read and write operands */
2451         ir_op_read_write(instr->opcode, &read, &write);
2452
2453         /* Go through the 3 main operands
2454          * writes first, then reads
2455          */
2456         for (o = 0; o < 3; ++o)
2457         {
2458             if (!instr->_ops[o]) /* no such operand */
2459                 continue;
2460
2461             value = instr->_ops[o];
2462
2463             /* We only care about locals */
2464             /* we also calculate parameter liferanges so that locals
2465              * can take up parameter slots */
2466             if (value->store != store_value &&
2467                 value->store != store_local &&
2468                 value->store != store_param)
2469                 continue;
2470
2471             /* write operands */
2472             /* When we write to a local, we consider it "dead" for the
2473              * remaining upper part of the function, since in SSA a value
2474              * can only be written once (== created)
2475              */
2476             if (write & (1<<o))
2477             {
2478                 size_t idx;
2479                 bool in_living = vec_ir_value_find(self->living, value, &idx);
2480                 if (!in_living)
2481                 {
2482                     /* If the value isn't alive it hasn't been read before... */
2483                     /* TODO: See if the warning can be emitted during parsing or AST processing
2484                      * otherwise have warning printed here.
2485                      * IF printing a warning here: include filecontext_t,
2486                      * and make sure it's only printed once
2487                      * since this function is run multiple times.
2488                      */
2489                     /* con_err( "Value only written %s\n", value->name); */
2490                     if (ir_value_life_merge(value, instr->eid))
2491                         *changed = true;
2492                 } else {
2493                     /* since 'living' won't contain it
2494                      * anymore, merge the value, since
2495                      * (A) doesn't.
2496                      */
2497                     if (ir_value_life_merge(value, instr->eid))
2498                         *changed = true;
2499                     /* Then remove */
2500                     vec_remove(self->living, idx, 1);
2501                 }
2502                 /* Removing a vector removes all members */
2503                 for (mem = 0; mem < 3; ++mem) {
2504                     if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], &idx)) {
2505                         if (ir_value_life_merge(value->members[mem], instr->eid))
2506                             *changed = true;
2507                         vec_remove(self->living, idx, 1);
2508                     }
2509                 }
2510                 /* Removing the last member removes the vector */
2511                 if (value->memberof) {
2512                     value = value->memberof;
2513                     for (mem = 0; mem < 3; ++mem) {
2514                         if (value->members[mem] && vec_ir_value_find(self->living, value->members[mem], NULL))
2515                             break;
2516                     }
2517                     if (mem == 3 && vec_ir_value_find(self->living, value, &idx)) {
2518                         if (ir_value_life_merge(value, instr->eid))
2519                             *changed = true;
2520                         vec_remove(self->living, idx, 1);
2521                     }
2522                 }
2523             }
2524         }
2525
2526         /* These operations need a special case as they can break when using
2527          * same source and destination operand otherwise, as the engine may
2528          * read the source multiple times. */
2529         if (instr->opcode == INSTR_MUL_VF ||
2530             instr->opcode == VINSTR_BITAND_VF ||
2531             instr->opcode == VINSTR_BITOR_VF ||
2532             instr->opcode == VINSTR_BITXOR ||
2533             instr->opcode == VINSTR_BITXOR_VF ||
2534             instr->opcode == VINSTR_BITXOR_V ||
2535             instr->opcode == VINSTR_CROSS)
2536         {
2537             value = instr->_ops[2];
2538             /* the float source will get an additional lifetime */
2539             if (ir_value_life_merge(value, instr->eid+1))
2540                 *changed = true;
2541             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2542                 *changed = true;
2543         }
2544
2545         if (instr->opcode == INSTR_MUL_FV ||
2546             instr->opcode == INSTR_LOAD_V ||
2547             instr->opcode == VINSTR_BITXOR ||
2548             instr->opcode == VINSTR_BITXOR_VF ||
2549             instr->opcode == VINSTR_BITXOR_V ||
2550             instr->opcode == VINSTR_CROSS)
2551         {
2552             value = instr->_ops[1];
2553             /* the float source will get an additional lifetime */
2554             if (ir_value_life_merge(value, instr->eid+1))
2555                 *changed = true;
2556             if (value->memberof && ir_value_life_merge(value->memberof, instr->eid+1))
2557                 *changed = true;
2558         }
2559
2560         for (o = 0; o < 3; ++o)
2561         {
2562             if (!instr->_ops[o]) /* no such operand */
2563                 continue;
2564
2565             value = instr->_ops[o];
2566
2567             /* We only care about locals */
2568             /* we also calculate parameter liferanges so that locals
2569              * can take up parameter slots */
2570             if (value->store != store_value &&
2571                 value->store != store_local &&
2572                 value->store != store_param)
2573                 continue;
2574
2575             /* read operands */
2576             if (read & (1<<o))
2577             {
2578                 if (!vec_ir_value_find(self->living, value, NULL))
2579                     vec_push(self->living, value);
2580                 /* reading adds the full vector */
2581                 if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2582                     vec_push(self->living, value->memberof);
2583                 for (mem = 0; mem < 3; ++mem) {
2584                     if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2585                         vec_push(self->living, value->members[mem]);
2586                 }
2587             }
2588         }
2589         /* PHI operands are always read operands */
2590         for (p = 0; p < vec_size(instr->phi); ++p)
2591         {
2592             value = instr->phi[p].value;
2593             if (!vec_ir_value_find(self->living, value, NULL))
2594                 vec_push(self->living, value);
2595             /* reading adds the full vector */
2596             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2597                 vec_push(self->living, value->memberof);
2598             for (mem = 0; mem < 3; ++mem) {
2599                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2600                     vec_push(self->living, value->members[mem]);
2601             }
2602         }
2603
2604         /* on a call, all these values must be "locked" */
2605         if (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8) {
2606             if (ir_block_living_lock(self))
2607                 *changed = true;
2608         }
2609         /* call params are read operands too */
2610         for (p = 0; p < vec_size(instr->params); ++p)
2611         {
2612             value = instr->params[p];
2613             if (!vec_ir_value_find(self->living, value, NULL))
2614                 vec_push(self->living, value);
2615             /* reading adds the full vector */
2616             if (value->memberof && !vec_ir_value_find(self->living, value->memberof, NULL))
2617                 vec_push(self->living, value->memberof);
2618             for (mem = 0; mem < 3; ++mem) {
2619                 if (value->members[mem] && !vec_ir_value_find(self->living, value->members[mem], NULL))
2620                     vec_push(self->living, value->members[mem]);
2621             }
2622         }
2623
2624         /* (A) */
2625         if (ir_block_living_add_instr(self, instr->eid))
2626             *changed = true;
2627     }
2628     /* the "entry" instruction ID */
2629     if (ir_block_living_add_instr(self, self->entry_id))
2630         *changed = true;
2631
2632     return true;
2633 }
2634
2635 bool ir_function_calculate_liferanges(ir_function *self)
2636 {
2637     size_t i, s;
2638     bool changed;
2639
2640     /* parameters live at 0 */
2641     for (i = 0; i < vec_size(self->params); ++i)
2642         if (!ir_value_life_merge(self->locals[i], 0))
2643             compile_error(self->context, "internal error: failed value-life merging");
2644
2645     do {
2646         self->run_id++;
2647         changed = false;
2648         i = vec_size(self->blocks);
2649         while (i--) {
2650             ir_block_life_propagate(self->blocks[i], &changed);
2651         }
2652     } while (changed);
2653
2654     if (vec_size(self->blocks)) {
2655         ir_block *block = self->blocks[0];
2656         for (i = 0; i < vec_size(block->living); ++i) {
2657             ir_value *v = block->living[i];
2658             if (v->store != store_local)
2659                 continue;
2660             if (v->vtype == TYPE_VECTOR)
2661                 continue;
2662             self->flags |= IR_FLAG_HAS_UNINITIALIZED;
2663             /* find the instruction reading from it */
2664             for (s = 0; s < vec_size(v->reads); ++s) {
2665                 if (v->reads[s]->eid == v->life[0].end)
2666                     break;
2667             }
2668             if (s < vec_size(v->reads)) {
2669                 if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2670                               "variable `%s` may be used uninitialized in this function\n"
2671                               " -> %s:%i",
2672                               v->name,
2673                               v->reads[s]->context.file, v->reads[s]->context.line)
2674                    )
2675                 {
2676                     return false;
2677                 }
2678                 continue;
2679             }
2680             if (v->memberof) {
2681                 ir_value *vec = v->memberof;
2682                 for (s = 0; s < vec_size(vec->reads); ++s) {
2683                     if (vec->reads[s]->eid == v->life[0].end)
2684                         break;
2685                 }
2686                 if (s < vec_size(vec->reads)) {
2687                     if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2688                                   "variable `%s` may be used uninitialized in this function\n"
2689                                   " -> %s:%i",
2690                                   v->name,
2691                                   vec->reads[s]->context.file, vec->reads[s]->context.line)
2692                        )
2693                     {
2694                         return false;
2695                     }
2696                     continue;
2697                 }
2698             }
2699             if (irwarning(v->context, WARN_USED_UNINITIALIZED,
2700                           "variable `%s` may be used uninitialized in this function", v->name))
2701             {
2702                 return false;
2703             }
2704         }
2705     }
2706     return true;
2707 }
2708
2709 /***********************************************************************
2710  *IR Code-Generation
2711  *
2712  * Since the IR has the convention of putting 'write' operands
2713  * at the beginning, we have to rotate the operands of instructions
2714  * properly in order to generate valid QCVM code.
2715  *
2716  * Having destinations at a fixed position is more convenient. In QC
2717  * this is *mostly* OPC,  but FTE adds at least 2 instructions which
2718  * read from from OPA,  and store to OPB rather than OPC.   Which is
2719  * partially the reason why the implementation of these instructions
2720  * in darkplaces has been delayed for so long.
2721  *
2722  * Breaking conventions is annoying...
2723  */
2724 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal);
2725
2726 static bool gen_global_field(code_t *code, ir_value *global)
2727 {
2728     if (global->hasvalue)
2729     {
2730         ir_value *fld = global->constval.vpointer;
2731         if (!fld) {
2732             irerror(global->context, "Invalid field constant with no field: %s", global->name);
2733             return false;
2734         }
2735
2736         /* copy the field's value */
2737         ir_value_code_setaddr(global, vec_size(code->globals));
2738         vec_push(code->globals, fld->code.fieldaddr);
2739         if (global->fieldtype == TYPE_VECTOR) {
2740             vec_push(code->globals, fld->code.fieldaddr+1);
2741             vec_push(code->globals, fld->code.fieldaddr+2);
2742         }
2743     }
2744     else
2745     {
2746         ir_value_code_setaddr(global, vec_size(code->globals));
2747         vec_push(code->globals, 0);
2748         if (global->fieldtype == TYPE_VECTOR) {
2749             vec_push(code->globals, 0);
2750             vec_push(code->globals, 0);
2751         }
2752     }
2753     if (global->code.globaladdr < 0)
2754         return false;
2755     return true;
2756 }
2757
2758 static bool gen_global_pointer(code_t *code, ir_value *global)
2759 {
2760     if (global->hasvalue)
2761     {
2762         ir_value *target = global->constval.vpointer;
2763         if (!target) {
2764             irerror(global->context, "Invalid pointer constant: %s", global->name);
2765             /* NULL pointers are pointing to the NULL constant, which also
2766              * sits at address 0, but still has an ir_value for itself.
2767              */
2768             return false;
2769         }
2770
2771         /* Here, relocations ARE possible - in fteqcc-enhanced-qc:
2772          * void() foo; <- proto
2773          * void() *fooptr = &foo;
2774          * void() foo = { code }
2775          */
2776         if (!target->code.globaladdr) {
2777             /* FIXME: Check for the constant nullptr ir_value!
2778              * because then code.globaladdr being 0 is valid.
2779              */
2780             irerror(global->context, "FIXME: Relocation support");
2781             return false;
2782         }
2783
2784         ir_value_code_setaddr(global, vec_size(code->globals));
2785         vec_push(code->globals, target->code.globaladdr);
2786     }
2787     else
2788     {
2789         ir_value_code_setaddr(global, vec_size(code->globals));
2790         vec_push(code->globals, 0);
2791     }
2792     if (global->code.globaladdr < 0)
2793         return false;
2794     return true;
2795 }
2796
2797 static bool gen_blocks_recursive(code_t *code, ir_function *func, ir_block *block)
2798 {
2799     prog_section_statement_t stmt;
2800     ir_instr *instr;
2801     ir_block *target;
2802     ir_block *ontrue;
2803     ir_block *onfalse;
2804     size_t    stidx;
2805     size_t    i;
2806     int       j;
2807
2808     block->generated = true;
2809     block->code_start = vec_size(code->statements);
2810     for (i = 0; i < vec_size(block->instr); ++i)
2811     {
2812         instr = block->instr[i];
2813
2814         if (instr->opcode == VINSTR_PHI) {
2815             irerror(block->context, "cannot generate virtual instruction (phi)");
2816             return false;
2817         }
2818
2819         if (instr->opcode == VINSTR_JUMP) {
2820             target = instr->bops[0];
2821             /* for uncoditional jumps, if the target hasn't been generated
2822              * yet, we generate them right here.
2823              */
2824             if (!target->generated)
2825                 return gen_blocks_recursive(code, func, target);
2826
2827             /* otherwise we generate a jump instruction */
2828             stmt.opcode = INSTR_GOTO;
2829             stmt.o1.s1 = (target->code_start) - vec_size(code->statements);
2830             stmt.o2.s1 = 0;
2831             stmt.o3.s1 = 0;
2832             if (stmt.o1.s1 != 1)
2833                 code_push_statement(code, &stmt, instr->context);
2834
2835             /* no further instructions can be in this block */
2836             return true;
2837         }
2838
2839         if (instr->opcode == VINSTR_BITXOR) {
2840             stmt.opcode = INSTR_BITOR;
2841             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2842             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2843             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2844             code_push_statement(code, &stmt, instr->context);
2845             stmt.opcode = INSTR_BITAND;
2846             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2847             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2848             stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2849             code_push_statement(code, &stmt, instr->context);
2850             stmt.opcode = INSTR_SUB_F;
2851             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2852             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2853             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2854             code_push_statement(code, &stmt, instr->context);
2855
2856             /* instruction generated */
2857             continue;
2858         }
2859
2860         if (instr->opcode == VINSTR_BITAND_V) {
2861             stmt.opcode = INSTR_BITAND;
2862             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2863             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2864             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2865             code_push_statement(code, &stmt, instr->context);
2866             ++stmt.o1.s1;
2867             ++stmt.o2.s1;
2868             ++stmt.o3.s1;
2869             code_push_statement(code, &stmt, instr->context);
2870             ++stmt.o1.s1;
2871             ++stmt.o2.s1;
2872             ++stmt.o3.s1;
2873             code_push_statement(code, &stmt, instr->context);
2874
2875             /* instruction generated */
2876             continue;
2877         }
2878
2879         if (instr->opcode == VINSTR_BITOR_V) {
2880             stmt.opcode = INSTR_BITOR;
2881             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2882             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2883             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2884             code_push_statement(code, &stmt, instr->context);
2885             ++stmt.o1.s1;
2886             ++stmt.o2.s1;
2887             ++stmt.o3.s1;
2888             code_push_statement(code, &stmt, instr->context);
2889             ++stmt.o1.s1;
2890             ++stmt.o2.s1;
2891             ++stmt.o3.s1;
2892             code_push_statement(code, &stmt, instr->context);
2893
2894             /* instruction generated */
2895             continue;
2896         }
2897
2898         if (instr->opcode == VINSTR_BITXOR_V) {
2899             for (j = 0; j < 3; ++j) {
2900                 stmt.opcode = INSTR_BITOR;
2901                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2902                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + j;
2903                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2904                 code_push_statement(code, &stmt, instr->context);
2905                 stmt.opcode = INSTR_BITAND;
2906                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2907                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + j;
2908                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2909                 code_push_statement(code, &stmt, instr->context);
2910             }
2911             stmt.opcode = INSTR_SUB_V;
2912             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2913             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2914             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2915             code_push_statement(code, &stmt, instr->context);
2916
2917             /* instruction generated */
2918             continue;
2919         }
2920
2921         if (instr->opcode == VINSTR_BITAND_VF) {
2922             stmt.opcode = INSTR_BITAND;
2923             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2924             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2925             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2926             code_push_statement(code, &stmt, instr->context);
2927             ++stmt.o1.s1;
2928             ++stmt.o3.s1;
2929             code_push_statement(code, &stmt, instr->context);
2930             ++stmt.o1.s1;
2931             ++stmt.o3.s1;
2932             code_push_statement(code, &stmt, instr->context);
2933
2934             /* instruction generated */
2935             continue;
2936         }
2937
2938         if (instr->opcode == VINSTR_BITOR_VF) {
2939             stmt.opcode = INSTR_BITOR;
2940             stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]);
2941             stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2942             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2943             code_push_statement(code, &stmt, instr->context);
2944             ++stmt.o1.s1;
2945             ++stmt.o3.s1;
2946             code_push_statement(code, &stmt, instr->context);
2947             ++stmt.o1.s1;
2948             ++stmt.o3.s1;
2949             code_push_statement(code, &stmt, instr->context);
2950
2951             /* instruction generated */
2952             continue;
2953         }
2954
2955         if (instr->opcode == VINSTR_BITXOR_VF) {
2956             for (j = 0; j < 3; ++j) {
2957                 stmt.opcode = INSTR_BITOR;
2958                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2959                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2960                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2961                 code_push_statement(code, &stmt, instr->context);
2962                 stmt.opcode = INSTR_BITAND;
2963                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + j;
2964                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]);
2965                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2966                 code_push_statement(code, &stmt, instr->context);
2967             }
2968             stmt.opcode = INSTR_SUB_V;
2969             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2970             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2971             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2972             code_push_statement(code, &stmt, instr->context);
2973
2974             /* instruction generated */
2975             continue;
2976         }
2977
2978         if (instr->opcode == VINSTR_CROSS) {
2979             stmt.opcode = INSTR_MUL_F;
2980             for (j = 0; j < 3; ++j) {
2981                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + (j + 1) % 3;
2982                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + (j + 2) % 3;
2983                 stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]) + j;
2984                 code_push_statement(code, &stmt, instr->context);
2985                 stmt.o1.s1 = ir_value_code_addr(instr->_ops[1]) + (j + 2) % 3;
2986                 stmt.o2.s1 = ir_value_code_addr(instr->_ops[2]) + (j + 1) % 3;
2987                 stmt.o3.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]) + j;
2988                 code_push_statement(code, &stmt, instr->context);
2989             }
2990             stmt.opcode = INSTR_SUB_V;
2991             stmt.o1.s1 = ir_value_code_addr(instr->_ops[0]);
2992             stmt.o2.s1 = ir_value_code_addr(func->owner->vinstr_temp[0]);
2993             stmt.o3.s1 = ir_value_code_addr(instr->_ops[0]);
2994             code_push_statement(code, &stmt, instr->context);
2995
2996             /* instruction generated */
2997             continue;
2998         }
2999
3000         if (instr->opcode == VINSTR_COND) {
3001             ontrue  = instr->bops[0];
3002             onfalse = instr->bops[1];
3003             /* TODO: have the AST signal which block should
3004              * come first: eg. optimize IFs without ELSE...
3005              */
3006
3007             stmt.o1.u1 = ir_value_code_addr(instr->_ops[0]);
3008             stmt.o2.u1 = 0;
3009             stmt.o3.s1 = 0;
3010
3011             if (ontrue->generated) {
3012                 stmt.opcode = INSTR_IF;
3013                 stmt.o2.s1 = (ontrue->code_start) - vec_size(code->statements);
3014                 if (stmt.o2.s1 != 1)
3015                     code_push_statement(code, &stmt, instr->context);
3016             }
3017             if (onfalse->generated) {
3018                 stmt.opcode = INSTR_IFNOT;
3019                 stmt.o2.s1 = (onfalse->code_start) - vec_size(code->statements);
3020                 if (stmt.o2.s1 != 1)
3021                     code_push_statement(code, &stmt, instr->context);
3022             }
3023             if (!ontrue->generated) {
3024                 if (onfalse->generated)
3025                     return gen_blocks_recursive(code, func, ontrue);
3026             }
3027             if (!onfalse->generated) {
3028                 if (ontrue->generated)
3029                     return gen_blocks_recursive(code, func, onfalse);
3030             }
3031             /* neither ontrue nor onfalse exist */
3032             stmt.opcode = INSTR_IFNOT;
3033             if (!instr->likely) {
3034                 /* Honor the likelyhood hint */
3035                 ir_block *tmp = onfalse;
3036                 stmt.opcode = INSTR_IF;
3037                 onfalse = ontrue;
3038                 ontrue = tmp;
3039             }
3040             stidx = vec_size(code->statements);
3041             code_push_statement(code, &stmt, instr->context);
3042             /* on false we jump, so add ontrue-path */
3043             if (!gen_blocks_recursive(code, func, ontrue))
3044                 return false;
3045             /* fixup the jump address */
3046             code->statements[stidx].o2.s1 = vec_size(code->statements) - stidx;
3047             /* generate onfalse path */
3048             if (onfalse->generated) {
3049                 /* fixup the jump address */
3050                 code->statements[stidx].o2.s1 = (onfalse->code_start) - (stidx);
3051                 if (stidx+2 == vec_size(code->statements) && code->statements[stidx].o2.s1 == 1) {
3052                     code->statements[stidx] = code->statements[stidx+1];
3053                     if (code->statements[stidx].o1.s1 < 0)
3054                         code->statements[stidx].o1.s1++;
3055                     code_pop_statement(code);
3056                 }
3057                 stmt.opcode = vec_last(code->statements).opcode;
3058                 if (stmt.opcode == INSTR_GOTO ||
3059                     stmt.opcode == INSTR_IF ||
3060                     stmt.opcode == INSTR_IFNOT ||
3061                     stmt.opcode == INSTR_RETURN ||
3062                     stmt.opcode == INSTR_DONE)
3063                 {
3064                     /* no use jumping from here */
3065                     return true;
3066                 }
3067                 /* may have been generated in the previous recursive call */
3068                 stmt.opcode = INSTR_GOTO;
3069                 stmt.o1.s1 = (onfalse->code_start) - vec_size(code->statements);
3070                 stmt.o2.s1 = 0;
3071                 stmt.o3.s1 = 0;
3072                 if (stmt.o1.s1 != 1)
3073                     code_push_statement(code, &stmt, instr->context);
3074                 return true;
3075             }
3076             else if (stidx+2 == vec_size(code->statements) && code->statements[stidx].o2.s1 == 1) {
3077                 code->statements[stidx] = code->statements[stidx+1];
3078                 if (code->statements[stidx].o1.s1 < 0)
3079                     code->statements[stidx].o1.s1++;
3080                 code_pop_statement(code);
3081             }
3082             /* if not, generate now */
3083             return gen_blocks_recursive(code, func, onfalse);
3084         }
3085
3086         if ( (instr->opcode >= INSTR_CALL0 && instr->opcode <= INSTR_CALL8)
3087            || instr->opcode == VINSTR_NRCALL)
3088         {
3089             size_t p, first;
3090             ir_value *retvalue;
3091
3092             first = vec_size(instr->params);
3093             if (first > 8)
3094                 first = 8;
3095             for (p = 0; p < first; ++p)
3096             {
3097                 ir_value *param = instr->params[p];
3098                 if (param->callparam)
3099                     continue;
3100
3101                 stmt.opcode = INSTR_STORE_F;
3102                 stmt.o3.u1 = 0;
3103
3104                 if (param->vtype == TYPE_FIELD)
3105                     stmt.opcode = field_store_instr[param->fieldtype];
3106                 else if (param->vtype == TYPE_NIL)
3107                     stmt.opcode = INSTR_STORE_V;
3108                 else
3109                     stmt.opcode = type_store_instr[param->vtype];
3110                 stmt.o1.u1 = ir_value_code_addr(param);
3111                 stmt.o2.u1 = OFS_PARM0 + 3 * p;
3112                 code_push_statement(code, &stmt, instr->context);
3113             }
3114             /* Now handle extparams */
3115             first = vec_size(instr->params);
3116             for (; p < first; ++p)
3117             {
3118                 ir_builder *ir = func->owner;
3119                 ir_value *param = instr->params[p];
3120                 ir_value *targetparam;
3121
3122                 if (param->callparam)
3123                     continue;
3124
3125                 if (p-8 >= vec_size(ir->extparams))
3126                     ir_gen_extparam(ir);
3127
3128                 targetparam = ir->extparams[p-8];
3129
3130                 stmt.opcode = INSTR_STORE_F;
3131                 stmt.o3.u1 = 0;
3132
3133                 if (param->vtype == TYPE_FIELD)
3134                     stmt.opcode = field_store_instr[param->fieldtype];
3135                 else if (param->vtype == TYPE_NIL)
3136                     stmt.opcode = INSTR_STORE_V;
3137                 else
3138                     stmt.opcode = type_store_instr[param->vtype];
3139                 stmt.o1.u1 = ir_value_code_addr(param);
3140                 stmt.o2.u1 = ir_value_code_addr(targetparam);
3141                 code_push_statement(code, &stmt, instr->context);
3142             }
3143
3144             stmt.opcode = INSTR_CALL0 + vec_size(instr->params);
3145             if (stmt.opcode > INSTR_CALL8)
3146                 stmt.opcode = INSTR_CALL8;
3147             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
3148             stmt.o2.u1 = 0;
3149             stmt.o3.u1 = 0;
3150             code_push_statement(code, &stmt, instr->context);
3151
3152             retvalue = instr->_ops[0];
3153             if (retvalue && retvalue->store != store_return &&
3154                 (retvalue->store == store_global || vec_size(retvalue->life)))
3155             {
3156                 /* not to be kept in OFS_RETURN */
3157                 if (retvalue->vtype == TYPE_FIELD && OPTS_FLAG(ADJUST_VECTOR_FIELDS))
3158                     stmt.opcode = field_store_instr[retvalue->fieldtype];
3159                 else
3160                     stmt.opcode = type_store_instr[retvalue->vtype];
3161                 stmt.o1.u1 = OFS_RETURN;
3162                 stmt.o2.u1 = ir_value_code_addr(retvalue);
3163                 stmt.o3.u1 = 0;
3164                 code_push_statement(code, &stmt, instr->context);
3165             }
3166             continue;
3167         }
3168
3169         if (instr->opcode == INSTR_STATE) {
3170             irerror(block->context, "TODO: state instruction");
3171             return false;
3172         }
3173
3174         stmt.opcode = instr->opcode;
3175         stmt.o1.u1 = 0;
3176         stmt.o2.u1 = 0;
3177         stmt.o3.u1 = 0;
3178
3179         /* This is the general order of operands */
3180         if (instr->_ops[0])
3181             stmt.o3.u1 = ir_value_code_addr(instr->_ops[0]);
3182
3183         if (instr->_ops[1])
3184             stmt.o1.u1 = ir_value_code_addr(instr->_ops[1]);
3185
3186         if (instr->_ops[2])
3187             stmt.o2.u1 = ir_value_code_addr(instr->_ops[2]);
3188
3189         if (stmt.opcode == INSTR_RETURN || stmt.opcode == INSTR_DONE)
3190         {
3191             stmt.o1.u1 = stmt.o3.u1;
3192             stmt.o3.u1 = 0;
3193         }
3194         else if ((stmt.opcode >= INSTR_STORE_F &&
3195                   stmt.opcode <= INSTR_STORE_FNC) ||
3196                  (stmt.opcode >= INSTR_STOREP_F &&
3197                   stmt.opcode <= INSTR_STOREP_FNC))
3198         {
3199             /* 2-operand instructions with A -> B */
3200             stmt.o2.u1 = stmt.o3.u1;
3201             stmt.o3.u1 = 0;
3202
3203             /* tiny optimization, don't output
3204              * STORE a, a
3205              */
3206             if (stmt.o2.u1 == stmt.o1.u1 &&
3207                 OPTS_OPTIMIZATION(OPTIM_PEEPHOLE))
3208             {
3209                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
3210                 continue;
3211             }
3212         }
3213         code_push_statement(code, &stmt, instr->context);
3214     }
3215     return true;
3216 }
3217
3218 static bool gen_function_code(code_t *code, ir_function *self)
3219 {
3220     ir_block *block;
3221     prog_section_statement_t stmt, *retst;
3222
3223     /* Starting from entry point, we generate blocks "as they come"
3224      * for now. Dead blocks will not be translated obviously.
3225      */
3226     if (!vec_size(self->blocks)) {
3227         irerror(self->context, "Function '%s' declared without body.", self->name);
3228         return false;
3229     }
3230
3231     block = self->blocks[0];
3232     if (block->generated)
3233         return true;
3234
3235     if (!gen_blocks_recursive(code, self, block)) {
3236         irerror(self->context, "failed to generate blocks for '%s'", self->name);
3237         return false;
3238     }
3239
3240     /* code_write and qcvm -disasm need to know that the function ends here */
3241     retst = &vec_last(code->statements);
3242     if (OPTS_OPTIMIZATION(OPTIM_VOID_RETURN) &&
3243         self->outtype == TYPE_VOID &&
3244         retst->opcode == INSTR_RETURN &&
3245         !retst->o1.u1 && !retst->o2.u1 && !retst->o3.u1)
3246     {
3247         retst->opcode = INSTR_DONE;
3248         ++opts_optimizationcount[OPTIM_VOID_RETURN];
3249     } else {
3250         lex_ctx_t last;
3251
3252         stmt.opcode = INSTR_DONE;
3253         stmt.o1.u1  = 0;
3254         stmt.o2.u1  = 0;
3255         stmt.o3.u1  = 0;
3256         last.line   = vec_last(code->linenums);
3257         last.column = vec_last(code->columnnums);
3258
3259         code_push_statement(code, &stmt, last);
3260     }
3261     return true;
3262 }
3263
3264 static qcint_t ir_builder_filestring(ir_builder *ir, const char *filename)
3265 {
3266     /* NOTE: filename pointers are copied, we never strdup them,
3267      * thus we can use pointer-comparison to find the string.
3268      */
3269     size_t i;
3270     qcint_t  str;
3271
3272     for (i = 0; i < vec_size(ir->filenames); ++i) {
3273         if (ir->filenames[i] == filename)
3274             return ir->filestrings[i];
3275     }
3276
3277     str = code_genstring(ir->code, filename);
3278     vec_push(ir->filenames, filename);
3279     vec_push(ir->filestrings, str);
3280     return str;
3281 }
3282
3283 static bool gen_global_function(ir_builder *ir, ir_value *global)
3284 {
3285     prog_section_function_t fun;
3286     ir_function            *irfun;
3287
3288     size_t i;
3289
3290     if (!global->hasvalue || (!global->constval.vfunc))
3291     {
3292         irerror(global->context, "Invalid state of function-global: not constant: %s", global->name);
3293         return false;
3294     }
3295
3296     irfun = global->constval.vfunc;
3297
3298     fun.name    = global->code.name;
3299     fun.file    = ir_builder_filestring(ir, global->context.file);
3300     fun.profile = 0; /* always 0 */
3301     fun.nargs   = vec_size(irfun->params);
3302     if (fun.nargs > 8)
3303         fun.nargs = 8;
3304
3305     for (i = 0;i < 8; ++i) {
3306         if ((int32_t)i >= fun.nargs)
3307             fun.argsize[i] = 0;
3308         else
3309             fun.argsize[i] = type_sizeof_[irfun->params[i]];
3310     }
3311
3312     fun.firstlocal = 0;
3313     fun.locals     = irfun->allocated_locals;
3314
3315     if (irfun->builtin)
3316         fun.entry = irfun->builtin+1;
3317     else {
3318         irfun->code_function_def = vec_size(ir->code->functions);
3319         fun.entry                = vec_size(ir->code->statements);
3320     }
3321
3322     vec_push(ir->code->functions, fun);
3323     return true;
3324 }
3325
3326 static ir_value* ir_gen_extparam_proto(ir_builder *ir)
3327 {
3328     ir_value *global;
3329     char      name[128];
3330
3331     util_snprintf(name, sizeof(name), "EXTPARM#%i", (int)(vec_size(ir->extparam_protos)));
3332     global = ir_value_var(name, store_global, TYPE_VECTOR);
3333
3334     vec_push(ir->extparam_protos, global);
3335     return global;
3336 }
3337
3338 static void ir_gen_extparam(ir_builder *ir)
3339 {
3340     prog_section_def_t def;
3341     ir_value          *global;
3342
3343     if (vec_size(ir->extparam_protos) < vec_size(ir->extparams)+1)
3344         global = ir_gen_extparam_proto(ir);
3345     else
3346         global = ir->extparam_protos[vec_size(ir->extparams)];
3347
3348     def.name   = code_genstring(ir->code, global->name);
3349     def.type   = TYPE_VECTOR;
3350     def.offset = vec_size(ir->code->globals);
3351
3352     vec_push(ir->code->defs, def);
3353
3354     ir_value_code_setaddr(global, def.offset);
3355
3356     vec_push(ir->code->globals, 0);
3357     vec_push(ir->code->globals, 0);
3358     vec_push(ir->code->globals, 0);
3359
3360     vec_push(ir->extparams, global);
3361 }
3362
3363 static bool gen_function_extparam_copy(code_t *code, ir_function *self)
3364 {
3365     size_t i, ext, numparams;
3366
3367     ir_builder *ir = self->owner;
3368     ir_value   *ep;
3369     prog_section_statement_t stmt;
3370
3371     numparams = vec_size(self->params);
3372     if (!numparams)
3373         return true;
3374
3375     stmt.opcode = INSTR_STORE_F;
3376     stmt.o3.s1 = 0;
3377     for (i = 8; i < numparams; ++i) {
3378         ext = i - 8;
3379         if (ext >= vec_size(ir->extparams))
3380             ir_gen_extparam(ir);
3381
3382         ep = ir->extparams[ext];
3383
3384         stmt.opcode = type_store_instr[self->locals[i]->vtype];
3385         if (self->locals[i]->vtype == TYPE_FIELD &&
3386             self->locals[i]->fieldtype == TYPE_VECTOR)
3387         {
3388             stmt.opcode = INSTR_STORE_V;
3389         }
3390         stmt.o1.u1 = ir_value_code_addr(ep);
3391         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3392         code_push_statement(code, &stmt, self->context);
3393     }
3394
3395     return true;
3396 }
3397
3398 static bool gen_function_varargs_copy(code_t *code, ir_function *self)
3399 {
3400     size_t i, ext, numparams, maxparams;
3401
3402     ir_builder *ir = self->owner;
3403     ir_value   *ep;
3404     prog_section_statement_t stmt;
3405
3406     numparams = vec_size(self->params);
3407     if (!numparams)
3408         return true;
3409
3410     stmt.opcode = INSTR_STORE_V;
3411     stmt.o3.s1 = 0;
3412     maxparams = numparams + self->max_varargs;
3413     for (i = numparams; i < maxparams; ++i) {
3414         if (i < 8) {
3415             stmt.o1.u1 = OFS_PARM0 + 3*i;
3416             stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3417             code_push_statement(code, &stmt, self->context);
3418             continue;
3419         }
3420         ext = i - 8;
3421         while (ext >= vec_size(ir->extparams))
3422             ir_gen_extparam(ir);
3423
3424         ep = ir->extparams[ext];
3425
3426         stmt.o1.u1 = ir_value_code_addr(ep);
3427         stmt.o2.u1 = ir_value_code_addr(self->locals[i]);
3428         code_push_statement(code, &stmt, self->context);
3429     }
3430
3431     return true;
3432 }
3433
3434 static bool gen_function_locals(ir_builder *ir, ir_value *global)
3435 {
3436     prog_section_function_t *def;
3437     ir_function             *irfun;
3438     size_t                   i;
3439     uint32_t                 firstlocal, firstglobal;
3440
3441     irfun = global->constval.vfunc;
3442     def   = ir->code->functions + irfun->code_function_def;
3443
3444     if (OPTS_OPTION_BOOL(OPTION_G) ||
3445         !OPTS_OPTIMIZATION(OPTIM_OVERLAP_LOCALS)        ||
3446         (irfun->flags & IR_FLAG_MASK_NO_OVERLAP))
3447     {
3448         firstlocal = def->firstlocal = vec_size(ir->code->globals);
3449     } else {
3450         firstlocal = def->firstlocal = ir->first_common_local;
3451         ++opts_optimizationcount[OPTIM_OVERLAP_LOCALS];
3452     }
3453
3454     firstglobal = (OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS) ? ir->first_common_globaltemp : firstlocal);
3455
3456     for (i = vec_size(ir->code->globals); i < firstlocal + irfun->allocated_locals; ++i)
3457         vec_push(ir->code->globals, 0);
3458     for (i = 0; i < vec_size(irfun->locals); ++i) {
3459         ir_value *v = irfun->locals[i];
3460         if (v->locked || !OPTS_OPTIMIZATION(OPTIM_GLOBAL_TEMPS)) {
3461             ir_value_code_setaddr(v, firstlocal + v->code.local);
3462             if (!ir_builder_gen_global(ir, irfun->locals[i], true)) {
3463                 irerror(irfun->locals[i]->context, "failed to generate local %s", irfun->locals[i]->name);
3464                 return false;
3465             }
3466         }
3467         else
3468             ir_value_code_setaddr(v, firstglobal + v->code.local);
3469     }
3470     for (i = 0; i < vec_size(irfun->values); ++i)
3471     {
3472         ir_value *v = irfun->values[i];
3473         if (v->callparam)
3474             continue;
3475         if (v->locked)
3476             ir_value_code_setaddr(v, firstlocal + v->code.local);
3477         else
3478             ir_value_code_setaddr(v, firstglobal + v->code.local);
3479     }
3480     return true;
3481 }
3482
3483 static bool gen_global_function_code(ir_builder *ir, ir_value *global)
3484 {
3485     prog_section_function_t *fundef;
3486     ir_function             *irfun;
3487
3488     (void)ir;
3489
3490     irfun = global->constval.vfunc;
3491     if (!irfun) {
3492         if (global->cvq == CV_NONE) {
3493             if (irwarning(global->context, WARN_IMPLICIT_FUNCTION_POINTER,
3494                           "function `%s` has no body and in QC implicitly becomes a function-pointer",
3495                           global->name))
3496             {
3497                 /* Not bailing out just now. If this happens a lot you don't want to have
3498                  * to rerun gmqcc for each such function.
3499                  */
3500
3501                 /* return false; */
3502             }
3503         }
3504         /* this was a function pointer, don't generate code for those */
3505         return true;
3506     }
3507
3508     if (irfun->builtin)
3509         return true;
3510
3511     /*
3512      * If there is no definition and the thing is eraseable, we can ignore
3513      * outputting the function to begin with.
3514      */
3515     if (global->flags & IR_FLAG_ERASEABLE && irfun->code_function_def < 0) {
3516         return true;
3517     }
3518
3519     if (irfun->code_function_def < 0) {
3520         irerror(irfun->context, "`%s`: IR global wasn't generated, failed to access function-def", irfun->name);
3521         return false;
3522     }
3523     fundef = &ir->code->functions[irfun->code_function_def];
3524
3525     fundef->entry = vec_size(ir->code->statements);
3526     if (!gen_function_locals(ir, global)) {
3527         irerror(irfun->context, "Failed to generate locals for function %s", irfun->name);
3528         return false;
3529     }
3530     if (!gen_function_extparam_copy(ir->code, irfun)) {
3531         irerror(irfun->context, "Failed to generate extparam-copy code for function %s", irfun->name);
3532         return false;
3533     }
3534     if (irfun->max_varargs && !gen_function_varargs_copy(ir->code, irfun)) {
3535         irerror(irfun->context, "Failed to generate vararg-copy code for function %s", irfun->name);
3536         return false;
3537     }
3538     if (!gen_function_code(ir->code, irfun)) {
3539         irerror(irfun->context, "Failed to generate code for function %s", irfun->name);
3540         return false;
3541     }
3542     return true;
3543 }
3544
3545 static void gen_vector_defs(code_t *code, prog_section_def_t def, const char *name)
3546 {
3547     char  *component;
3548     size_t len, i;
3549
3550     if (!name || name[0] == '#' || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3551         return;
3552
3553     def.type = TYPE_FLOAT;
3554
3555     len = strlen(name);
3556
3557     component = (char*)mem_a(len+3);
3558     memcpy(component, name, len);
3559     len += 2;
3560     component[len-0] = 0;
3561     component[len-2] = '_';
3562
3563     component[len-1] = 'x';
3564
3565     for (i = 0; i < 3; ++i) {
3566         def.name = code_genstring(code, component);
3567         vec_push(code->defs, def);
3568         def.offset++;
3569         component[len-1]++;
3570     }
3571
3572     mem_d(component);
3573 }
3574
3575 static void gen_vector_fields(code_t *code, prog_section_field_t fld, const char *name)
3576 {
3577     char  *component;
3578     size_t len, i;
3579
3580     if (!name || OPTS_FLAG(SINGLE_VECTOR_DEFS))
3581         return;
3582
3583     fld.type = TYPE_FLOAT;
3584
3585     len = strlen(name);
3586
3587     component = (char*)mem_a(len+3);
3588     memcpy(component, name, len);
3589     len += 2;
3590     component[len-0] = 0;
3591     component[len-2] = '_';
3592
3593     component[len-1] = 'x';
3594
3595     for (i = 0; i < 3; ++i) {
3596         fld.name = code_genstring(code, component);
3597         vec_push(code->fields, fld);
3598         fld.offset++;
3599         component[len-1]++;
3600     }
3601
3602     mem_d(component);
3603 }
3604
3605 static bool ir_builder_gen_global(ir_builder *self, ir_value *global, bool islocal)
3606 {
3607     size_t             i;
3608     int32_t           *iptr;
3609     prog_section_def_t def;
3610     bool               pushdef = opts.optimizeoff;
3611
3612     def.type   = global->vtype;
3613     def.offset = vec_size(self->code->globals);
3614     def.name   = 0;
3615     if (OPTS_OPTION_BOOL(OPTION_G) || !islocal)
3616     {
3617         pushdef = true;
3618
3619         /*
3620          * if we're eraseable and the function isn't referenced ignore outputting
3621          * the function.
3622          */
3623         if (global->flags & IR_FLAG_ERASEABLE && vec_size(global->reads) == 0) {
3624             return true;
3625         }
3626
3627         if (OPTS_OPTIMIZATION(OPTIM_STRIP_CONSTANT_NAMES) &&
3628             !(global->flags & IR_FLAG_INCLUDE_DEF) &&
3629             (global->name[0] == '#' || global->cvq == CV_CONST))
3630         {
3631             pushdef = false;
3632         }
3633
3634         if (pushdef) {
3635             if (global->name[0] == '#') {
3636                 if (!self->str_immediate)
3637                     self->str_immediate = code_genstring(self->code, "IMMEDIATE");
3638                 def.name = global->code.name = self->str_immediate;
3639             }
3640             else
3641                 def.name = global->code.name = code_genstring(self->code, global->name);
3642         }
3643         else
3644             def.name   = 0;
3645         if (islocal) {
3646             def.offset = ir_value_code_addr(global);
3647             vec_push(self->code->defs, def);
3648             if (global->vtype == TYPE_VECTOR)
3649                 gen_vector_defs(self->code, def, global->name);
3650             else if (global->vtype == TYPE_FIELD && global->fieldtype == TYPE_VECTOR)
3651                 gen_vector_defs(self->code, def, global->name);
3652             return true;
3653         }
3654     }
3655     if (islocal)
3656         return true;
3657
3658     switch (global->vtype)
3659     {
3660     case TYPE_VOID:
3661         if (!strcmp(global->name, "end_sys_globals")) {
3662             /* TODO: remember this point... all the defs before this one
3663              * should be checksummed and added to progdefs.h when we generate it.
3664              */
3665         }
3666         else if (!strcmp(global->name, "end_sys_fields")) {
3667             /* TODO: same as above but for entity-fields rather than globsl
3668              */
3669         }
3670         else if(irwarning(global->context, WARN_VOID_VARIABLES, "unrecognized variable of type void `%s`",
3671                           global->name))
3672         {
3673             /* Not bailing out */
3674             /* return false; */
3675         }
3676         /* I'd argue setting it to 0 is sufficient, but maybe some depend on knowing how far
3677          * the system fields actually go? Though the engine knows this anyway...
3678          * Maybe this could be an -foption
3679          * fteqcc creates data for end_sys_* - of size 1, so let's do the same
3680          */
3681         ir_value_code_setaddr(global, vec_size(self->code->globals));
3682         vec_push(self->code->globals, 0);
3683         /* Add the def */
3684         if (pushdef) vec_push(self->code->defs, def);
3685         return true;
3686     case TYPE_POINTER:
3687         if (pushdef) vec_push(self->code->defs, def);
3688         return gen_global_pointer(self->code, global);
3689     case TYPE_FIELD:
3690         if (pushdef) {
3691             vec_push(self->code->defs, def);
3692             if (global->fieldtype == TYPE_VECTOR)
3693                 gen_vector_defs(self->code, def, global->name);
3694         }
3695         return gen_global_field(self->code, global);
3696     case TYPE_ENTITY:
3697         /* fall through */
3698     case TYPE_FLOAT:
3699     {
3700         ir_value_code_setaddr(global, vec_size(self->code->globals));
3701         if (global->hasvalue) {
3702             iptr = (int32_t*)&global->constval.ivec[0];
3703             vec_push(self->code->globals, *iptr);
3704         } else {
3705             vec_push(self->code->globals, 0);
3706         }
3707         if (!islocal && global->cvq != CV_CONST)
3708             def.type |= DEF_SAVEGLOBAL;
3709         if (pushdef) vec_push(self->code->defs, def);
3710
3711         return global->code.globaladdr >= 0;
3712     }
3713     case TYPE_STRING:
3714     {
3715         ir_value_code_setaddr(global, vec_size(self->code->globals));
3716         if (global->hasvalue) {
3717             uint32_t load = code_genstring(self->code, global->constval.vstring);
3718             vec_push(self->code->globals, load);
3719         } else {
3720             vec_push(self->code->globals, 0);
3721         }
3722         if (!islocal && global->cvq != CV_CONST)
3723             def.type |= DEF_SAVEGLOBAL;
3724         if (pushdef) vec_push(self->code->defs, def);
3725         return global->code.globaladdr >= 0;
3726     }
3727     case TYPE_VECTOR:
3728     {
3729         size_t d;
3730         ir_value_code_setaddr(global, vec_size(self->code->globals));
3731         if (global->hasvalue) {
3732             iptr = (int32_t*)&global->constval.ivec[0];
3733             vec_push(self->code->globals, iptr[0]);
3734             if (global->code.globaladdr < 0)
3735                 return false;
3736             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3737                 vec_push(self->code->globals, iptr[d]);
3738             }
3739         } else {
3740             vec_push(self->code->globals, 0);
3741             if (global->code.globaladdr < 0)
3742                 return false;
3743             for (d = 1; d < type_sizeof_[global->vtype]; ++d) {
3744                 vec_push(self->code->globals, 0);
3745             }
3746         }
3747         if (!islocal && global->cvq != CV_CONST)
3748             def.type |= DEF_SAVEGLOBAL;
3749
3750         if (pushdef) {
3751             vec_push(self->code->defs, def);
3752             def.type &= ~DEF_SAVEGLOBAL;
3753             gen_vector_defs(self->code, def, global->name);
3754         }
3755         return global->code.globaladdr >= 0;
3756     }
3757     case TYPE_FUNCTION:
3758         ir_value_code_setaddr(global, vec_size(self->code->globals));
3759         if (!global->hasvalue) {
3760             vec_push(self->code->globals, 0);
3761             if (global->code.globaladdr < 0)
3762                 return false;
3763         } else {
3764             vec_push(self->code->globals, vec_size(self->code->functions));
3765             if (!gen_global_function(self, global))
3766                 return false;
3767         }
3768         if (!islocal && global->cvq != CV_CONST)
3769             def.type |= DEF_SAVEGLOBAL;
3770         if (pushdef) vec_push(self->code->defs, def);
3771         return true;
3772     case TYPE_VARIANT:
3773         /* assume biggest type */
3774             ir_value_code_setaddr(global, vec_size(self->code->globals));
3775             vec_push(self->code->globals, 0);
3776             for (i = 1; i < type_sizeof_[TYPE_VARIANT]; ++i)
3777                 vec_push(self->code->globals, 0);
3778             return true;
3779     default:
3780         /* refuse to create 'void' type or any other fancy business. */
3781         irerror(global->context, "Invalid type for global variable `%s`: %s",
3782                 global->name, type_name[global->vtype]);
3783         return false;
3784     }
3785 }
3786
3787 static GMQCC_INLINE void ir_builder_prepare_field(code_t *code, ir_value *field)
3788 {
3789     field->code.fieldaddr = code_alloc_field(code, type_sizeof_[field->fieldtype]);
3790 }
3791
3792 static bool ir_builder_gen_field(ir_builder *self, ir_value *field)
3793 {
3794     prog_section_def_t def;
3795     prog_section_field_t fld;
3796
3797     (void)self;
3798
3799     def.type   = (uint16_t)field->vtype;
3800     def.offset = (uint16_t)vec_size(self->code->globals);
3801
3802     /* create a global named the same as the field */
3803     if (OPTS_OPTION_U32(OPTION_STANDARD) == COMPILER_GMQCC) {
3804         /* in our standard, the global gets a dot prefix */
3805         size_t len = strlen(field->name);
3806         char name[1024];
3807
3808         /* we really don't want to have to allocate this, and 1024
3809          * bytes is more than enough for a variable/field name
3810          */
3811         if (len+2 >= sizeof(name)) {
3812             irerror(field->context, "invalid field name size: %u", (unsigned int)len);
3813             return false;
3814         }
3815
3816         name[0] = '.';
3817         memcpy(name+1, field->name, len); /* no strncpy - we used strlen above */
3818         name[len+1] = 0;
3819
3820         def.name = code_genstring(self->code, name);
3821         fld.name = def.name + 1; /* we reuse that string table entry */
3822     } else {
3823         /* in plain QC, there cannot be a global with the same name,
3824          * and so we also name the global the same.
3825          * FIXME: fteqcc should create a global as well
3826          * check if it actually uses the same name. Probably does
3827          */
3828         def.name = code_genstring(self->code, field->name);
3829         fld.name = def.name;
3830     }
3831
3832     field->code.name = def.name;
3833
3834     vec_push(self->code->defs, def);
3835
3836     fld.type = field->fieldtype;
3837
3838     if (fld.type == TYPE_VOID) {
3839         irerror(field->context, "field is missing a type: %s - don't know its size", field->name);
3840         return false;
3841     }
3842
3843     fld.offset = field->code.fieldaddr;
3844
3845     vec_push(self->code->fields, fld);
3846
3847     ir_value_code_setaddr(field, vec_size(self->code->globals));
3848     vec_push(self->code->globals, fld.offset);
3849     if (fld.type == TYPE_VECTOR) {
3850         vec_push(self->code->globals, fld.offset+1);
3851         vec_push(self->code->globals, fld.offset+2);
3852     }
3853
3854     if (field->fieldtype == TYPE_VECTOR) {
3855         gen_vector_defs  (self->code, def, field->name);
3856         gen_vector_fields(self->code, fld, field->name);
3857     }
3858
3859     return field->code.globaladdr >= 0;
3860 }
3861
3862 bool ir_builder_generate(ir_builder *self, const char *filename)
3863 {
3864     prog_section_statement_t stmt;
3865     size_t i;
3866     char  *lnofile = NULL;
3867
3868     for (i = 0; i < vec_size(self->fields); ++i)
3869     {
3870         ir_builder_prepare_field(self->code, self->fields[i]);
3871     }
3872
3873     for (i = 0; i < vec_size(self->globals); ++i)
3874     {
3875         if (!ir_builder_gen_global(self, self->globals[i], false)) {
3876             return false;
3877         }
3878         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3879             ir_function *func = self->globals[i]->constval.vfunc;
3880             if (func && self->max_locals < func->allocated_locals &&
3881                 !(func->flags & IR_FLAG_MASK_NO_OVERLAP))
3882             {
3883                 self->max_locals = func->allocated_locals;
3884             }
3885             if (func && self->max_globaltemps < func->globaltemps)
3886                 self->max_globaltemps = func->globaltemps;
3887         }
3888     }
3889
3890     for (i = 0; i < vec_size(self->fields); ++i)
3891     {
3892         if (!ir_builder_gen_field(self, self->fields[i])) {
3893             return false;
3894         }
3895     }
3896
3897     /* generate nil */
3898     ir_value_code_setaddr(self->nil, vec_size(self->code->globals));
3899     vec_push(self->code->globals, 0);
3900     vec_push(self->code->globals, 0);
3901     vec_push(self->code->globals, 0);
3902
3903     /* generate virtual-instruction temps */
3904     for (i = 0; i < IR_MAX_VINSTR_TEMPS; ++i) {
3905         ir_value_code_setaddr(self->vinstr_temp[i], vec_size(self->code->globals));
3906         vec_push(self->code->globals, 0);
3907         vec_push(self->code->globals, 0);
3908         vec_push(self->code->globals, 0);
3909     }
3910
3911     /* generate global temps */
3912     self->first_common_globaltemp = vec_size(self->code->globals);
3913     for (i = 0; i < self->max_globaltemps; ++i) {
3914         vec_push(self->code->globals, 0);
3915     }
3916     /* generate common locals */
3917     self->first_common_local = vec_size(self->code->globals);
3918     for (i = 0; i < self->max_locals; ++i) {
3919         vec_push(self->code->globals, 0);
3920     }
3921
3922     /* generate function code */
3923     for (i = 0; i < vec_size(self->globals); ++i)
3924     {
3925         if (self->globals[i]->vtype == TYPE_FUNCTION) {
3926             if (!gen_global_function_code(self, self->globals[i])) {
3927                 return false;
3928             }
3929         }
3930     }
3931
3932     if (vec_size(self->code->globals) >= 65536) {
3933         irerror(vec_last(self->globals)->context, "This progs file would require more globals than the metadata can handle. Bailing out.");
3934         return false;
3935     }
3936
3937     /* DP errors if the last instruction is not an INSTR_DONE. */
3938     if (vec_last(self->code->statements).opcode != INSTR_DONE)
3939     {
3940         lex_ctx_t last;
3941
3942         stmt.opcode = INSTR_DONE;
3943         stmt.o1.u1  = 0;
3944         stmt.o2.u1  = 0;
3945         stmt.o3.u1  = 0;
3946         last.line   = vec_last(self->code->linenums);
3947         last.column = vec_last(self->code->columnnums);
3948
3949         code_push_statement(self->code, &stmt, last);
3950     }
3951
3952     if (OPTS_OPTION_BOOL(OPTION_PP_ONLY))
3953         return true;
3954
3955     if (vec_size(self->code->statements) != vec_size(self->code->linenums)) {
3956         con_err("Linecounter wrong: %lu != %lu\n",
3957                 (unsigned long)vec_size(self->code->statements),
3958                 (unsigned long)vec_size(self->code->linenums));
3959     } else if (OPTS_FLAG(LNO)) {
3960         char  *dot;
3961         size_t filelen = strlen(filename);
3962
3963         memcpy(vec_add(lnofile, filelen+1), filename, filelen+1);
3964         dot = strrchr(lnofile, '.');
3965         if (!dot) {
3966             vec_pop(lnofile);
3967         } else {
3968             vec_shrinkto(lnofile, dot - lnofile);
3969         }
3970         memcpy(vec_add(lnofile, 5), ".lno", 5);
3971     }
3972
3973     if (!code_write(self->code, filename, lnofile)) {
3974         vec_free(lnofile);
3975         return false;
3976     }
3977
3978     vec_free(lnofile);
3979     return true;
3980 }
3981
3982 /***********************************************************************
3983  *IR DEBUG Dump functions...
3984  */
3985
3986 #define IND_BUFSZ 1024
3987
3988 static const char *qc_opname(int op)
3989 {
3990     if (op < 0) return "<INVALID>";
3991     if (op < VINSTR_END)
3992         return util_instr_str[op];
3993     switch (op) {
3994         case VINSTR_END:       return "END";
3995         case VINSTR_PHI:       return "PHI";
3996         case VINSTR_JUMP:      return "JUMP";
3997         case VINSTR_COND:      return "COND";
3998         case VINSTR_BITXOR:    return "BITXOR";
3999         case VINSTR_BITAND_V:  return "BITAND_V";
4000         case VINSTR_BITOR_V:   return "BITOR_V";
4001         case VINSTR_BITXOR_V:  return "BITXOR_V";
4002         case VINSTR_BITAND_VF: return "BITAND_VF";
4003         case VINSTR_BITOR_VF:  return "BITOR_VF";
4004         case VINSTR_BITXOR_VF: return "BITXOR_VF";
4005         case VINSTR_CROSS:     return "CROSS";
4006         case VINSTR_NEG_F:     return "NEG_F";
4007         case VINSTR_NEG_V:     return "NEG_V";
4008         default:               return "<UNK>";
4009     }
4010 }
4011
4012 void ir_builder_dump(ir_builder *b, int (*oprintf)(const char*, ...))
4013 {
4014     size_t i;
4015     char indent[IND_BUFSZ];
4016     indent[0] = '\t';
4017     indent[1] = 0;
4018
4019     oprintf("module %s\n", b->name);
4020     for (i = 0; i < vec_size(b->globals); ++i)
4021     {
4022         oprintf("global ");
4023         if (b->globals[i]->hasvalue)
4024             oprintf("%s = ", b->globals[i]->name);
4025         ir_value_dump(b->globals[i], oprintf);
4026         oprintf("\n");
4027     }
4028     for (i = 0; i < vec_size(b->functions); ++i)
4029         ir_function_dump(b->functions[i], indent, oprintf);
4030     oprintf("endmodule %s\n", b->name);
4031 }
4032
4033 static const char *storenames[] = {
4034     "[global]", "[local]", "[param]", "[value]", "[return]"
4035 };
4036
4037 void ir_function_dump(ir_function *f, char *ind,
4038                       int (*oprintf)(const char*, ...))
4039 {
4040     size_t i;
4041     if (f->builtin != 0) {
4042         oprintf("%sfunction %s = builtin %i\n", ind, f->name, -f->builtin);
4043         return;
4044     }
4045     oprintf("%sfunction %s\n", ind, f->name);
4046     util_strncat(ind, "\t", IND_BUFSZ-1);
4047     if (vec_size(f->locals))
4048     {
4049         oprintf("%s%i locals:\n", ind, (int)vec_size(f->locals));
4050         for (i = 0; i < vec_size(f->locals); ++i) {
4051             oprintf("%s\t", ind);
4052             ir_value_dump(f->locals[i], oprintf);
4053             oprintf("\n");
4054         }
4055     }
4056     oprintf("%sliferanges:\n", ind);
4057     for (i = 0; i < vec_size(f->locals); ++i) {
4058         const char *attr = "";
4059         size_t l, m;
4060         ir_value *v = f->locals[i];
4061         if (v->unique_life && v->locked)
4062             attr = "unique,locked ";
4063         else if (v->unique_life)
4064             attr = "unique ";
4065         else if (v->locked)
4066             attr = "locked ";
4067         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
4068                 storenames[v->store],
4069                 attr, (v->callparam ? "callparam " : ""),
4070                 (int)v->code.local);
4071         if (!v->life)
4072             oprintf("[null]");
4073         for (l = 0; l < vec_size(v->life); ++l) {
4074             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
4075         }
4076         oprintf("\n");
4077         for (m = 0; m < 3; ++m) {
4078             ir_value *vm = v->members[m];
4079             if (!vm)
4080                 continue;
4081             oprintf("%s\t%s: @%i ", ind, vm->name, (int)vm->code.local);
4082             for (l = 0; l < vec_size(vm->life); ++l) {
4083                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
4084             }
4085             oprintf("\n");
4086         }
4087     }
4088     for (i = 0; i < vec_size(f->values); ++i) {
4089         const char *attr = "";
4090         size_t l, m;
4091         ir_value *v = f->values[i];
4092         if (v->unique_life && v->locked)
4093             attr = "unique,locked ";
4094         else if (v->unique_life)
4095             attr = "unique ";
4096         else if (v->locked)
4097             attr = "locked ";
4098         oprintf("%s\t%s: %s %s %s%s@%i ", ind, v->name, type_name[v->vtype],
4099                 storenames[v->store],
4100                 attr, (v->callparam ? "callparam " : ""),
4101                 (int)v->code.local);
4102         if (!v->life)
4103             oprintf("[null]");
4104         for (l = 0; l < vec_size(v->life); ++l) {
4105             oprintf("[%i,%i] ", v->life[l].start, v->life[l].end);
4106         }
4107         oprintf("\n");
4108         for (m = 0; m < 3; ++m) {
4109             ir_value *vm = v->members[m];
4110             if (!vm)
4111                 continue;
4112             if (vm->unique_life && vm->locked)
4113                 attr = "unique,locked ";
4114             else if (vm->unique_life)
4115                 attr = "unique ";
4116             else if (vm->locked)
4117                 attr = "locked ";
4118             oprintf("%s\t%s: %s@%i ", ind, vm->name, attr, (int)vm->code.local);
4119             for (l = 0; l < vec_size(vm->life); ++l) {
4120                 oprintf("[%i,%i] ", vm->life[l].start, vm->life[l].end);
4121             }
4122             oprintf("\n");
4123         }
4124     }
4125     if (vec_size(f->blocks))
4126     {
4127         oprintf("%slife passes: %i\n", ind, (int)f->run_id);
4128         for (i = 0; i < vec_size(f->blocks); ++i) {
4129             ir_block_dump(f->blocks[i], ind, oprintf);
4130         }
4131
4132     }
4133     ind[strlen(ind)-1] = 0;
4134     oprintf("%sendfunction %s\n", ind, f->name);
4135 }
4136
4137 void ir_block_dump(ir_block* b, char *ind,
4138                    int (*oprintf)(const char*, ...))
4139 {
4140     size_t i;
4141     oprintf("%s:%s\n", ind, b->label);
4142     util_strncat(ind, "\t", IND_BUFSZ-1);
4143
4144     if (b->instr && b->instr[0])
4145         oprintf("%s (%i) [entry]\n", ind, (int)(b->instr[0]->eid-1));
4146     for (i = 0; i < vec_size(b->instr); ++i)
4147         ir_instr_dump(b->instr[i], ind, oprintf);
4148     ind[strlen(ind)-1] = 0;
4149 }
4150
4151 static void dump_phi(ir_instr *in, int (*oprintf)(const char*, ...))
4152 {
4153     size_t i;
4154     oprintf("%s <- phi ", in->_ops[0]->name);
4155     for (i = 0; i < vec_size(in->phi); ++i)
4156     {
4157         oprintf("([%s] : %s) ", in->phi[i].from->label,
4158                                 in->phi[i].value->name);
4159     }
4160     oprintf("\n");
4161 }
4162
4163 void ir_instr_dump(ir_instr *in, char *ind,
4164                        int (*oprintf)(const char*, ...))
4165 {
4166     size_t i;
4167     const char *comma = NULL;
4168
4169     oprintf("%s (%i) ", ind, (int)in->eid);
4170
4171     if (in->opcode == VINSTR_PHI) {
4172         dump_phi(in, oprintf);
4173         return;
4174     }
4175
4176     util_strncat(ind, "\t", IND_BUFSZ-1);
4177
4178     if (in->_ops[0] && (in->_ops[1] || in->_ops[2])) {
4179         ir_value_dump(in->_ops[0], oprintf);
4180         if (in->_ops[1] || in->_ops[2])
4181             oprintf(" <- ");
4182     }
4183     if (in->opcode == INSTR_CALL0 || in->opcode == VINSTR_NRCALL) {
4184         oprintf("CALL%i\t", vec_size(in->params));
4185     } else
4186         oprintf("%s\t", qc_opname(in->opcode));
4187
4188     if (in->_ops[0] && !(in->_ops[1] || in->_ops[2])) {
4189         ir_value_dump(in->_ops[0], oprintf);
4190         comma = ",\t";
4191     }
4192     else
4193     {
4194         for (i = 1; i != 3; ++i) {
4195             if (in->_ops[i]) {
4196                 if (comma)
4197                     oprintf(comma);
4198                 ir_value_dump(in->_ops[i], oprintf);
4199                 comma = ",\t";
4200             }
4201         }
4202     }
4203     if (in->bops[0]) {
4204         if (comma)
4205             oprintf(comma);
4206         oprintf("[%s]", in->bops[0]->label);
4207         comma = ",\t";
4208     }
4209     if (in->bops[1])
4210         oprintf("%s[%s]", comma, in->bops[1]->label);
4211     if (vec_size(in->params)) {
4212         oprintf("\tparams: ");
4213         for (i = 0; i != vec_size(in->params); ++i) {
4214             oprintf("%s, ", in->params[i]->name);
4215         }
4216     }
4217     oprintf("\n");
4218     ind[strlen(ind)-1] = 0;
4219 }
4220
4221 static void ir_value_dump_string(const char *str, int (*oprintf)(const char*, ...))
4222 {
4223     oprintf("\"");
4224     for (; *str; ++str) {
4225         switch (*str) {
4226             case '\n': oprintf("\\n"); break;
4227             case '\r': oprintf("\\r"); break;
4228             case '\t': oprintf("\\t"); break;
4229             case '\v': oprintf("\\v"); break;
4230             case '\f': oprintf("\\f"); break;
4231             case '\b': oprintf("\\b"); break;
4232             case '\a': oprintf("\\a"); break;
4233             case '\\': oprintf("\\\\"); break;
4234             case '"': oprintf("\\\""); break;
4235             default: oprintf("%c", *str); break;
4236         }
4237     }
4238     oprintf("\"");
4239 }
4240
4241 void ir_value_dump(ir_value* v, int (*oprintf)(const char*, ...))
4242 {
4243     if (v->hasvalue) {
4244         switch (v->vtype) {
4245             default:
4246             case TYPE_VOID:
4247                 oprintf("(void)");
4248                 break;
4249             case TYPE_FUNCTION:
4250                 oprintf("fn:%s", v->name);
4251                 break;
4252             case TYPE_FLOAT:
4253                 oprintf("%g", v->constval.vfloat);
4254                 break;
4255             case TYPE_VECTOR:
4256                 oprintf("'%g %g %g'",
4257                         v->constval.vvec.x,
4258                         v->constval.vvec.y,
4259                         v->constval.vvec.z);
4260                 break;
4261             case TYPE_ENTITY:
4262                 oprintf("(entity)");
4263                 break;
4264             case TYPE_STRING:
4265                 ir_value_dump_string(v->constval.vstring, oprintf);
4266                 break;
4267 #if 0
4268             case TYPE_INTEGER:
4269                 oprintf("%i", v->constval.vint);
4270                 break;
4271 #endif
4272             case TYPE_POINTER:
4273                 oprintf("&%s",
4274                     v->constval.vpointer->name);
4275                 break;
4276         }
4277     } else {
4278         oprintf("%s", v->name);
4279     }
4280 }
4281
4282 void ir_value_dump_life(const ir_value *self, int (*oprintf)(const char*,...))
4283 {
4284     size_t i;
4285     oprintf("Life of %12s:", self->name);
4286     for (i = 0; i < vec_size(self->life); ++i)
4287     {
4288         oprintf(" + [%i, %i]\n", self->life[i].start, self->life[i].end);
4289     }
4290 }