]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.cpp
More std::vector migration
[xonotic/gmqcc.git] / ast.cpp
1 #include <new>
2
3 #include <stdlib.h>
4 #include <string.h>
5
6 #include "gmqcc.h"
7 #include "ast.h"
8 #include "parser.h"
9
10 #define ast_instantiate(T, ctx, destroyfn)                          \
11     T* self = (T*)mem_a(sizeof(T));                                 \
12     if (!self) {                                                    \
13         return NULL;                                                \
14     }                                                               \
15     new (self) T();                                                 \
16     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
17     ( (ast_node*)self )->destroy = (ast_node_delete*)destroyfn
18
19 /*
20  * forward declarations, these need not be in ast.h for obvious
21  * static reasons.
22  */
23 static bool ast_member_codegen(ast_member*, ast_function*, bool lvalue, ir_value**);
24 static void ast_array_index_delete(ast_array_index*);
25 static bool ast_array_index_codegen(ast_array_index*, ast_function*, bool lvalue, ir_value**);
26 static void ast_argpipe_delete(ast_argpipe*);
27 static bool ast_argpipe_codegen(ast_argpipe*, ast_function*, bool lvalue, ir_value**);
28 static void ast_store_delete(ast_store*);
29 static bool ast_store_codegen(ast_store*, ast_function*, bool lvalue, ir_value**);
30 static void ast_ifthen_delete(ast_ifthen*);
31 static bool ast_ifthen_codegen(ast_ifthen*, ast_function*, bool lvalue, ir_value**);
32 static void ast_ternary_delete(ast_ternary*);
33 static bool ast_ternary_codegen(ast_ternary*, ast_function*, bool lvalue, ir_value**);
34 static void ast_loop_delete(ast_loop*);
35 static bool ast_loop_codegen(ast_loop*, ast_function*, bool lvalue, ir_value**);
36 static void ast_breakcont_delete(ast_breakcont*);
37 static bool ast_breakcont_codegen(ast_breakcont*, ast_function*, bool lvalue, ir_value**);
38 static void ast_switch_delete(ast_switch*);
39 static bool ast_switch_codegen(ast_switch*, ast_function*, bool lvalue, ir_value**);
40 static void ast_label_delete(ast_label*);
41 static void ast_label_register_goto(ast_label*, ast_goto*);
42 static bool ast_label_codegen(ast_label*, ast_function*, bool lvalue, ir_value**);
43 static bool ast_goto_codegen(ast_goto*, ast_function*, bool lvalue, ir_value**);
44 static void ast_goto_delete(ast_goto*);
45 static void ast_call_delete(ast_call*);
46 static bool ast_call_codegen(ast_call*, ast_function*, bool lvalue, ir_value**);
47 static bool ast_block_codegen(ast_block*, ast_function*, bool lvalue, ir_value**);
48 static void ast_unary_delete(ast_unary*);
49 static bool ast_unary_codegen(ast_unary*, ast_function*, bool lvalue, ir_value**);
50 static void ast_entfield_delete(ast_entfield*);
51 static bool ast_entfield_codegen(ast_entfield*, ast_function*, bool lvalue, ir_value**);
52 static void ast_return_delete(ast_return*);
53 static bool ast_return_codegen(ast_return*, ast_function*, bool lvalue, ir_value**);
54 static void ast_binstore_delete(ast_binstore*);
55 static bool ast_binstore_codegen(ast_binstore*, ast_function*, bool lvalue, ir_value**);
56 static void ast_binary_delete(ast_binary*);
57 static bool ast_binary_codegen(ast_binary*, ast_function*, bool lvalue, ir_value**);
58 static bool ast_state_codegen(ast_state*, ast_function*, bool lvalue, ir_value**);
59
60 /* It must not be possible to get here. */
61 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
62 {
63     (void)self;
64     con_err("ast node missing destroy()\n");
65     exit(EXIT_FAILURE);
66 }
67
68 /* Initialize main ast node aprts */
69 static void ast_node_init(ast_node *self, lex_ctx_t ctx, int nodetype)
70 {
71     self->context = ctx;
72     self->destroy = &_ast_node_destroy;
73     self->keep    = false;
74     self->nodetype = nodetype;
75     self->side_effects = false;
76 }
77
78 /* weight and side effects */
79 static void _ast_propagate_effects(ast_node *self, ast_node *other)
80 {
81     if (ast_side_effects(other))
82         ast_side_effects(self) = true;
83 }
84 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
85
86 /* General expression initialization */
87 static void ast_expression_init(ast_expression *self,
88                                 ast_expression_codegen *codegen)
89 {
90     self->codegen  = codegen;
91     self->vtype    = TYPE_VOID;
92     self->next     = NULL;
93     self->outl     = NULL;
94     self->outr     = NULL;
95     self->count    = 0;
96     self->varparam = NULL;
97     self->flags    = 0;
98     if (OPTS_OPTION_BOOL(OPTION_COVERAGE))
99         self->flags |= AST_FLAG_BLOCK_COVERAGE;
100 }
101
102 static void ast_expression_delete(ast_expression *self)
103 {
104     if (self->next)
105         ast_delete(self->next);
106     for (auto &it : self->params)
107         ast_delete(it);
108     if (self->varparam)
109         ast_delete(self->varparam);
110 }
111
112 static void ast_expression_delete_full(ast_expression *self)
113 {
114     ast_expression_delete(self);
115     mem_d(self);
116 }
117
118 ast_value* ast_value_copy(const ast_value *self)
119 {
120     const ast_expression *fromex;
121     ast_expression *selfex;
122     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
123     if (self->expression.next) {
124         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
125     }
126     fromex = &self->expression;
127     selfex = &cp->expression;
128     selfex->count = fromex->count;
129     selfex->flags = fromex->flags;
130     for (auto &it : fromex->params) {
131         ast_value *v = ast_value_copy(it);
132         selfex->params.push_back(v);
133     }
134     return cp;
135 }
136
137 void ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
138 {
139     const ast_expression *fromex;
140     ast_expression *selfex;
141     self->vtype = other->vtype;
142     if (other->next) {
143         self->next = (ast_expression*)ast_type_copy(ast_ctx(self), other->next);
144     }
145     fromex = other;
146     selfex = self;
147     selfex->count = fromex->count;
148     selfex->flags = fromex->flags;
149     for (auto &it : fromex->params) {
150         ast_value *v = ast_value_copy(it);
151         selfex->params.push_back(v);
152     }
153 }
154
155 static ast_expression* ast_shallow_type(lex_ctx_t ctx, int vtype)
156 {
157     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
158     ast_expression_init(self, NULL);
159     self->codegen = NULL;
160     self->next    = NULL;
161     self->vtype   = vtype;
162     return self;
163 }
164
165 ast_expression* ast_type_copy(lex_ctx_t ctx, const ast_expression *ex)
166 {
167     const ast_expression *fromex;
168     ast_expression       *selfex;
169
170     if (!ex)
171         return NULL;
172     else
173     {
174         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
175         ast_expression_init(self, NULL);
176
177         fromex = ex;
178         selfex = self;
179
180         /* This may never be codegen()d */
181         selfex->codegen = NULL;
182
183         selfex->vtype = fromex->vtype;
184         if (fromex->next)
185             selfex->next = ast_type_copy(ctx, fromex->next);
186         else
187             selfex->next = NULL;
188
189         selfex->count = fromex->count;
190         selfex->flags = fromex->flags;
191         for (auto &it : fromex->params) {
192             ast_value *v = ast_value_copy(it);
193             selfex->params.push_back(v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->vtype == TYPE_NIL ||
203         b->vtype == TYPE_NIL)
204         return true;
205     if (a->vtype != b->vtype)
206         return false;
207     if (!a->next != !b->next)
208         return false;
209     if (a->params.size() != b->params.size())
210         return false;
211     if ((a->flags & AST_FLAG_TYPE_MASK) !=
212         (b->flags & AST_FLAG_TYPE_MASK) )
213     {
214         return false;
215     }
216     if (a->params.size()) {
217         size_t i;
218         for (i = 0; i < a->params.size(); ++i) {
219             if (!ast_compare_type((ast_expression*)a->params[i],
220                                   (ast_expression*)b->params[i]))
221                 return false;
222         }
223     }
224     if (a->next)
225         return ast_compare_type(a->next, b->next);
226     return true;
227 }
228
229 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
230 {
231     const char *typestr;
232     size_t typelen;
233     size_t i;
234
235     if (!e) {
236         if (pos + 6 >= bufsize)
237             goto full;
238         util_strncpy(buf + pos, "(null)", 6);
239         return pos + 6;
240     }
241
242     if (pos + 1 >= bufsize)
243         goto full;
244
245     switch (e->vtype) {
246         case TYPE_VARIANT:
247             util_strncpy(buf + pos, "(variant)", 9);
248             return pos + 9;
249
250         case TYPE_FIELD:
251             buf[pos++] = '.';
252             return ast_type_to_string_impl(e->next, buf, bufsize, pos);
253
254         case TYPE_POINTER:
255             if (pos + 3 >= bufsize)
256                 goto full;
257             buf[pos++] = '*';
258             buf[pos++] = '(';
259             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
260             if (pos + 1 >= bufsize)
261                 goto full;
262             buf[pos++] = ')';
263             return pos;
264
265         case TYPE_FUNCTION:
266             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
267             if (pos + 2 >= bufsize)
268                 goto full;
269             if (e->params.empty()) {
270                 buf[pos++] = '(';
271                 buf[pos++] = ')';
272                 return pos;
273             }
274             buf[pos++] = '(';
275             pos = ast_type_to_string_impl((ast_expression*)(e->params[0]), buf, bufsize, pos);
276             for (i = 1; i < e->params.size(); ++i) {
277                 if (pos + 2 >= bufsize)
278                     goto full;
279                 buf[pos++] = ',';
280                 buf[pos++] = ' ';
281                 pos = ast_type_to_string_impl((ast_expression*)(e->params[i]), buf, bufsize, pos);
282             }
283             if (pos + 1 >= bufsize)
284                 goto full;
285             buf[pos++] = ')';
286             return pos;
287
288         case TYPE_ARRAY:
289             pos = ast_type_to_string_impl(e->next, buf, bufsize, pos);
290             if (pos + 1 >= bufsize)
291                 goto full;
292             buf[pos++] = '[';
293             pos += util_snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->count);
294             if (pos + 1 >= bufsize)
295                 goto full;
296             buf[pos++] = ']';
297             return pos;
298
299         default:
300             typestr = type_name[e->vtype];
301             typelen = strlen(typestr);
302             if (pos + typelen >= bufsize)
303                 goto full;
304             util_strncpy(buf + pos, typestr, typelen);
305             return pos + typelen;
306     }
307
308 full:
309     buf[bufsize-3] = '.';
310     buf[bufsize-2] = '.';
311     buf[bufsize-1] = '.';
312     return bufsize;
313 }
314
315 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
316 {
317     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
318     buf[pos] = 0;
319 }
320
321 static bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out);
322 ast_value* ast_value_new(lex_ctx_t ctx, const char *name, int t)
323 {
324     ast_instantiate(ast_value, ctx, ast_value_delete);
325     ast_expression_init((ast_expression*)self,
326                         (ast_expression_codegen*)&ast_value_codegen);
327     self->expression.node.keep = true; /* keep */
328
329     self->name = name ? util_strdup(name) : NULL;
330     self->expression.vtype = t;
331     self->expression.next  = NULL;
332     self->isfield  = false;
333     self->cvq      = CV_NONE;
334     self->hasvalue = false;
335     self->isimm    = false;
336     self->inexact  = false;
337     self->uses     = 0;
338     memset(&self->constval, 0, sizeof(self->constval));
339     self->initlist = NULL;
340
341     self->ir_v           = NULL;
342     self->ir_values      = NULL;
343     self->ir_value_count = 0;
344
345     self->setter = NULL;
346     self->getter = NULL;
347     self->desc   = NULL;
348
349     self->argcounter = NULL;
350     self->intrinsic = false;
351
352     return self;
353 }
354
355 void ast_value_delete(ast_value* self)
356 {
357     if (self->name)
358         mem_d((void*)self->name);
359     if (self->argcounter)
360         mem_d((void*)self->argcounter);
361     if (self->hasvalue) {
362         switch (self->expression.vtype)
363         {
364         case TYPE_STRING:
365             mem_d((void*)self->constval.vstring);
366             break;
367         case TYPE_FUNCTION:
368             /* unlink us from the function node */
369             self->constval.vfunc->vtype = NULL;
370             break;
371         /* NOTE: delete function? currently collected in
372          * the parser structure
373          */
374         default:
375             break;
376         }
377     }
378     if (self->ir_values)
379         mem_d(self->ir_values);
380
381     if (self->desc)
382         mem_d(self->desc);
383
384     if (self->initlist) {
385         if (self->expression.next->vtype == TYPE_STRING) {
386             /* strings are allocated, free them */
387             size_t i, len = vec_size(self->initlist);
388             /* in theory, len should be expression.count
389              * but let's not take any chances */
390             for (i = 0; i < len; ++i) {
391                 if (self->initlist[i].vstring)
392                     mem_d(self->initlist[i].vstring);
393             }
394         }
395         vec_free(self->initlist);
396     }
397
398     ast_expression_delete((ast_expression*)self);
399     mem_d(self);
400 }
401
402 void ast_value_params_add(ast_value *self, ast_value *p)
403 {
404     self->expression.params.push_back(p);
405 }
406
407 bool ast_value_set_name(ast_value *self, const char *name)
408 {
409     if (self->name)
410         mem_d((void*)self->name);
411     self->name = util_strdup(name);
412     return !!self->name;
413 }
414
415 ast_binary* ast_binary_new(lex_ctx_t ctx, int op,
416                            ast_expression* left, ast_expression* right)
417 {
418     ast_instantiate(ast_binary, ctx, ast_binary_delete);
419     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
420
421     if (ast_istype(right, ast_unary) && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
422         ast_unary      *unary  = ((ast_unary*)right);
423         ast_expression *normal = unary->operand;
424
425         /* make a-(-b) => a + b */
426         if (unary->op == VINSTR_NEG_F || unary->op == VINSTR_NEG_V) {
427             if (op == INSTR_SUB_F) {
428                 op = INSTR_ADD_F;
429                 right = normal;
430                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
431             } else if (op == INSTR_SUB_V) {
432                 op = INSTR_ADD_V;
433                 right = normal;
434                 ++opts_optimizationcount[OPTIM_PEEPHOLE];
435             }
436         }
437     }
438
439     self->op = op;
440     self->left = left;
441     self->right = right;
442     self->right_first = false;
443
444     ast_propagate_effects(self, left);
445     ast_propagate_effects(self, right);
446
447     if (op >= INSTR_EQ_F && op <= INSTR_GT)
448         self->expression.vtype = TYPE_FLOAT;
449     else if (op == INSTR_AND || op == INSTR_OR) {
450         if (OPTS_FLAG(PERL_LOGIC))
451             ast_type_adopt(self, right);
452         else
453             self->expression.vtype = TYPE_FLOAT;
454     }
455     else if (op == INSTR_BITAND || op == INSTR_BITOR)
456         self->expression.vtype = TYPE_FLOAT;
457     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
458         self->expression.vtype = TYPE_VECTOR;
459     else if (op == INSTR_MUL_V)
460         self->expression.vtype = TYPE_FLOAT;
461     else
462         self->expression.vtype = left->vtype;
463
464     /* references all */
465     self->refs = AST_REF_ALL;
466
467     return self;
468 }
469
470 void ast_binary_delete(ast_binary *self)
471 {
472     if (self->refs & AST_REF_LEFT)  ast_unref(self->left);
473     if (self->refs & AST_REF_RIGHT) ast_unref(self->right);
474
475     ast_expression_delete((ast_expression*)self);
476     mem_d(self);
477 }
478
479 ast_binstore* ast_binstore_new(lex_ctx_t ctx, int storop, int op,
480                                ast_expression* left, ast_expression* right)
481 {
482     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
483     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
484
485     ast_side_effects(self) = true;
486
487     self->opstore = storop;
488     self->opbin   = op;
489     self->dest    = left;
490     self->source  = right;
491
492     self->keep_dest = false;
493
494     ast_type_adopt(self, left);
495     return self;
496 }
497
498 void ast_binstore_delete(ast_binstore *self)
499 {
500     if (!self->keep_dest)
501         ast_unref(self->dest);
502     ast_unref(self->source);
503     ast_expression_delete((ast_expression*)self);
504     mem_d(self);
505 }
506
507 ast_unary* ast_unary_new(lex_ctx_t ctx, int op,
508                          ast_expression *expr)
509 {
510     ast_instantiate(ast_unary, ctx, ast_unary_delete);
511     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
512
513     self->op      = op;
514     self->operand = expr;
515
516
517     if (ast_istype(expr, ast_unary) && OPTS_OPTIMIZATION(OPTIM_PEEPHOLE)) {
518         ast_unary *prev = (ast_unary*)((ast_unary*)expr)->operand;
519
520         /* Handle for double negation */
521         if (((ast_unary*)expr)->op == op)
522             prev = (ast_unary*)((ast_unary*)expr)->operand;
523
524         if (ast_istype(prev, ast_unary)) {
525             ast_expression_delete((ast_expression*)self);
526             mem_d(self);
527             ++opts_optimizationcount[OPTIM_PEEPHOLE];
528             return prev;
529         }
530     }
531
532     ast_propagate_effects(self, expr);
533
534     if ((op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) || op == VINSTR_NEG_F) {
535         self->expression.vtype = TYPE_FLOAT;
536     } else if (op == VINSTR_NEG_V) {
537         self->expression.vtype = TYPE_VECTOR;
538     } else {
539         compile_error(ctx, "cannot determine type of unary operation %s", util_instr_str[op]);
540     }
541
542     return self;
543 }
544
545 void ast_unary_delete(ast_unary *self)
546 {
547     if (self->operand) ast_unref(self->operand);
548     ast_expression_delete((ast_expression*)self);
549     mem_d(self);
550 }
551
552 ast_return* ast_return_new(lex_ctx_t ctx, ast_expression *expr)
553 {
554     ast_instantiate(ast_return, ctx, ast_return_delete);
555     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
556
557     self->operand = expr;
558
559     if (expr)
560         ast_propagate_effects(self, expr);
561
562     return self;
563 }
564
565 void ast_return_delete(ast_return *self)
566 {
567     if (self->operand)
568         ast_unref(self->operand);
569     ast_expression_delete((ast_expression*)self);
570     mem_d(self);
571 }
572
573 ast_entfield* ast_entfield_new(lex_ctx_t ctx, ast_expression *entity, ast_expression *field)
574 {
575     if (field->vtype != TYPE_FIELD) {
576         compile_error(ctx, "ast_entfield_new with expression not of type field");
577         return NULL;
578     }
579     return ast_entfield_new_force(ctx, entity, field, field->next);
580 }
581
582 ast_entfield* ast_entfield_new_force(lex_ctx_t ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
583 {
584     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
585
586     if (!outtype) {
587         mem_d(self);
588         /* Error: field has no type... */
589         return NULL;
590     }
591
592     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
593
594     self->entity = entity;
595     self->field  = field;
596     ast_propagate_effects(self, entity);
597     ast_propagate_effects(self, field);
598
599     ast_type_adopt(self, outtype);
600     return self;
601 }
602
603 void ast_entfield_delete(ast_entfield *self)
604 {
605     ast_unref(self->entity);
606     ast_unref(self->field);
607     ast_expression_delete((ast_expression*)self);
608     mem_d(self);
609 }
610
611 ast_member* ast_member_new(lex_ctx_t ctx, ast_expression *owner, unsigned int field, const char *name)
612 {
613     ast_instantiate(ast_member, ctx, ast_member_delete);
614     if (field >= 3) {
615         mem_d(self);
616         return NULL;
617     }
618
619     if (owner->vtype != TYPE_VECTOR &&
620         owner->vtype != TYPE_FIELD) {
621         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->vtype]);
622         mem_d(self);
623         return NULL;
624     }
625
626     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
627     self->expression.node.keep = true; /* keep */
628
629     if (owner->vtype == TYPE_VECTOR) {
630         self->expression.vtype = TYPE_FLOAT;
631         self->expression.next  = NULL;
632     } else {
633         self->expression.vtype = TYPE_FIELD;
634         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
635     }
636
637     self->rvalue = false;
638     self->owner  = owner;
639     ast_propagate_effects(self, owner);
640
641     self->field = field;
642     if (name)
643         self->name = util_strdup(name);
644     else
645         self->name = NULL;
646
647     return self;
648 }
649
650 void ast_member_delete(ast_member *self)
651 {
652     /* The owner is always an ast_value, which has .keep=true,
653      * also: ast_members are usually deleted after the owner, thus
654      * this will cause invalid access
655     ast_unref(self->owner);
656      * once we allow (expression).x to access a vector-member, we need
657      * to change this: preferably by creating an alternate ast node for this
658      * purpose that is not garbage-collected.
659     */
660     ast_expression_delete((ast_expression*)self);
661     mem_d(self->name);
662     mem_d(self);
663 }
664
665 bool ast_member_set_name(ast_member *self, const char *name)
666 {
667     if (self->name)
668         mem_d((void*)self->name);
669     self->name = util_strdup(name);
670     return !!self->name;
671 }
672
673 ast_array_index* ast_array_index_new(lex_ctx_t ctx, ast_expression *array, ast_expression *index)
674 {
675     ast_expression *outtype;
676     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
677
678     outtype = array->next;
679     if (!outtype) {
680         mem_d(self);
681         /* Error: field has no type... */
682         return NULL;
683     }
684
685     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
686
687     self->array = array;
688     self->index = index;
689     ast_propagate_effects(self, array);
690     ast_propagate_effects(self, index);
691
692     ast_type_adopt(self, outtype);
693     if (array->vtype == TYPE_FIELD && outtype->vtype == TYPE_ARRAY) {
694         if (self->expression.vtype != TYPE_ARRAY) {
695             compile_error(ast_ctx(self), "array_index node on type");
696             ast_array_index_delete(self);
697             return NULL;
698         }
699         self->array = outtype;
700         self->expression.vtype = TYPE_FIELD;
701     }
702
703     return self;
704 }
705
706 void ast_array_index_delete(ast_array_index *self)
707 {
708     if (self->array)
709         ast_unref(self->array);
710     if (self->index)
711         ast_unref(self->index);
712     ast_expression_delete((ast_expression*)self);
713     mem_d(self);
714 }
715
716 ast_argpipe* ast_argpipe_new(lex_ctx_t ctx, ast_expression *index)
717 {
718     ast_instantiate(ast_argpipe, ctx, ast_argpipe_delete);
719     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_argpipe_codegen);
720     self->index = index;
721     self->expression.vtype = TYPE_NOEXPR;
722     return self;
723 }
724
725 void ast_argpipe_delete(ast_argpipe *self)
726 {
727     if (self->index)
728         ast_unref(self->index);
729     ast_expression_delete((ast_expression*)self);
730     mem_d(self);
731 }
732
733 ast_ifthen* ast_ifthen_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
734 {
735     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
736     if (!ontrue && !onfalse) {
737         /* because it is invalid */
738         mem_d(self);
739         return NULL;
740     }
741     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
742
743     self->cond     = cond;
744     self->on_true  = ontrue;
745     self->on_false = onfalse;
746     ast_propagate_effects(self, cond);
747     if (ontrue)
748         ast_propagate_effects(self, ontrue);
749     if (onfalse)
750         ast_propagate_effects(self, onfalse);
751
752     return self;
753 }
754
755 void ast_ifthen_delete(ast_ifthen *self)
756 {
757     ast_unref(self->cond);
758     if (self->on_true)
759         ast_unref(self->on_true);
760     if (self->on_false)
761         ast_unref(self->on_false);
762     ast_expression_delete((ast_expression*)self);
763     mem_d(self);
764 }
765
766 ast_ternary* ast_ternary_new(lex_ctx_t ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
767 {
768     ast_expression *exprtype = ontrue;
769     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
770     /* This time NEITHER must be NULL */
771     if (!ontrue || !onfalse) {
772         mem_d(self);
773         return NULL;
774     }
775     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
776
777     self->cond     = cond;
778     self->on_true  = ontrue;
779     self->on_false = onfalse;
780     ast_propagate_effects(self, cond);
781     ast_propagate_effects(self, ontrue);
782     ast_propagate_effects(self, onfalse);
783
784     if (ontrue->vtype == TYPE_NIL)
785         exprtype = onfalse;
786     ast_type_adopt(self, exprtype);
787
788     return self;
789 }
790
791 void ast_ternary_delete(ast_ternary *self)
792 {
793     /* the if()s are only there because computed-gotos can set them
794      * to NULL
795      */
796     if (self->cond)     ast_unref(self->cond);
797     if (self->on_true)  ast_unref(self->on_true);
798     if (self->on_false) ast_unref(self->on_false);
799     ast_expression_delete((ast_expression*)self);
800     mem_d(self);
801 }
802
803 ast_loop* ast_loop_new(lex_ctx_t ctx,
804                        ast_expression *initexpr,
805                        ast_expression *precond, bool pre_not,
806                        ast_expression *postcond, bool post_not,
807                        ast_expression *increment,
808                        ast_expression *body)
809 {
810     ast_instantiate(ast_loop, ctx, ast_loop_delete);
811     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
812
813     self->initexpr  = initexpr;
814     self->precond   = precond;
815     self->postcond  = postcond;
816     self->increment = increment;
817     self->body      = body;
818
819     self->pre_not   = pre_not;
820     self->post_not  = post_not;
821
822     if (initexpr)
823         ast_propagate_effects(self, initexpr);
824     if (precond)
825         ast_propagate_effects(self, precond);
826     if (postcond)
827         ast_propagate_effects(self, postcond);
828     if (increment)
829         ast_propagate_effects(self, increment);
830     if (body)
831         ast_propagate_effects(self, body);
832
833     return self;
834 }
835
836 void ast_loop_delete(ast_loop *self)
837 {
838     if (self->initexpr)
839         ast_unref(self->initexpr);
840     if (self->precond)
841         ast_unref(self->precond);
842     if (self->postcond)
843         ast_unref(self->postcond);
844     if (self->increment)
845         ast_unref(self->increment);
846     if (self->body)
847         ast_unref(self->body);
848     ast_expression_delete((ast_expression*)self);
849     mem_d(self);
850 }
851
852 ast_breakcont* ast_breakcont_new(lex_ctx_t ctx, bool iscont, unsigned int levels)
853 {
854     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
855     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
856
857     self->is_continue = iscont;
858     self->levels      = levels;
859
860     return self;
861 }
862
863 void ast_breakcont_delete(ast_breakcont *self)
864 {
865     ast_expression_delete((ast_expression*)self);
866     mem_d(self);
867 }
868
869 ast_switch* ast_switch_new(lex_ctx_t ctx, ast_expression *op)
870 {
871     ast_instantiate(ast_switch, ctx, ast_switch_delete);
872     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
873
874     self->operand = op;
875     self->cases   = NULL;
876
877     ast_propagate_effects(self, op);
878
879     return self;
880 }
881
882 void ast_switch_delete(ast_switch *self)
883 {
884     size_t i;
885     ast_unref(self->operand);
886
887     for (i = 0; i < vec_size(self->cases); ++i) {
888         if (self->cases[i].value)
889             ast_unref(self->cases[i].value);
890         ast_unref(self->cases[i].code);
891     }
892     vec_free(self->cases);
893
894     ast_expression_delete((ast_expression*)self);
895     mem_d(self);
896 }
897
898 ast_label* ast_label_new(lex_ctx_t ctx, const char *name, bool undefined)
899 {
900     ast_instantiate(ast_label, ctx, ast_label_delete);
901     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
902
903     self->expression.vtype = TYPE_NOEXPR;
904
905     self->name      = util_strdup(name);
906     self->irblock   = NULL;
907     self->undefined = undefined;
908
909     return self;
910 }
911
912 void ast_label_delete(ast_label *self)
913 {
914     mem_d((void*)self->name);
915     ast_expression_delete((ast_expression*)self);
916     mem_d(self);
917 }
918
919 static void ast_label_register_goto(ast_label *self, ast_goto *g)
920 {
921    self->gotos.push_back(g);
922 }
923
924 ast_goto* ast_goto_new(lex_ctx_t ctx, const char *name)
925 {
926     ast_instantiate(ast_goto, ctx, ast_goto_delete);
927     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
928
929     self->name    = util_strdup(name);
930     self->target  = NULL;
931     self->irblock_from = NULL;
932
933     return self;
934 }
935
936 void ast_goto_delete(ast_goto *self)
937 {
938     mem_d((void*)self->name);
939     ast_expression_delete((ast_expression*)self);
940     mem_d(self);
941 }
942
943 void ast_goto_set_label(ast_goto *self, ast_label *label)
944 {
945     self->target = label;
946 }
947
948 ast_state* ast_state_new(lex_ctx_t ctx, ast_expression *frame, ast_expression *think)
949 {
950     ast_instantiate(ast_state, ctx, ast_state_delete);
951     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_state_codegen);
952     self->framenum  = frame;
953     self->nextthink = think;
954     return self;
955 }
956
957 void ast_state_delete(ast_state *self)
958 {
959     if (self->framenum)
960         ast_unref(self->framenum);
961     if (self->nextthink)
962         ast_unref(self->nextthink);
963
964     ast_expression_delete((ast_expression*)self);
965     mem_d(self);
966 }
967
968 ast_call* ast_call_new(lex_ctx_t ctx,
969                        ast_expression *funcexpr)
970 {
971     ast_instantiate(ast_call, ctx, ast_call_delete);
972     if (!funcexpr->next) {
973         compile_error(ctx, "not a function");
974         mem_d(self);
975         return NULL;
976     }
977     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
978
979     ast_side_effects(self) = true;
980
981     self->func     = funcexpr;
982     self->va_count = NULL;
983
984     ast_type_adopt(self, funcexpr->next);
985
986     return self;
987 }
988
989 void ast_call_delete(ast_call *self)
990 {
991     for (auto &it : self->params)
992         ast_unref(it);
993
994     if (self->func)
995         ast_unref(self->func);
996
997     if (self->va_count)
998         ast_unref(self->va_count);
999
1000     ast_expression_delete((ast_expression*)self);
1001     mem_d(self);
1002 }
1003
1004 static bool ast_call_check_vararg(ast_call *self, ast_expression *va_type, ast_expression *exp_type)
1005 {
1006     char texp[1024];
1007     char tgot[1024];
1008     if (!exp_type)
1009         return true;
1010     if (!va_type || !ast_compare_type(va_type, exp_type))
1011     {
1012         if (va_type && exp_type)
1013         {
1014             ast_type_to_string(va_type,  tgot, sizeof(tgot));
1015             ast_type_to_string(exp_type, texp, sizeof(texp));
1016             if (OPTS_FLAG(UNSAFE_VARARGS)) {
1017                 if (compile_warning(ast_ctx(self), WARN_UNSAFE_TYPES,
1018                                     "piped variadic argument differs in type: constrained to type %s, expected type %s",
1019                                     tgot, texp))
1020                     return false;
1021             } else {
1022                 compile_error(ast_ctx(self),
1023                               "piped variadic argument differs in type: constrained to type %s, expected type %s",
1024                               tgot, texp);
1025                 return false;
1026             }
1027         }
1028         else
1029         {
1030             ast_type_to_string(exp_type, texp, sizeof(texp));
1031             if (OPTS_FLAG(UNSAFE_VARARGS)) {
1032                 if (compile_warning(ast_ctx(self), WARN_UNSAFE_TYPES,
1033                                     "piped variadic argument may differ in type: expected type %s",
1034                                     texp))
1035                     return false;
1036             } else {
1037                 compile_error(ast_ctx(self),
1038                               "piped variadic argument may differ in type: expected type %s",
1039                               texp);
1040                 return false;
1041             }
1042         }
1043     }
1044     return true;
1045 }
1046
1047 bool ast_call_check_types(ast_call *self, ast_expression *va_type)
1048 {
1049     char texp[1024];
1050     char tgot[1024];
1051     size_t i;
1052     bool retval = true;
1053     const ast_expression *func = self->func;
1054     size_t count = self->params.size();
1055     if (count > func->params.size())
1056         count = func->params.size();
1057
1058     for (i = 0; i < count; ++i) {
1059         if (ast_istype(self->params[i], ast_argpipe)) {
1060             /* warn about type safety instead */
1061             if (i+1 != count) {
1062                 compile_error(ast_ctx(self), "argpipe must be the last parameter to a function call");
1063                 return false;
1064             }
1065             if (!ast_call_check_vararg(self, va_type, (ast_expression*)func->params[i]))
1066                 retval = false;
1067         }
1068         else if (!ast_compare_type(self->params[i], (ast_expression*)(func->params[i])))
1069         {
1070             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
1071             ast_type_to_string((ast_expression*)func->params[i], texp, sizeof(texp));
1072             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
1073                      (unsigned int)(i+1), texp, tgot);
1074             /* we don't immediately return */
1075             retval = false;
1076         }
1077     }
1078     count = self->params.size();
1079     if (count > func->params.size() && func->varparam) {
1080         for (; i < count; ++i) {
1081             if (ast_istype(self->params[i], ast_argpipe)) {
1082                 /* warn about type safety instead */
1083                 if (i+1 != count) {
1084                     compile_error(ast_ctx(self), "argpipe must be the last parameter to a function call");
1085                     return false;
1086                 }
1087                 if (!ast_call_check_vararg(self, va_type, func->varparam))
1088                     retval = false;
1089             }
1090             else if (!ast_compare_type(self->params[i], func->varparam))
1091             {
1092                 ast_type_to_string(self->params[i], tgot, sizeof(tgot));
1093                 ast_type_to_string(func->varparam, texp, sizeof(texp));
1094                 compile_error(ast_ctx(self), "invalid type for variadic parameter %u in function call: expected %s, got %s",
1095                          (unsigned int)(i+1), texp, tgot);
1096                 /* we don't immediately return */
1097                 retval = false;
1098             }
1099         }
1100     }
1101     return retval;
1102 }
1103
1104 ast_store* ast_store_new(lex_ctx_t ctx, int op,
1105                          ast_expression *dest, ast_expression *source)
1106 {
1107     ast_instantiate(ast_store, ctx, ast_store_delete);
1108     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
1109
1110     ast_side_effects(self) = true;
1111
1112     self->op = op;
1113     self->dest = dest;
1114     self->source = source;
1115
1116     ast_type_adopt(self, dest);
1117
1118     return self;
1119 }
1120
1121 void ast_store_delete(ast_store *self)
1122 {
1123     ast_unref(self->dest);
1124     ast_unref(self->source);
1125     ast_expression_delete((ast_expression*)self);
1126     mem_d(self);
1127 }
1128
1129 ast_block* ast_block_new(lex_ctx_t ctx)
1130 {
1131     ast_instantiate(ast_block, ctx, ast_block_delete);
1132     ast_expression_init((ast_expression*)self,
1133                         (ast_expression_codegen*)&ast_block_codegen);
1134     return self;
1135 }
1136
1137 bool ast_block_add_expr(ast_block *self, ast_expression *e)
1138 {
1139     ast_propagate_effects(self, e);
1140     self->exprs.push_back(e);
1141     if (self->expression.next) {
1142         ast_delete(self->expression.next);
1143         self->expression.next = NULL;
1144     }
1145     ast_type_adopt(self, e);
1146     return true;
1147 }
1148
1149 void ast_block_collect(ast_block *self, ast_expression *expr)
1150 {
1151     self->collect.push_back(expr);
1152     expr->node.keep = true;
1153 }
1154
1155 void ast_block_delete(ast_block *self)
1156 {
1157     for (auto &it : self->exprs) ast_unref(it);
1158     for (auto &it : self->locals) ast_delete(it);
1159     for (auto &it : self->collect) ast_delete(it);
1160     ast_expression_delete((ast_expression*)self);
1161     mem_d(self);
1162 }
1163
1164 void ast_block_set_type(ast_block *self, ast_expression *from)
1165 {
1166     if (self->expression.next)
1167         ast_delete(self->expression.next);
1168     ast_type_adopt(self, from);
1169 }
1170
1171 ast_function* ast_function_new(lex_ctx_t ctx, const char *name, ast_value *vtype)
1172 {
1173     ast_instantiate(ast_function, ctx, ast_function_delete);
1174
1175     if (!vtype) {
1176         compile_error(ast_ctx(self), "internal error: ast_function_new condition 0");
1177         goto cleanup;
1178     } else if (vtype->hasvalue || vtype->expression.vtype != TYPE_FUNCTION) {
1179         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1180                  (int)!vtype,
1181                  (int)vtype->hasvalue,
1182                  vtype->expression.vtype);
1183         goto cleanup;
1184     }
1185
1186     self->vtype  = vtype;
1187     self->name   = name ? util_strdup(name) : NULL;
1188     self->blocks = NULL;
1189
1190     self->labelcount = 0;
1191     self->builtin = 0;
1192
1193     self->ir_func = NULL;
1194     self->curblock = NULL;
1195
1196     self->breakblocks    = NULL;
1197     self->continueblocks = NULL;
1198
1199     vtype->hasvalue = true;
1200     vtype->constval.vfunc = self;
1201
1202     self->varargs          = NULL;
1203     self->argc             = NULL;
1204     self->fixedparams      = NULL;
1205     self->return_value     = NULL;
1206
1207     self->static_names     = NULL;
1208     self->static_count     = 0;
1209
1210     return self;
1211
1212 cleanup:
1213     mem_d(self);
1214     return NULL;
1215 }
1216
1217 void ast_function_delete(ast_function *self)
1218 {
1219     size_t i;
1220     if (self->name)
1221         mem_d((void*)self->name);
1222     if (self->vtype) {
1223         /* ast_value_delete(self->vtype); */
1224         self->vtype->hasvalue = false;
1225         self->vtype->constval.vfunc = NULL;
1226         /* We use unref - if it was stored in a global table it is supposed
1227          * to be deleted from *there*
1228          */
1229         ast_unref(self->vtype);
1230     }
1231     for (i = 0; i < vec_size(self->static_names); ++i)
1232         mem_d(self->static_names[i]);
1233     vec_free(self->static_names);
1234     for (i = 0; i < vec_size(self->blocks); ++i)
1235         ast_delete(self->blocks[i]);
1236     vec_free(self->blocks);
1237     vec_free(self->breakblocks);
1238     vec_free(self->continueblocks);
1239     if (self->varargs)
1240         ast_delete(self->varargs);
1241     if (self->argc)
1242         ast_delete(self->argc);
1243     if (self->fixedparams)
1244         ast_unref(self->fixedparams);
1245     if (self->return_value)
1246         ast_unref(self->return_value);
1247     mem_d(self);
1248 }
1249
1250 const char* ast_function_label(ast_function *self, const char *prefix)
1251 {
1252     size_t id;
1253     size_t len;
1254     char  *from;
1255
1256     if (!OPTS_OPTION_BOOL(OPTION_DUMP)    &&
1257         !OPTS_OPTION_BOOL(OPTION_DUMPFIN) &&
1258         !OPTS_OPTION_BOOL(OPTION_DEBUG))
1259     {
1260         return NULL;
1261     }
1262
1263     id  = (self->labelcount++);
1264     len = strlen(prefix);
1265
1266     from = self->labelbuf + sizeof(self->labelbuf)-1;
1267     *from-- = 0;
1268     do {
1269         *from-- = (id%10) + '0';
1270         id /= 10;
1271     } while (id);
1272     ++from;
1273     memcpy(from - len, prefix, len);
1274     return from - len;
1275 }
1276
1277 /*********************************************************************/
1278 /* AST codegen part
1279  * by convention you must never pass NULL to the 'ir_value **out'
1280  * parameter. If you really don't care about the output, pass a dummy.
1281  * But I can't imagine a pituation where the output is truly unnecessary.
1282  */
1283
1284 static void _ast_codegen_output_type(ast_expression *self, ir_value *out)
1285 {
1286     if (out->vtype == TYPE_FIELD)
1287         out->fieldtype = self->next->vtype;
1288     if (out->vtype == TYPE_FUNCTION)
1289         out->outtype = self->next->vtype;
1290 }
1291
1292 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1293
1294 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1295 {
1296     (void)func;
1297     (void)lvalue;
1298     if (self->expression.vtype == TYPE_NIL) {
1299         *out = func->ir_func->owner->nil;
1300         return true;
1301     }
1302     /* NOTE: This is the codegen for a variable used in an expression.
1303      * It is not the codegen to generate the value. For this purpose,
1304      * ast_local_codegen and ast_global_codegen are to be used before this
1305      * is executed. ast_function_codegen should take care of its locals,
1306      * and the ast-user should take care of ast_global_codegen to be used
1307      * on all the globals.
1308      */
1309     if (!self->ir_v) {
1310         char tname[1024]; /* typename is reserved in C++ */
1311         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1312         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1313         return false;
1314     }
1315     *out = self->ir_v;
1316     return true;
1317 }
1318
1319 static bool ast_global_array_set(ast_value *self)
1320 {
1321     size_t count = vec_size(self->initlist);
1322     size_t i;
1323
1324     if (count > self->expression.count) {
1325         compile_error(ast_ctx(self), "too many elements in initializer");
1326         count = self->expression.count;
1327     }
1328     else if (count < self->expression.count) {
1329         /* add this?
1330         compile_warning(ast_ctx(self), "not all elements are initialized");
1331         */
1332     }
1333
1334     for (i = 0; i != count; ++i) {
1335         switch (self->expression.next->vtype) {
1336             case TYPE_FLOAT:
1337                 if (!ir_value_set_float(self->ir_values[i], self->initlist[i].vfloat))
1338                     return false;
1339                 break;
1340             case TYPE_VECTOR:
1341                 if (!ir_value_set_vector(self->ir_values[i], self->initlist[i].vvec))
1342                     return false;
1343                 break;
1344             case TYPE_STRING:
1345                 if (!ir_value_set_string(self->ir_values[i], self->initlist[i].vstring))
1346                     return false;
1347                 break;
1348             case TYPE_ARRAY:
1349                 /* we don't support them in any other place yet either */
1350                 compile_error(ast_ctx(self), "TODO: nested arrays");
1351                 return false;
1352             case TYPE_FUNCTION:
1353                 /* this requiers a bit more work - similar to the fields I suppose */
1354                 compile_error(ast_ctx(self), "global of type function not properly generated");
1355                 return false;
1356             case TYPE_FIELD:
1357                 if (!self->initlist[i].vfield) {
1358                     compile_error(ast_ctx(self), "field constant without vfield set");
1359                     return false;
1360                 }
1361                 if (!self->initlist[i].vfield->ir_v) {
1362                     compile_error(ast_ctx(self), "field constant generated before its field");
1363                     return false;
1364                 }
1365                 if (!ir_value_set_field(self->ir_values[i], self->initlist[i].vfield->ir_v))
1366                     return false;
1367                 break;
1368             default:
1369                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1370                 break;
1371         }
1372     }
1373     return true;
1374 }
1375
1376 static bool check_array(ast_value *self, ast_value *array)
1377 {
1378     if (array->expression.flags & AST_FLAG_ARRAY_INIT && !array->initlist) {
1379         compile_error(ast_ctx(self), "array without size: %s", self->name);
1380         return false;
1381     }
1382     /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1383     if (!array->expression.count || array->expression.count > OPTS_OPTION_U32(OPTION_MAX_ARRAY_SIZE)) {
1384         compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1385         return false;
1386     }
1387     return true;
1388 }
1389
1390 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1391 {
1392     ir_value *v = NULL;
1393
1394     if (self->expression.vtype == TYPE_NIL) {
1395         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1396         return false;
1397     }
1398
1399     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1400     {
1401         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->vtype);
1402         if (!func)
1403             return false;
1404         func->context = ast_ctx(self);
1405         func->value->context = ast_ctx(self);
1406
1407         self->constval.vfunc->ir_func = func;
1408         self->ir_v = func->value;
1409         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1410             self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1411         if (self->expression.flags & AST_FLAG_ERASEABLE)
1412             self->ir_v->flags |= IR_FLAG_ERASABLE;
1413         if (self->expression.flags & AST_FLAG_BLOCK_COVERAGE)
1414             func->flags |= IR_FLAG_BLOCK_COVERAGE;
1415         /* The function is filled later on ast_function_codegen... */
1416         return true;
1417     }
1418
1419     if (isfield && self->expression.vtype == TYPE_FIELD) {
1420         ast_expression *fieldtype = self->expression.next;
1421
1422         if (self->hasvalue) {
1423             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1424             goto error;
1425         }
1426
1427         if (fieldtype->vtype == TYPE_ARRAY) {
1428             size_t ai;
1429             char   *name;
1430             size_t  namelen;
1431
1432             ast_expression *elemtype;
1433             int             vtype;
1434             ast_value      *array = (ast_value*)fieldtype;
1435
1436             if (!ast_istype(fieldtype, ast_value)) {
1437                 compile_error(ast_ctx(self), "internal error: ast_value required");
1438                 return false;
1439             }
1440
1441             if (!check_array(self, array))
1442                 return false;
1443
1444             elemtype = array->expression.next;
1445             vtype = elemtype->vtype;
1446
1447             v = ir_builder_create_field(ir, self->name, vtype);
1448             if (!v) {
1449                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1450                 return false;
1451             }
1452             v->context = ast_ctx(self);
1453             v->unique_life = true;
1454             v->locked      = true;
1455             array->ir_v = self->ir_v = v;
1456
1457             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1458                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1459             if (self->expression.flags & AST_FLAG_ERASEABLE)
1460                 self->ir_v->flags |= IR_FLAG_ERASABLE;
1461
1462             namelen = strlen(self->name);
1463             name    = (char*)mem_a(namelen + 16);
1464             util_strncpy(name, self->name, namelen);
1465
1466             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1467             array->ir_values[0] = v;
1468             for (ai = 1; ai < array->expression.count; ++ai) {
1469                 util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1470                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1471                 if (!array->ir_values[ai]) {
1472                     mem_d(name);
1473                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1474                     return false;
1475                 }
1476                 array->ir_values[ai]->context = ast_ctx(self);
1477                 array->ir_values[ai]->unique_life = true;
1478                 array->ir_values[ai]->locked      = true;
1479                 if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1480                     self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1481             }
1482             mem_d(name);
1483         }
1484         else
1485         {
1486             v = ir_builder_create_field(ir, self->name, self->expression.next->vtype);
1487             if (!v)
1488                 return false;
1489             v->context = ast_ctx(self);
1490             self->ir_v = v;
1491             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1492                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1493
1494             if (self->expression.flags & AST_FLAG_ERASEABLE)
1495                 self->ir_v->flags |= IR_FLAG_ERASABLE;
1496         }
1497         return true;
1498     }
1499
1500     if (self->expression.vtype == TYPE_ARRAY) {
1501         size_t ai;
1502         char   *name;
1503         size_t  namelen;
1504
1505         ast_expression *elemtype = self->expression.next;
1506         int vtype = elemtype->vtype;
1507
1508         if (self->expression.flags & AST_FLAG_ARRAY_INIT && !self->expression.count) {
1509             compile_error(ast_ctx(self), "array `%s' has no size", self->name);
1510             return false;
1511         }
1512
1513         /* same as with field arrays */
1514         if (!check_array(self, self))
1515             return false;
1516
1517         v = ir_builder_create_global(ir, self->name, vtype);
1518         if (!v) {
1519             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1520             return false;
1521         }
1522         v->context = ast_ctx(self);
1523         v->unique_life = true;
1524         v->locked      = true;
1525
1526         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1527             v->flags |= IR_FLAG_INCLUDE_DEF;
1528         if (self->expression.flags & AST_FLAG_ERASEABLE)
1529             self->ir_v->flags |= IR_FLAG_ERASABLE;
1530
1531         namelen = strlen(self->name);
1532         name    = (char*)mem_a(namelen + 16);
1533         util_strncpy(name, self->name, namelen);
1534
1535         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1536         self->ir_values[0] = v;
1537         for (ai = 1; ai < self->expression.count; ++ai) {
1538             util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1539             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1540             if (!self->ir_values[ai]) {
1541                 mem_d(name);
1542                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1543                 return false;
1544             }
1545             self->ir_values[ai]->context = ast_ctx(self);
1546             self->ir_values[ai]->unique_life = true;
1547             self->ir_values[ai]->locked      = true;
1548             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1549                 self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1550         }
1551         mem_d(name);
1552     }
1553     else
1554     {
1555         /* Arrays don't do this since there's no "array" value which spans across the
1556          * whole thing.
1557          */
1558         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1559         if (!v) {
1560             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1561             return false;
1562         }
1563         codegen_output_type(self, v);
1564         v->context = ast_ctx(self);
1565     }
1566
1567     /* link us to the ir_value */
1568     v->cvq = self->cvq;
1569     self->ir_v = v;
1570
1571     if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1572         self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1573     if (self->expression.flags & AST_FLAG_ERASEABLE)
1574         self->ir_v->flags |= IR_FLAG_ERASABLE;
1575
1576     /* initialize */
1577     if (self->hasvalue) {
1578         switch (self->expression.vtype)
1579         {
1580             case TYPE_FLOAT:
1581                 if (!ir_value_set_float(v, self->constval.vfloat))
1582                     goto error;
1583                 break;
1584             case TYPE_VECTOR:
1585                 if (!ir_value_set_vector(v, self->constval.vvec))
1586                     goto error;
1587                 break;
1588             case TYPE_STRING:
1589                 if (!ir_value_set_string(v, self->constval.vstring))
1590                     goto error;
1591                 break;
1592             case TYPE_ARRAY:
1593                 ast_global_array_set(self);
1594                 break;
1595             case TYPE_FUNCTION:
1596                 compile_error(ast_ctx(self), "global of type function not properly generated");
1597                 goto error;
1598                 /* Cannot generate an IR value for a function,
1599                  * need a pointer pointing to a function rather.
1600                  */
1601             case TYPE_FIELD:
1602                 if (!self->constval.vfield) {
1603                     compile_error(ast_ctx(self), "field constant without vfield set");
1604                     goto error;
1605                 }
1606                 if (!self->constval.vfield->ir_v) {
1607                     compile_error(ast_ctx(self), "field constant generated before its field");
1608                     goto error;
1609                 }
1610                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1611                     goto error;
1612                 break;
1613             default:
1614                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1615                 break;
1616         }
1617     }
1618     return true;
1619
1620 error: /* clean up */
1621     if(v) ir_value_delete(v);
1622     return false;
1623 }
1624
1625 static bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1626 {
1627     ir_value *v = NULL;
1628
1629     if (self->expression.vtype == TYPE_NIL) {
1630         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1631         return false;
1632     }
1633
1634     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1635     {
1636         /* Do we allow local functions? I think not...
1637          * this is NOT a function pointer atm.
1638          */
1639         return false;
1640     }
1641
1642     if (self->expression.vtype == TYPE_ARRAY) {
1643         size_t ai;
1644         char   *name;
1645         size_t  namelen;
1646
1647         ast_expression *elemtype = self->expression.next;
1648         int vtype = elemtype->vtype;
1649
1650         func->flags |= IR_FLAG_HAS_ARRAYS;
1651
1652         if (param && !(self->expression.flags & AST_FLAG_IS_VARARG)) {
1653             compile_error(ast_ctx(self), "array-parameters are not supported");
1654             return false;
1655         }
1656
1657         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1658         if (!check_array(self, self))
1659             return false;
1660
1661         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1662         if (!self->ir_values) {
1663             compile_error(ast_ctx(self), "failed to allocate array values");
1664             return false;
1665         }
1666
1667         v = ir_function_create_local(func, self->name, vtype, param);
1668         if (!v) {
1669             compile_error(ast_ctx(self), "internal error: ir_function_create_local failed");
1670             return false;
1671         }
1672         v->context = ast_ctx(self);
1673         v->unique_life = true;
1674         v->locked      = true;
1675
1676         namelen = strlen(self->name);
1677         name    = (char*)mem_a(namelen + 16);
1678         util_strncpy(name, self->name, namelen);
1679
1680         self->ir_values[0] = v;
1681         for (ai = 1; ai < self->expression.count; ++ai) {
1682             util_snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1683             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1684             if (!self->ir_values[ai]) {
1685                 compile_error(ast_ctx(self), "internal_error: ir_builder_create_global failed on `%s`", name);
1686                 return false;
1687             }
1688             self->ir_values[ai]->context = ast_ctx(self);
1689             self->ir_values[ai]->unique_life = true;
1690             self->ir_values[ai]->locked      = true;
1691         }
1692         mem_d(name);
1693     }
1694     else
1695     {
1696         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1697         if (!v)
1698             return false;
1699         codegen_output_type(self, v);
1700         v->context = ast_ctx(self);
1701     }
1702
1703     /* A constant local... hmmm...
1704      * I suppose the IR will have to deal with this
1705      */
1706     if (self->hasvalue) {
1707         switch (self->expression.vtype)
1708         {
1709             case TYPE_FLOAT:
1710                 if (!ir_value_set_float(v, self->constval.vfloat))
1711                     goto error;
1712                 break;
1713             case TYPE_VECTOR:
1714                 if (!ir_value_set_vector(v, self->constval.vvec))
1715                     goto error;
1716                 break;
1717             case TYPE_STRING:
1718                 if (!ir_value_set_string(v, self->constval.vstring))
1719                     goto error;
1720                 break;
1721             default:
1722                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1723                 break;
1724         }
1725     }
1726
1727     /* link us to the ir_value */
1728     v->cvq = self->cvq;
1729     self->ir_v = v;
1730
1731     if (!ast_generate_accessors(self, func->owner))
1732         return false;
1733     return true;
1734
1735 error: /* clean up */
1736     ir_value_delete(v);
1737     return false;
1738 }
1739
1740 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1741 {
1742     size_t i;
1743     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1744     if (!self->setter || !self->getter)
1745         return true;
1746     for (i = 0; i < self->expression.count; ++i) {
1747         if (!self->ir_values) {
1748             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1749             return false;
1750         }
1751         if (!self->ir_values[i]) {
1752             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1753             return false;
1754         }
1755         if (self->ir_values[i]->life) {
1756             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1757             return false;
1758         }
1759     }
1760
1761     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1762     if (self->setter) {
1763         if (!ast_global_codegen  (self->setter, ir, false) ||
1764             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1765             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1766         {
1767             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1768             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1769             return false;
1770         }
1771     }
1772     if (self->getter) {
1773         if (!ast_global_codegen  (self->getter, ir, false) ||
1774             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1775             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1776         {
1777             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1778             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1779             return false;
1780         }
1781     }
1782     for (i = 0; i < self->expression.count; ++i) {
1783         vec_free(self->ir_values[i]->life);
1784     }
1785     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1786     return true;
1787 }
1788
1789 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1790 {
1791     ir_function *irf;
1792     ir_value    *dummy;
1793     ast_expression         *ec;
1794     ast_expression_codegen *cgen;
1795
1796     size_t    i;
1797
1798     (void)ir;
1799
1800     irf = self->ir_func;
1801     if (!irf) {
1802         compile_error(ast_ctx(self), "internal error: ast_function's related ast_value was not generated yet");
1803         return false;
1804     }
1805
1806     /* fill the parameter list */
1807     ec = &self->vtype->expression;
1808     for (auto &it : ec->params) {
1809         if (it->expression.vtype == TYPE_FIELD)
1810             vec_push(irf->params, it->expression.next->vtype);
1811         else
1812             vec_push(irf->params, it->expression.vtype);
1813         if (!self->builtin) {
1814             if (!ast_local_codegen(it, self->ir_func, true))
1815                 return false;
1816         }
1817     }
1818
1819     if (self->varargs) {
1820         if (!ast_local_codegen(self->varargs, self->ir_func, true))
1821             return false;
1822         irf->max_varargs = self->varargs->expression.count;
1823     }
1824
1825     if (self->builtin) {
1826         irf->builtin = self->builtin;
1827         return true;
1828     }
1829
1830     /* have a local return value variable? */
1831     if (self->return_value) {
1832         if (!ast_local_codegen(self->return_value, self->ir_func, false))
1833             return false;
1834     }
1835
1836     if (!vec_size(self->blocks)) {
1837         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1838         return false;
1839     }
1840
1841     irf->first = self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1842     if (!self->curblock) {
1843         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1844         return false;
1845     }
1846
1847     if (self->argc) {
1848         ir_value *va_count;
1849         ir_value *fixed;
1850         ir_value *sub;
1851         if (!ast_local_codegen(self->argc, self->ir_func, true))
1852             return false;
1853         cgen = self->argc->expression.codegen;
1854         if (!(*cgen)((ast_expression*)(self->argc), self, false, &va_count))
1855             return false;
1856         cgen = self->fixedparams->expression.codegen;
1857         if (!(*cgen)((ast_expression*)(self->fixedparams), self, false, &fixed))
1858             return false;
1859         sub = ir_block_create_binop(self->curblock, ast_ctx(self),
1860                                     ast_function_label(self, "va_count"), INSTR_SUB_F,
1861                                     ir_builder_get_va_count(ir), fixed);
1862         if (!sub)
1863             return false;
1864         if (!ir_block_create_store_op(self->curblock, ast_ctx(self), INSTR_STORE_F,
1865                                       va_count, sub))
1866         {
1867             return false;
1868         }
1869     }
1870
1871     for (i = 0; i < vec_size(self->blocks); ++i) {
1872         cgen = self->blocks[i]->expression.codegen;
1873         if (!(*cgen)((ast_expression*)self->blocks[i], self, false, &dummy))
1874             return false;
1875     }
1876
1877     /* TODO: check return types */
1878     if (!self->curblock->final)
1879     {
1880         if (!self->vtype->expression.next ||
1881             self->vtype->expression.next->vtype == TYPE_VOID)
1882         {
1883             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1884         }
1885         else if (vec_size(self->curblock->entries) || self->curblock == irf->first)
1886         {
1887             if (self->return_value) {
1888                 cgen = self->return_value->expression.codegen;
1889                 if (!(*cgen)((ast_expression*)(self->return_value), self, false, &dummy))
1890                     return false;
1891                 return ir_block_create_return(self->curblock, ast_ctx(self), dummy);
1892             }
1893             else if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1894                                 "control reaches end of non-void function (`%s`) via %s",
1895                                 self->name, self->curblock->label))
1896             {
1897                 return false;
1898             }
1899             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1900         }
1901     }
1902     return true;
1903 }
1904
1905 static bool starts_a_label(ast_expression *ex)
1906 {
1907     while (ex && ast_istype(ex, ast_block)) {
1908         ast_block *b = (ast_block*)ex;
1909         ex = b->exprs[0];
1910     }
1911     if (!ex)
1912         return false;
1913     return ast_istype(ex, ast_label);
1914 }
1915
1916 /* Note, you will not see ast_block_codegen generate ir_blocks.
1917  * To the AST and the IR, blocks are 2 different things.
1918  * In the AST it represents a block of code, usually enclosed in
1919  * curly braces {...}.
1920  * While in the IR it represents a block in terms of control-flow.
1921  */
1922 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1923 {
1924     /* We don't use this
1925      * Note: an ast-representation using the comma-operator
1926      * of the form: (a, b, c) = x should not assign to c...
1927      */
1928     if (lvalue) {
1929         compile_error(ast_ctx(self), "not an l-value (code-block)");
1930         return false;
1931     }
1932
1933     if (self->expression.outr) {
1934         *out = self->expression.outr;
1935         return true;
1936     }
1937
1938     /* output is NULL at first, we'll have each expression
1939      * assign to out output, thus, a comma-operator represention
1940      * using an ast_block will return the last generated value,
1941      * so: (b, c) + a  executed both b and c, and returns c,
1942      * which is then added to a.
1943      */
1944     *out = NULL;
1945
1946     /* generate locals */
1947     for (auto &it : self->locals) {
1948         if (!ast_local_codegen(it, func->ir_func, false)) {
1949             if (OPTS_OPTION_BOOL(OPTION_DEBUG))
1950                 compile_error(ast_ctx(self), "failed to generate local `%s`", it->name);
1951             return false;
1952         }
1953     }
1954
1955     for (auto &it : self->exprs) {
1956         ast_expression_codegen *gen;
1957         if (func->curblock->final && !starts_a_label(it)) {
1958             if (compile_warning(ast_ctx(it), WARN_UNREACHABLE_CODE, "unreachable statement"))
1959                 return false;
1960             continue;
1961         }
1962         gen = it->codegen;
1963         if (!(*gen)(it, func, false, out))
1964             return false;
1965     }
1966
1967     self->expression.outr = *out;
1968
1969     return true;
1970 }
1971
1972 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1973 {
1974     ast_expression_codegen *cgen;
1975     ir_value *left  = NULL;
1976     ir_value *right = NULL;
1977
1978     ast_value       *arr;
1979     ast_value       *idx = 0;
1980     ast_array_index *ai = NULL;
1981
1982     if (lvalue && self->expression.outl) {
1983         *out = self->expression.outl;
1984         return true;
1985     }
1986
1987     if (!lvalue && self->expression.outr) {
1988         *out = self->expression.outr;
1989         return true;
1990     }
1991
1992     if (ast_istype(self->dest, ast_array_index))
1993     {
1994
1995         ai = (ast_array_index*)self->dest;
1996         idx = (ast_value*)ai->index;
1997
1998         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1999             ai = NULL;
2000     }
2001
2002     if (ai) {
2003         /* we need to call the setter */
2004         ir_value  *iridx, *funval;
2005         ir_instr  *call;
2006
2007         if (lvalue) {
2008             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
2009             return false;
2010         }
2011
2012         arr = (ast_value*)ai->array;
2013         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
2014             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
2015             return false;
2016         }
2017
2018         cgen = idx->expression.codegen;
2019         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
2020             return false;
2021
2022         cgen = arr->setter->expression.codegen;
2023         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
2024             return false;
2025
2026         cgen = self->source->codegen;
2027         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2028             return false;
2029
2030         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
2031         if (!call)
2032             return false;
2033         ir_call_param(call, iridx);
2034         ir_call_param(call, right);
2035         self->expression.outr = right;
2036     }
2037     else
2038     {
2039         /* regular code */
2040
2041         cgen = self->dest->codegen;
2042         /* lvalue! */
2043         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
2044             return false;
2045         self->expression.outl = left;
2046
2047         cgen = self->source->codegen;
2048         /* rvalue! */
2049         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2050             return false;
2051
2052         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
2053             return false;
2054         self->expression.outr = right;
2055     }
2056
2057     /* Theoretically, an assinment returns its left side as an
2058      * lvalue, if we don't need an lvalue though, we return
2059      * the right side as an rvalue, otherwise we have to
2060      * somehow know whether or not we need to dereference the pointer
2061      * on the left side - that is: OP_LOAD if it was an address.
2062      * Also: in original QC we cannot OP_LOADP *anyway*.
2063      */
2064     *out = (lvalue ? left : right);
2065
2066     return true;
2067 }
2068
2069 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
2070 {
2071     ast_expression_codegen *cgen;
2072     ir_value *left, *right;
2073
2074     /* A binary operation cannot yield an l-value */
2075     if (lvalue) {
2076         compile_error(ast_ctx(self), "not an l-value (binop)");
2077         return false;
2078     }
2079
2080     if (self->expression.outr) {
2081         *out = self->expression.outr;
2082         return true;
2083     }
2084
2085     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
2086         (self->op == INSTR_AND || self->op == INSTR_OR))
2087     {
2088         /* NOTE: The short-logic path will ignore right_first */
2089
2090         /* short circuit evaluation */
2091         ir_block *other, *merge;
2092         ir_block *from_left, *from_right;
2093         ir_instr *phi;
2094         size_t    merge_id;
2095
2096         /* prepare end-block */
2097         merge_id = vec_size(func->ir_func->blocks);
2098         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
2099
2100         /* generate the left expression */
2101         cgen = self->left->codegen;
2102         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2103             return false;
2104         /* remember the block */
2105         from_left = func->curblock;
2106
2107         /* create a new block for the right expression */
2108         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
2109         if (self->op == INSTR_AND) {
2110             /* on AND: left==true -> other */
2111             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
2112                 return false;
2113         } else {
2114             /* on OR: left==false -> other */
2115             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
2116                 return false;
2117         }
2118         /* use the likely flag */
2119         vec_last(func->curblock->instr)->likely = true;
2120
2121         /* enter the right-expression's block */
2122         func->curblock = other;
2123         /* generate */
2124         cgen = self->right->codegen;
2125         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2126             return false;
2127         /* remember block */
2128         from_right = func->curblock;
2129
2130         /* jump to the merge block */
2131         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
2132             return false;
2133
2134         vec_remove(func->ir_func->blocks, merge_id, 1);
2135         vec_push(func->ir_func->blocks, merge);
2136
2137         func->curblock = merge;
2138         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
2139                                   ast_function_label(func, "sce_value"),
2140                                   self->expression.vtype);
2141         ir_phi_add(phi, from_left, left);
2142         ir_phi_add(phi, from_right, right);
2143         *out = ir_phi_value(phi);
2144         if (!*out)
2145             return false;
2146
2147         if (!OPTS_FLAG(PERL_LOGIC)) {
2148             /* cast-to-bool */
2149             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
2150                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2151                                              ast_function_label(func, "sce_bool_v"),
2152                                              INSTR_NOT_V, *out);
2153                 if (!*out)
2154                     return false;
2155                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2156                                              ast_function_label(func, "sce_bool"),
2157                                              INSTR_NOT_F, *out);
2158                 if (!*out)
2159                     return false;
2160             }
2161             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
2162                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2163                                              ast_function_label(func, "sce_bool_s"),
2164                                              INSTR_NOT_S, *out);
2165                 if (!*out)
2166                     return false;
2167                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
2168                                              ast_function_label(func, "sce_bool"),
2169                                              INSTR_NOT_F, *out);
2170                 if (!*out)
2171                     return false;
2172             }
2173             else {
2174                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
2175                                              ast_function_label(func, "sce_bool"),
2176                                              INSTR_AND, *out, *out);
2177                 if (!*out)
2178                     return false;
2179             }
2180         }
2181
2182         self->expression.outr = *out;
2183         codegen_output_type(self, *out);
2184         return true;
2185     }
2186
2187     if (self->right_first) {
2188         cgen = self->right->codegen;
2189         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2190             return false;
2191         cgen = self->left->codegen;
2192         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2193             return false;
2194     } else {
2195         cgen = self->left->codegen;
2196         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
2197             return false;
2198         cgen = self->right->codegen;
2199         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
2200             return false;
2201     }
2202
2203     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
2204                                  self->op, left, right);
2205     if (!*out)
2206         return false;
2207     self->expression.outr = *out;
2208     codegen_output_type(self, *out);
2209
2210     return true;
2211 }
2212
2213 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
2214 {
2215     ast_expression_codegen *cgen;
2216     ir_value *leftl = NULL, *leftr, *right, *bin;
2217
2218     ast_value       *arr;
2219     ast_value       *idx = 0;
2220     ast_array_index *ai = NULL;
2221     ir_value        *iridx = NULL;
2222
2223     if (lvalue && self->expression.outl) {
2224         *out = self->expression.outl;
2225         return true;
2226     }
2227
2228     if (!lvalue && self->expression.outr) {
2229         *out = self->expression.outr;
2230         return true;
2231     }
2232
2233     if (ast_istype(self->dest, ast_array_index))
2234     {
2235
2236         ai = (ast_array_index*)self->dest;
2237         idx = (ast_value*)ai->index;
2238
2239         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
2240             ai = NULL;
2241     }
2242
2243     /* for a binstore we need both an lvalue and an rvalue for the left side */
2244     /* rvalue of destination! */
2245     if (ai) {
2246         cgen = idx->expression.codegen;
2247         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
2248             return false;
2249     }
2250     cgen = self->dest->codegen;
2251     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
2252         return false;
2253
2254     /* source as rvalue only */
2255     cgen = self->source->codegen;
2256     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2257         return false;
2258
2259     /* now the binary */
2260     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
2261                                 self->opbin, leftr, right);
2262     self->expression.outr = bin;
2263
2264
2265     if (ai) {
2266         /* we need to call the setter */
2267         ir_value  *funval;
2268         ir_instr  *call;
2269
2270         if (lvalue) {
2271             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
2272             return false;
2273         }
2274
2275         arr = (ast_value*)ai->array;
2276         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
2277             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
2278             return false;
2279         }
2280
2281         cgen = arr->setter->expression.codegen;
2282         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
2283             return false;
2284
2285         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
2286         if (!call)
2287             return false;
2288         ir_call_param(call, iridx);
2289         ir_call_param(call, bin);
2290         self->expression.outr = bin;
2291     } else {
2292         /* now store them */
2293         cgen = self->dest->codegen;
2294         /* lvalue of destination */
2295         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
2296             return false;
2297         self->expression.outl = leftl;
2298
2299         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
2300             return false;
2301         self->expression.outr = bin;
2302     }
2303
2304     /* Theoretically, an assinment returns its left side as an
2305      * lvalue, if we don't need an lvalue though, we return
2306      * the right side as an rvalue, otherwise we have to
2307      * somehow know whether or not we need to dereference the pointer
2308      * on the left side - that is: OP_LOAD if it was an address.
2309      * Also: in original QC we cannot OP_LOADP *anyway*.
2310      */
2311     *out = (lvalue ? leftl : bin);
2312
2313     return true;
2314 }
2315
2316 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
2317 {
2318     ast_expression_codegen *cgen;
2319     ir_value *operand;
2320
2321     /* An unary operation cannot yield an l-value */
2322     if (lvalue) {
2323         compile_error(ast_ctx(self), "not an l-value (binop)");
2324         return false;
2325     }
2326
2327     if (self->expression.outr) {
2328         *out = self->expression.outr;
2329         return true;
2330     }
2331
2332     cgen = self->operand->codegen;
2333     /* lvalue! */
2334     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2335         return false;
2336
2337     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2338                                  self->op, operand);
2339     if (!*out)
2340         return false;
2341     self->expression.outr = *out;
2342
2343     return true;
2344 }
2345
2346 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2347 {
2348     ast_expression_codegen *cgen;
2349     ir_value *operand;
2350
2351     *out = NULL;
2352
2353     /* In the context of a return operation, we don't actually return
2354      * anything...
2355      */
2356     if (lvalue) {
2357         compile_error(ast_ctx(self), "return-expression is not an l-value");
2358         return false;
2359     }
2360
2361     if (self->expression.outr) {
2362         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2363         return false;
2364     }
2365     self->expression.outr = (ir_value*)1;
2366
2367     if (self->operand) {
2368         cgen = self->operand->codegen;
2369         /* lvalue! */
2370         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2371             return false;
2372
2373         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2374             return false;
2375     } else {
2376         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2377             return false;
2378     }
2379
2380     return true;
2381 }
2382
2383 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2384 {
2385     ast_expression_codegen *cgen;
2386     ir_value *ent, *field;
2387
2388     /* This function needs to take the 'lvalue' flag into account!
2389      * As lvalue we provide a field-pointer, as rvalue we provide the
2390      * value in a temp.
2391      */
2392
2393     if (lvalue && self->expression.outl) {
2394         *out = self->expression.outl;
2395         return true;
2396     }
2397
2398     if (!lvalue && self->expression.outr) {
2399         *out = self->expression.outr;
2400         return true;
2401     }
2402
2403     cgen = self->entity->codegen;
2404     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2405         return false;
2406
2407     cgen = self->field->codegen;
2408     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2409         return false;
2410
2411     if (lvalue) {
2412         /* address! */
2413         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2414                                             ent, field);
2415     } else {
2416         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2417                                              ent, field, self->expression.vtype);
2418         /* Done AFTER error checking:
2419         codegen_output_type(self, *out);
2420         */
2421     }
2422     if (!*out) {
2423         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2424                  (lvalue ? "ADDRESS" : "FIELD"),
2425                  type_name[self->expression.vtype]);
2426         return false;
2427     }
2428     if (!lvalue)
2429         codegen_output_type(self, *out);
2430
2431     if (lvalue)
2432         self->expression.outl = *out;
2433     else
2434         self->expression.outr = *out;
2435
2436     /* Hm that should be it... */
2437     return true;
2438 }
2439
2440 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2441 {
2442     ast_expression_codegen *cgen;
2443     ir_value *vec;
2444
2445     /* in QC this is always an lvalue */
2446     if (lvalue && self->rvalue) {
2447         compile_error(ast_ctx(self), "not an l-value (member access)");
2448         return false;
2449     }
2450     if (self->expression.outl) {
2451         *out = self->expression.outl;
2452         return true;
2453     }
2454
2455     cgen = self->owner->codegen;
2456     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2457         return false;
2458
2459     if (vec->vtype != TYPE_VECTOR &&
2460         !(vec->vtype == TYPE_FIELD && self->owner->next->vtype == TYPE_VECTOR))
2461     {
2462         return false;
2463     }
2464
2465     *out = ir_value_vector_member(vec, self->field);
2466     self->expression.outl = *out;
2467
2468     return (*out != NULL);
2469 }
2470
2471 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2472 {
2473     ast_value *arr;
2474     ast_value *idx;
2475
2476     if (!lvalue && self->expression.outr) {
2477         *out = self->expression.outr;
2478         return true;
2479     }
2480     if (lvalue && self->expression.outl) {
2481         *out = self->expression.outl;
2482         return true;
2483     }
2484
2485     if (!ast_istype(self->array, ast_value)) {
2486         compile_error(ast_ctx(self), "array indexing this way is not supported");
2487         /* note this would actually be pointer indexing because the left side is
2488          * not an actual array but (hopefully) an indexable expression.
2489          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2490          * support this path will be filled.
2491          */
2492         return false;
2493     }
2494
2495     arr = (ast_value*)self->array;
2496     idx = (ast_value*)self->index;
2497
2498     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2499         /* Time to use accessor functions */
2500         ast_expression_codegen *cgen;
2501         ir_value               *iridx, *funval;
2502         ir_instr               *call;
2503
2504         if (lvalue) {
2505             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2506             return false;
2507         }
2508
2509         if (!arr->getter) {
2510             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2511             return false;
2512         }
2513
2514         cgen = self->index->codegen;
2515         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2516             return false;
2517
2518         cgen = arr->getter->expression.codegen;
2519         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2520             return false;
2521
2522         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2523         if (!call)
2524             return false;
2525         ir_call_param(call, iridx);
2526
2527         *out = ir_call_value(call);
2528         self->expression.outr = *out;
2529         (*out)->vtype = self->expression.vtype;
2530         codegen_output_type(self, *out);
2531         return true;
2532     }
2533
2534     if (idx->expression.vtype == TYPE_FLOAT) {
2535         unsigned int arridx = idx->constval.vfloat;
2536         if (arridx >= self->array->count)
2537         {
2538             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2539             return false;
2540         }
2541         *out = arr->ir_values[arridx];
2542     }
2543     else if (idx->expression.vtype == TYPE_INTEGER) {
2544         unsigned int arridx = idx->constval.vint;
2545         if (arridx >= self->array->count)
2546         {
2547             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2548             return false;
2549         }
2550         *out = arr->ir_values[arridx];
2551     }
2552     else {
2553         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2554         return false;
2555     }
2556     (*out)->vtype = self->expression.vtype;
2557     codegen_output_type(self, *out);
2558     return true;
2559 }
2560
2561 bool ast_argpipe_codegen(ast_argpipe *self, ast_function *func, bool lvalue, ir_value **out)
2562 {
2563     *out = NULL;
2564     if (lvalue) {
2565         compile_error(ast_ctx(self), "argpipe node: not an lvalue");
2566         return false;
2567     }
2568     (void)func;
2569     (void)out;
2570     compile_error(ast_ctx(self), "TODO: argpipe codegen not implemented");
2571     return false;
2572 }
2573
2574 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2575 {
2576     ast_expression_codegen *cgen;
2577
2578     ir_value *condval;
2579     ir_value *dummy;
2580
2581     ir_block *cond;
2582     ir_block *ontrue;
2583     ir_block *onfalse;
2584     ir_block *ontrue_endblock = NULL;
2585     ir_block *onfalse_endblock = NULL;
2586     ir_block *merge = NULL;
2587     int       fold  = 0;
2588
2589     /* We don't output any value, thus also don't care about r/lvalue */
2590     (void)out;
2591     (void)lvalue;
2592
2593     if (self->expression.outr) {
2594         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2595         return false;
2596     }
2597     self->expression.outr = (ir_value*)1;
2598
2599     /* generate the condition */
2600     cgen = self->cond->codegen;
2601     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2602         return false;
2603     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2604     cond = func->curblock;
2605
2606     /* try constant folding away the condition */
2607     if ((fold = fold_cond_ifthen(condval, func, self)) != -1)
2608         return fold;
2609
2610     if (self->on_true) {
2611         /* create on-true block */
2612         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2613         if (!ontrue)
2614             return false;
2615
2616         /* enter the block */
2617         func->curblock = ontrue;
2618
2619         /* generate */
2620         cgen = self->on_true->codegen;
2621         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2622             return false;
2623
2624         /* we now need to work from the current endpoint */
2625         ontrue_endblock = func->curblock;
2626     } else
2627         ontrue = NULL;
2628
2629     /* on-false path */
2630     if (self->on_false) {
2631         /* create on-false block */
2632         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2633         if (!onfalse)
2634             return false;
2635
2636         /* enter the block */
2637         func->curblock = onfalse;
2638
2639         /* generate */
2640         cgen = self->on_false->codegen;
2641         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2642             return false;
2643
2644         /* we now need to work from the current endpoint */
2645         onfalse_endblock = func->curblock;
2646     } else
2647         onfalse = NULL;
2648
2649     /* Merge block were they all merge in to */
2650     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2651     {
2652         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2653         if (!merge)
2654             return false;
2655         /* add jumps ot the merge block */
2656         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2657             return false;
2658         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2659             return false;
2660
2661         /* Now enter the merge block */
2662         func->curblock = merge;
2663     }
2664
2665     /* we create the if here, that way all blocks are ordered :)
2666      */
2667     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2668                             (ontrue  ? ontrue  : merge),
2669                             (onfalse ? onfalse : merge)))
2670     {
2671         return false;
2672     }
2673
2674     return true;
2675 }
2676
2677 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2678 {
2679     ast_expression_codegen *cgen;
2680
2681     ir_value *condval;
2682     ir_value *trueval, *falseval;
2683     ir_instr *phi;
2684
2685     ir_block *cond = func->curblock;
2686     ir_block *cond_out = NULL;
2687     ir_block *ontrue, *ontrue_out = NULL;
2688     ir_block *onfalse, *onfalse_out = NULL;
2689     ir_block *merge;
2690     int       fold  = 0;
2691
2692     /* Ternary can never create an lvalue... */
2693     if (lvalue)
2694         return false;
2695
2696     /* In theory it shouldn't be possible to pass through a node twice, but
2697      * in case we add any kind of optimization pass for the AST itself, it
2698      * may still happen, thus we remember a created ir_value and simply return one
2699      * if it already exists.
2700      */
2701     if (self->expression.outr) {
2702         *out = self->expression.outr;
2703         return true;
2704     }
2705
2706     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2707
2708     /* generate the condition */
2709     func->curblock = cond;
2710     cgen = self->cond->codegen;
2711     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2712         return false;
2713     cond_out = func->curblock;
2714
2715     /* try constant folding away the condition */
2716     if ((fold = fold_cond_ternary(condval, func, self)) != -1)
2717         return fold;
2718
2719     /* create on-true block */
2720     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2721     if (!ontrue)
2722         return false;
2723     else
2724     {
2725         /* enter the block */
2726         func->curblock = ontrue;
2727
2728         /* generate */
2729         cgen = self->on_true->codegen;
2730         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2731             return false;
2732
2733         ontrue_out = func->curblock;
2734     }
2735
2736     /* create on-false block */
2737     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2738     if (!onfalse)
2739         return false;
2740     else
2741     {
2742         /* enter the block */
2743         func->curblock = onfalse;
2744
2745         /* generate */
2746         cgen = self->on_false->codegen;
2747         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2748             return false;
2749
2750         onfalse_out = func->curblock;
2751     }
2752
2753     /* create merge block */
2754     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2755     if (!merge)
2756         return false;
2757     /* jump to merge block */
2758     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2759         return false;
2760     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2761         return false;
2762
2763     /* create if instruction */
2764     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2765         return false;
2766
2767     /* Now enter the merge block */
2768     func->curblock = merge;
2769
2770     /* Here, now, we need a PHI node
2771      * but first some sanity checking...
2772      */
2773     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2774         /* error("ternary with different types on the two sides"); */
2775         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2776         return false;
2777     }
2778
2779     /* create PHI */
2780     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2781     if (!phi) {
2782         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2783         return false;
2784     }
2785     ir_phi_add(phi, ontrue_out,  trueval);
2786     ir_phi_add(phi, onfalse_out, falseval);
2787
2788     self->expression.outr = ir_phi_value(phi);
2789     *out = self->expression.outr;
2790
2791     codegen_output_type(self, *out);
2792
2793     return true;
2794 }
2795
2796 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2797 {
2798     ast_expression_codegen *cgen;
2799
2800     ir_value *dummy      = NULL;
2801     ir_value *precond    = NULL;
2802     ir_value *postcond   = NULL;
2803
2804     /* Since we insert some jumps "late" so we have blocks
2805      * ordered "nicely", we need to keep track of the actual end-blocks
2806      * of expressions to add the jumps to.
2807      */
2808     ir_block *bbody      = NULL, *end_bbody      = NULL;
2809     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2810     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2811     ir_block *bincrement = NULL, *end_bincrement = NULL;
2812     ir_block *bout       = NULL, *bin            = NULL;
2813
2814     /* let's at least move the outgoing block to the end */
2815     size_t    bout_id;
2816
2817     /* 'break' and 'continue' need to be able to find the right blocks */
2818     ir_block *bcontinue     = NULL;
2819     ir_block *bbreak        = NULL;
2820
2821     ir_block *tmpblock      = NULL;
2822
2823     (void)lvalue;
2824     (void)out;
2825
2826     if (self->expression.outr) {
2827         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2828         return false;
2829     }
2830     self->expression.outr = (ir_value*)1;
2831
2832     /* NOTE:
2833      * Should we ever need some kind of block ordering, better make this function
2834      * move blocks around than write a block ordering algorithm later... after all
2835      * the ast and ir should work together, not against each other.
2836      */
2837
2838     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2839      * anyway if for example it contains a ternary.
2840      */
2841     if (self->initexpr)
2842     {
2843         cgen = self->initexpr->codegen;
2844         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2845             return false;
2846     }
2847
2848     /* Store the block from which we enter this chaos */
2849     bin = func->curblock;
2850
2851     /* The pre-loop condition needs its own block since we
2852      * need to be able to jump to the start of that expression.
2853      */
2854     if (self->precond)
2855     {
2856         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2857         if (!bprecond)
2858             return false;
2859
2860         /* the pre-loop-condition the least important place to 'continue' at */
2861         bcontinue = bprecond;
2862
2863         /* enter */
2864         func->curblock = bprecond;
2865
2866         /* generate */
2867         cgen = self->precond->codegen;
2868         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2869             return false;
2870
2871         end_bprecond = func->curblock;
2872     } else {
2873         bprecond = end_bprecond = NULL;
2874     }
2875
2876     /* Now the next blocks won't be ordered nicely, but we need to
2877      * generate them this early for 'break' and 'continue'.
2878      */
2879     if (self->increment) {
2880         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2881         if (!bincrement)
2882             return false;
2883         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2884     } else {
2885         bincrement = end_bincrement = NULL;
2886     }
2887
2888     if (self->postcond) {
2889         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2890         if (!bpostcond)
2891             return false;
2892         bcontinue = bpostcond; /* postcond comes before the increment */
2893     } else {
2894         bpostcond = end_bpostcond = NULL;
2895     }
2896
2897     bout_id = vec_size(func->ir_func->blocks);
2898     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2899     if (!bout)
2900         return false;
2901     bbreak = bout;
2902
2903     /* The loop body... */
2904     /* if (self->body) */
2905     {
2906         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2907         if (!bbody)
2908             return false;
2909
2910         /* enter */
2911         func->curblock = bbody;
2912
2913         vec_push(func->breakblocks,    bbreak);
2914         if (bcontinue)
2915             vec_push(func->continueblocks, bcontinue);
2916         else
2917             vec_push(func->continueblocks, bbody);
2918
2919         /* generate */
2920         if (self->body) {
2921             cgen = self->body->codegen;
2922             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2923                 return false;
2924         }
2925
2926         end_bbody = func->curblock;
2927         vec_pop(func->breakblocks);
2928         vec_pop(func->continueblocks);
2929     }
2930
2931     /* post-loop-condition */
2932     if (self->postcond)
2933     {
2934         /* enter */
2935         func->curblock = bpostcond;
2936
2937         /* generate */
2938         cgen = self->postcond->codegen;
2939         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2940             return false;
2941
2942         end_bpostcond = func->curblock;
2943     }
2944
2945     /* The incrementor */
2946     if (self->increment)
2947     {
2948         /* enter */
2949         func->curblock = bincrement;
2950
2951         /* generate */
2952         cgen = self->increment->codegen;
2953         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2954             return false;
2955
2956         end_bincrement = func->curblock;
2957     }
2958
2959     /* In any case now, we continue from the outgoing block */
2960     func->curblock = bout;
2961
2962     /* Now all blocks are in place */
2963     /* From 'bin' we jump to whatever comes first */
2964     if      (bprecond)   tmpblock = bprecond;
2965     else                 tmpblock = bbody;    /* can never be null */
2966
2967     /* DEAD CODE
2968     else if (bpostcond)  tmpblock = bpostcond;
2969     else                 tmpblock = bout;
2970     */
2971
2972     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2973         return false;
2974
2975     /* From precond */
2976     if (bprecond)
2977     {
2978         ir_block *ontrue, *onfalse;
2979         ontrue = bbody; /* can never be null */
2980
2981         /* all of this is dead code
2982         else if (bincrement) ontrue = bincrement;
2983         else                 ontrue = bpostcond;
2984         */
2985
2986         onfalse = bout;
2987         if (self->pre_not) {
2988             tmpblock = ontrue;
2989             ontrue   = onfalse;
2990             onfalse  = tmpblock;
2991         }
2992         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2993             return false;
2994     }
2995
2996     /* from body */
2997     if (bbody)
2998     {
2999         if      (bincrement) tmpblock = bincrement;
3000         else if (bpostcond)  tmpblock = bpostcond;
3001         else if (bprecond)   tmpblock = bprecond;
3002         else                 tmpblock = bbody;
3003         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
3004             return false;
3005     }
3006
3007     /* from increment */
3008     if (bincrement)
3009     {
3010         if      (bpostcond)  tmpblock = bpostcond;
3011         else if (bprecond)   tmpblock = bprecond;
3012         else if (bbody)      tmpblock = bbody;
3013         else                 tmpblock = bout;
3014         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
3015             return false;
3016     }
3017
3018     /* from postcond */
3019     if (bpostcond)
3020     {
3021         ir_block *ontrue, *onfalse;
3022         if      (bprecond)   ontrue = bprecond;
3023         else                 ontrue = bbody; /* can never be null */
3024
3025         /* all of this is dead code
3026         else if (bincrement) ontrue = bincrement;
3027         else                 ontrue = bpostcond;
3028         */
3029
3030         onfalse = bout;
3031         if (self->post_not) {
3032             tmpblock = ontrue;
3033             ontrue   = onfalse;
3034             onfalse  = tmpblock;
3035         }
3036         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
3037             return false;
3038     }
3039
3040     /* Move 'bout' to the end */
3041     vec_remove(func->ir_func->blocks, bout_id, 1);
3042     vec_push(func->ir_func->blocks, bout);
3043
3044     return true;
3045 }
3046
3047 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
3048 {
3049     ir_block *target;
3050
3051     *out = NULL;
3052
3053     if (lvalue) {
3054         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
3055         return false;
3056     }
3057
3058     if (self->expression.outr) {
3059         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
3060         return false;
3061     }
3062     self->expression.outr = (ir_value*)1;
3063
3064     if (self->is_continue)
3065         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
3066     else
3067         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
3068
3069     if (!target) {
3070         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
3071         return false;
3072     }
3073
3074     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
3075         return false;
3076     return true;
3077 }
3078
3079 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
3080 {
3081     ast_expression_codegen *cgen;
3082
3083     ast_switch_case *def_case     = NULL;
3084     ir_block        *def_bfall    = NULL;
3085     ir_block        *def_bfall_to = NULL;
3086     bool set_def_bfall_to = false;
3087
3088     ir_value *dummy     = NULL;
3089     ir_value *irop      = NULL;
3090     ir_block *bout      = NULL;
3091     ir_block *bfall     = NULL;
3092     size_t    bout_id;
3093     size_t    c;
3094
3095     char      typestr[1024];
3096     uint16_t  cmpinstr;
3097
3098     if (lvalue) {
3099         compile_error(ast_ctx(self), "switch expression is not an l-value");
3100         return false;
3101     }
3102
3103     if (self->expression.outr) {
3104         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
3105         return false;
3106     }
3107     self->expression.outr = (ir_value*)1;
3108
3109     (void)lvalue;
3110     (void)out;
3111
3112     cgen = self->operand->codegen;
3113     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
3114         return false;
3115
3116     if (!vec_size(self->cases))
3117         return true;
3118
3119     cmpinstr = type_eq_instr[irop->vtype];
3120     if (cmpinstr >= VINSTR_END) {
3121         ast_type_to_string(self->operand, typestr, sizeof(typestr));
3122         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
3123         return false;
3124     }
3125
3126     bout_id = vec_size(func->ir_func->blocks);
3127     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
3128     if (!bout)
3129         return false;
3130
3131     /* setup the break block */
3132     vec_push(func->breakblocks, bout);
3133
3134     /* Now create all cases */
3135     for (c = 0; c < vec_size(self->cases); ++c) {
3136         ir_value *cond, *val;
3137         ir_block *bcase, *bnot;
3138         size_t bnot_id;
3139
3140         ast_switch_case *swcase = &self->cases[c];
3141
3142         if (swcase->value) {
3143             /* A regular case */
3144             /* generate the condition operand */
3145             cgen = swcase->value->codegen;
3146             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
3147                 return false;
3148             /* generate the condition */
3149             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
3150             if (!cond)
3151                 return false;
3152
3153             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
3154             bnot_id = vec_size(func->ir_func->blocks);
3155             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
3156             if (!bcase || !bnot)
3157                 return false;
3158             if (set_def_bfall_to) {
3159                 set_def_bfall_to = false;
3160                 def_bfall_to = bcase;
3161             }
3162             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
3163                 return false;
3164
3165             /* Make the previous case-end fall through */
3166             if (bfall && !bfall->final) {
3167                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
3168                     return false;
3169             }
3170
3171             /* enter the case */
3172             func->curblock = bcase;
3173             cgen = swcase->code->codegen;
3174             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
3175                 return false;
3176
3177             /* remember this block to fall through from */
3178             bfall = func->curblock;
3179
3180             /* enter the else and move it down */
3181             func->curblock = bnot;
3182             vec_remove(func->ir_func->blocks, bnot_id, 1);
3183             vec_push(func->ir_func->blocks, bnot);
3184         } else {
3185             /* The default case */
3186             /* Remember where to fall through from: */
3187             def_bfall = bfall;
3188             bfall     = NULL;
3189             /* remember which case it was */
3190             def_case  = swcase;
3191             /* And the next case will be remembered */
3192             set_def_bfall_to = true;
3193         }
3194     }
3195
3196     /* Jump from the last bnot to bout */
3197     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
3198         /*
3199         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
3200         */
3201         return false;
3202     }
3203
3204     /* If there was a default case, put it down here */
3205     if (def_case) {
3206         ir_block *bcase;
3207
3208         /* No need to create an extra block */
3209         bcase = func->curblock;
3210
3211         /* Insert the fallthrough jump */
3212         if (def_bfall && !def_bfall->final) {
3213             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
3214                 return false;
3215         }
3216
3217         /* Now generate the default code */
3218         cgen = def_case->code->codegen;
3219         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
3220             return false;
3221
3222         /* see if we need to fall through */
3223         if (def_bfall_to && !func->curblock->final)
3224         {
3225             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
3226                 return false;
3227         }
3228     }
3229
3230     /* Jump from the last bnot to bout */
3231     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
3232         return false;
3233     /* enter the outgoing block */
3234     func->curblock = bout;
3235
3236     /* restore the break block */
3237     vec_pop(func->breakblocks);
3238
3239     /* Move 'bout' to the end, it's nicer */
3240     vec_remove(func->ir_func->blocks, bout_id, 1);
3241     vec_push(func->ir_func->blocks, bout);
3242
3243     return true;
3244 }
3245
3246 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
3247 {
3248     ir_value *dummy;
3249
3250     if (self->undefined) {
3251         compile_error(ast_ctx(self), "internal error: ast_label never defined");
3252         return false;
3253     }
3254
3255     *out = NULL;
3256     if (lvalue) {
3257         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
3258         return false;
3259     }
3260
3261     /* simply create a new block and jump to it */
3262     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
3263     if (!self->irblock) {
3264         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
3265         return false;
3266     }
3267     if (!func->curblock->final) {
3268         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
3269             return false;
3270     }
3271
3272     /* enter the new block */
3273     func->curblock = self->irblock;
3274
3275     /* Generate all the leftover gotos */
3276     for (auto &it : self->gotos) {
3277         if (!ast_goto_codegen(it, func, false, &dummy))
3278             return false;
3279     }
3280
3281     return true;
3282 }
3283
3284 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
3285 {
3286     *out = NULL;
3287     if (lvalue) {
3288         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
3289         return false;
3290     }
3291
3292     if (self->target->irblock) {
3293         if (self->irblock_from) {
3294             /* we already tried once, this is the callback */
3295             self->irblock_from->final = false;
3296             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
3297                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3298                 return false;
3299             }
3300         }
3301         else
3302         {
3303             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
3304                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3305                 return false;
3306             }
3307         }
3308     }
3309     else
3310     {
3311         /* the target has not yet been created...
3312          * close this block in a sneaky way:
3313          */
3314         func->curblock->final = true;
3315         self->irblock_from = func->curblock;
3316         ast_label_register_goto(self->target, self);
3317     }
3318
3319     return true;
3320 }
3321
3322 #include <stdio.h>
3323 bool ast_state_codegen(ast_state *self, ast_function *func, bool lvalue, ir_value **out)
3324 {
3325     ast_expression_codegen *cgen;
3326
3327     ir_value *frameval, *thinkval;
3328
3329     if (lvalue) {
3330         compile_error(ast_ctx(self), "not an l-value (state operation)");
3331         return false;
3332     }
3333     if (self->expression.outr) {
3334         compile_error(ast_ctx(self), "internal error: ast_state cannot be reused!");
3335         return false;
3336     }
3337     *out = NULL;
3338
3339     cgen = self->framenum->codegen;
3340     if (!(*cgen)((ast_expression*)(self->framenum), func, false, &frameval))
3341         return false;
3342     if (!frameval)
3343         return false;
3344
3345     cgen = self->nextthink->codegen;
3346     if (!(*cgen)((ast_expression*)(self->nextthink), func, false, &thinkval))
3347         return false;
3348     if (!frameval)
3349         return false;
3350
3351     if (!ir_block_create_state_op(func->curblock, ast_ctx(self), frameval, thinkval)) {
3352         compile_error(ast_ctx(self), "failed to create STATE instruction");
3353         return false;
3354     }
3355
3356     self->expression.outr = (ir_value*)1;
3357     return true;
3358 }
3359
3360 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
3361 {
3362     ast_expression_codegen *cgen;
3363     ir_value              **params;
3364     ir_instr               *callinstr;
3365     size_t i;
3366
3367     ir_value *funval = NULL;
3368
3369     /* return values are never lvalues */
3370     if (lvalue) {
3371         compile_error(ast_ctx(self), "not an l-value (function call)");
3372         return false;
3373     }
3374
3375     if (self->expression.outr) {
3376         *out = self->expression.outr;
3377         return true;
3378     }
3379
3380     cgen = self->func->codegen;
3381     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
3382         return false;
3383     if (!funval)
3384         return false;
3385
3386     params = NULL;
3387
3388     /* parameters */
3389     for (auto &it : self->params) {
3390         ir_value *param;
3391         cgen = it->codegen;
3392         if (!(*cgen)(it, func, false, &param))
3393             goto error;
3394         if (!param)
3395             goto error;
3396         vec_push(params, param);
3397     }
3398
3399     /* varargs counter */
3400     if (self->va_count) {
3401         ir_value   *va_count;
3402         ir_builder *builder = func->curblock->owner->owner;
3403         cgen = self->va_count->codegen;
3404         if (!(*cgen)((ast_expression*)(self->va_count), func, false, &va_count))
3405             return false;
3406         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), INSTR_STORE_F,
3407                                       ir_builder_get_va_count(builder), va_count))
3408         {
3409             return false;
3410         }
3411     }
3412
3413     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
3414                                      ast_function_label(func, "call"),
3415                                      funval, !!(self->func->flags & AST_FLAG_NORETURN));
3416     if (!callinstr)
3417         goto error;
3418
3419     for (i = 0; i < vec_size(params); ++i) {
3420         ir_call_param(callinstr, params[i]);
3421     }
3422
3423     *out = ir_call_value(callinstr);
3424     self->expression.outr = *out;
3425
3426     codegen_output_type(self, *out);
3427
3428     vec_free(params);
3429     return true;
3430 error:
3431     vec_free(params);
3432     return false;
3433 }