]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
-Oglobal-temps
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.params   = NULL;
75     self->expression.count    = 0;
76     self->expression.flags    = 0;
77 }
78
79 static void ast_expression_delete(ast_expression *self)
80 {
81     size_t i;
82     if (self->expression.next)
83         ast_delete(self->expression.next);
84     for (i = 0; i < vec_size(self->expression.params); ++i) {
85         ast_delete(self->expression.params[i]);
86     }
87     vec_free(self->expression.params);
88 }
89
90 static void ast_expression_delete_full(ast_expression *self)
91 {
92     ast_expression_delete(self);
93     mem_d(self);
94 }
95
96 ast_value* ast_value_copy(const ast_value *self)
97 {
98     size_t i;
99     const ast_expression_common *fromex;
100     ast_expression_common *selfex;
101     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
102     if (self->expression.next) {
103         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
104         if (!cp->expression.next) {
105             ast_value_delete(cp);
106             return NULL;
107         }
108     }
109     fromex   = &self->expression;
110     selfex = &cp->expression;
111     selfex->count    = fromex->count;
112     selfex->flags    = fromex->flags;
113     for (i = 0; i < vec_size(fromex->params); ++i) {
114         ast_value *v = ast_value_copy(fromex->params[i]);
115         if (!v) {
116             ast_value_delete(cp);
117             return NULL;
118         }
119         vec_push(selfex->params, v);
120     }
121     return cp;
122 }
123
124 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
125 {
126     size_t i;
127     const ast_expression_common *fromex;
128     ast_expression_common *selfex;
129     self->expression.vtype = other->expression.vtype;
130     if (other->expression.next) {
131         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
132         if (!self->expression.next)
133             return false;
134     }
135     fromex   = &other->expression;
136     selfex = &self->expression;
137     selfex->count    = fromex->count;
138     selfex->flags    = fromex->flags;
139     for (i = 0; i < vec_size(fromex->params); ++i) {
140         ast_value *v = ast_value_copy(fromex->params[i]);
141         if (!v)
142             return false;
143         vec_push(selfex->params, v);
144     }
145     return true;
146 }
147
148 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
149 {
150     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
151     ast_expression_init(self, NULL);
152     self->expression.codegen = NULL;
153     self->expression.next    = NULL;
154     self->expression.vtype   = vtype;
155     return self;
156 }
157
158 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
159 {
160     size_t i;
161     const ast_expression_common *fromex;
162     ast_expression_common *selfex;
163
164     if (!ex)
165         return NULL;
166     else
167     {
168         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
169         ast_expression_init(self, NULL);
170
171         fromex   = &ex->expression;
172         selfex = &self->expression;
173
174         /* This may never be codegen()d */
175         selfex->codegen = NULL;
176
177         selfex->vtype = fromex->vtype;
178         if (fromex->next)
179         {
180             selfex->next = ast_type_copy(ctx, fromex->next);
181             if (!selfex->next) {
182                 ast_expression_delete_full(self);
183                 return NULL;
184             }
185         }
186         else
187             selfex->next = NULL;
188
189         selfex->count    = fromex->count;
190         selfex->flags    = fromex->flags;
191         for (i = 0; i < vec_size(fromex->params); ++i) {
192             ast_value *v = ast_value_copy(fromex->params[i]);
193             if (!v) {
194                 ast_expression_delete_full(self);
195                 return NULL;
196             }
197             vec_push(selfex->params, v);
198         }
199
200         return self;
201     }
202 }
203
204 bool ast_compare_type(ast_expression *a, ast_expression *b)
205 {
206     if (a->expression.vtype != b->expression.vtype)
207         return false;
208     if (!a->expression.next != !b->expression.next)
209         return false;
210     if (vec_size(a->expression.params) != vec_size(b->expression.params))
211         return false;
212     if (a->expression.flags != b->expression.flags)
213         return false;
214     if (vec_size(a->expression.params)) {
215         size_t i;
216         for (i = 0; i < vec_size(a->expression.params); ++i) {
217             if (!ast_compare_type((ast_expression*)a->expression.params[i],
218                                   (ast_expression*)b->expression.params[i]))
219                 return false;
220         }
221     }
222     if (a->expression.next)
223         return ast_compare_type(a->expression.next, b->expression.next);
224     return true;
225 }
226
227 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
228 {
229     const char *typestr;
230     size_t typelen;
231     size_t i;
232
233     if (!e) {
234         if (pos + 6 >= bufsize)
235             goto full;
236         strcpy(buf + pos, "(null)");
237         return pos + 6;
238     }
239
240     if (pos + 1 >= bufsize)
241         goto full;
242
243     switch (e->expression.vtype) {
244         case TYPE_VARIANT:
245             strcpy(buf + pos, "(variant)");
246             return pos + 9;
247
248         case TYPE_FIELD:
249             buf[pos++] = '.';
250             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251
252         case TYPE_POINTER:
253             if (pos + 3 >= bufsize)
254                 goto full;
255             buf[pos++] = '*';
256             buf[pos++] = '(';
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 1 >= bufsize)
259                 goto full;
260             buf[pos++] = ')';
261             return pos;
262
263         case TYPE_FUNCTION:
264             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
265             if (pos + 2 >= bufsize)
266                 goto full;
267             if (!vec_size(e->expression.params)) {
268                 buf[pos++] = '(';
269                 buf[pos++] = ')';
270                 return pos;
271             }
272             buf[pos++] = '(';
273             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
274             for (i = 1; i < vec_size(e->expression.params); ++i) {
275                 if (pos + 2 >= bufsize)
276                     goto full;
277                 buf[pos++] = ',';
278                 buf[pos++] = ' ';
279                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
280             }
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = ')';
284             return pos;
285
286         case TYPE_ARRAY:
287             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = '[';
291             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
292             if (pos + 1 >= bufsize)
293                 goto full;
294             buf[pos++] = ']';
295             return pos;
296
297         default:
298             typestr = type_name[e->expression.vtype];
299             typelen = strlen(typestr);
300             if (pos + typelen >= bufsize)
301                 goto full;
302             strcpy(buf + pos, typestr);
303             return pos + typelen;
304     }
305
306 full:
307     buf[bufsize-3] = '.';
308     buf[bufsize-2] = '.';
309     buf[bufsize-1] = '.';
310     return bufsize;
311 }
312
313 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
314 {
315     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
316     buf[pos] = 0;
317 }
318
319 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
320 {
321     ast_instantiate(ast_value, ctx, ast_value_delete);
322     ast_expression_init((ast_expression*)self,
323                         (ast_expression_codegen*)&ast_value_codegen);
324     self->expression.node.keep = true; /* keep */
325
326     self->name = name ? util_strdup(name) : NULL;
327     self->expression.vtype = t;
328     self->expression.next  = NULL;
329     self->isfield  = false;
330     self->cvq      = CV_NONE;
331     self->hasvalue = false;
332     self->uses    = 0;
333     memset(&self->constval, 0, sizeof(self->constval));
334
335     self->ir_v           = NULL;
336     self->ir_values      = NULL;
337     self->ir_value_count = 0;
338
339     self->setter = NULL;
340     self->getter = NULL;
341
342     return self;
343 }
344
345 void ast_value_delete(ast_value* self)
346 {
347     if (self->name)
348         mem_d((void*)self->name);
349     if (self->hasvalue) {
350         switch (self->expression.vtype)
351         {
352         case TYPE_STRING:
353             mem_d((void*)self->constval.vstring);
354             break;
355         case TYPE_FUNCTION:
356             /* unlink us from the function node */
357             self->constval.vfunc->vtype = NULL;
358             break;
359         /* NOTE: delete function? currently collected in
360          * the parser structure
361          */
362         default:
363             break;
364         }
365     }
366     if (self->ir_values)
367         mem_d(self->ir_values);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 void ast_value_params_add(ast_value *self, ast_value *p)
373 {
374     vec_push(self->expression.params, p);
375 }
376
377 bool ast_value_set_name(ast_value *self, const char *name)
378 {
379     if (self->name)
380         mem_d((void*)self->name);
381     self->name = util_strdup(name);
382     return !!self->name;
383 }
384
385 ast_binary* ast_binary_new(lex_ctx ctx, int op,
386                            ast_expression* left, ast_expression* right)
387 {
388     ast_instantiate(ast_binary, ctx, ast_binary_delete);
389     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
390
391     self->op = op;
392     self->left = left;
393     self->right = right;
394
395     ast_propagate_effects(self, left);
396     ast_propagate_effects(self, right);
397
398     if (op >= INSTR_EQ_F && op <= INSTR_GT)
399         self->expression.vtype = TYPE_FLOAT;
400     else if (op == INSTR_AND || op == INSTR_OR) {
401         if (OPTS_FLAG(PERL_LOGIC))
402             ast_type_adopt(self, right);
403         else
404             self->expression.vtype = TYPE_FLOAT;
405     }
406     else if (op == INSTR_BITAND || op == INSTR_BITOR)
407         self->expression.vtype = TYPE_FLOAT;
408     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
409         self->expression.vtype = TYPE_VECTOR;
410     else if (op == INSTR_MUL_V)
411         self->expression.vtype = TYPE_FLOAT;
412     else
413         self->expression.vtype = left->expression.vtype;
414
415     return self;
416 }
417
418 void ast_binary_delete(ast_binary *self)
419 {
420     ast_unref(self->left);
421     ast_unref(self->right);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
427                                ast_expression* left, ast_expression* right)
428 {
429     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
431
432     ast_side_effects(self) = true;
433
434     self->opstore = storop;
435     self->opbin   = op;
436     self->dest    = left;
437     self->source  = right;
438
439     self->keep_dest = false;
440
441     if (!ast_type_adopt(self, left)) {
442         ast_delete(self);
443         return NULL;
444     }
445
446     return self;
447 }
448
449 void ast_binstore_delete(ast_binstore *self)
450 {
451     if (!self->keep_dest)
452         ast_unref(self->dest);
453     ast_unref(self->source);
454     ast_expression_delete((ast_expression*)self);
455     mem_d(self);
456 }
457
458 ast_unary* ast_unary_new(lex_ctx ctx, int op,
459                          ast_expression *expr)
460 {
461     ast_instantiate(ast_unary, ctx, ast_unary_delete);
462     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
463
464     self->op = op;
465     self->operand = expr;
466
467     ast_propagate_effects(self, expr);
468
469     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
470         self->expression.vtype = TYPE_FLOAT;
471     } else
472         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
473
474     return self;
475 }
476
477 void ast_unary_delete(ast_unary *self)
478 {
479     if (self->operand) ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
485 {
486     ast_instantiate(ast_return, ctx, ast_return_delete);
487     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
488
489     self->operand = expr;
490
491     if (expr)
492         ast_propagate_effects(self, expr);
493
494     return self;
495 }
496
497 void ast_return_delete(ast_return *self)
498 {
499     if (self->operand)
500         ast_unref(self->operand);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
506 {
507     if (field->expression.vtype != TYPE_FIELD) {
508         compile_error(ctx, "ast_entfield_new with expression not of type field");
509         return NULL;
510     }
511     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
512 }
513
514 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
515 {
516     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
517
518     if (!outtype) {
519         mem_d(self);
520         /* Error: field has no type... */
521         return NULL;
522     }
523
524     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
525
526     self->entity = entity;
527     self->field  = field;
528     ast_propagate_effects(self, entity);
529     ast_propagate_effects(self, field);
530
531     if (!ast_type_adopt(self, outtype)) {
532         ast_entfield_delete(self);
533         return NULL;
534     }
535
536     return self;
537 }
538
539 void ast_entfield_delete(ast_entfield *self)
540 {
541     ast_unref(self->entity);
542     ast_unref(self->field);
543     ast_expression_delete((ast_expression*)self);
544     mem_d(self);
545 }
546
547 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
548 {
549     ast_instantiate(ast_member, ctx, ast_member_delete);
550     if (field >= 3) {
551         mem_d(self);
552         return NULL;
553     }
554
555     if (owner->expression.vtype != TYPE_VECTOR &&
556         owner->expression.vtype != TYPE_FIELD) {
557         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
558         mem_d(self);
559         return NULL;
560     }
561
562     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
563     self->expression.node.keep = true; /* keep */
564
565     if (owner->expression.vtype == TYPE_VECTOR) {
566         self->expression.vtype = TYPE_FLOAT;
567         self->expression.next  = NULL;
568     } else {
569         self->expression.vtype = TYPE_FIELD;
570         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
571     }
572
573     self->owner = owner;
574     ast_propagate_effects(self, owner);
575
576     self->field = field;
577     if (name)
578         self->name = util_strdup(name);
579     else
580         self->name = NULL;
581
582     return self;
583 }
584
585 void ast_member_delete(ast_member *self)
586 {
587     /* The owner is always an ast_value, which has .keep=true,
588      * also: ast_members are usually deleted after the owner, thus
589      * this will cause invalid access
590     ast_unref(self->owner);
591      * once we allow (expression).x to access a vector-member, we need
592      * to change this: preferably by creating an alternate ast node for this
593      * purpose that is not garbage-collected.
594     */
595     ast_expression_delete((ast_expression*)self);
596     mem_d(self);
597 }
598
599 bool ast_member_set_name(ast_member *self, const char *name)
600 {
601     if (self->name)
602         mem_d((void*)self->name);
603     self->name = util_strdup(name);
604     return !!self->name;
605 }
606
607 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
608 {
609     ast_expression *outtype;
610     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
611
612     outtype = array->expression.next;
613     if (!outtype) {
614         mem_d(self);
615         /* Error: field has no type... */
616         return NULL;
617     }
618
619     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
620
621     self->array = array;
622     self->index = index;
623     ast_propagate_effects(self, array);
624     ast_propagate_effects(self, index);
625
626     if (!ast_type_adopt(self, outtype)) {
627         ast_array_index_delete(self);
628         return NULL;
629     }
630     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
631         if (self->expression.vtype != TYPE_ARRAY) {
632             compile_error(ast_ctx(self), "array_index node on type");
633             ast_array_index_delete(self);
634             return NULL;
635         }
636         self->array = outtype;
637         self->expression.vtype = TYPE_FIELD;
638     }
639
640     return self;
641 }
642
643 void ast_array_index_delete(ast_array_index *self)
644 {
645     ast_unref(self->array);
646     ast_unref(self->index);
647     ast_expression_delete((ast_expression*)self);
648     mem_d(self);
649 }
650
651 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
652 {
653     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
654     if (!ontrue && !onfalse) {
655         /* because it is invalid */
656         mem_d(self);
657         return NULL;
658     }
659     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
660
661     self->cond     = cond;
662     self->on_true  = ontrue;
663     self->on_false = onfalse;
664     ast_propagate_effects(self, cond);
665     if (ontrue)
666         ast_propagate_effects(self, ontrue);
667     if (onfalse)
668         ast_propagate_effects(self, onfalse);
669
670     return self;
671 }
672
673 void ast_ifthen_delete(ast_ifthen *self)
674 {
675     ast_unref(self->cond);
676     if (self->on_true)
677         ast_unref(self->on_true);
678     if (self->on_false)
679         ast_unref(self->on_false);
680     ast_expression_delete((ast_expression*)self);
681     mem_d(self);
682 }
683
684 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
685 {
686     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
687     /* This time NEITHER must be NULL */
688     if (!ontrue || !onfalse) {
689         mem_d(self);
690         return NULL;
691     }
692     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
693
694     self->cond     = cond;
695     self->on_true  = ontrue;
696     self->on_false = onfalse;
697     ast_propagate_effects(self, cond);
698     ast_propagate_effects(self, ontrue);
699     ast_propagate_effects(self, onfalse);
700
701     if (!ast_type_adopt(self, ontrue)) {
702         ast_ternary_delete(self);
703         return NULL;
704     }
705
706     return self;
707 }
708
709 void ast_ternary_delete(ast_ternary *self)
710 {
711     ast_unref(self->cond);
712     ast_unref(self->on_true);
713     ast_unref(self->on_false);
714     ast_expression_delete((ast_expression*)self);
715     mem_d(self);
716 }
717
718 ast_loop* ast_loop_new(lex_ctx ctx,
719                        ast_expression *initexpr,
720                        ast_expression *precond, bool pre_not,
721                        ast_expression *postcond, bool post_not,
722                        ast_expression *increment,
723                        ast_expression *body)
724 {
725     ast_instantiate(ast_loop, ctx, ast_loop_delete);
726     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
727
728     self->initexpr  = initexpr;
729     self->precond   = precond;
730     self->postcond  = postcond;
731     self->increment = increment;
732     self->body      = body;
733
734     self->pre_not   = pre_not;
735     self->post_not  = post_not;
736
737     if (initexpr)
738         ast_propagate_effects(self, initexpr);
739     if (precond)
740         ast_propagate_effects(self, precond);
741     if (postcond)
742         ast_propagate_effects(self, postcond);
743     if (increment)
744         ast_propagate_effects(self, increment);
745     if (body)
746         ast_propagate_effects(self, body);
747
748     return self;
749 }
750
751 void ast_loop_delete(ast_loop *self)
752 {
753     if (self->initexpr)
754         ast_unref(self->initexpr);
755     if (self->precond)
756         ast_unref(self->precond);
757     if (self->postcond)
758         ast_unref(self->postcond);
759     if (self->increment)
760         ast_unref(self->increment);
761     if (self->body)
762         ast_unref(self->body);
763     ast_expression_delete((ast_expression*)self);
764     mem_d(self);
765 }
766
767 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
768 {
769     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
770     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
771
772     self->is_continue = iscont;
773
774     return self;
775 }
776
777 void ast_breakcont_delete(ast_breakcont *self)
778 {
779     ast_expression_delete((ast_expression*)self);
780     mem_d(self);
781 }
782
783 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
784 {
785     ast_instantiate(ast_switch, ctx, ast_switch_delete);
786     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
787
788     self->operand = op;
789     self->cases   = NULL;
790
791     ast_propagate_effects(self, op);
792
793     return self;
794 }
795
796 void ast_switch_delete(ast_switch *self)
797 {
798     size_t i;
799     ast_unref(self->operand);
800
801     for (i = 0; i < vec_size(self->cases); ++i) {
802         if (self->cases[i].value)
803             ast_unref(self->cases[i].value);
804         ast_unref(self->cases[i].code);
805     }
806     vec_free(self->cases);
807
808     ast_expression_delete((ast_expression*)self);
809     mem_d(self);
810 }
811
812 ast_label* ast_label_new(lex_ctx ctx, const char *name)
813 {
814     ast_instantiate(ast_label, ctx, ast_label_delete);
815     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
816
817     self->name    = util_strdup(name);
818     self->irblock = NULL;
819     self->gotos   = NULL;
820
821     return self;
822 }
823
824 void ast_label_delete(ast_label *self)
825 {
826     mem_d((void*)self->name);
827     vec_free(self->gotos);
828     ast_expression_delete((ast_expression*)self);
829     mem_d(self);
830 }
831
832 void ast_label_register_goto(ast_label *self, ast_goto *g)
833 {
834     vec_push(self->gotos, g);
835 }
836
837 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
838 {
839     ast_instantiate(ast_goto, ctx, ast_goto_delete);
840     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
841
842     self->name    = util_strdup(name);
843     self->target  = NULL;
844     self->irblock_from = NULL;
845
846     return self;
847 }
848
849 void ast_goto_delete(ast_goto *self)
850 {
851     mem_d((void*)self->name);
852     ast_expression_delete((ast_expression*)self);
853     mem_d(self);
854 }
855
856 void ast_goto_set_label(ast_goto *self, ast_label *label)
857 {
858     self->target = label;
859 }
860
861 ast_call* ast_call_new(lex_ctx ctx,
862                        ast_expression *funcexpr)
863 {
864     ast_instantiate(ast_call, ctx, ast_call_delete);
865     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
866
867     ast_side_effects(self) = true;
868
869     self->params = NULL;
870     self->func   = funcexpr;
871
872     ast_type_adopt(self, funcexpr->expression.next);
873
874     return self;
875 }
876
877 void ast_call_delete(ast_call *self)
878 {
879     size_t i;
880     for (i = 0; i < vec_size(self->params); ++i)
881         ast_unref(self->params[i]);
882     vec_free(self->params);
883
884     if (self->func)
885         ast_unref(self->func);
886
887     ast_expression_delete((ast_expression*)self);
888     mem_d(self);
889 }
890
891 bool ast_call_check_types(ast_call *self)
892 {
893     size_t i;
894     bool   retval = true;
895     const  ast_expression *func = self->func;
896     size_t count = vec_size(self->params);
897     if (count > vec_size(func->expression.params))
898         count = vec_size(func->expression.params);
899
900     for (i = 0; i < count; ++i) {
901         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
902             char texp[1024];
903             char tgot[1024];
904             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
905             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
906             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
907                      (unsigned int)(i+1), texp, tgot);
908             /* we don't immediately return */
909             retval = false;
910         }
911     }
912     return retval;
913 }
914
915 ast_store* ast_store_new(lex_ctx ctx, int op,
916                          ast_expression *dest, ast_expression *source)
917 {
918     ast_instantiate(ast_store, ctx, ast_store_delete);
919     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
920
921     ast_side_effects(self) = true;
922
923     self->op = op;
924     self->dest = dest;
925     self->source = source;
926
927     if (!ast_type_adopt(self, dest)) {
928         ast_delete(self);
929         return NULL;
930     }
931
932     return self;
933 }
934
935 void ast_store_delete(ast_store *self)
936 {
937     ast_unref(self->dest);
938     ast_unref(self->source);
939     ast_expression_delete((ast_expression*)self);
940     mem_d(self);
941 }
942
943 ast_block* ast_block_new(lex_ctx ctx)
944 {
945     ast_instantiate(ast_block, ctx, ast_block_delete);
946     ast_expression_init((ast_expression*)self,
947                         (ast_expression_codegen*)&ast_block_codegen);
948
949     self->locals  = NULL;
950     self->exprs   = NULL;
951     self->collect = NULL;
952
953     return self;
954 }
955
956 bool ast_block_add_expr(ast_block *self, ast_expression *e)
957 {
958     ast_propagate_effects(self, e);
959     vec_push(self->exprs, e);
960     if (self->expression.next) {
961         ast_delete(self->expression.next);
962         self->expression.next = NULL;
963     }
964     if (!ast_type_adopt(self, e)) {
965         compile_error(ast_ctx(self), "internal error: failed to adopt type");
966         return false;
967     }
968     return true;
969 }
970
971 void ast_block_collect(ast_block *self, ast_expression *expr)
972 {
973     vec_push(self->collect, expr);
974     expr->expression.node.keep = true;
975 }
976
977 void ast_block_delete(ast_block *self)
978 {
979     size_t i;
980     for (i = 0; i < vec_size(self->exprs); ++i)
981         ast_unref(self->exprs[i]);
982     vec_free(self->exprs);
983     for (i = 0; i < vec_size(self->locals); ++i)
984         ast_delete(self->locals[i]);
985     vec_free(self->locals);
986     for (i = 0; i < vec_size(self->collect); ++i)
987         ast_delete(self->collect[i]);
988     vec_free(self->collect);
989     ast_expression_delete((ast_expression*)self);
990     mem_d(self);
991 }
992
993 bool ast_block_set_type(ast_block *self, ast_expression *from)
994 {
995     if (self->expression.next)
996         ast_delete(self->expression.next);
997     if (!ast_type_adopt(self, from))
998         return false;
999     return true;
1000 }
1001
1002 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1003 {
1004     ast_instantiate(ast_function, ctx, ast_function_delete);
1005
1006     if (!vtype ||
1007         vtype->hasvalue ||
1008         vtype->expression.vtype != TYPE_FUNCTION)
1009     {
1010         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1011                  (int)!vtype,
1012                  (int)vtype->hasvalue,
1013                  vtype->expression.vtype);
1014         mem_d(self);
1015         return NULL;
1016     }
1017
1018     self->vtype  = vtype;
1019     self->name   = name ? util_strdup(name) : NULL;
1020     self->blocks = NULL;
1021
1022     self->labelcount = 0;
1023     self->builtin = 0;
1024
1025     self->ir_func = NULL;
1026     self->curblock = NULL;
1027
1028     self->breakblock    = NULL;
1029     self->continueblock = NULL;
1030
1031     vtype->hasvalue = true;
1032     vtype->constval.vfunc = self;
1033
1034     return self;
1035 }
1036
1037 void ast_function_delete(ast_function *self)
1038 {
1039     size_t i;
1040     if (self->name)
1041         mem_d((void*)self->name);
1042     if (self->vtype) {
1043         /* ast_value_delete(self->vtype); */
1044         self->vtype->hasvalue = false;
1045         self->vtype->constval.vfunc = NULL;
1046         /* We use unref - if it was stored in a global table it is supposed
1047          * to be deleted from *there*
1048          */
1049         ast_unref(self->vtype);
1050     }
1051     for (i = 0; i < vec_size(self->blocks); ++i)
1052         ast_delete(self->blocks[i]);
1053     vec_free(self->blocks);
1054     mem_d(self);
1055 }
1056
1057 const char* ast_function_label(ast_function *self, const char *prefix)
1058 {
1059     size_t id;
1060     size_t len;
1061     char  *from;
1062
1063     if (!opts.dump && !opts.dumpfin && !opts.debug)
1064         return NULL;
1065
1066     id  = (self->labelcount++);
1067     len = strlen(prefix);
1068
1069     from = self->labelbuf + sizeof(self->labelbuf)-1;
1070     *from-- = 0;
1071     do {
1072         *from-- = (id%10) + '0';
1073         id /= 10;
1074     } while (id);
1075     ++from;
1076     memcpy(from - len, prefix, len);
1077     return from - len;
1078 }
1079
1080 /*********************************************************************/
1081 /* AST codegen part
1082  * by convention you must never pass NULL to the 'ir_value **out'
1083  * parameter. If you really don't care about the output, pass a dummy.
1084  * But I can't imagine a pituation where the output is truly unnecessary.
1085  */
1086
1087 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1088 {
1089     if (out->vtype == TYPE_FIELD)
1090         out->fieldtype = self->next->expression.vtype;
1091     if (out->vtype == TYPE_FUNCTION)
1092         out->outtype = self->next->expression.vtype;
1093 }
1094
1095 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1096
1097 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1098 {
1099     (void)func;
1100     (void)lvalue;
1101     /* NOTE: This is the codegen for a variable used in an expression.
1102      * It is not the codegen to generate the value. For this purpose,
1103      * ast_local_codegen and ast_global_codegen are to be used before this
1104      * is executed. ast_function_codegen should take care of its locals,
1105      * and the ast-user should take care of ast_global_codegen to be used
1106      * on all the globals.
1107      */
1108     if (!self->ir_v) {
1109         char tname[1024]; /* typename is reserved in C++ */
1110         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1111         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1112         return false;
1113     }
1114     *out = self->ir_v;
1115     return true;
1116 }
1117
1118 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1119 {
1120     ir_value *v = NULL;
1121
1122     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1123     {
1124         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1125         if (!func)
1126             return false;
1127         func->context = ast_ctx(self);
1128         func->value->context = ast_ctx(self);
1129
1130         self->constval.vfunc->ir_func = func;
1131         self->ir_v = func->value;
1132         /* The function is filled later on ast_function_codegen... */
1133         return true;
1134     }
1135
1136     if (isfield && self->expression.vtype == TYPE_FIELD) {
1137         ast_expression *fieldtype = self->expression.next;
1138
1139         if (self->hasvalue) {
1140             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1141             goto error;
1142         }
1143
1144         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1145             size_t ai;
1146             char   *name;
1147             size_t  namelen;
1148
1149             ast_expression_common *elemtype;
1150             int                    vtype;
1151             ast_value             *array = (ast_value*)fieldtype;
1152
1153             if (!ast_istype(fieldtype, ast_value)) {
1154                 compile_error(ast_ctx(self), "internal error: ast_value required");
1155                 return false;
1156             }
1157
1158             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1159             if (!array->expression.count || array->expression.count > opts.max_array_size)
1160                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1161
1162             elemtype = &array->expression.next->expression;
1163             vtype = elemtype->vtype;
1164
1165             v = ir_builder_create_field(ir, self->name, vtype);
1166             if (!v) {
1167                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1168                 return false;
1169             }
1170             v->context = ast_ctx(self);
1171             v->unique_life = true;
1172             v->locked      = true;
1173             array->ir_v = self->ir_v = v;
1174
1175             namelen = strlen(self->name);
1176             name    = (char*)mem_a(namelen + 16);
1177             strcpy(name, self->name);
1178
1179             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1180             array->ir_values[0] = v;
1181             for (ai = 1; ai < array->expression.count; ++ai) {
1182                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1183                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1184                 if (!array->ir_values[ai]) {
1185                     mem_d(name);
1186                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1187                     return false;
1188                 }
1189                 array->ir_values[ai]->context = ast_ctx(self);
1190                 array->ir_values[ai]->unique_life = true;
1191                 array->ir_values[ai]->locked      = true;
1192             }
1193             mem_d(name);
1194         }
1195         else
1196         {
1197             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1198             if (!v)
1199                 return false;
1200             v->context = ast_ctx(self);
1201             self->ir_v = v;
1202         }
1203         return true;
1204     }
1205
1206     if (self->expression.vtype == TYPE_ARRAY) {
1207         size_t ai;
1208         char   *name;
1209         size_t  namelen;
1210
1211         ast_expression_common *elemtype = &self->expression.next->expression;
1212         int vtype = elemtype->vtype;
1213
1214         /* same as with field arrays */
1215         if (!self->expression.count || self->expression.count > opts.max_array_size)
1216             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1217
1218         v = ir_builder_create_global(ir, self->name, vtype);
1219         if (!v) {
1220             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1221             return false;
1222         }
1223         v->context = ast_ctx(self);
1224         v->unique_life = true;
1225         v->locked      = true;
1226
1227         namelen = strlen(self->name);
1228         name    = (char*)mem_a(namelen + 16);
1229         strcpy(name, self->name);
1230
1231         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1232         self->ir_values[0] = v;
1233         for (ai = 1; ai < self->expression.count; ++ai) {
1234             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1235             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1236             if (!self->ir_values[ai]) {
1237                 mem_d(name);
1238                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1239                 return false;
1240             }
1241             self->ir_values[ai]->context = ast_ctx(self);
1242             self->ir_values[ai]->unique_life = true;
1243             self->ir_values[ai]->locked      = true;
1244         }
1245         mem_d(name);
1246     }
1247     else
1248     {
1249         /* Arrays don't do this since there's no "array" value which spans across the
1250          * whole thing.
1251          */
1252         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1253         if (!v) {
1254             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1255             return false;
1256         }
1257         codegen_output_type(self, v);
1258         v->context = ast_ctx(self);
1259     }
1260
1261     if (self->hasvalue) {
1262         switch (self->expression.vtype)
1263         {
1264             case TYPE_FLOAT:
1265                 if (!ir_value_set_float(v, self->constval.vfloat))
1266                     goto error;
1267                 break;
1268             case TYPE_VECTOR:
1269                 if (!ir_value_set_vector(v, self->constval.vvec))
1270                     goto error;
1271                 break;
1272             case TYPE_STRING:
1273                 if (!ir_value_set_string(v, self->constval.vstring))
1274                     goto error;
1275                 break;
1276             case TYPE_ARRAY:
1277                 compile_error(ast_ctx(self), "TODO: global constant array");
1278                 break;
1279             case TYPE_FUNCTION:
1280                 compile_error(ast_ctx(self), "global of type function not properly generated");
1281                 goto error;
1282                 /* Cannot generate an IR value for a function,
1283                  * need a pointer pointing to a function rather.
1284                  */
1285             case TYPE_FIELD:
1286                 if (!self->constval.vfield) {
1287                     compile_error(ast_ctx(self), "field constant without vfield set");
1288                     goto error;
1289                 }
1290                 if (!self->constval.vfield->ir_v) {
1291                     compile_error(ast_ctx(self), "field constant generated before its field");
1292                     goto error;
1293                 }
1294                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1295                     goto error;
1296                 break;
1297             default:
1298                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1299                 break;
1300         }
1301     }
1302
1303     /* link us to the ir_value */
1304     v->cvq = self->cvq;
1305     self->ir_v = v;
1306     return true;
1307
1308 error: /* clean up */
1309     ir_value_delete(v);
1310     return false;
1311 }
1312
1313 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1314 {
1315     ir_value *v = NULL;
1316     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1317     {
1318         /* Do we allow local functions? I think not...
1319          * this is NOT a function pointer atm.
1320          */
1321         return false;
1322     }
1323
1324     if (self->expression.vtype == TYPE_ARRAY) {
1325         size_t ai;
1326         char   *name;
1327         size_t  namelen;
1328
1329         ast_expression_common *elemtype = &self->expression.next->expression;
1330         int vtype = elemtype->vtype;
1331
1332         func->flags |= IR_FLAG_HAS_ARRAYS;
1333
1334         if (param) {
1335             compile_error(ast_ctx(self), "array-parameters are not supported");
1336             return false;
1337         }
1338
1339         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1340         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1341             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1342         }
1343
1344         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1345         if (!self->ir_values) {
1346             compile_error(ast_ctx(self), "failed to allocate array values");
1347             return false;
1348         }
1349
1350         v = ir_function_create_local(func, self->name, vtype, param);
1351         if (!v) {
1352             compile_error(ast_ctx(self), "ir_function_create_local failed");
1353             return false;
1354         }
1355         v->context = ast_ctx(self);
1356         v->unique_life = true;
1357         v->locked      = true;
1358
1359         namelen = strlen(self->name);
1360         name    = (char*)mem_a(namelen + 16);
1361         strcpy(name, self->name);
1362
1363         self->ir_values[0] = v;
1364         for (ai = 1; ai < self->expression.count; ++ai) {
1365             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1366             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1367             if (!self->ir_values[ai]) {
1368                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1369                 return false;
1370             }
1371             self->ir_values[ai]->context = ast_ctx(self);
1372             self->ir_values[ai]->unique_life = true;
1373             self->ir_values[ai]->locked      = true;
1374         }
1375     }
1376     else
1377     {
1378         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1379         if (!v)
1380             return false;
1381         codegen_output_type(self, v);
1382         v->context = ast_ctx(self);
1383     }
1384
1385     /* A constant local... hmmm...
1386      * I suppose the IR will have to deal with this
1387      */
1388     if (self->hasvalue) {
1389         switch (self->expression.vtype)
1390         {
1391             case TYPE_FLOAT:
1392                 if (!ir_value_set_float(v, self->constval.vfloat))
1393                     goto error;
1394                 break;
1395             case TYPE_VECTOR:
1396                 if (!ir_value_set_vector(v, self->constval.vvec))
1397                     goto error;
1398                 break;
1399             case TYPE_STRING:
1400                 if (!ir_value_set_string(v, self->constval.vstring))
1401                     goto error;
1402                 break;
1403             default:
1404                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1405                 break;
1406         }
1407     }
1408
1409     /* link us to the ir_value */
1410     v->cvq = self->cvq;
1411     self->ir_v = v;
1412
1413     if (!ast_generate_accessors(self, func->owner))
1414         return false;
1415     return true;
1416
1417 error: /* clean up */
1418     ir_value_delete(v);
1419     return false;
1420 }
1421
1422 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1423 {
1424     size_t i;
1425     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1426     if (!self->setter || !self->getter)
1427         return true;
1428     for (i = 0; i < self->expression.count; ++i) {
1429         if (!self->ir_values) {
1430             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1431             return false;
1432         }
1433         if (!self->ir_values[i]) {
1434             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1435             return false;
1436         }
1437         if (self->ir_values[i]->life) {
1438             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1439             return false;
1440         }
1441     }
1442
1443     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1444     if (self->setter) {
1445         if (!ast_global_codegen  (self->setter, ir, false) ||
1446             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1447             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1448         {
1449             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1450             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1451             return false;
1452         }
1453     }
1454     if (self->getter) {
1455         if (!ast_global_codegen  (self->getter, ir, false) ||
1456             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1457             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1458         {
1459             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1460             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1461             return false;
1462         }
1463     }
1464     for (i = 0; i < self->expression.count; ++i) {
1465         vec_free(self->ir_values[i]->life);
1466     }
1467     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1468     return true;
1469 }
1470
1471 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1472 {
1473     ir_function *irf;
1474     ir_value    *dummy;
1475     ast_expression_common *ec;
1476     size_t    i;
1477
1478     (void)ir;
1479
1480     irf = self->ir_func;
1481     if (!irf) {
1482         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1483         return false;
1484     }
1485
1486     /* fill the parameter list */
1487     ec = &self->vtype->expression;
1488     for (i = 0; i < vec_size(ec->params); ++i)
1489     {
1490         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1491             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1492         else
1493             vec_push(irf->params, ec->params[i]->expression.vtype);
1494         if (!self->builtin) {
1495             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1496                 return false;
1497         }
1498     }
1499
1500     if (self->builtin) {
1501         irf->builtin = self->builtin;
1502         return true;
1503     }
1504
1505     if (!vec_size(self->blocks)) {
1506         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1507         return false;
1508     }
1509
1510     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1511     if (!self->curblock) {
1512         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1513         return false;
1514     }
1515
1516     for (i = 0; i < vec_size(self->blocks); ++i) {
1517         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1518         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1519             return false;
1520     }
1521
1522     /* TODO: check return types */
1523     if (!self->curblock->final)
1524     {
1525         if (!self->vtype->expression.next ||
1526             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1527         {
1528             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1529         }
1530         else if (vec_size(self->curblock->entries))
1531         {
1532             /* error("missing return"); */
1533             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1534                                 "control reaches end of non-void function (`%s`) via %s",
1535                                 self->name, self->curblock->label))
1536             {
1537                 return false;
1538             }
1539             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1540         }
1541     }
1542     return true;
1543 }
1544
1545 /* Note, you will not see ast_block_codegen generate ir_blocks.
1546  * To the AST and the IR, blocks are 2 different things.
1547  * In the AST it represents a block of code, usually enclosed in
1548  * curly braces {...}.
1549  * While in the IR it represents a block in terms of control-flow.
1550  */
1551 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1552 {
1553     size_t i;
1554
1555     /* We don't use this
1556      * Note: an ast-representation using the comma-operator
1557      * of the form: (a, b, c) = x should not assign to c...
1558      */
1559     if (lvalue) {
1560         compile_error(ast_ctx(self), "not an l-value (code-block)");
1561         return false;
1562     }
1563
1564     if (self->expression.outr) {
1565         *out = self->expression.outr;
1566         return true;
1567     }
1568
1569     /* output is NULL at first, we'll have each expression
1570      * assign to out output, thus, a comma-operator represention
1571      * using an ast_block will return the last generated value,
1572      * so: (b, c) + a  executed both b and c, and returns c,
1573      * which is then added to a.
1574      */
1575     *out = NULL;
1576
1577     /* generate locals */
1578     for (i = 0; i < vec_size(self->locals); ++i)
1579     {
1580         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1581             if (opts.debug)
1582                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1583             return false;
1584         }
1585     }
1586
1587     for (i = 0; i < vec_size(self->exprs); ++i)
1588     {
1589         ast_expression_codegen *gen;
1590         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1591             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1592                 return false;
1593             continue;
1594         }
1595         gen = self->exprs[i]->expression.codegen;
1596         if (!(*gen)(self->exprs[i], func, false, out))
1597             return false;
1598     }
1599
1600     self->expression.outr = *out;
1601
1602     return true;
1603 }
1604
1605 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1606 {
1607     ast_expression_codegen *cgen;
1608     ir_value *left  = NULL;
1609     ir_value *right = NULL;
1610
1611     ast_value       *arr;
1612     ast_value       *idx = 0;
1613     ast_array_index *ai = NULL;
1614
1615     if (lvalue && self->expression.outl) {
1616         *out = self->expression.outl;
1617         return true;
1618     }
1619
1620     if (!lvalue && self->expression.outr) {
1621         *out = self->expression.outr;
1622         return true;
1623     }
1624
1625     if (ast_istype(self->dest, ast_array_index))
1626     {
1627
1628         ai = (ast_array_index*)self->dest;
1629         idx = (ast_value*)ai->index;
1630
1631         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1632             ai = NULL;
1633     }
1634
1635     if (ai) {
1636         /* we need to call the setter */
1637         ir_value  *iridx, *funval;
1638         ir_instr  *call;
1639
1640         if (lvalue) {
1641             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1642             return false;
1643         }
1644
1645         arr = (ast_value*)ai->array;
1646         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1647             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1648             return false;
1649         }
1650
1651         cgen = idx->expression.codegen;
1652         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1653             return false;
1654
1655         cgen = arr->setter->expression.codegen;
1656         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1657             return false;
1658
1659         cgen = self->source->expression.codegen;
1660         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1661             return false;
1662
1663         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1664         if (!call)
1665             return false;
1666         ir_call_param(call, iridx);
1667         ir_call_param(call, right);
1668         self->expression.outr = right;
1669     }
1670     else
1671     {
1672         /* regular code */
1673
1674         cgen = self->dest->expression.codegen;
1675         /* lvalue! */
1676         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1677             return false;
1678         self->expression.outl = left;
1679
1680         cgen = self->source->expression.codegen;
1681         /* rvalue! */
1682         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1683             return false;
1684
1685         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1686             return false;
1687         self->expression.outr = right;
1688     }
1689
1690     /* Theoretically, an assinment returns its left side as an
1691      * lvalue, if we don't need an lvalue though, we return
1692      * the right side as an rvalue, otherwise we have to
1693      * somehow know whether or not we need to dereference the pointer
1694      * on the left side - that is: OP_LOAD if it was an address.
1695      * Also: in original QC we cannot OP_LOADP *anyway*.
1696      */
1697     *out = (lvalue ? left : right);
1698
1699     return true;
1700 }
1701
1702 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1703 {
1704     ast_expression_codegen *cgen;
1705     ir_value *left, *right;
1706
1707     /* A binary operation cannot yield an l-value */
1708     if (lvalue) {
1709         compile_error(ast_ctx(self), "not an l-value (binop)");
1710         return false;
1711     }
1712
1713     if (self->expression.outr) {
1714         *out = self->expression.outr;
1715         return true;
1716     }
1717
1718     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1719         (self->op == INSTR_AND || self->op == INSTR_OR))
1720     {
1721         /* short circuit evaluation */
1722         ir_block *other, *merge;
1723         ir_block *from_left, *from_right;
1724         ir_instr *phi;
1725         size_t    merge_id;
1726
1727         /* prepare end-block */
1728         merge_id = vec_size(func->ir_func->blocks);
1729         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1730
1731         /* generate the left expression */
1732         cgen = self->left->expression.codegen;
1733         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1734             return false;
1735         /* remember the block */
1736         from_left = func->curblock;
1737
1738         /* create a new block for the right expression */
1739         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1740         if (self->op == INSTR_AND) {
1741             /* on AND: left==true -> other */
1742             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1743                 return false;
1744         } else {
1745             /* on OR: left==false -> other */
1746             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1747                 return false;
1748         }
1749         /* use the likely flag */
1750         vec_last(func->curblock->instr)->likely = true;
1751
1752         /* enter the right-expression's block */
1753         func->curblock = other;
1754         /* generate */
1755         cgen = self->right->expression.codegen;
1756         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1757             return false;
1758         /* remember block */
1759         from_right = func->curblock;
1760
1761         /* jump to the merge block */
1762         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1763             return false;
1764
1765         vec_remove(func->ir_func->blocks, merge_id, 1);
1766         vec_push(func->ir_func->blocks, merge);
1767
1768         func->curblock = merge;
1769         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1770                                   ast_function_label(func, "sce_value"),
1771                                   self->expression.vtype);
1772         ir_phi_add(phi, from_left, left);
1773         ir_phi_add(phi, from_right, right);
1774         *out = ir_phi_value(phi);
1775         if (!*out)
1776             return false;
1777
1778         if (!OPTS_FLAG(PERL_LOGIC)) {
1779             /* cast-to-bool */
1780             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1781                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1782                                              ast_function_label(func, "sce_bool_v"),
1783                                              INSTR_NOT_V, *out);
1784                 if (!*out)
1785                     return false;
1786                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1787                                              ast_function_label(func, "sce_bool"),
1788                                              INSTR_NOT_F, *out);
1789                 if (!*out)
1790                     return false;
1791             }
1792             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1793                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1794                                              ast_function_label(func, "sce_bool_s"),
1795                                              INSTR_NOT_S, *out);
1796                 if (!*out)
1797                     return false;
1798                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1799                                              ast_function_label(func, "sce_bool"),
1800                                              INSTR_NOT_F, *out);
1801                 if (!*out)
1802                     return false;
1803             }
1804             else {
1805                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1806                                              ast_function_label(func, "sce_bool"),
1807                                              INSTR_AND, *out, *out);
1808                 if (!*out)
1809                     return false;
1810             }
1811         }
1812
1813         self->expression.outr = *out;
1814         return true;
1815     }
1816
1817     cgen = self->left->expression.codegen;
1818     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1819         return false;
1820
1821     cgen = self->right->expression.codegen;
1822     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1823         return false;
1824
1825     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1826                                  self->op, left, right);
1827     if (!*out)
1828         return false;
1829     self->expression.outr = *out;
1830
1831     return true;
1832 }
1833
1834 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1835 {
1836     ast_expression_codegen *cgen;
1837     ir_value *leftl = NULL, *leftr, *right, *bin;
1838
1839     ast_value       *arr;
1840     ast_value       *idx = 0;
1841     ast_array_index *ai = NULL;
1842     ir_value        *iridx = NULL;
1843
1844     if (lvalue && self->expression.outl) {
1845         *out = self->expression.outl;
1846         return true;
1847     }
1848
1849     if (!lvalue && self->expression.outr) {
1850         *out = self->expression.outr;
1851         return true;
1852     }
1853
1854     if (ast_istype(self->dest, ast_array_index))
1855     {
1856
1857         ai = (ast_array_index*)self->dest;
1858         idx = (ast_value*)ai->index;
1859
1860         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1861             ai = NULL;
1862     }
1863
1864     /* for a binstore we need both an lvalue and an rvalue for the left side */
1865     /* rvalue of destination! */
1866     if (ai) {
1867         cgen = idx->expression.codegen;
1868         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1869             return false;
1870     }
1871     cgen = self->dest->expression.codegen;
1872     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1873         return false;
1874
1875     /* source as rvalue only */
1876     cgen = self->source->expression.codegen;
1877     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1878         return false;
1879
1880     /* now the binary */
1881     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1882                                 self->opbin, leftr, right);
1883     self->expression.outr = bin;
1884
1885
1886     if (ai) {
1887         /* we need to call the setter */
1888         ir_value  *funval;
1889         ir_instr  *call;
1890
1891         if (lvalue) {
1892             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1893             return false;
1894         }
1895
1896         arr = (ast_value*)ai->array;
1897         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1898             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1899             return false;
1900         }
1901
1902         cgen = arr->setter->expression.codegen;
1903         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1904             return false;
1905
1906         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1907         if (!call)
1908             return false;
1909         ir_call_param(call, iridx);
1910         ir_call_param(call, bin);
1911         self->expression.outr = bin;
1912     } else {
1913         /* now store them */
1914         cgen = self->dest->expression.codegen;
1915         /* lvalue of destination */
1916         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1917             return false;
1918         self->expression.outl = leftl;
1919
1920         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1921             return false;
1922         self->expression.outr = bin;
1923     }
1924
1925     /* Theoretically, an assinment returns its left side as an
1926      * lvalue, if we don't need an lvalue though, we return
1927      * the right side as an rvalue, otherwise we have to
1928      * somehow know whether or not we need to dereference the pointer
1929      * on the left side - that is: OP_LOAD if it was an address.
1930      * Also: in original QC we cannot OP_LOADP *anyway*.
1931      */
1932     *out = (lvalue ? leftl : bin);
1933
1934     return true;
1935 }
1936
1937 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1938 {
1939     ast_expression_codegen *cgen;
1940     ir_value *operand;
1941
1942     /* An unary operation cannot yield an l-value */
1943     if (lvalue) {
1944         compile_error(ast_ctx(self), "not an l-value (binop)");
1945         return false;
1946     }
1947
1948     if (self->expression.outr) {
1949         *out = self->expression.outr;
1950         return true;
1951     }
1952
1953     cgen = self->operand->expression.codegen;
1954     /* lvalue! */
1955     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1956         return false;
1957
1958     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1959                                  self->op, operand);
1960     if (!*out)
1961         return false;
1962     self->expression.outr = *out;
1963
1964     return true;
1965 }
1966
1967 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1968 {
1969     ast_expression_codegen *cgen;
1970     ir_value *operand;
1971
1972     *out = NULL;
1973
1974     /* In the context of a return operation, we don't actually return
1975      * anything...
1976      */
1977     if (lvalue) {
1978         compile_error(ast_ctx(self), "return-expression is not an l-value");
1979         return false;
1980     }
1981
1982     if (self->expression.outr) {
1983         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1984         return false;
1985     }
1986     self->expression.outr = (ir_value*)1;
1987
1988     if (self->operand) {
1989         cgen = self->operand->expression.codegen;
1990         /* lvalue! */
1991         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1992             return false;
1993
1994         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1995             return false;
1996     } else {
1997         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1998             return false;
1999     }
2000
2001     return true;
2002 }
2003
2004 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2005 {
2006     ast_expression_codegen *cgen;
2007     ir_value *ent, *field;
2008
2009     /* This function needs to take the 'lvalue' flag into account!
2010      * As lvalue we provide a field-pointer, as rvalue we provide the
2011      * value in a temp.
2012      */
2013
2014     if (lvalue && self->expression.outl) {
2015         *out = self->expression.outl;
2016         return true;
2017     }
2018
2019     if (!lvalue && self->expression.outr) {
2020         *out = self->expression.outr;
2021         return true;
2022     }
2023
2024     cgen = self->entity->expression.codegen;
2025     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2026         return false;
2027
2028     cgen = self->field->expression.codegen;
2029     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2030         return false;
2031
2032     if (lvalue) {
2033         /* address! */
2034         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2035                                             ent, field);
2036     } else {
2037         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2038                                              ent, field, self->expression.vtype);
2039         /* Done AFTER error checking: 
2040         codegen_output_type(self, *out);
2041         */
2042     }
2043     if (!*out) {
2044         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2045                  (lvalue ? "ADDRESS" : "FIELD"),
2046                  type_name[self->expression.vtype]);
2047         return false;
2048     }
2049     if (!lvalue)
2050         codegen_output_type(self, *out);
2051
2052     if (lvalue)
2053         self->expression.outl = *out;
2054     else
2055         self->expression.outr = *out;
2056
2057     /* Hm that should be it... */
2058     return true;
2059 }
2060
2061 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2062 {
2063     ast_expression_codegen *cgen;
2064     ir_value *vec;
2065
2066     /* in QC this is always an lvalue */
2067     (void)lvalue;
2068     if (self->expression.outl) {
2069         *out = self->expression.outl;
2070         return true;
2071     }
2072
2073     cgen = self->owner->expression.codegen;
2074     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2075         return false;
2076
2077     if (vec->vtype != TYPE_VECTOR &&
2078         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2079     {
2080         return false;
2081     }
2082
2083     *out = ir_value_vector_member(vec, self->field);
2084     self->expression.outl = *out;
2085
2086     return (*out != NULL);
2087 }
2088
2089 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2090 {
2091     ast_value *arr;
2092     ast_value *idx;
2093
2094     if (!lvalue && self->expression.outr) {
2095         *out = self->expression.outr;
2096     }
2097     if (lvalue && self->expression.outl) {
2098         *out = self->expression.outl;
2099     }
2100
2101     if (!ast_istype(self->array, ast_value)) {
2102         compile_error(ast_ctx(self), "array indexing this way is not supported");
2103         /* note this would actually be pointer indexing because the left side is
2104          * not an actual array but (hopefully) an indexable expression.
2105          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2106          * support this path will be filled.
2107          */
2108         return false;
2109     }
2110
2111     arr = (ast_value*)self->array;
2112     idx = (ast_value*)self->index;
2113
2114     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2115         /* Time to use accessor functions */
2116         ast_expression_codegen *cgen;
2117         ir_value               *iridx, *funval;
2118         ir_instr               *call;
2119
2120         if (lvalue) {
2121             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2122             return false;
2123         }
2124
2125         if (!arr->getter) {
2126             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2127             return false;
2128         }
2129
2130         cgen = self->index->expression.codegen;
2131         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2132             return false;
2133
2134         cgen = arr->getter->expression.codegen;
2135         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2136             return false;
2137
2138         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2139         if (!call)
2140             return false;
2141         ir_call_param(call, iridx);
2142
2143         *out = ir_call_value(call);
2144         self->expression.outr = *out;
2145         return true;
2146     }
2147
2148     if (idx->expression.vtype == TYPE_FLOAT) {
2149         unsigned int arridx = idx->constval.vfloat;
2150         if (arridx >= self->array->expression.count)
2151         {
2152             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2153             return false;
2154         }
2155         *out = arr->ir_values[arridx];
2156     }
2157     else if (idx->expression.vtype == TYPE_INTEGER) {
2158         unsigned int arridx = idx->constval.vint;
2159         if (arridx >= self->array->expression.count)
2160         {
2161             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2162             return false;
2163         }
2164         *out = arr->ir_values[arridx];
2165     }
2166     else {
2167         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2168         return false;
2169     }
2170     return true;
2171 }
2172
2173 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2174 {
2175     ast_expression_codegen *cgen;
2176
2177     ir_value *condval;
2178     ir_value *dummy;
2179
2180     ir_block *cond;
2181     ir_block *ontrue;
2182     ir_block *onfalse;
2183     ir_block *ontrue_endblock = NULL;
2184     ir_block *onfalse_endblock = NULL;
2185     ir_block *merge = NULL;
2186
2187     /* We don't output any value, thus also don't care about r/lvalue */
2188     (void)out;
2189     (void)lvalue;
2190
2191     if (self->expression.outr) {
2192         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2193         return false;
2194     }
2195     self->expression.outr = (ir_value*)1;
2196
2197     /* generate the condition */
2198     cgen = self->cond->expression.codegen;
2199     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2200         return false;
2201     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2202     cond = func->curblock;
2203
2204     /* on-true path */
2205
2206     if (self->on_true) {
2207         /* create on-true block */
2208         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2209         if (!ontrue)
2210             return false;
2211
2212         /* enter the block */
2213         func->curblock = ontrue;
2214
2215         /* generate */
2216         cgen = self->on_true->expression.codegen;
2217         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2218             return false;
2219
2220         /* we now need to work from the current endpoint */
2221         ontrue_endblock = func->curblock;
2222     } else
2223         ontrue = NULL;
2224
2225     /* on-false path */
2226     if (self->on_false) {
2227         /* create on-false block */
2228         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2229         if (!onfalse)
2230             return false;
2231
2232         /* enter the block */
2233         func->curblock = onfalse;
2234
2235         /* generate */
2236         cgen = self->on_false->expression.codegen;
2237         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2238             return false;
2239
2240         /* we now need to work from the current endpoint */
2241         onfalse_endblock = func->curblock;
2242     } else
2243         onfalse = NULL;
2244
2245     /* Merge block were they all merge in to */
2246     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2247     {
2248         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2249         if (!merge)
2250             return false;
2251         /* add jumps ot the merge block */
2252         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2253             return false;
2254         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2255             return false;
2256
2257         /* Now enter the merge block */
2258         func->curblock = merge;
2259     }
2260
2261     /* we create the if here, that way all blocks are ordered :)
2262      */
2263     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2264                             (ontrue  ? ontrue  : merge),
2265                             (onfalse ? onfalse : merge)))
2266     {
2267         return false;
2268     }
2269
2270     return true;
2271 }
2272
2273 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2274 {
2275     ast_expression_codegen *cgen;
2276
2277     ir_value *condval;
2278     ir_value *trueval, *falseval;
2279     ir_instr *phi;
2280
2281     ir_block *cond = func->curblock;
2282     ir_block *cond_out = NULL;
2283     ir_block *ontrue, *ontrue_out = NULL;
2284     ir_block *onfalse, *onfalse_out = NULL;
2285     ir_block *merge;
2286
2287     /* Ternary can never create an lvalue... */
2288     if (lvalue)
2289         return false;
2290
2291     /* In theory it shouldn't be possible to pass through a node twice, but
2292      * in case we add any kind of optimization pass for the AST itself, it
2293      * may still happen, thus we remember a created ir_value and simply return one
2294      * if it already exists.
2295      */
2296     if (self->expression.outr) {
2297         *out = self->expression.outr;
2298         return true;
2299     }
2300
2301     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2302
2303     /* generate the condition */
2304     func->curblock = cond;
2305     cgen = self->cond->expression.codegen;
2306     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2307         return false;
2308     cond_out = func->curblock;
2309
2310     /* create on-true block */
2311     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2312     if (!ontrue)
2313         return false;
2314     else
2315     {
2316         /* enter the block */
2317         func->curblock = ontrue;
2318
2319         /* generate */
2320         cgen = self->on_true->expression.codegen;
2321         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2322             return false;
2323
2324         ontrue_out = func->curblock;
2325     }
2326
2327     /* create on-false block */
2328     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2329     if (!onfalse)
2330         return false;
2331     else
2332     {
2333         /* enter the block */
2334         func->curblock = onfalse;
2335
2336         /* generate */
2337         cgen = self->on_false->expression.codegen;
2338         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2339             return false;
2340
2341         onfalse_out = func->curblock;
2342     }
2343
2344     /* create merge block */
2345     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2346     if (!merge)
2347         return false;
2348     /* jump to merge block */
2349     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2350         return false;
2351     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2352         return false;
2353
2354     /* create if instruction */
2355     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2356         return false;
2357
2358     /* Now enter the merge block */
2359     func->curblock = merge;
2360
2361     /* Here, now, we need a PHI node
2362      * but first some sanity checking...
2363      */
2364     if (trueval->vtype != falseval->vtype) {
2365         /* error("ternary with different types on the two sides"); */
2366         return false;
2367     }
2368
2369     /* create PHI */
2370     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2371     if (!phi)
2372         return false;
2373     ir_phi_add(phi, ontrue_out,  trueval);
2374     ir_phi_add(phi, onfalse_out, falseval);
2375
2376     self->expression.outr = ir_phi_value(phi);
2377     *out = self->expression.outr;
2378
2379     codegen_output_type(self, *out);
2380
2381     return true;
2382 }
2383
2384 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2385 {
2386     ast_expression_codegen *cgen;
2387
2388     ir_value *dummy      = NULL;
2389     ir_value *precond    = NULL;
2390     ir_value *postcond   = NULL;
2391
2392     /* Since we insert some jumps "late" so we have blocks
2393      * ordered "nicely", we need to keep track of the actual end-blocks
2394      * of expressions to add the jumps to.
2395      */
2396     ir_block *bbody      = NULL, *end_bbody      = NULL;
2397     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2398     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2399     ir_block *bincrement = NULL, *end_bincrement = NULL;
2400     ir_block *bout       = NULL, *bin            = NULL;
2401
2402     /* let's at least move the outgoing block to the end */
2403     size_t    bout_id;
2404
2405     /* 'break' and 'continue' need to be able to find the right blocks */
2406     ir_block *bcontinue     = NULL;
2407     ir_block *bbreak        = NULL;
2408
2409     ir_block *old_bcontinue = NULL;
2410     ir_block *old_bbreak    = NULL;
2411
2412     ir_block *tmpblock      = NULL;
2413
2414     (void)lvalue;
2415     (void)out;
2416
2417     if (self->expression.outr) {
2418         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2419         return false;
2420     }
2421     self->expression.outr = (ir_value*)1;
2422
2423     /* NOTE:
2424      * Should we ever need some kind of block ordering, better make this function
2425      * move blocks around than write a block ordering algorithm later... after all
2426      * the ast and ir should work together, not against each other.
2427      */
2428
2429     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2430      * anyway if for example it contains a ternary.
2431      */
2432     if (self->initexpr)
2433     {
2434         cgen = self->initexpr->expression.codegen;
2435         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2436             return false;
2437     }
2438
2439     /* Store the block from which we enter this chaos */
2440     bin = func->curblock;
2441
2442     /* The pre-loop condition needs its own block since we
2443      * need to be able to jump to the start of that expression.
2444      */
2445     if (self->precond)
2446     {
2447         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2448         if (!bprecond)
2449             return false;
2450
2451         /* the pre-loop-condition the least important place to 'continue' at */
2452         bcontinue = bprecond;
2453
2454         /* enter */
2455         func->curblock = bprecond;
2456
2457         /* generate */
2458         cgen = self->precond->expression.codegen;
2459         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2460             return false;
2461
2462         end_bprecond = func->curblock;
2463     } else {
2464         bprecond = end_bprecond = NULL;
2465     }
2466
2467     /* Now the next blocks won't be ordered nicely, but we need to
2468      * generate them this early for 'break' and 'continue'.
2469      */
2470     if (self->increment) {
2471         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2472         if (!bincrement)
2473             return false;
2474         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2475     } else {
2476         bincrement = end_bincrement = NULL;
2477     }
2478
2479     if (self->postcond) {
2480         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2481         if (!bpostcond)
2482             return false;
2483         bcontinue = bpostcond; /* postcond comes before the increment */
2484     } else {
2485         bpostcond = end_bpostcond = NULL;
2486     }
2487
2488     bout_id = vec_size(func->ir_func->blocks);
2489     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2490     if (!bout)
2491         return false;
2492     bbreak = bout;
2493
2494     /* The loop body... */
2495     /* if (self->body) */
2496     {
2497         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2498         if (!bbody)
2499             return false;
2500
2501         /* enter */
2502         func->curblock = bbody;
2503
2504         old_bbreak          = func->breakblock;
2505         old_bcontinue       = func->continueblock;
2506         func->breakblock    = bbreak;
2507         func->continueblock = bcontinue;
2508         if (!func->continueblock)
2509             func->continueblock = bbody;
2510
2511         /* generate */
2512         if (self->body) {
2513             cgen = self->body->expression.codegen;
2514             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2515                 return false;
2516         }
2517
2518         end_bbody = func->curblock;
2519         func->breakblock    = old_bbreak;
2520         func->continueblock = old_bcontinue;
2521     }
2522
2523     /* post-loop-condition */
2524     if (self->postcond)
2525     {
2526         /* enter */
2527         func->curblock = bpostcond;
2528
2529         /* generate */
2530         cgen = self->postcond->expression.codegen;
2531         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2532             return false;
2533
2534         end_bpostcond = func->curblock;
2535     }
2536
2537     /* The incrementor */
2538     if (self->increment)
2539     {
2540         /* enter */
2541         func->curblock = bincrement;
2542
2543         /* generate */
2544         cgen = self->increment->expression.codegen;
2545         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2546             return false;
2547
2548         end_bincrement = func->curblock;
2549     }
2550
2551     /* In any case now, we continue from the outgoing block */
2552     func->curblock = bout;
2553
2554     /* Now all blocks are in place */
2555     /* From 'bin' we jump to whatever comes first */
2556     if      (bprecond)   tmpblock = bprecond;
2557     else if (bbody)      tmpblock = bbody;
2558     else if (bpostcond)  tmpblock = bpostcond;
2559     else                 tmpblock = bout;
2560     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2561         return false;
2562
2563     /* From precond */
2564     if (bprecond)
2565     {
2566         ir_block *ontrue, *onfalse;
2567         if      (bbody)      ontrue = bbody;
2568         else if (bincrement) ontrue = bincrement;
2569         else if (bpostcond)  ontrue = bpostcond;
2570         else                 ontrue = bprecond;
2571         onfalse = bout;
2572         if (self->pre_not) {
2573             tmpblock = ontrue;
2574             ontrue   = onfalse;
2575             onfalse  = tmpblock;
2576         }
2577         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2578             return false;
2579     }
2580
2581     /* from body */
2582     if (bbody)
2583     {
2584         if      (bincrement) tmpblock = bincrement;
2585         else if (bpostcond)  tmpblock = bpostcond;
2586         else if (bprecond)   tmpblock = bprecond;
2587         else                 tmpblock = bbody;
2588         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2589             return false;
2590     }
2591
2592     /* from increment */
2593     if (bincrement)
2594     {
2595         if      (bpostcond)  tmpblock = bpostcond;
2596         else if (bprecond)   tmpblock = bprecond;
2597         else if (bbody)      tmpblock = bbody;
2598         else                 tmpblock = bout;
2599         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2600             return false;
2601     }
2602
2603     /* from postcond */
2604     if (bpostcond)
2605     {
2606         ir_block *ontrue, *onfalse;
2607         if      (bprecond)   ontrue = bprecond;
2608         else if (bbody)      ontrue = bbody;
2609         else if (bincrement) ontrue = bincrement;
2610         else                 ontrue = bpostcond;
2611         onfalse = bout;
2612         if (self->post_not) {
2613             tmpblock = ontrue;
2614             ontrue   = onfalse;
2615             onfalse  = tmpblock;
2616         }
2617         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2618             return false;
2619     }
2620
2621     /* Move 'bout' to the end */
2622     vec_remove(func->ir_func->blocks, bout_id, 1);
2623     vec_push(func->ir_func->blocks, bout);
2624
2625     return true;
2626 }
2627
2628 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2629 {
2630     ir_block *target;
2631
2632     *out = NULL;
2633
2634     if (lvalue) {
2635         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2636         return false;
2637     }
2638
2639     if (self->expression.outr) {
2640         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2641         return false;
2642     }
2643     self->expression.outr = (ir_value*)1;
2644
2645     if (self->is_continue)
2646         target = func->continueblock;
2647     else
2648         target = func->breakblock;
2649
2650     if (!target) {
2651         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2652         return false;
2653     }
2654
2655     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2656         return false;
2657     return true;
2658 }
2659
2660 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2661 {
2662     ast_expression_codegen *cgen;
2663
2664     ast_switch_case *def_case     = NULL;
2665     ir_block        *def_bfall    = NULL;
2666     ir_block        *def_bfall_to = NULL;
2667     bool set_def_bfall_to = false;
2668
2669     ir_value *dummy     = NULL;
2670     ir_value *irop      = NULL;
2671     ir_block *old_break = NULL;
2672     ir_block *bout      = NULL;
2673     ir_block *bfall     = NULL;
2674     size_t    bout_id;
2675     size_t    c;
2676
2677     char      typestr[1024];
2678     uint16_t  cmpinstr;
2679
2680     if (lvalue) {
2681         compile_error(ast_ctx(self), "switch expression is not an l-value");
2682         return false;
2683     }
2684
2685     if (self->expression.outr) {
2686         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2687         return false;
2688     }
2689     self->expression.outr = (ir_value*)1;
2690
2691     (void)lvalue;
2692     (void)out;
2693
2694     cgen = self->operand->expression.codegen;
2695     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2696         return false;
2697
2698     if (!vec_size(self->cases))
2699         return true;
2700
2701     cmpinstr = type_eq_instr[irop->vtype];
2702     if (cmpinstr >= AINSTR_END) {
2703         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2704         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2705         return false;
2706     }
2707
2708     bout_id = vec_size(func->ir_func->blocks);
2709     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2710     if (!bout)
2711         return false;
2712
2713     /* setup the break block */
2714     old_break        = func->breakblock;
2715     func->breakblock = bout;
2716
2717     /* Now create all cases */
2718     for (c = 0; c < vec_size(self->cases); ++c) {
2719         ir_value *cond, *val;
2720         ir_block *bcase, *bnot;
2721         size_t bnot_id;
2722
2723         ast_switch_case *swcase = &self->cases[c];
2724
2725         if (swcase->value) {
2726             /* A regular case */
2727             /* generate the condition operand */
2728             cgen = swcase->value->expression.codegen;
2729             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2730                 return false;
2731             /* generate the condition */
2732             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2733             if (!cond)
2734                 return false;
2735
2736             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2737             bnot_id = vec_size(func->ir_func->blocks);
2738             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2739             if (!bcase || !bnot)
2740                 return false;
2741             if (set_def_bfall_to) {
2742                 set_def_bfall_to = false;
2743                 def_bfall_to = bcase;
2744             }
2745             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2746                 return false;
2747
2748             /* Make the previous case-end fall through */
2749             if (bfall && !bfall->final) {
2750                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2751                     return false;
2752             }
2753
2754             /* enter the case */
2755             func->curblock = bcase;
2756             cgen = swcase->code->expression.codegen;
2757             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2758                 return false;
2759
2760             /* remember this block to fall through from */
2761             bfall = func->curblock;
2762
2763             /* enter the else and move it down */
2764             func->curblock = bnot;
2765             vec_remove(func->ir_func->blocks, bnot_id, 1);
2766             vec_push(func->ir_func->blocks, bnot);
2767         } else {
2768             /* The default case */
2769             /* Remember where to fall through from: */
2770             def_bfall = bfall;
2771             bfall     = NULL;
2772             /* remember which case it was */
2773             def_case  = swcase;
2774             /* And the next case will be remembered */
2775             set_def_bfall_to = true;
2776         }
2777     }
2778
2779     /* Jump from the last bnot to bout */
2780     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2781         /*
2782         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2783         */
2784         return false;
2785     }
2786
2787     /* If there was a default case, put it down here */
2788     if (def_case) {
2789         ir_block *bcase;
2790
2791         /* No need to create an extra block */
2792         bcase = func->curblock;
2793
2794         /* Insert the fallthrough jump */
2795         if (def_bfall && !def_bfall->final) {
2796             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2797                 return false;
2798         }
2799
2800         /* Now generate the default code */
2801         cgen = def_case->code->expression.codegen;
2802         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2803             return false;
2804
2805         /* see if we need to fall through */
2806         if (def_bfall_to && !func->curblock->final)
2807         {
2808             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2809                 return false;
2810         }
2811     }
2812
2813     /* Jump from the last bnot to bout */
2814     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2815         return false;
2816     /* enter the outgoing block */
2817     func->curblock = bout;
2818
2819     /* restore the break block */
2820     func->breakblock = old_break;
2821
2822     /* Move 'bout' to the end, it's nicer */
2823     vec_remove(func->ir_func->blocks, bout_id, 1);
2824     vec_push(func->ir_func->blocks, bout);
2825
2826     return true;
2827 }
2828
2829 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2830 {
2831     size_t i;
2832     ir_value *dummy;
2833
2834     *out = NULL;
2835     if (lvalue) {
2836         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2837         return false;
2838     }
2839
2840     /* simply create a new block and jump to it */
2841     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2842     if (!self->irblock) {
2843         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2844         return false;
2845     }
2846     if (!func->curblock->final) {
2847         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2848             return false;
2849     }
2850
2851     /* enter the new block */
2852     func->curblock = self->irblock;
2853
2854     /* Generate all the leftover gotos */
2855     for (i = 0; i < vec_size(self->gotos); ++i) {
2856         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2857             return false;
2858     }
2859
2860     return true;
2861 }
2862
2863 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2864 {
2865     *out = NULL;
2866     if (lvalue) {
2867         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2868         return false;
2869     }
2870
2871     if (self->target->irblock) {
2872         if (self->irblock_from) {
2873             /* we already tried once, this is the callback */
2874             self->irblock_from->final = false;
2875             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2876                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2877                 return false;
2878             }
2879         }
2880         else
2881         {
2882             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
2883                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2884                 return false;
2885             }
2886         }
2887     }
2888     else
2889     {
2890         /* the target has not yet been created...
2891          * close this block in a sneaky way:
2892          */
2893         func->curblock->final = true;
2894         self->irblock_from = func->curblock;
2895         ast_label_register_goto(self->target, self);
2896     }
2897
2898     return true;
2899 }
2900
2901 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2902 {
2903     ast_expression_codegen *cgen;
2904     ir_value              **params;
2905     ir_instr               *callinstr;
2906     size_t i;
2907
2908     ir_value *funval = NULL;
2909
2910     /* return values are never lvalues */
2911     if (lvalue) {
2912         compile_error(ast_ctx(self), "not an l-value (function call)");
2913         return false;
2914     }
2915
2916     if (self->expression.outr) {
2917         *out = self->expression.outr;
2918         return true;
2919     }
2920
2921     cgen = self->func->expression.codegen;
2922     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2923         return false;
2924     if (!funval)
2925         return false;
2926
2927     params = NULL;
2928
2929     /* parameters */
2930     for (i = 0; i < vec_size(self->params); ++i)
2931     {
2932         ir_value *param;
2933         ast_expression *expr = self->params[i];
2934
2935         cgen = expr->expression.codegen;
2936         if (!(*cgen)(expr, func, false, &param))
2937             goto error;
2938         if (!param)
2939             goto error;
2940         vec_push(params, param);
2941     }
2942
2943     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
2944                                      ast_function_label(func, "call"),
2945                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
2946     if (!callinstr)
2947         goto error;
2948
2949     for (i = 0; i < vec_size(params); ++i) {
2950         ir_call_param(callinstr, params[i]);
2951     }
2952
2953     *out = ir_call_value(callinstr);
2954     self->expression.outr = *out;
2955
2956     codegen_output_type(self, *out);
2957
2958     vec_free(params);
2959     return true;
2960 error:
2961     vec_free(params);
2962     return false;
2963 }