]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ast_block_add_expr now lets the block fully adopt the type of the added expression
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->isfield  = false;
326     self->cvq      = CV_NONE;
327     self->hasvalue = false;
328     self->uses    = 0;
329     memset(&self->constval, 0, sizeof(self->constval));
330
331     self->ir_v           = NULL;
332     self->ir_values      = NULL;
333     self->ir_value_count = 0;
334
335     self->setter = NULL;
336     self->getter = NULL;
337
338     return self;
339 }
340
341 void ast_value_delete(ast_value* self)
342 {
343     if (self->name)
344         mem_d((void*)self->name);
345     if (self->hasvalue) {
346         switch (self->expression.vtype)
347         {
348         case TYPE_STRING:
349             mem_d((void*)self->constval.vstring);
350             break;
351         case TYPE_FUNCTION:
352             /* unlink us from the function node */
353             self->constval.vfunc->vtype = NULL;
354             break;
355         /* NOTE: delete function? currently collected in
356          * the parser structure
357          */
358         default:
359             break;
360         }
361     }
362     if (self->ir_values)
363         mem_d(self->ir_values);
364     ast_expression_delete((ast_expression*)self);
365     mem_d(self);
366 }
367
368 void ast_value_params_add(ast_value *self, ast_value *p)
369 {
370     vec_push(self->expression.params, p);
371 }
372
373 bool ast_value_set_name(ast_value *self, const char *name)
374 {
375     if (self->name)
376         mem_d((void*)self->name);
377     self->name = util_strdup(name);
378     return !!self->name;
379 }
380
381 ast_binary* ast_binary_new(lex_ctx ctx, int op,
382                            ast_expression* left, ast_expression* right)
383 {
384     ast_instantiate(ast_binary, ctx, ast_binary_delete);
385     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
386
387     self->op = op;
388     self->left = left;
389     self->right = right;
390
391     ast_propagate_effects(self, left);
392     ast_propagate_effects(self, right);
393
394     if (op >= INSTR_EQ_F && op <= INSTR_GT)
395         self->expression.vtype = TYPE_FLOAT;
396     else if (op == INSTR_AND || op == INSTR_OR ||
397              op == INSTR_BITAND || op == INSTR_BITOR)
398         self->expression.vtype = TYPE_FLOAT;
399     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
400         self->expression.vtype = TYPE_VECTOR;
401     else if (op == INSTR_MUL_V)
402         self->expression.vtype = TYPE_FLOAT;
403     else
404         self->expression.vtype = left->expression.vtype;
405
406     return self;
407 }
408
409 void ast_binary_delete(ast_binary *self)
410 {
411     ast_unref(self->left);
412     ast_unref(self->right);
413     ast_expression_delete((ast_expression*)self);
414     mem_d(self);
415 }
416
417 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
418                                ast_expression* left, ast_expression* right)
419 {
420     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
422
423     ast_side_effects(self) = true;
424
425     self->opstore = storop;
426     self->opbin   = op;
427     self->dest    = left;
428     self->source  = right;
429
430     self->keep_dest = false;
431
432     self->expression.vtype = left->expression.vtype;
433     if (left->expression.next) {
434         self->expression.next = ast_type_copy(ctx, left);
435         if (!self->expression.next) {
436             ast_delete(self);
437             return NULL;
438         }
439     }
440     else
441         self->expression.next = NULL;
442
443     return self;
444 }
445
446 void ast_binstore_delete(ast_binstore *self)
447 {
448     if (!self->keep_dest)
449         ast_unref(self->dest);
450     ast_unref(self->source);
451     ast_expression_delete((ast_expression*)self);
452     mem_d(self);
453 }
454
455 ast_unary* ast_unary_new(lex_ctx ctx, int op,
456                          ast_expression *expr)
457 {
458     ast_instantiate(ast_unary, ctx, ast_unary_delete);
459     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
460
461     self->op = op;
462     self->operand = expr;
463
464     ast_propagate_effects(self, expr);
465
466     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
467         self->expression.vtype = TYPE_FLOAT;
468     } else
469         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
470
471     return self;
472 }
473
474 void ast_unary_delete(ast_unary *self)
475 {
476     ast_unref(self->operand);
477     ast_expression_delete((ast_expression*)self);
478     mem_d(self);
479 }
480
481 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
482 {
483     ast_instantiate(ast_return, ctx, ast_return_delete);
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
485
486     self->operand = expr;
487
488     if (expr)
489         ast_propagate_effects(self, expr);
490
491     return self;
492 }
493
494 void ast_return_delete(ast_return *self)
495 {
496     if (self->operand)
497         ast_unref(self->operand);
498     ast_expression_delete((ast_expression*)self);
499     mem_d(self);
500 }
501
502 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
503 {
504     if (field->expression.vtype != TYPE_FIELD) {
505         compile_error(ctx, "ast_entfield_new with expression not of type field");
506         return NULL;
507     }
508     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
509 }
510
511 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
512 {
513     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
514
515     if (!outtype) {
516         mem_d(self);
517         /* Error: field has no type... */
518         return NULL;
519     }
520
521     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
522
523     self->entity = entity;
524     self->field  = field;
525     ast_propagate_effects(self, entity);
526     ast_propagate_effects(self, field);
527
528     if (!ast_type_adopt(self, outtype)) {
529         ast_entfield_delete(self);
530         return NULL;
531     }
532
533     return self;
534 }
535
536 void ast_entfield_delete(ast_entfield *self)
537 {
538     ast_unref(self->entity);
539     ast_unref(self->field);
540     ast_expression_delete((ast_expression*)self);
541     mem_d(self);
542 }
543
544 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
545 {
546     ast_instantiate(ast_member, ctx, ast_member_delete);
547     if (field >= 3) {
548         mem_d(self);
549         return NULL;
550     }
551
552     if (owner->expression.vtype != TYPE_VECTOR &&
553         owner->expression.vtype != TYPE_FIELD) {
554         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
555         mem_d(self);
556         return NULL;
557     }
558
559     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
560     self->expression.node.keep = true; /* keep */
561
562     if (owner->expression.vtype == TYPE_VECTOR) {
563         self->expression.vtype = TYPE_FLOAT;
564         self->expression.next  = NULL;
565     } else {
566         self->expression.vtype = TYPE_FIELD;
567         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
568     }
569
570     self->owner = owner;
571     ast_propagate_effects(self, owner);
572
573     self->field = field;
574     if (name)
575         self->name = util_strdup(name);
576     else
577         self->name = NULL;
578
579     return self;
580 }
581
582 void ast_member_delete(ast_member *self)
583 {
584     /* The owner is always an ast_value, which has .keep=true,
585      * also: ast_members are usually deleted after the owner, thus
586      * this will cause invalid access
587     ast_unref(self->owner);
588      * once we allow (expression).x to access a vector-member, we need
589      * to change this: preferably by creating an alternate ast node for this
590      * purpose that is not garbage-collected.
591     */
592     ast_expression_delete((ast_expression*)self);
593     mem_d(self);
594 }
595
596 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
597 {
598     ast_expression *outtype;
599     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
600
601     outtype = array->expression.next;
602     if (!outtype) {
603         mem_d(self);
604         /* Error: field has no type... */
605         return NULL;
606     }
607
608     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
609
610     self->array = array;
611     self->index = index;
612     ast_propagate_effects(self, array);
613     ast_propagate_effects(self, index);
614
615     if (!ast_type_adopt(self, outtype)) {
616         ast_array_index_delete(self);
617         return NULL;
618     }
619     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
620         if (self->expression.vtype != TYPE_ARRAY) {
621             compile_error(ast_ctx(self), "array_index node on type");
622             ast_array_index_delete(self);
623             return NULL;
624         }
625         self->array = outtype;
626         self->expression.vtype = TYPE_FIELD;
627     }
628
629     return self;
630 }
631
632 void ast_array_index_delete(ast_array_index *self)
633 {
634     ast_unref(self->array);
635     ast_unref(self->index);
636     ast_expression_delete((ast_expression*)self);
637     mem_d(self);
638 }
639
640 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
641 {
642     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
643     if (!ontrue && !onfalse) {
644         /* because it is invalid */
645         mem_d(self);
646         return NULL;
647     }
648     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
649
650     self->cond     = cond;
651     self->on_true  = ontrue;
652     self->on_false = onfalse;
653     ast_propagate_effects(self, cond);
654     if (ontrue)
655         ast_propagate_effects(self, ontrue);
656     if (onfalse)
657         ast_propagate_effects(self, onfalse);
658
659     return self;
660 }
661
662 void ast_ifthen_delete(ast_ifthen *self)
663 {
664     ast_unref(self->cond);
665     if (self->on_true)
666         ast_unref(self->on_true);
667     if (self->on_false)
668         ast_unref(self->on_false);
669     ast_expression_delete((ast_expression*)self);
670     mem_d(self);
671 }
672
673 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
674 {
675     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
676     /* This time NEITHER must be NULL */
677     if (!ontrue || !onfalse) {
678         mem_d(self);
679         return NULL;
680     }
681     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
682
683     self->cond     = cond;
684     self->on_true  = ontrue;
685     self->on_false = onfalse;
686     ast_propagate_effects(self, cond);
687     ast_propagate_effects(self, ontrue);
688     ast_propagate_effects(self, onfalse);
689
690     if (!ast_type_adopt(self, ontrue)) {
691         ast_ternary_delete(self);
692         return NULL;
693     }
694
695     return self;
696 }
697
698 void ast_ternary_delete(ast_ternary *self)
699 {
700     ast_unref(self->cond);
701     ast_unref(self->on_true);
702     ast_unref(self->on_false);
703     ast_expression_delete((ast_expression*)self);
704     mem_d(self);
705 }
706
707 ast_loop* ast_loop_new(lex_ctx ctx,
708                        ast_expression *initexpr,
709                        ast_expression *precond,
710                        ast_expression *postcond,
711                        ast_expression *increment,
712                        ast_expression *body)
713 {
714     ast_instantiate(ast_loop, ctx, ast_loop_delete);
715     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
716
717     self->initexpr  = initexpr;
718     self->precond   = precond;
719     self->postcond  = postcond;
720     self->increment = increment;
721     self->body      = body;
722
723     if (initexpr)
724         ast_propagate_effects(self, initexpr);
725     if (precond)
726         ast_propagate_effects(self, precond);
727     if (postcond)
728         ast_propagate_effects(self, postcond);
729     if (increment)
730         ast_propagate_effects(self, increment);
731     if (body)
732         ast_propagate_effects(self, body);
733
734     return self;
735 }
736
737 void ast_loop_delete(ast_loop *self)
738 {
739     if (self->initexpr)
740         ast_unref(self->initexpr);
741     if (self->precond)
742         ast_unref(self->precond);
743     if (self->postcond)
744         ast_unref(self->postcond);
745     if (self->increment)
746         ast_unref(self->increment);
747     if (self->body)
748         ast_unref(self->body);
749     ast_expression_delete((ast_expression*)self);
750     mem_d(self);
751 }
752
753 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
754 {
755     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
756     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
757
758     self->is_continue = iscont;
759
760     return self;
761 }
762
763 void ast_breakcont_delete(ast_breakcont *self)
764 {
765     ast_expression_delete((ast_expression*)self);
766     mem_d(self);
767 }
768
769 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
770 {
771     ast_instantiate(ast_switch, ctx, ast_switch_delete);
772     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
773
774     self->operand = op;
775     self->cases   = NULL;
776
777     ast_propagate_effects(self, op);
778
779     return self;
780 }
781
782 void ast_switch_delete(ast_switch *self)
783 {
784     size_t i;
785     ast_unref(self->operand);
786
787     for (i = 0; i < vec_size(self->cases); ++i) {
788         if (self->cases[i].value)
789             ast_unref(self->cases[i].value);
790         ast_unref(self->cases[i].code);
791     }
792     vec_free(self->cases);
793
794     ast_expression_delete((ast_expression*)self);
795     mem_d(self);
796 }
797
798 ast_label* ast_label_new(lex_ctx ctx, const char *name)
799 {
800     ast_instantiate(ast_label, ctx, ast_label_delete);
801     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
802
803     self->name    = util_strdup(name);
804     self->irblock = NULL;
805     self->gotos   = NULL;
806
807     return self;
808 }
809
810 void ast_label_delete(ast_label *self)
811 {
812     mem_d((void*)self->name);
813     vec_free(self->gotos);
814     ast_expression_delete((ast_expression*)self);
815     mem_d(self);
816 }
817
818 void ast_label_register_goto(ast_label *self, ast_goto *g)
819 {
820     vec_push(self->gotos, g);
821 }
822
823 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
824 {
825     ast_instantiate(ast_goto, ctx, ast_goto_delete);
826     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
827
828     self->name    = util_strdup(name);
829     self->target  = NULL;
830     self->irblock_from = NULL;
831
832     return self;
833 }
834
835 void ast_goto_delete(ast_goto *self)
836 {
837     mem_d((void*)self->name);
838     ast_expression_delete((ast_expression*)self);
839     mem_d(self);
840 }
841
842 void ast_goto_set_label(ast_goto *self, ast_label *label)
843 {
844     self->target = label;
845 }
846
847 ast_call* ast_call_new(lex_ctx ctx,
848                        ast_expression *funcexpr)
849 {
850     ast_instantiate(ast_call, ctx, ast_call_delete);
851     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
852
853     ast_side_effects(self) = true;
854
855     self->params = NULL;
856     self->func   = funcexpr;
857
858 /*
859     self->expression.vtype = funcexpr->expression.next->expression.vtype;
860     if (funcexpr->expression.next->expression.next)
861         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
862 */
863     ast_type_adopt(self, funcexpr->expression.next);
864
865     return self;
866 }
867
868 void ast_call_delete(ast_call *self)
869 {
870     size_t i;
871     for (i = 0; i < vec_size(self->params); ++i)
872         ast_unref(self->params[i]);
873     vec_free(self->params);
874
875     if (self->func)
876         ast_unref(self->func);
877
878     ast_expression_delete((ast_expression*)self);
879     mem_d(self);
880 }
881
882 bool ast_call_check_types(ast_call *self)
883 {
884     size_t i;
885     bool   retval = true;
886     const  ast_expression *func = self->func;
887     size_t count = vec_size(self->params);
888     if (count > vec_size(func->expression.params))
889         count = vec_size(func->expression.params);
890
891     for (i = 0; i < count; ++i) {
892         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
893             char texp[1024];
894             char tgot[1024];
895             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
896             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
897             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
898                      (unsigned int)(i+1), texp, tgot);
899             /* we don't immediately return */
900             retval = false;
901         }
902     }
903     return retval;
904 }
905
906 ast_store* ast_store_new(lex_ctx ctx, int op,
907                          ast_expression *dest, ast_expression *source)
908 {
909     ast_instantiate(ast_store, ctx, ast_store_delete);
910     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
911
912     ast_side_effects(self) = true;
913
914     self->op = op;
915     self->dest = dest;
916     self->source = source;
917
918     self->expression.vtype = dest->expression.vtype;
919     if (dest->expression.next) {
920         self->expression.next = ast_type_copy(ctx, dest);
921         if (!self->expression.next) {
922             ast_delete(self);
923             return NULL;
924         }
925     }
926     else
927         self->expression.next = NULL;
928
929     return self;
930 }
931
932 void ast_store_delete(ast_store *self)
933 {
934     ast_unref(self->dest);
935     ast_unref(self->source);
936     ast_expression_delete((ast_expression*)self);
937     mem_d(self);
938 }
939
940 ast_block* ast_block_new(lex_ctx ctx)
941 {
942     ast_instantiate(ast_block, ctx, ast_block_delete);
943     ast_expression_init((ast_expression*)self,
944                         (ast_expression_codegen*)&ast_block_codegen);
945
946     self->locals  = NULL;
947     self->exprs   = NULL;
948     self->collect = NULL;
949
950     return self;
951 }
952
953 bool ast_block_add_expr(ast_block *self, ast_expression *e)
954 {
955     ast_propagate_effects(self, e);
956     vec_push(self->exprs, e);
957     if (self->expression.next) {
958         ast_delete(self->expression.next);
959         self->expression.next = NULL;
960     }
961     if (!ast_type_adopt(self, e)) {
962         compile_error(ast_ctx(self), "internal error: failed to adopt type");
963         return false;
964     }
965     return true;
966 }
967
968 void ast_block_collect(ast_block *self, ast_expression *expr)
969 {
970     vec_push(self->collect, expr);
971     expr->expression.node.keep = true;
972 }
973
974 void ast_block_delete(ast_block *self)
975 {
976     size_t i;
977     for (i = 0; i < vec_size(self->exprs); ++i)
978         ast_unref(self->exprs[i]);
979     vec_free(self->exprs);
980     for (i = 0; i < vec_size(self->locals); ++i)
981         ast_delete(self->locals[i]);
982     vec_free(self->locals);
983     for (i = 0; i < vec_size(self->collect); ++i)
984         ast_delete(self->collect[i]);
985     vec_free(self->collect);
986     ast_expression_delete((ast_expression*)self);
987     mem_d(self);
988 }
989
990 bool ast_block_set_type(ast_block *self, ast_expression *from)
991 {
992     if (self->expression.next)
993         ast_delete(self->expression.next);
994     self->expression.vtype = from->expression.vtype;
995     if (from->expression.next) {
996         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
997         if (!self->expression.next)
998             return false;
999     }
1000     else
1001         self->expression.next = NULL;
1002     return true;
1003 }
1004
1005 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1006 {
1007     ast_instantiate(ast_function, ctx, ast_function_delete);
1008
1009     if (!vtype ||
1010         vtype->hasvalue ||
1011         vtype->expression.vtype != TYPE_FUNCTION)
1012     {
1013         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1014                  (int)!vtype,
1015                  (int)vtype->hasvalue,
1016                  vtype->expression.vtype);
1017         mem_d(self);
1018         return NULL;
1019     }
1020
1021     self->vtype  = vtype;
1022     self->name   = name ? util_strdup(name) : NULL;
1023     self->blocks = NULL;
1024
1025     self->labelcount = 0;
1026     self->builtin = 0;
1027
1028     self->ir_func = NULL;
1029     self->curblock = NULL;
1030
1031     self->breakblock    = NULL;
1032     self->continueblock = NULL;
1033
1034     vtype->hasvalue = true;
1035     vtype->constval.vfunc = self;
1036
1037     return self;
1038 }
1039
1040 void ast_function_delete(ast_function *self)
1041 {
1042     size_t i;
1043     if (self->name)
1044         mem_d((void*)self->name);
1045     if (self->vtype) {
1046         /* ast_value_delete(self->vtype); */
1047         self->vtype->hasvalue = false;
1048         self->vtype->constval.vfunc = NULL;
1049         /* We use unref - if it was stored in a global table it is supposed
1050          * to be deleted from *there*
1051          */
1052         ast_unref(self->vtype);
1053     }
1054     for (i = 0; i < vec_size(self->blocks); ++i)
1055         ast_delete(self->blocks[i]);
1056     vec_free(self->blocks);
1057     mem_d(self);
1058 }
1059
1060 const char* ast_function_label(ast_function *self, const char *prefix)
1061 {
1062     size_t id;
1063     size_t len;
1064     char  *from;
1065
1066     if (!opts_dump && !opts_dumpfin)
1067         return NULL;
1068
1069     id  = (self->labelcount++);
1070     len = strlen(prefix);
1071
1072     from = self->labelbuf + sizeof(self->labelbuf)-1;
1073     *from-- = 0;
1074     do {
1075         unsigned int digit = id % 10;
1076         *from = digit + '0';
1077         id /= 10;
1078     } while (id);
1079     memcpy(from - len, prefix, len);
1080     return from - len;
1081 }
1082
1083 /*********************************************************************/
1084 /* AST codegen part
1085  * by convention you must never pass NULL to the 'ir_value **out'
1086  * parameter. If you really don't care about the output, pass a dummy.
1087  * But I can't imagine a pituation where the output is truly unnecessary.
1088  */
1089
1090 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1091 {
1092     if (out->vtype == TYPE_FIELD)
1093         out->fieldtype = self->next->expression.vtype;
1094     if (out->vtype == TYPE_FUNCTION)
1095         out->outtype = self->next->expression.vtype;
1096 }
1097
1098 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1099 #define codegen_output_type_expr(a,o) (_ast_codegen_output_type(a,(o)))
1100
1101 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1102 {
1103     (void)func;
1104     (void)lvalue;
1105     /* NOTE: This is the codegen for a variable used in an expression.
1106      * It is not the codegen to generate the value. For this purpose,
1107      * ast_local_codegen and ast_global_codegen are to be used before this
1108      * is executed. ast_function_codegen should take care of its locals,
1109      * and the ast-user should take care of ast_global_codegen to be used
1110      * on all the globals.
1111      */
1112     if (!self->ir_v) {
1113         char typename[1024];
1114         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1115         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1116         return false;
1117     }
1118     *out = self->ir_v;
1119     return true;
1120 }
1121
1122 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1123 {
1124     ir_value *v = NULL;
1125
1126     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1127     {
1128         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1129         if (!func)
1130             return false;
1131         func->context = ast_ctx(self);
1132         func->value->context = ast_ctx(self);
1133
1134         self->constval.vfunc->ir_func = func;
1135         self->ir_v = func->value;
1136         /* The function is filled later on ast_function_codegen... */
1137         return true;
1138     }
1139
1140     if (isfield && self->expression.vtype == TYPE_FIELD) {
1141         ast_expression *fieldtype = self->expression.next;
1142
1143         if (self->hasvalue) {
1144             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1145             goto error;
1146         }
1147
1148         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1149             size_t ai;
1150             char   *name;
1151             size_t  namelen;
1152
1153             ast_expression_common *elemtype;
1154             int                    vtype;
1155             ast_value             *array = (ast_value*)fieldtype;
1156
1157             if (!ast_istype(fieldtype, ast_value)) {
1158                 compile_error(ast_ctx(self), "internal error: ast_value required");
1159                 return false;
1160             }
1161
1162             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1163             if (!array->expression.count || array->expression.count > opts_max_array_size)
1164                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1165
1166             elemtype = &array->expression.next->expression;
1167             vtype = elemtype->vtype;
1168
1169             v = ir_builder_create_field(ir, self->name, vtype);
1170             if (!v) {
1171                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1172                 return false;
1173             }
1174             v->context = ast_ctx(self);
1175             array->ir_v = self->ir_v = v;
1176
1177             namelen = strlen(self->name);
1178             name    = (char*)mem_a(namelen + 16);
1179             strcpy(name, self->name);
1180
1181             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1182             array->ir_values[0] = v;
1183             for (ai = 1; ai < array->expression.count; ++ai) {
1184                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1185                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1186                 if (!array->ir_values[ai]) {
1187                     mem_d(name);
1188                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1189                     return false;
1190                 }
1191                 array->ir_values[ai]->context = ast_ctx(self);
1192             }
1193             mem_d(name);
1194         }
1195         else
1196         {
1197             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1198             if (!v)
1199                 return false;
1200             v->context = ast_ctx(self);
1201             self->ir_v = v;
1202         }
1203         return true;
1204     }
1205
1206     if (self->expression.vtype == TYPE_ARRAY) {
1207         size_t ai;
1208         char   *name;
1209         size_t  namelen;
1210
1211         ast_expression_common *elemtype = &self->expression.next->expression;
1212         int vtype = elemtype->vtype;
1213
1214         /* same as with field arrays */
1215         if (!self->expression.count || self->expression.count > opts_max_array_size)
1216             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1217
1218         v = ir_builder_create_global(ir, self->name, vtype);
1219         if (!v) {
1220             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1221             return false;
1222         }
1223         v->context = ast_ctx(self);
1224
1225         namelen = strlen(self->name);
1226         name    = (char*)mem_a(namelen + 16);
1227         strcpy(name, self->name);
1228
1229         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1230         self->ir_values[0] = v;
1231         for (ai = 1; ai < self->expression.count; ++ai) {
1232             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1233             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1234             if (!self->ir_values[ai]) {
1235                 mem_d(name);
1236                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1237                 return false;
1238             }
1239             self->ir_values[ai]->context = ast_ctx(self);
1240         }
1241         mem_d(name);
1242     }
1243     else
1244     {
1245         /* Arrays don't do this since there's no "array" value which spans across the
1246          * whole thing.
1247          */
1248         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1249         if (!v) {
1250             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1251             return false;
1252         }
1253         codegen_output_type(self, v);
1254         v->context = ast_ctx(self);
1255     }
1256
1257     if (self->hasvalue) {
1258         switch (self->expression.vtype)
1259         {
1260             case TYPE_FLOAT:
1261                 if (!ir_value_set_float(v, self->constval.vfloat))
1262                     goto error;
1263                 break;
1264             case TYPE_VECTOR:
1265                 if (!ir_value_set_vector(v, self->constval.vvec))
1266                     goto error;
1267                 break;
1268             case TYPE_STRING:
1269                 if (!ir_value_set_string(v, self->constval.vstring))
1270                     goto error;
1271                 break;
1272             case TYPE_ARRAY:
1273                 compile_error(ast_ctx(self), "TODO: global constant array");
1274                 break;
1275             case TYPE_FUNCTION:
1276                 compile_error(ast_ctx(self), "global of type function not properly generated");
1277                 goto error;
1278                 /* Cannot generate an IR value for a function,
1279                  * need a pointer pointing to a function rather.
1280                  */
1281             case TYPE_FIELD:
1282                 if (!self->constval.vfield) {
1283                     compile_error(ast_ctx(self), "field constant without vfield set");
1284                     goto error;
1285                 }
1286                 if (!self->constval.vfield->ir_v) {
1287                     compile_error(ast_ctx(self), "field constant generated before its field");
1288                     goto error;
1289                 }
1290                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1291                     goto error;
1292                 break;
1293             default:
1294                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1295                 break;
1296         }
1297     }
1298
1299     /* link us to the ir_value */
1300     v->cvq = self->cvq;
1301     self->ir_v = v;
1302     return true;
1303
1304 error: /* clean up */
1305     ir_value_delete(v);
1306     return false;
1307 }
1308
1309 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1310 {
1311     ir_value *v = NULL;
1312     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1313     {
1314         /* Do we allow local functions? I think not...
1315          * this is NOT a function pointer atm.
1316          */
1317         return false;
1318     }
1319
1320     if (self->expression.vtype == TYPE_ARRAY) {
1321         size_t ai;
1322         char   *name;
1323         size_t  namelen;
1324
1325         ast_expression_common *elemtype = &self->expression.next->expression;
1326         int vtype = elemtype->vtype;
1327
1328         if (param) {
1329             compile_error(ast_ctx(self), "array-parameters are not supported");
1330             return false;
1331         }
1332
1333         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1334         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1335             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1336         }
1337
1338         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1339         if (!self->ir_values) {
1340             compile_error(ast_ctx(self), "failed to allocate array values");
1341             return false;
1342         }
1343
1344         v = ir_function_create_local(func, self->name, vtype, param);
1345         if (!v) {
1346             compile_error(ast_ctx(self), "ir_function_create_local failed");
1347             return false;
1348         }
1349         v->context = ast_ctx(self);
1350
1351         namelen = strlen(self->name);
1352         name    = (char*)mem_a(namelen + 16);
1353         strcpy(name, self->name);
1354
1355         self->ir_values[0] = v;
1356         for (ai = 1; ai < self->expression.count; ++ai) {
1357             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1358             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1359             if (!self->ir_values[ai]) {
1360                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1361                 return false;
1362             }
1363             self->ir_values[ai]->context = ast_ctx(self);
1364         }
1365     }
1366     else
1367     {
1368         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1369         if (!v)
1370             return false;
1371         codegen_output_type(self, v);
1372         v->context = ast_ctx(self);
1373     }
1374
1375     /* A constant local... hmmm...
1376      * I suppose the IR will have to deal with this
1377      */
1378     if (self->hasvalue) {
1379         switch (self->expression.vtype)
1380         {
1381             case TYPE_FLOAT:
1382                 if (!ir_value_set_float(v, self->constval.vfloat))
1383                     goto error;
1384                 break;
1385             case TYPE_VECTOR:
1386                 if (!ir_value_set_vector(v, self->constval.vvec))
1387                     goto error;
1388                 break;
1389             case TYPE_STRING:
1390                 if (!ir_value_set_string(v, self->constval.vstring))
1391                     goto error;
1392                 break;
1393             default:
1394                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1395                 break;
1396         }
1397     }
1398
1399     /* link us to the ir_value */
1400     v->cvq = self->cvq;
1401     self->ir_v = v;
1402
1403     if (!ast_generate_accessors(self, func->owner))
1404         return false;
1405     return true;
1406
1407 error: /* clean up */
1408     ir_value_delete(v);
1409     return false;
1410 }
1411
1412 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1413 {
1414     size_t i;
1415     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1416     if (!self->setter || !self->getter)
1417         return true;
1418     for (i = 0; i < self->expression.count; ++i) {
1419         if (!self->ir_values) {
1420             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1421             return false;
1422         }
1423         if (!self->ir_values[i]) {
1424             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1425             return false;
1426         }
1427         if (self->ir_values[i]->life) {
1428             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1429             return false;
1430         }
1431     }
1432
1433     options_set(opts_warn, WARN_USED_UNINITIALIZED, false);
1434     if (self->setter) {
1435         if (!ast_global_codegen  (self->setter, ir, false) ||
1436             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1437             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1438         {
1439             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1440             options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1441             return false;
1442         }
1443     }
1444     if (self->getter) {
1445         if (!ast_global_codegen  (self->getter, ir, false) ||
1446             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1447             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1448         {
1449             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1450             options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1451             return false;
1452         }
1453     }
1454     for (i = 0; i < self->expression.count; ++i) {
1455         vec_free(self->ir_values[i]->life);
1456     }
1457     options_set(opts_warn, WARN_USED_UNINITIALIZED, warn);
1458     return true;
1459 }
1460
1461 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1462 {
1463     ir_function *irf;
1464     ir_value    *dummy;
1465     ast_expression_common *ec;
1466     size_t    i;
1467
1468     (void)ir;
1469
1470     irf = self->ir_func;
1471     if (!irf) {
1472         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1473         return false;
1474     }
1475
1476     /* fill the parameter list */
1477     ec = &self->vtype->expression;
1478     for (i = 0; i < vec_size(ec->params); ++i)
1479     {
1480         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1481             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1482         else
1483             vec_push(irf->params, ec->params[i]->expression.vtype);
1484         if (!self->builtin) {
1485             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1486                 return false;
1487         }
1488     }
1489
1490     if (self->builtin) {
1491         irf->builtin = self->builtin;
1492         return true;
1493     }
1494
1495     if (!vec_size(self->blocks)) {
1496         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1497         return false;
1498     }
1499
1500     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1501     if (!self->curblock) {
1502         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1503         return false;
1504     }
1505
1506     for (i = 0; i < vec_size(self->blocks); ++i) {
1507         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1508         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1509             return false;
1510     }
1511
1512     /* TODO: check return types */
1513     if (!self->curblock->is_return)
1514     {
1515         if (!self->vtype->expression.next ||
1516             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1517         {
1518             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1519         }
1520         else if (vec_size(self->curblock->entries))
1521         {
1522             /* error("missing return"); */
1523             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1524                                 "control reaches end of non-void function (`%s`) via %s",
1525                                 self->name, self->curblock->label))
1526             {
1527                 return false;
1528             }
1529             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1530         }
1531     }
1532     return true;
1533 }
1534
1535 /* Note, you will not see ast_block_codegen generate ir_blocks.
1536  * To the AST and the IR, blocks are 2 different things.
1537  * In the AST it represents a block of code, usually enclosed in
1538  * curly braces {...}.
1539  * While in the IR it represents a block in terms of control-flow.
1540  */
1541 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1542 {
1543     size_t i;
1544
1545     /* We don't use this
1546      * Note: an ast-representation using the comma-operator
1547      * of the form: (a, b, c) = x should not assign to c...
1548      */
1549     if (lvalue) {
1550         compile_error(ast_ctx(self), "not an l-value (code-block)");
1551         return false;
1552     }
1553
1554     if (self->expression.outr) {
1555         *out = self->expression.outr;
1556         return true;
1557     }
1558
1559     /* output is NULL at first, we'll have each expression
1560      * assign to out output, thus, a comma-operator represention
1561      * using an ast_block will return the last generated value,
1562      * so: (b, c) + a  executed both b and c, and returns c,
1563      * which is then added to a.
1564      */
1565     *out = NULL;
1566
1567     /* generate locals */
1568     for (i = 0; i < vec_size(self->locals); ++i)
1569     {
1570         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1571             if (opts_debug)
1572                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1573             return false;
1574         }
1575     }
1576
1577     for (i = 0; i < vec_size(self->exprs); ++i)
1578     {
1579         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1580         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1581             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1582             return false;
1583         }
1584         if (!(*gen)(self->exprs[i], func, false, out))
1585             return false;
1586     }
1587
1588     self->expression.outr = *out;
1589
1590     return true;
1591 }
1592
1593 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1594 {
1595     ast_expression_codegen *cgen;
1596     ir_value *left  = NULL;
1597     ir_value *right = NULL;
1598
1599     ast_value       *arr;
1600     ast_value       *idx = 0;
1601     ast_array_index *ai = NULL;
1602
1603     if (lvalue && self->expression.outl) {
1604         *out = self->expression.outl;
1605         return true;
1606     }
1607
1608     if (!lvalue && self->expression.outr) {
1609         *out = self->expression.outr;
1610         return true;
1611     }
1612
1613     if (ast_istype(self->dest, ast_array_index))
1614     {
1615
1616         ai = (ast_array_index*)self->dest;
1617         idx = (ast_value*)ai->index;
1618
1619         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1620             ai = NULL;
1621     }
1622
1623     if (ai) {
1624         /* we need to call the setter */
1625         ir_value  *iridx, *funval;
1626         ir_instr  *call;
1627
1628         if (lvalue) {
1629             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1630             return false;
1631         }
1632
1633         arr = (ast_value*)ai->array;
1634         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1635             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1636             return false;
1637         }
1638
1639         cgen = idx->expression.codegen;
1640         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1641             return false;
1642
1643         cgen = arr->setter->expression.codegen;
1644         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1645             return false;
1646
1647         cgen = self->source->expression.codegen;
1648         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1649             return false;
1650
1651         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1652         if (!call)
1653             return false;
1654         ir_call_param(call, iridx);
1655         ir_call_param(call, right);
1656         self->expression.outr = right;
1657     }
1658     else
1659     {
1660         /* regular code */
1661
1662         cgen = self->dest->expression.codegen;
1663         /* lvalue! */
1664         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1665             return false;
1666         self->expression.outl = left;
1667
1668         cgen = self->source->expression.codegen;
1669         /* rvalue! */
1670         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1671             return false;
1672
1673         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1674             return false;
1675         self->expression.outr = right;
1676     }
1677
1678     /* Theoretically, an assinment returns its left side as an
1679      * lvalue, if we don't need an lvalue though, we return
1680      * the right side as an rvalue, otherwise we have to
1681      * somehow know whether or not we need to dereference the pointer
1682      * on the left side - that is: OP_LOAD if it was an address.
1683      * Also: in original QC we cannot OP_LOADP *anyway*.
1684      */
1685     *out = (lvalue ? left : right);
1686
1687     return true;
1688 }
1689
1690 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1691 {
1692     ast_expression_codegen *cgen;
1693     ir_value *left, *right;
1694
1695     /* A binary operation cannot yield an l-value */
1696     if (lvalue) {
1697         compile_error(ast_ctx(self), "not an l-value (binop)");
1698         return false;
1699     }
1700
1701     if (self->expression.outr) {
1702         *out = self->expression.outr;
1703         return true;
1704     }
1705
1706     if (OPTS_FLAG(SHORT_LOGIC) &&
1707         (self->op == INSTR_AND || self->op == INSTR_OR))
1708     {
1709         /* short circuit evaluation */
1710         ir_block *other, *merge;
1711         ir_block *from_left, *from_right;
1712         ir_instr *phi;
1713         size_t    merge_id;
1714         uint16_t  notop;
1715
1716         /* Note about casting to true boolean values:
1717          * We use a single NOT for sub expressions, and an
1718          * overall NOT at the end, and for that purpose swap
1719          * all the jump conditions in order for the NOT to get
1720          * doubled.
1721          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1722          * but we translate this to (!(!a ? !a : !b))
1723          */
1724
1725         merge_id = vec_size(func->ir_func->blocks);
1726         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1727
1728         cgen = self->left->expression.codegen;
1729         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1730             return false;
1731         if (!OPTS_FLAG(PERL_LOGIC)) {
1732             notop = type_not_instr[left->vtype];
1733             if (notop == AINSTR_END) {
1734                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1735                 return false;
1736             }
1737             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1738                                          ast_function_label(func, "sce_not"),
1739                                          notop,
1740                                          left);
1741         }
1742         from_left = func->curblock;
1743
1744         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1745         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1746             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1747                 return false;
1748         } else {
1749             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1750                 return false;
1751         }
1752         /* use the likely flag */
1753         vec_last(func->curblock->instr)->likely = true;
1754
1755         func->curblock = other;
1756         cgen = self->right->expression.codegen;
1757         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1758             return false;
1759         if (!OPTS_FLAG(PERL_LOGIC)) {
1760             notop = type_not_instr[right->vtype];
1761             if (notop == AINSTR_END) {
1762                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1763                 return false;
1764             }
1765             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1766                                           ast_function_label(func, "sce_not"),
1767                                           notop,
1768                                           right);
1769         }
1770         from_right = func->curblock;
1771
1772         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1773             return false;
1774
1775         vec_remove(func->ir_func->blocks, merge_id, 1);
1776         vec_push(func->ir_func->blocks, merge);
1777
1778         func->curblock = merge;
1779         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1780         ir_phi_add(phi, from_left, left);
1781         ir_phi_add(phi, from_right, right);
1782         *out = ir_phi_value(phi);
1783         if (!OPTS_FLAG(PERL_LOGIC)) {
1784             notop = type_not_instr[(*out)->vtype];
1785             if (notop == AINSTR_END) {
1786                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1787                 return false;
1788             }
1789             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1790                                          ast_function_label(func, "sce_final_not"),
1791                                          notop,
1792                                          *out);
1793         }
1794         if (!*out)
1795             return false;
1796         self->expression.outr = *out;
1797         return true;
1798     }
1799
1800     cgen = self->left->expression.codegen;
1801     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1802         return false;
1803
1804     cgen = self->right->expression.codegen;
1805     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1806         return false;
1807
1808     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1809                                  self->op, left, right);
1810     if (!*out)
1811         return false;
1812     self->expression.outr = *out;
1813
1814     return true;
1815 }
1816
1817 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1818 {
1819     ast_expression_codegen *cgen;
1820     ir_value *leftl = NULL, *leftr, *right, *bin;
1821
1822     ast_value       *arr;
1823     ast_value       *idx = 0;
1824     ast_array_index *ai = NULL;
1825     ir_value        *iridx = NULL;
1826
1827     if (lvalue && self->expression.outl) {
1828         *out = self->expression.outl;
1829         return true;
1830     }
1831
1832     if (!lvalue && self->expression.outr) {
1833         *out = self->expression.outr;
1834         return true;
1835     }
1836
1837     if (ast_istype(self->dest, ast_array_index))
1838     {
1839
1840         ai = (ast_array_index*)self->dest;
1841         idx = (ast_value*)ai->index;
1842
1843         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1844             ai = NULL;
1845     }
1846
1847     /* for a binstore we need both an lvalue and an rvalue for the left side */
1848     /* rvalue of destination! */
1849     if (ai) {
1850         cgen = idx->expression.codegen;
1851         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1852             return false;
1853     }
1854     cgen = self->dest->expression.codegen;
1855     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1856         return false;
1857
1858     /* source as rvalue only */
1859     cgen = self->source->expression.codegen;
1860     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1861         return false;
1862
1863     /* now the binary */
1864     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1865                                 self->opbin, leftr, right);
1866     self->expression.outr = bin;
1867
1868
1869     if (ai) {
1870         /* we need to call the setter */
1871         ir_value  *funval;
1872         ir_instr  *call;
1873
1874         if (lvalue) {
1875             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1876             return false;
1877         }
1878
1879         arr = (ast_value*)ai->array;
1880         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1881             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1882             return false;
1883         }
1884
1885         cgen = arr->setter->expression.codegen;
1886         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1887             return false;
1888
1889         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1890         if (!call)
1891             return false;
1892         ir_call_param(call, iridx);
1893         ir_call_param(call, bin);
1894         self->expression.outr = bin;
1895     } else {
1896         /* now store them */
1897         cgen = self->dest->expression.codegen;
1898         /* lvalue of destination */
1899         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1900             return false;
1901         self->expression.outl = leftl;
1902
1903         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1904             return false;
1905         self->expression.outr = bin;
1906     }
1907
1908     /* Theoretically, an assinment returns its left side as an
1909      * lvalue, if we don't need an lvalue though, we return
1910      * the right side as an rvalue, otherwise we have to
1911      * somehow know whether or not we need to dereference the pointer
1912      * on the left side - that is: OP_LOAD if it was an address.
1913      * Also: in original QC we cannot OP_LOADP *anyway*.
1914      */
1915     *out = (lvalue ? leftl : bin);
1916
1917     return true;
1918 }
1919
1920 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1921 {
1922     ast_expression_codegen *cgen;
1923     ir_value *operand;
1924
1925     /* An unary operation cannot yield an l-value */
1926     if (lvalue) {
1927         compile_error(ast_ctx(self), "not an l-value (binop)");
1928         return false;
1929     }
1930
1931     if (self->expression.outr) {
1932         *out = self->expression.outr;
1933         return true;
1934     }
1935
1936     cgen = self->operand->expression.codegen;
1937     /* lvalue! */
1938     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1939         return false;
1940
1941     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1942                                  self->op, operand);
1943     if (!*out)
1944         return false;
1945     self->expression.outr = *out;
1946
1947     return true;
1948 }
1949
1950 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1951 {
1952     ast_expression_codegen *cgen;
1953     ir_value *operand;
1954
1955     *out = NULL;
1956
1957     /* In the context of a return operation, we don't actually return
1958      * anything...
1959      */
1960     if (lvalue) {
1961         compile_error(ast_ctx(self), "return-expression is not an l-value");
1962         return false;
1963     }
1964
1965     if (self->expression.outr) {
1966         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1967         return false;
1968     }
1969     self->expression.outr = (ir_value*)1;
1970
1971     if (self->operand) {
1972         cgen = self->operand->expression.codegen;
1973         /* lvalue! */
1974         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1975             return false;
1976
1977         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1978             return false;
1979     } else {
1980         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1981             return false;
1982     }
1983
1984     return true;
1985 }
1986
1987 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1988 {
1989     ast_expression_codegen *cgen;
1990     ir_value *ent, *field;
1991
1992     /* This function needs to take the 'lvalue' flag into account!
1993      * As lvalue we provide a field-pointer, as rvalue we provide the
1994      * value in a temp.
1995      */
1996
1997     if (lvalue && self->expression.outl) {
1998         *out = self->expression.outl;
1999         return true;
2000     }
2001
2002     if (!lvalue && self->expression.outr) {
2003         *out = self->expression.outr;
2004         return true;
2005     }
2006
2007     cgen = self->entity->expression.codegen;
2008     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2009         return false;
2010
2011     cgen = self->field->expression.codegen;
2012     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2013         return false;
2014
2015     if (lvalue) {
2016         /* address! */
2017         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2018                                             ent, field);
2019     } else {
2020         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2021                                              ent, field, self->expression.vtype);
2022         codegen_output_type(self, *out);
2023     }
2024     if (!*out) {
2025         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2026                  (lvalue ? "ADDRESS" : "FIELD"),
2027                  type_name[self->expression.vtype]);
2028         return false;
2029     }
2030
2031     if (lvalue)
2032         self->expression.outl = *out;
2033     else
2034         self->expression.outr = *out;
2035
2036     /* Hm that should be it... */
2037     return true;
2038 }
2039
2040 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2041 {
2042     ast_expression_codegen *cgen;
2043     ir_value *vec;
2044
2045     /* in QC this is always an lvalue */
2046     (void)lvalue;
2047     if (self->expression.outl) {
2048         *out = self->expression.outl;
2049         return true;
2050     }
2051
2052     cgen = self->owner->expression.codegen;
2053     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2054         return false;
2055
2056     if (vec->vtype != TYPE_VECTOR &&
2057         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2058     {
2059         return false;
2060     }
2061
2062     *out = ir_value_vector_member(vec, self->field);
2063     self->expression.outl = *out;
2064
2065     return (*out != NULL);
2066 }
2067
2068 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2069 {
2070     ast_value *arr;
2071     ast_value *idx;
2072
2073     if (!lvalue && self->expression.outr) {
2074         *out = self->expression.outr;
2075     }
2076     if (lvalue && self->expression.outl) {
2077         *out = self->expression.outl;
2078     }
2079
2080     if (!ast_istype(self->array, ast_value)) {
2081         compile_error(ast_ctx(self), "array indexing this way is not supported");
2082         /* note this would actually be pointer indexing because the left side is
2083          * not an actual array but (hopefully) an indexable expression.
2084          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2085          * support this path will be filled.
2086          */
2087         return false;
2088     }
2089
2090     arr = (ast_value*)self->array;
2091     idx = (ast_value*)self->index;
2092
2093     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2094         /* Time to use accessor functions */
2095         ast_expression_codegen *cgen;
2096         ir_value               *iridx, *funval;
2097         ir_instr               *call;
2098
2099         if (lvalue) {
2100             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2101             return false;
2102         }
2103
2104         if (!arr->getter) {
2105             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2106             return false;
2107         }
2108
2109         cgen = self->index->expression.codegen;
2110         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2111             return false;
2112
2113         cgen = arr->getter->expression.codegen;
2114         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2115             return false;
2116
2117         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval);
2118         if (!call)
2119             return false;
2120         ir_call_param(call, iridx);
2121
2122         *out = ir_call_value(call);
2123         self->expression.outr = *out;
2124         return true;
2125     }
2126
2127     if (idx->expression.vtype == TYPE_FLOAT) {
2128         unsigned int arridx = idx->constval.vfloat;
2129         if (arridx >= self->array->expression.count)
2130         {
2131             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2132             return false;
2133         }
2134         *out = arr->ir_values[arridx];
2135     }
2136     else if (idx->expression.vtype == TYPE_INTEGER) {
2137         unsigned int arridx = idx->constval.vint;
2138         if (arridx >= self->array->expression.count)
2139         {
2140             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2141             return false;
2142         }
2143         *out = arr->ir_values[arridx];
2144     }
2145     else {
2146         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2147         return false;
2148     }
2149     return true;
2150 }
2151
2152 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2153 {
2154     ast_expression_codegen *cgen;
2155
2156     ir_value *condval;
2157     ir_value *dummy;
2158
2159     ir_block *cond = func->curblock;
2160     ir_block *ontrue;
2161     ir_block *onfalse;
2162     ir_block *ontrue_endblock = NULL;
2163     ir_block *onfalse_endblock = NULL;
2164     ir_block *merge = NULL;
2165
2166     /* We don't output any value, thus also don't care about r/lvalue */
2167     (void)out;
2168     (void)lvalue;
2169
2170     if (self->expression.outr) {
2171         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2172         return false;
2173     }
2174     self->expression.outr = (ir_value*)1;
2175
2176     /* generate the condition */
2177     cgen = self->cond->expression.codegen;
2178     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2179         return false;
2180     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2181     cond = func->curblock;
2182
2183     /* on-true path */
2184
2185     if (self->on_true) {
2186         /* create on-true block */
2187         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2188         if (!ontrue)
2189             return false;
2190
2191         /* enter the block */
2192         func->curblock = ontrue;
2193
2194         /* generate */
2195         cgen = self->on_true->expression.codegen;
2196         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2197             return false;
2198
2199         /* we now need to work from the current endpoint */
2200         ontrue_endblock = func->curblock;
2201     } else
2202         ontrue = NULL;
2203
2204     /* on-false path */
2205     if (self->on_false) {
2206         /* create on-false block */
2207         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2208         if (!onfalse)
2209             return false;
2210
2211         /* enter the block */
2212         func->curblock = onfalse;
2213
2214         /* generate */
2215         cgen = self->on_false->expression.codegen;
2216         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2217             return false;
2218
2219         /* we now need to work from the current endpoint */
2220         onfalse_endblock = func->curblock;
2221     } else
2222         onfalse = NULL;
2223
2224     /* Merge block were they all merge in to */
2225     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2226     {
2227         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2228         if (!merge)
2229             return false;
2230         /* add jumps ot the merge block */
2231         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2232             return false;
2233         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2234             return false;
2235
2236         /* Now enter the merge block */
2237         func->curblock = merge;
2238     }
2239
2240     /* we create the if here, that way all blocks are ordered :)
2241      */
2242     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2243                             (ontrue  ? ontrue  : merge),
2244                             (onfalse ? onfalse : merge)))
2245     {
2246         return false;
2247     }
2248
2249     return true;
2250 }
2251
2252 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2253 {
2254     ast_expression_codegen *cgen;
2255
2256     ir_value *condval;
2257     ir_value *trueval, *falseval;
2258     ir_instr *phi;
2259
2260     ir_block *cond = func->curblock;
2261     ir_block *cond_out = NULL;
2262     ir_block *ontrue, *ontrue_out = NULL;
2263     ir_block *onfalse, *onfalse_out = NULL;
2264     ir_block *merge;
2265
2266     /* Ternary can never create an lvalue... */
2267     if (lvalue)
2268         return false;
2269
2270     /* In theory it shouldn't be possible to pass through a node twice, but
2271      * in case we add any kind of optimization pass for the AST itself, it
2272      * may still happen, thus we remember a created ir_value and simply return one
2273      * if it already exists.
2274      */
2275     if (self->expression.outr) {
2276         *out = self->expression.outr;
2277         return true;
2278     }
2279
2280     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2281
2282     /* generate the condition */
2283     func->curblock = cond;
2284     cgen = self->cond->expression.codegen;
2285     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2286         return false;
2287     cond_out = func->curblock;
2288
2289     /* create on-true block */
2290     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2291     if (!ontrue)
2292         return false;
2293     else
2294     {
2295         /* enter the block */
2296         func->curblock = ontrue;
2297
2298         /* generate */
2299         cgen = self->on_true->expression.codegen;
2300         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2301             return false;
2302
2303         ontrue_out = func->curblock;
2304     }
2305
2306     /* create on-false block */
2307     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2308     if (!onfalse)
2309         return false;
2310     else
2311     {
2312         /* enter the block */
2313         func->curblock = onfalse;
2314
2315         /* generate */
2316         cgen = self->on_false->expression.codegen;
2317         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2318             return false;
2319
2320         onfalse_out = func->curblock;
2321     }
2322
2323     /* create merge block */
2324     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2325     if (!merge)
2326         return false;
2327     /* jump to merge block */
2328     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2329         return false;
2330     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2331         return false;
2332
2333     /* create if instruction */
2334     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2335         return false;
2336
2337     /* Now enter the merge block */
2338     func->curblock = merge;
2339
2340     /* Here, now, we need a PHI node
2341      * but first some sanity checking...
2342      */
2343     if (trueval->vtype != falseval->vtype) {
2344         /* error("ternary with different types on the two sides"); */
2345         return false;
2346     }
2347
2348     /* create PHI */
2349     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2350     if (!phi)
2351         return false;
2352     ir_phi_add(phi, ontrue_out,  trueval);
2353     ir_phi_add(phi, onfalse_out, falseval);
2354
2355     self->expression.outr = ir_phi_value(phi);
2356     *out = self->expression.outr;
2357
2358     codegen_output_type(self, *out);
2359
2360     return true;
2361 }
2362
2363 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2364 {
2365     ast_expression_codegen *cgen;
2366
2367     ir_value *dummy      = NULL;
2368     ir_value *precond    = NULL;
2369     ir_value *postcond   = NULL;
2370
2371     /* Since we insert some jumps "late" so we have blocks
2372      * ordered "nicely", we need to keep track of the actual end-blocks
2373      * of expressions to add the jumps to.
2374      */
2375     ir_block *bbody      = NULL, *end_bbody      = NULL;
2376     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2377     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2378     ir_block *bincrement = NULL, *end_bincrement = NULL;
2379     ir_block *bout       = NULL, *bin            = NULL;
2380
2381     /* let's at least move the outgoing block to the end */
2382     size_t    bout_id;
2383
2384     /* 'break' and 'continue' need to be able to find the right blocks */
2385     ir_block *bcontinue     = NULL;
2386     ir_block *bbreak        = NULL;
2387
2388     ir_block *old_bcontinue = NULL;
2389     ir_block *old_bbreak    = NULL;
2390
2391     ir_block *tmpblock      = NULL;
2392
2393     (void)lvalue;
2394     (void)out;
2395
2396     if (self->expression.outr) {
2397         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2398         return false;
2399     }
2400     self->expression.outr = (ir_value*)1;
2401
2402     /* NOTE:
2403      * Should we ever need some kind of block ordering, better make this function
2404      * move blocks around than write a block ordering algorithm later... after all
2405      * the ast and ir should work together, not against each other.
2406      */
2407
2408     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2409      * anyway if for example it contains a ternary.
2410      */
2411     if (self->initexpr)
2412     {
2413         cgen = self->initexpr->expression.codegen;
2414         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2415             return false;
2416     }
2417
2418     /* Store the block from which we enter this chaos */
2419     bin = func->curblock;
2420
2421     /* The pre-loop condition needs its own block since we
2422      * need to be able to jump to the start of that expression.
2423      */
2424     if (self->precond)
2425     {
2426         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2427         if (!bprecond)
2428             return false;
2429
2430         /* the pre-loop-condition the least important place to 'continue' at */
2431         bcontinue = bprecond;
2432
2433         /* enter */
2434         func->curblock = bprecond;
2435
2436         /* generate */
2437         cgen = self->precond->expression.codegen;
2438         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2439             return false;
2440
2441         end_bprecond = func->curblock;
2442     } else {
2443         bprecond = end_bprecond = NULL;
2444     }
2445
2446     /* Now the next blocks won't be ordered nicely, but we need to
2447      * generate them this early for 'break' and 'continue'.
2448      */
2449     if (self->increment) {
2450         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2451         if (!bincrement)
2452             return false;
2453         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2454     } else {
2455         bincrement = end_bincrement = NULL;
2456     }
2457
2458     if (self->postcond) {
2459         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2460         if (!bpostcond)
2461             return false;
2462         bcontinue = bpostcond; /* postcond comes before the increment */
2463     } else {
2464         bpostcond = end_bpostcond = NULL;
2465     }
2466
2467     bout_id = vec_size(func->ir_func->blocks);
2468     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2469     if (!bout)
2470         return false;
2471     bbreak = bout;
2472
2473     /* The loop body... */
2474     /* if (self->body) */
2475     {
2476         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2477         if (!bbody)
2478             return false;
2479
2480         /* enter */
2481         func->curblock = bbody;
2482
2483         old_bbreak          = func->breakblock;
2484         old_bcontinue       = func->continueblock;
2485         func->breakblock    = bbreak;
2486         func->continueblock = bcontinue;
2487         if (!func->continueblock)
2488             func->continueblock = bbody;
2489
2490         /* generate */
2491         if (self->body) {
2492             cgen = self->body->expression.codegen;
2493             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2494                 return false;
2495         }
2496
2497         end_bbody = func->curblock;
2498         func->breakblock    = old_bbreak;
2499         func->continueblock = old_bcontinue;
2500     }
2501
2502     /* post-loop-condition */
2503     if (self->postcond)
2504     {
2505         /* enter */
2506         func->curblock = bpostcond;
2507
2508         /* generate */
2509         cgen = self->postcond->expression.codegen;
2510         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2511             return false;
2512
2513         end_bpostcond = func->curblock;
2514     }
2515
2516     /* The incrementor */
2517     if (self->increment)
2518     {
2519         /* enter */
2520         func->curblock = bincrement;
2521
2522         /* generate */
2523         cgen = self->increment->expression.codegen;
2524         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2525             return false;
2526
2527         end_bincrement = func->curblock;
2528     }
2529
2530     /* In any case now, we continue from the outgoing block */
2531     func->curblock = bout;
2532
2533     /* Now all blocks are in place */
2534     /* From 'bin' we jump to whatever comes first */
2535     if      (bprecond)   tmpblock = bprecond;
2536     else if (bbody)      tmpblock = bbody;
2537     else if (bpostcond)  tmpblock = bpostcond;
2538     else                 tmpblock = bout;
2539     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2540         return false;
2541
2542     /* From precond */
2543     if (bprecond)
2544     {
2545         ir_block *ontrue, *onfalse;
2546         if      (bbody)      ontrue = bbody;
2547         else if (bincrement) ontrue = bincrement;
2548         else if (bpostcond)  ontrue = bpostcond;
2549         else                 ontrue = bprecond;
2550         onfalse = bout;
2551         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2552             return false;
2553     }
2554
2555     /* from body */
2556     if (bbody)
2557     {
2558         if      (bincrement) tmpblock = bincrement;
2559         else if (bpostcond)  tmpblock = bpostcond;
2560         else if (bprecond)   tmpblock = bprecond;
2561         else                 tmpblock = bbody;
2562         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2563             return false;
2564     }
2565
2566     /* from increment */
2567     if (bincrement)
2568     {
2569         if      (bpostcond)  tmpblock = bpostcond;
2570         else if (bprecond)   tmpblock = bprecond;
2571         else if (bbody)      tmpblock = bbody;
2572         else                 tmpblock = bout;
2573         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2574             return false;
2575     }
2576
2577     /* from postcond */
2578     if (bpostcond)
2579     {
2580         ir_block *ontrue, *onfalse;
2581         if      (bprecond)   ontrue = bprecond;
2582         else if (bbody)      ontrue = bbody;
2583         else if (bincrement) ontrue = bincrement;
2584         else                 ontrue = bpostcond;
2585         onfalse = bout;
2586         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2587             return false;
2588     }
2589
2590     /* Move 'bout' to the end */
2591     vec_remove(func->ir_func->blocks, bout_id, 1);
2592     vec_push(func->ir_func->blocks, bout);
2593
2594     return true;
2595 }
2596
2597 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2598 {
2599     ir_block *target;
2600
2601     *out = NULL;
2602
2603     if (lvalue) {
2604         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2605         return false;
2606     }
2607
2608     if (self->expression.outr) {
2609         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2610         return false;
2611     }
2612     self->expression.outr = (ir_value*)1;
2613
2614     if (self->is_continue)
2615         target = func->continueblock;
2616     else
2617         target = func->breakblock;
2618
2619     if (!target) {
2620         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2621         return false;
2622     }
2623
2624     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2625         return false;
2626     return true;
2627 }
2628
2629 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2630 {
2631     ast_expression_codegen *cgen;
2632
2633     ast_switch_case *def_case  = NULL;
2634     ir_block        *def_bfall = NULL;
2635
2636     ir_value *dummy     = NULL;
2637     ir_value *irop      = NULL;
2638     ir_block *old_break = NULL;
2639     ir_block *bout      = NULL;
2640     ir_block *bfall     = NULL;
2641     size_t    bout_id;
2642     size_t    c;
2643
2644     char      typestr[1024];
2645     uint16_t  cmpinstr;
2646
2647     if (lvalue) {
2648         compile_error(ast_ctx(self), "switch expression is not an l-value");
2649         return false;
2650     }
2651
2652     if (self->expression.outr) {
2653         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2654         return false;
2655     }
2656     self->expression.outr = (ir_value*)1;
2657
2658     (void)lvalue;
2659     (void)out;
2660
2661     cgen = self->operand->expression.codegen;
2662     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2663         return false;
2664
2665     if (!vec_size(self->cases))
2666         return true;
2667
2668     cmpinstr = type_eq_instr[irop->vtype];
2669     if (cmpinstr >= AINSTR_END) {
2670         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2671         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2672         return false;
2673     }
2674
2675     bout_id = vec_size(func->ir_func->blocks);
2676     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2677     if (!bout)
2678         return false;
2679
2680     /* setup the break block */
2681     old_break        = func->breakblock;
2682     func->breakblock = bout;
2683
2684     /* Now create all cases */
2685     for (c = 0; c < vec_size(self->cases); ++c) {
2686         ir_value *cond, *val;
2687         ir_block *bcase, *bnot;
2688         size_t bnot_id;
2689
2690         ast_switch_case *swcase = &self->cases[c];
2691
2692         if (swcase->value) {
2693             /* A regular case */
2694             /* generate the condition operand */
2695             cgen = swcase->value->expression.codegen;
2696             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2697                 return false;
2698             /* generate the condition */
2699             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2700             if (!cond)
2701                 return false;
2702
2703             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2704             bnot_id = vec_size(func->ir_func->blocks);
2705             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2706             if (!bcase || !bnot)
2707                 return false;
2708             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2709                 return false;
2710
2711             /* Make the previous case-end fall through */
2712             if (bfall && !bfall->final) {
2713                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2714                     return false;
2715             }
2716
2717             /* enter the case */
2718             func->curblock = bcase;
2719             cgen = swcase->code->expression.codegen;
2720             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2721                 return false;
2722
2723             /* remember this block to fall through from */
2724             bfall = func->curblock;
2725
2726             /* enter the else and move it down */
2727             func->curblock = bnot;
2728             vec_remove(func->ir_func->blocks, bnot_id, 1);
2729             vec_push(func->ir_func->blocks, bnot);
2730         } else {
2731             /* The default case */
2732             /* Remember where to fall through from: */
2733             def_bfall = bfall;
2734             bfall     = NULL;
2735             /* remember which case it was */
2736             def_case  = swcase;
2737         }
2738     }
2739
2740     /* Jump from the last bnot to bout */
2741     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2742         /*
2743         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2744         */
2745         return false;
2746     }
2747
2748     /* If there was a default case, put it down here */
2749     if (def_case) {
2750         ir_block *bcase;
2751
2752         /* No need to create an extra block */
2753         bcase = func->curblock;
2754
2755         /* Insert the fallthrough jump */
2756         if (def_bfall && !def_bfall->final) {
2757             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2758                 return false;
2759         }
2760
2761         /* Now generate the default code */
2762         cgen = def_case->code->expression.codegen;
2763         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2764             return false;
2765     }
2766
2767     /* Jump from the last bnot to bout */
2768     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2769         return false;
2770     /* enter the outgoing block */
2771     func->curblock = bout;
2772
2773     /* restore the break block */
2774     func->breakblock = old_break;
2775
2776     /* Move 'bout' to the end, it's nicer */
2777     vec_remove(func->ir_func->blocks, bout_id, 1);
2778     vec_push(func->ir_func->blocks, bout);
2779
2780     return true;
2781 }
2782
2783 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2784 {
2785     size_t i;
2786     ir_value *dummy;
2787
2788     *out = NULL;
2789     if (lvalue) {
2790         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2791         return false;
2792     }
2793
2794     /* simply create a new block and jump to it */
2795     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2796     if (!self->irblock) {
2797         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2798         return false;
2799     }
2800     if (!func->curblock->final) {
2801         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2802             return false;
2803     }
2804
2805     /* enter the new block */
2806     func->curblock = self->irblock;
2807
2808     /* Generate all the leftover gotos */
2809     for (i = 0; i < vec_size(self->gotos); ++i) {
2810         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2811             return false;
2812     }
2813
2814     return true;
2815 }
2816
2817 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2818 {
2819     *out = NULL;
2820     if (lvalue) {
2821         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2822         return false;
2823     }
2824
2825     if (self->target->irblock) {
2826         if (self->irblock_from) {
2827             /* we already tried once, this is the callback */
2828             self->irblock_from->final = false;
2829             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2830                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2831                 return false;
2832             }
2833         }
2834         else
2835         {
2836             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2837                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2838                 return false;
2839             }
2840         }
2841     }
2842     else
2843     {
2844         /* the target has not yet been created...
2845          * close this block in a sneaky way:
2846          */
2847         func->curblock->final = true;
2848         self->irblock_from = func->curblock;
2849         ast_label_register_goto(self->target, self);
2850     }
2851
2852     return true;
2853 }
2854
2855 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2856 {
2857     ast_expression_codegen *cgen;
2858     ir_value              **params;
2859     ir_instr               *callinstr;
2860     size_t i;
2861
2862     ir_value *funval = NULL;
2863
2864     /* return values are never lvalues */
2865     if (lvalue) {
2866         compile_error(ast_ctx(self), "not an l-value (function call)");
2867         return false;
2868     }
2869
2870     if (self->expression.outr) {
2871         *out = self->expression.outr;
2872         return true;
2873     }
2874
2875     cgen = self->func->expression.codegen;
2876     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2877         return false;
2878     if (!funval)
2879         return false;
2880
2881     params = NULL;
2882
2883     /* parameters */
2884     for (i = 0; i < vec_size(self->params); ++i)
2885     {
2886         ir_value *param;
2887         ast_expression *expr = self->params[i];
2888
2889         cgen = expr->expression.codegen;
2890         if (!(*cgen)(expr, func, false, &param))
2891             goto error;
2892         if (!param)
2893             goto error;
2894         vec_push(params, param);
2895     }
2896
2897     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval);
2898     if (!callinstr)
2899         goto error;
2900
2901     for (i = 0; i < vec_size(params); ++i) {
2902         ir_call_param(callinstr, params[i]);
2903     }
2904
2905     *out = ir_call_value(callinstr);
2906     self->expression.outr = *out;
2907
2908     codegen_output_type(self, *out);
2909
2910     vec_free(params);
2911     return true;
2912 error:
2913     vec_free(params);
2914     return false;
2915 }