]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Actually generate the missing return instruction
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->constant = false;
326     self->hasvalue = false;
327     self->uses    = 0;
328     memset(&self->constval, 0, sizeof(self->constval));
329
330     self->ir_v           = NULL;
331     self->ir_values      = NULL;
332     self->ir_value_count = 0;
333
334     self->setter = NULL;
335     self->getter = NULL;
336
337     return self;
338 }
339
340 void ast_value_delete(ast_value* self)
341 {
342     if (self->name)
343         mem_d((void*)self->name);
344     if (self->hasvalue) {
345         switch (self->expression.vtype)
346         {
347         case TYPE_STRING:
348             mem_d((void*)self->constval.vstring);
349             break;
350         case TYPE_FUNCTION:
351             /* unlink us from the function node */
352             self->constval.vfunc->vtype = NULL;
353             break;
354         /* NOTE: delete function? currently collected in
355          * the parser structure
356          */
357         default:
358             break;
359         }
360     }
361     if (self->ir_values)
362         mem_d(self->ir_values);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 void ast_value_params_add(ast_value *self, ast_value *p)
368 {
369     vec_push(self->expression.params, p);
370 }
371
372 bool ast_value_set_name(ast_value *self, const char *name)
373 {
374     if (self->name)
375         mem_d((void*)self->name);
376     self->name = util_strdup(name);
377     return !!self->name;
378 }
379
380 ast_binary* ast_binary_new(lex_ctx ctx, int op,
381                            ast_expression* left, ast_expression* right)
382 {
383     ast_instantiate(ast_binary, ctx, ast_binary_delete);
384     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
385
386     self->op = op;
387     self->left = left;
388     self->right = right;
389
390     ast_propagate_effects(self, left);
391     ast_propagate_effects(self, right);
392
393     if (op >= INSTR_EQ_F && op <= INSTR_GT)
394         self->expression.vtype = TYPE_FLOAT;
395     else if (op == INSTR_AND || op == INSTR_OR ||
396              op == INSTR_BITAND || op == INSTR_BITOR)
397         self->expression.vtype = TYPE_FLOAT;
398     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
399         self->expression.vtype = TYPE_VECTOR;
400     else if (op == INSTR_MUL_V)
401         self->expression.vtype = TYPE_FLOAT;
402     else
403         self->expression.vtype = left->expression.vtype;
404
405     return self;
406 }
407
408 void ast_binary_delete(ast_binary *self)
409 {
410     ast_unref(self->left);
411     ast_unref(self->right);
412     ast_expression_delete((ast_expression*)self);
413     mem_d(self);
414 }
415
416 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
417                                ast_expression* left, ast_expression* right)
418 {
419     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
420     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
421
422     ast_side_effects(self) = true;
423
424     self->opstore = storop;
425     self->opbin   = op;
426     self->dest    = left;
427     self->source  = right;
428
429     self->keep_dest = false;
430
431     self->expression.vtype = left->expression.vtype;
432     if (left->expression.next) {
433         self->expression.next = ast_type_copy(ctx, left);
434         if (!self->expression.next) {
435             ast_delete(self);
436             return NULL;
437         }
438     }
439     else
440         self->expression.next = NULL;
441
442     return self;
443 }
444
445 void ast_binstore_delete(ast_binstore *self)
446 {
447     if (!self->keep_dest)
448         ast_unref(self->dest);
449     ast_unref(self->source);
450     ast_expression_delete((ast_expression*)self);
451     mem_d(self);
452 }
453
454 ast_unary* ast_unary_new(lex_ctx ctx, int op,
455                          ast_expression *expr)
456 {
457     ast_instantiate(ast_unary, ctx, ast_unary_delete);
458     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
459
460     self->op = op;
461     self->operand = expr;
462
463     ast_propagate_effects(self, expr);
464
465     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
466         self->expression.vtype = TYPE_FLOAT;
467     } else
468         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
469
470     return self;
471 }
472
473 void ast_unary_delete(ast_unary *self)
474 {
475     ast_unref(self->operand);
476     ast_expression_delete((ast_expression*)self);
477     mem_d(self);
478 }
479
480 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
481 {
482     ast_instantiate(ast_return, ctx, ast_return_delete);
483     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
484
485     self->operand = expr;
486
487     if (expr)
488         ast_propagate_effects(self, expr);
489
490     return self;
491 }
492
493 void ast_return_delete(ast_return *self)
494 {
495     if (self->operand)
496         ast_unref(self->operand);
497     ast_expression_delete((ast_expression*)self);
498     mem_d(self);
499 }
500
501 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
502 {
503     if (field->expression.vtype != TYPE_FIELD) {
504         compile_error(ctx, "ast_entfield_new with expression not of type field");
505         return NULL;
506     }
507     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
508 }
509
510 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
511 {
512     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
513
514     if (!outtype) {
515         mem_d(self);
516         /* Error: field has no type... */
517         return NULL;
518     }
519
520     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
521
522     self->entity = entity;
523     self->field  = field;
524     ast_propagate_effects(self, entity);
525     ast_propagate_effects(self, field);
526
527     if (!ast_type_adopt(self, outtype)) {
528         ast_entfield_delete(self);
529         return NULL;
530     }
531
532     return self;
533 }
534
535 void ast_entfield_delete(ast_entfield *self)
536 {
537     ast_unref(self->entity);
538     ast_unref(self->field);
539     ast_expression_delete((ast_expression*)self);
540     mem_d(self);
541 }
542
543 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
544 {
545     ast_instantiate(ast_member, ctx, ast_member_delete);
546     if (field >= 3) {
547         mem_d(self);
548         return NULL;
549     }
550
551     if (owner->expression.vtype != TYPE_VECTOR &&
552         owner->expression.vtype != TYPE_FIELD) {
553         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
554         mem_d(self);
555         return NULL;
556     }
557
558     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
559     self->expression.node.keep = true; /* keep */
560
561     if (owner->expression.vtype == TYPE_VECTOR) {
562         self->expression.vtype = TYPE_FLOAT;
563         self->expression.next  = NULL;
564     } else {
565         self->expression.vtype = TYPE_FIELD;
566         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
567     }
568
569     self->owner = owner;
570     ast_propagate_effects(self, owner);
571
572     self->field = field;
573     if (name)
574         self->name = util_strdup(name);
575     else
576         self->name = NULL;
577
578     return self;
579 }
580
581 void ast_member_delete(ast_member *self)
582 {
583     /* The owner is always an ast_value, which has .keep=true,
584      * also: ast_members are usually deleted after the owner, thus
585      * this will cause invalid access
586     ast_unref(self->owner);
587      * once we allow (expression).x to access a vector-member, we need
588      * to change this: preferably by creating an alternate ast node for this
589      * purpose that is not garbage-collected.
590     */
591     ast_expression_delete((ast_expression*)self);
592     mem_d(self);
593 }
594
595 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
596 {
597     ast_expression *outtype;
598     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
599
600     outtype = array->expression.next;
601     if (!outtype) {
602         mem_d(self);
603         /* Error: field has no type... */
604         return NULL;
605     }
606
607     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
608
609     self->array = array;
610     self->index = index;
611     ast_propagate_effects(self, array);
612     ast_propagate_effects(self, index);
613
614     if (!ast_type_adopt(self, outtype)) {
615         ast_array_index_delete(self);
616         return NULL;
617     }
618     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
619         if (self->expression.vtype != TYPE_ARRAY) {
620             compile_error(ast_ctx(self), "array_index node on type");
621             ast_array_index_delete(self);
622             return NULL;
623         }
624         self->array = outtype;
625         self->expression.vtype = TYPE_FIELD;
626     }
627
628     return self;
629 }
630
631 void ast_array_index_delete(ast_array_index *self)
632 {
633     ast_unref(self->array);
634     ast_unref(self->index);
635     ast_expression_delete((ast_expression*)self);
636     mem_d(self);
637 }
638
639 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
640 {
641     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
642     if (!ontrue && !onfalse) {
643         /* because it is invalid */
644         mem_d(self);
645         return NULL;
646     }
647     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
648
649     self->cond     = cond;
650     self->on_true  = ontrue;
651     self->on_false = onfalse;
652     ast_propagate_effects(self, cond);
653     if (ontrue)
654         ast_propagate_effects(self, ontrue);
655     if (onfalse)
656         ast_propagate_effects(self, onfalse);
657
658     return self;
659 }
660
661 void ast_ifthen_delete(ast_ifthen *self)
662 {
663     ast_unref(self->cond);
664     if (self->on_true)
665         ast_unref(self->on_true);
666     if (self->on_false)
667         ast_unref(self->on_false);
668     ast_expression_delete((ast_expression*)self);
669     mem_d(self);
670 }
671
672 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
673 {
674     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
675     /* This time NEITHER must be NULL */
676     if (!ontrue || !onfalse) {
677         mem_d(self);
678         return NULL;
679     }
680     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
681
682     self->cond     = cond;
683     self->on_true  = ontrue;
684     self->on_false = onfalse;
685     ast_propagate_effects(self, cond);
686     ast_propagate_effects(self, ontrue);
687     ast_propagate_effects(self, onfalse);
688
689     if (!ast_type_adopt(self, ontrue)) {
690         ast_ternary_delete(self);
691         return NULL;
692     }
693
694     return self;
695 }
696
697 void ast_ternary_delete(ast_ternary *self)
698 {
699     ast_unref(self->cond);
700     ast_unref(self->on_true);
701     ast_unref(self->on_false);
702     ast_expression_delete((ast_expression*)self);
703     mem_d(self);
704 }
705
706 ast_loop* ast_loop_new(lex_ctx ctx,
707                        ast_expression *initexpr,
708                        ast_expression *precond,
709                        ast_expression *postcond,
710                        ast_expression *increment,
711                        ast_expression *body)
712 {
713     ast_instantiate(ast_loop, ctx, ast_loop_delete);
714     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
715
716     self->initexpr  = initexpr;
717     self->precond   = precond;
718     self->postcond  = postcond;
719     self->increment = increment;
720     self->body      = body;
721
722     if (initexpr)
723         ast_propagate_effects(self, initexpr);
724     if (precond)
725         ast_propagate_effects(self, precond);
726     if (postcond)
727         ast_propagate_effects(self, postcond);
728     if (increment)
729         ast_propagate_effects(self, increment);
730     if (body)
731         ast_propagate_effects(self, body);
732
733     return self;
734 }
735
736 void ast_loop_delete(ast_loop *self)
737 {
738     if (self->initexpr)
739         ast_unref(self->initexpr);
740     if (self->precond)
741         ast_unref(self->precond);
742     if (self->postcond)
743         ast_unref(self->postcond);
744     if (self->increment)
745         ast_unref(self->increment);
746     if (self->body)
747         ast_unref(self->body);
748     ast_expression_delete((ast_expression*)self);
749     mem_d(self);
750 }
751
752 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
753 {
754     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
755     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
756
757     self->is_continue = iscont;
758
759     return self;
760 }
761
762 void ast_breakcont_delete(ast_breakcont *self)
763 {
764     ast_expression_delete((ast_expression*)self);
765     mem_d(self);
766 }
767
768 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
769 {
770     ast_instantiate(ast_switch, ctx, ast_switch_delete);
771     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
772
773     self->operand = op;
774     self->cases   = NULL;
775
776     ast_propagate_effects(self, op);
777
778     return self;
779 }
780
781 void ast_switch_delete(ast_switch *self)
782 {
783     size_t i;
784     ast_unref(self->operand);
785
786     for (i = 0; i < vec_size(self->cases); ++i) {
787         if (self->cases[i].value)
788             ast_unref(self->cases[i].value);
789         ast_unref(self->cases[i].code);
790     }
791     vec_free(self->cases);
792
793     ast_expression_delete((ast_expression*)self);
794     mem_d(self);
795 }
796
797 ast_label* ast_label_new(lex_ctx ctx, const char *name)
798 {
799     ast_instantiate(ast_label, ctx, ast_label_delete);
800     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
801
802     self->name    = util_strdup(name);
803     self->irblock = NULL;
804     self->gotos   = NULL;
805
806     return self;
807 }
808
809 void ast_label_delete(ast_label *self)
810 {
811     mem_d((void*)self->name);
812     vec_free(self->gotos);
813     ast_expression_delete((ast_expression*)self);
814     mem_d(self);
815 }
816
817 void ast_label_register_goto(ast_label *self, ast_goto *g)
818 {
819     vec_push(self->gotos, g);
820 }
821
822 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
823 {
824     ast_instantiate(ast_goto, ctx, ast_goto_delete);
825     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
826
827     self->name    = util_strdup(name);
828     self->target  = NULL;
829     self->irblock_from = NULL;
830
831     return self;
832 }
833
834 void ast_goto_delete(ast_goto *self)
835 {
836     mem_d((void*)self->name);
837     ast_expression_delete((ast_expression*)self);
838     mem_d(self);
839 }
840
841 void ast_goto_set_label(ast_goto *self, ast_label *label)
842 {
843     self->target = label;
844 }
845
846 ast_call* ast_call_new(lex_ctx ctx,
847                        ast_expression *funcexpr)
848 {
849     ast_instantiate(ast_call, ctx, ast_call_delete);
850     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
851
852     ast_side_effects(self) = true;
853
854     self->params = NULL;
855     self->func   = funcexpr;
856
857     self->expression.vtype = funcexpr->expression.next->expression.vtype;
858     if (funcexpr->expression.next->expression.next)
859         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
860
861     return self;
862 }
863
864 void ast_call_delete(ast_call *self)
865 {
866     size_t i;
867     for (i = 0; i < vec_size(self->params); ++i)
868         ast_unref(self->params[i]);
869     vec_free(self->params);
870
871     if (self->func)
872         ast_unref(self->func);
873
874     ast_expression_delete((ast_expression*)self);
875     mem_d(self);
876 }
877
878 bool ast_call_check_types(ast_call *self)
879 {
880     size_t i;
881     bool   retval = true;
882     const  ast_expression *func = self->func;
883     size_t count = vec_size(self->params);
884     if (count > vec_size(func->expression.params))
885         count = vec_size(func->expression.params);
886
887     for (i = 0; i < count; ++i) {
888         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
889             char texp[1024];
890             char tgot[1024];
891             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
892             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
893             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
894                      (unsigned int)(i+1), texp, tgot);
895             /* we don't immediately return */
896             retval = false;
897         }
898     }
899     return retval;
900 }
901
902 ast_store* ast_store_new(lex_ctx ctx, int op,
903                          ast_expression *dest, ast_expression *source)
904 {
905     ast_instantiate(ast_store, ctx, ast_store_delete);
906     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
907
908     ast_side_effects(self) = true;
909
910     self->op = op;
911     self->dest = dest;
912     self->source = source;
913
914     self->expression.vtype = dest->expression.vtype;
915     if (dest->expression.next) {
916         self->expression.next = ast_type_copy(ctx, dest);
917         if (!self->expression.next) {
918             ast_delete(self);
919             return NULL;
920         }
921     }
922     else
923         self->expression.next = NULL;
924
925     return self;
926 }
927
928 void ast_store_delete(ast_store *self)
929 {
930     ast_unref(self->dest);
931     ast_unref(self->source);
932     ast_expression_delete((ast_expression*)self);
933     mem_d(self);
934 }
935
936 ast_block* ast_block_new(lex_ctx ctx)
937 {
938     ast_instantiate(ast_block, ctx, ast_block_delete);
939     ast_expression_init((ast_expression*)self,
940                         (ast_expression_codegen*)&ast_block_codegen);
941
942     self->locals  = NULL;
943     self->exprs   = NULL;
944     self->collect = NULL;
945
946     return self;
947 }
948
949 void ast_block_add_expr(ast_block *self, ast_expression *e)
950 {
951     ast_propagate_effects(self, e);
952     vec_push(self->exprs, e);
953 }
954
955 void ast_block_collect(ast_block *self, ast_expression *expr)
956 {
957     vec_push(self->collect, expr);
958     expr->expression.node.keep = true;
959 }
960
961 void ast_block_delete(ast_block *self)
962 {
963     size_t i;
964     for (i = 0; i < vec_size(self->exprs); ++i)
965         ast_unref(self->exprs[i]);
966     vec_free(self->exprs);
967     for (i = 0; i < vec_size(self->locals); ++i)
968         ast_delete(self->locals[i]);
969     vec_free(self->locals);
970     for (i = 0; i < vec_size(self->collect); ++i)
971         ast_delete(self->collect[i]);
972     vec_free(self->collect);
973     ast_expression_delete((ast_expression*)self);
974     mem_d(self);
975 }
976
977 bool ast_block_set_type(ast_block *self, ast_expression *from)
978 {
979     if (self->expression.next)
980         ast_delete(self->expression.next);
981     self->expression.vtype = from->expression.vtype;
982     if (from->expression.next) {
983         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
984         if (!self->expression.next)
985             return false;
986     }
987     else
988         self->expression.next = NULL;
989     return true;
990 }
991
992 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
993 {
994     ast_instantiate(ast_function, ctx, ast_function_delete);
995
996     if (!vtype ||
997         vtype->hasvalue ||
998         vtype->expression.vtype != TYPE_FUNCTION)
999     {
1000         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i",
1001                  (int)!vtype,
1002                  (int)vtype->hasvalue,
1003                  vtype->expression.vtype);
1004         mem_d(self);
1005         return NULL;
1006     }
1007
1008     self->vtype  = vtype;
1009     self->name   = name ? util_strdup(name) : NULL;
1010     self->blocks = NULL;
1011
1012     self->labelcount = 0;
1013     self->builtin = 0;
1014
1015     self->ir_func = NULL;
1016     self->curblock = NULL;
1017
1018     self->breakblock    = NULL;
1019     self->continueblock = NULL;
1020
1021     vtype->hasvalue = true;
1022     vtype->constval.vfunc = self;
1023
1024     return self;
1025 }
1026
1027 void ast_function_delete(ast_function *self)
1028 {
1029     size_t i;
1030     if (self->name)
1031         mem_d((void*)self->name);
1032     if (self->vtype) {
1033         /* ast_value_delete(self->vtype); */
1034         self->vtype->hasvalue = false;
1035         self->vtype->constval.vfunc = NULL;
1036         /* We use unref - if it was stored in a global table it is supposed
1037          * to be deleted from *there*
1038          */
1039         ast_unref(self->vtype);
1040     }
1041     for (i = 0; i < vec_size(self->blocks); ++i)
1042         ast_delete(self->blocks[i]);
1043     vec_free(self->blocks);
1044     mem_d(self);
1045 }
1046
1047 const char* ast_function_label(ast_function *self, const char *prefix)
1048 {
1049     size_t id;
1050     size_t len;
1051     char  *from;
1052
1053     if (!opts_dump && !opts_dumpfin)
1054         return NULL;
1055
1056     id  = (self->labelcount++);
1057     len = strlen(prefix);
1058
1059     from = self->labelbuf + sizeof(self->labelbuf)-1;
1060     *from-- = 0;
1061     do {
1062         unsigned int digit = id % 10;
1063         *from = digit + '0';
1064         id /= 10;
1065     } while (id);
1066     memcpy(from - len, prefix, len);
1067     return from - len;
1068 }
1069
1070 /*********************************************************************/
1071 /* AST codegen part
1072  * by convention you must never pass NULL to the 'ir_value **out'
1073  * parameter. If you really don't care about the output, pass a dummy.
1074  * But I can't imagine a pituation where the output is truly unnecessary.
1075  */
1076
1077 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1078 {
1079     (void)func;
1080     (void)lvalue;
1081     /* NOTE: This is the codegen for a variable used in an expression.
1082      * It is not the codegen to generate the value. For this purpose,
1083      * ast_local_codegen and ast_global_codegen are to be used before this
1084      * is executed. ast_function_codegen should take care of its locals,
1085      * and the ast-user should take care of ast_global_codegen to be used
1086      * on all the globals.
1087      */
1088     if (!self->ir_v) {
1089         char typename[1024];
1090         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1091         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1092         return false;
1093     }
1094     *out = self->ir_v;
1095     return true;
1096 }
1097
1098 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1099 {
1100     ir_value *v = NULL;
1101
1102     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1103     {
1104         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1105         if (!func)
1106             return false;
1107         func->context = ast_ctx(self);
1108         func->value->context = ast_ctx(self);
1109
1110         self->constval.vfunc->ir_func = func;
1111         self->ir_v = func->value;
1112         /* The function is filled later on ast_function_codegen... */
1113         return true;
1114     }
1115
1116     if (isfield && self->expression.vtype == TYPE_FIELD) {
1117         ast_expression *fieldtype = self->expression.next;
1118
1119         if (self->hasvalue) {
1120             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1121             goto error;
1122         }
1123
1124         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1125             size_t ai;
1126             char   *name;
1127             size_t  namelen;
1128
1129             ast_expression_common *elemtype;
1130             int                    vtype;
1131             ast_value             *array = (ast_value*)fieldtype;
1132
1133             if (!ast_istype(fieldtype, ast_value)) {
1134                 compile_error(ast_ctx(self), "internal error: ast_value required");
1135                 return false;
1136             }
1137
1138             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1139             if (!array->expression.count || array->expression.count > opts_max_array_size)
1140                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1141
1142             elemtype = &array->expression.next->expression;
1143             vtype = elemtype->vtype;
1144
1145             v = ir_builder_create_field(ir, self->name, vtype);
1146             if (!v) {
1147                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1148                 return false;
1149             }
1150             if (vtype == TYPE_FIELD)
1151                 v->fieldtype = elemtype->next->expression.vtype;
1152             v->context = ast_ctx(self);
1153             array->ir_v = self->ir_v = v;
1154
1155             namelen = strlen(self->name);
1156             name    = (char*)mem_a(namelen + 16);
1157             strcpy(name, self->name);
1158
1159             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1160             array->ir_values[0] = v;
1161             for (ai = 1; ai < array->expression.count; ++ai) {
1162                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1163                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1164                 if (!array->ir_values[ai]) {
1165                     mem_d(name);
1166                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1167                     return false;
1168                 }
1169                 if (vtype == TYPE_FIELD)
1170                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1171                 array->ir_values[ai]->context = ast_ctx(self);
1172             }
1173             mem_d(name);
1174         }
1175         else
1176         {
1177             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1178             if (!v)
1179                 return false;
1180             v->context = ast_ctx(self);
1181             self->ir_v = v;
1182         }
1183         return true;
1184     }
1185
1186     if (self->expression.vtype == TYPE_ARRAY) {
1187         size_t ai;
1188         char   *name;
1189         size_t  namelen;
1190
1191         ast_expression_common *elemtype = &self->expression.next->expression;
1192         int vtype = elemtype->vtype;
1193
1194         /* same as with field arrays */
1195         if (!self->expression.count || self->expression.count > opts_max_array_size)
1196             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1197
1198         v = ir_builder_create_global(ir, self->name, vtype);
1199         if (!v) {
1200             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1201             return false;
1202         }
1203         if (vtype == TYPE_FIELD)
1204             v->fieldtype = elemtype->next->expression.vtype;
1205         v->context = ast_ctx(self);
1206
1207         namelen = strlen(self->name);
1208         name    = (char*)mem_a(namelen + 16);
1209         strcpy(name, self->name);
1210
1211         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1212         self->ir_values[0] = v;
1213         for (ai = 1; ai < self->expression.count; ++ai) {
1214             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1215             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1216             if (!self->ir_values[ai]) {
1217                 mem_d(name);
1218                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1219                 return false;
1220             }
1221             if (vtype == TYPE_FIELD)
1222                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1223             self->ir_values[ai]->context = ast_ctx(self);
1224         }
1225         mem_d(name);
1226     }
1227     else
1228     {
1229         /* Arrays don't do this since there's no "array" value which spans across the
1230          * whole thing.
1231          */
1232         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1233         if (!v) {
1234             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1235             return false;
1236         }
1237         if (self->expression.vtype == TYPE_FIELD)
1238             v->fieldtype = self->expression.next->expression.vtype;
1239         v->context = ast_ctx(self);
1240     }
1241
1242     if (self->hasvalue) {
1243         switch (self->expression.vtype)
1244         {
1245             case TYPE_FLOAT:
1246                 if (!ir_value_set_float(v, self->constval.vfloat))
1247                     goto error;
1248                 break;
1249             case TYPE_VECTOR:
1250                 if (!ir_value_set_vector(v, self->constval.vvec))
1251                     goto error;
1252                 break;
1253             case TYPE_STRING:
1254                 if (!ir_value_set_string(v, self->constval.vstring))
1255                     goto error;
1256                 break;
1257             case TYPE_ARRAY:
1258                 compile_error(ast_ctx(self), "TODO: global constant array");
1259                 break;
1260             case TYPE_FUNCTION:
1261                 compile_error(ast_ctx(self), "global of type function not properly generated");
1262                 goto error;
1263                 /* Cannot generate an IR value for a function,
1264                  * need a pointer pointing to a function rather.
1265                  */
1266             default:
1267                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1268                 break;
1269         }
1270     }
1271
1272     /* link us to the ir_value */
1273     self->ir_v = v;
1274     return true;
1275
1276 error: /* clean up */
1277     ir_value_delete(v);
1278     return false;
1279 }
1280
1281 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1282 {
1283     ir_value *v = NULL;
1284     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1285     {
1286         /* Do we allow local functions? I think not...
1287          * this is NOT a function pointer atm.
1288          */
1289         return false;
1290     }
1291
1292     if (self->expression.vtype == TYPE_ARRAY) {
1293         size_t ai;
1294         char   *name;
1295         size_t  namelen;
1296
1297         ast_expression_common *elemtype = &self->expression.next->expression;
1298         int vtype = elemtype->vtype;
1299
1300         if (param) {
1301             compile_error(ast_ctx(self), "array-parameters are not supported");
1302             return false;
1303         }
1304
1305         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1306         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1307             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1308         }
1309
1310         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1311         if (!self->ir_values) {
1312             compile_error(ast_ctx(self), "failed to allocate array values");
1313             return false;
1314         }
1315
1316         v = ir_function_create_local(func, self->name, vtype, param);
1317         if (!v) {
1318             compile_error(ast_ctx(self), "ir_function_create_local failed");
1319             return false;
1320         }
1321         if (vtype == TYPE_FIELD)
1322             v->fieldtype = elemtype->next->expression.vtype;
1323         v->context = ast_ctx(self);
1324
1325         namelen = strlen(self->name);
1326         name    = (char*)mem_a(namelen + 16);
1327         strcpy(name, self->name);
1328
1329         self->ir_values[0] = v;
1330         for (ai = 1; ai < self->expression.count; ++ai) {
1331             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1332             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1333             if (!self->ir_values[ai]) {
1334                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1335                 return false;
1336             }
1337             if (vtype == TYPE_FIELD)
1338                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1339             self->ir_values[ai]->context = ast_ctx(self);
1340         }
1341     }
1342     else
1343     {
1344         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1345         if (!v)
1346             return false;
1347         if (self->expression.vtype == TYPE_FIELD)
1348             v->fieldtype = self->expression.next->expression.vtype;
1349         v->context = ast_ctx(self);
1350     }
1351
1352     /* A constant local... hmmm...
1353      * I suppose the IR will have to deal with this
1354      */
1355     if (self->hasvalue) {
1356         switch (self->expression.vtype)
1357         {
1358             case TYPE_FLOAT:
1359                 if (!ir_value_set_float(v, self->constval.vfloat))
1360                     goto error;
1361                 break;
1362             case TYPE_VECTOR:
1363                 if (!ir_value_set_vector(v, self->constval.vvec))
1364                     goto error;
1365                 break;
1366             case TYPE_STRING:
1367                 if (!ir_value_set_string(v, self->constval.vstring))
1368                     goto error;
1369                 break;
1370             default:
1371                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1372                 break;
1373         }
1374     }
1375
1376     /* link us to the ir_value */
1377     self->ir_v = v;
1378
1379     if (self->setter) {
1380         if (!ast_global_codegen(self->setter, func->owner, false) ||
1381             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1382             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1383             return false;
1384     }
1385     if (self->getter) {
1386         if (!ast_global_codegen(self->getter, func->owner, false) ||
1387             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1388             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1389             return false;
1390     }
1391     return true;
1392
1393 error: /* clean up */
1394     ir_value_delete(v);
1395     return false;
1396 }
1397
1398 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1399 {
1400     ir_function *irf;
1401     ir_value    *dummy;
1402     ast_expression_common *ec;
1403     size_t    i;
1404
1405     (void)ir;
1406
1407     irf = self->ir_func;
1408     if (!irf) {
1409         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1410         return false;
1411     }
1412
1413     /* fill the parameter list */
1414     ec = &self->vtype->expression;
1415     for (i = 0; i < vec_size(ec->params); ++i)
1416     {
1417         vec_push(irf->params, ec->params[i]->expression.vtype);
1418         if (!self->builtin) {
1419             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1420                 return false;
1421         }
1422     }
1423
1424     if (self->builtin) {
1425         irf->builtin = self->builtin;
1426         return true;
1427     }
1428
1429     if (!vec_size(self->blocks)) {
1430         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1431         return false;
1432     }
1433
1434     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1435     if (!self->curblock) {
1436         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1437         return false;
1438     }
1439
1440     for (i = 0; i < vec_size(self->blocks); ++i) {
1441         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1442         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1443             return false;
1444     }
1445
1446     /* TODO: check return types */
1447     if (!self->curblock->is_return)
1448     {
1449         if (!self->vtype->expression.next ||
1450             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1451         {
1452             return ir_block_create_return(self->curblock, NULL);
1453         }
1454         else if (vec_size(self->curblock->entries))
1455         {
1456             /* error("missing return"); */
1457             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1458                                 "control reaches end of non-void function (`%s`) via %s",
1459                                 self->name, self->curblock->label))
1460             {
1461                 return false;
1462             }
1463             return ir_block_create_return(self->curblock, NULL);
1464         }
1465     }
1466     return true;
1467 }
1468
1469 /* Note, you will not see ast_block_codegen generate ir_blocks.
1470  * To the AST and the IR, blocks are 2 different things.
1471  * In the AST it represents a block of code, usually enclosed in
1472  * curly braces {...}.
1473  * While in the IR it represents a block in terms of control-flow.
1474  */
1475 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1476 {
1477     size_t i;
1478
1479     /* We don't use this
1480      * Note: an ast-representation using the comma-operator
1481      * of the form: (a, b, c) = x should not assign to c...
1482      */
1483     if (lvalue) {
1484         compile_error(ast_ctx(self), "not an l-value (code-block)");
1485         return false;
1486     }
1487
1488     if (self->expression.outr) {
1489         *out = self->expression.outr;
1490         return true;
1491     }
1492
1493     /* output is NULL at first, we'll have each expression
1494      * assign to out output, thus, a comma-operator represention
1495      * using an ast_block will return the last generated value,
1496      * so: (b, c) + a  executed both b and c, and returns c,
1497      * which is then added to a.
1498      */
1499     *out = NULL;
1500
1501     /* generate locals */
1502     for (i = 0; i < vec_size(self->locals); ++i)
1503     {
1504         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1505             if (opts_debug)
1506                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1507             return false;
1508         }
1509     }
1510
1511     for (i = 0; i < vec_size(self->exprs); ++i)
1512     {
1513         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1514         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1515             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1516             return false;
1517         }
1518         if (!(*gen)(self->exprs[i], func, false, out))
1519             return false;
1520     }
1521
1522     self->expression.outr = *out;
1523
1524     return true;
1525 }
1526
1527 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1528 {
1529     ast_expression_codegen *cgen;
1530     ir_value *left  = NULL;
1531     ir_value *right = NULL;
1532
1533     ast_value       *arr;
1534     ast_value       *idx = 0;
1535     ast_array_index *ai = NULL;
1536
1537     if (lvalue && self->expression.outl) {
1538         *out = self->expression.outl;
1539         return true;
1540     }
1541
1542     if (!lvalue && self->expression.outr) {
1543         *out = self->expression.outr;
1544         return true;
1545     }
1546
1547     if (ast_istype(self->dest, ast_array_index))
1548     {
1549
1550         ai = (ast_array_index*)self->dest;
1551         idx = (ast_value*)ai->index;
1552
1553         if (ast_istype(ai->index, ast_value) && idx->hasvalue)
1554             ai = NULL;
1555     }
1556
1557     if (ai) {
1558         /* we need to call the setter */
1559         ir_value  *iridx, *funval;
1560         ir_instr  *call;
1561
1562         if (lvalue) {
1563             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1564             return false;
1565         }
1566
1567         arr = (ast_value*)ai->array;
1568         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1569             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1570             return false;
1571         }
1572
1573         cgen = idx->expression.codegen;
1574         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1575             return false;
1576
1577         cgen = arr->setter->expression.codegen;
1578         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1579             return false;
1580
1581         cgen = self->source->expression.codegen;
1582         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1583             return false;
1584
1585         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1586         if (!call)
1587             return false;
1588         ir_call_param(call, iridx);
1589         ir_call_param(call, right);
1590         self->expression.outr = right;
1591     }
1592     else
1593     {
1594         /* regular code */
1595
1596         cgen = self->dest->expression.codegen;
1597         /* lvalue! */
1598         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1599             return false;
1600         self->expression.outl = left;
1601
1602         cgen = self->source->expression.codegen;
1603         /* rvalue! */
1604         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1605             return false;
1606
1607         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1608             return false;
1609         self->expression.outr = right;
1610     }
1611
1612     /* Theoretically, an assinment returns its left side as an
1613      * lvalue, if we don't need an lvalue though, we return
1614      * the right side as an rvalue, otherwise we have to
1615      * somehow know whether or not we need to dereference the pointer
1616      * on the left side - that is: OP_LOAD if it was an address.
1617      * Also: in original QC we cannot OP_LOADP *anyway*.
1618      */
1619     *out = (lvalue ? left : right);
1620
1621     return true;
1622 }
1623
1624 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1625 {
1626     ast_expression_codegen *cgen;
1627     ir_value *left, *right;
1628
1629     /* A binary operation cannot yield an l-value */
1630     if (lvalue) {
1631         compile_error(ast_ctx(self), "not an l-value (binop)");
1632         return false;
1633     }
1634
1635     if (self->expression.outr) {
1636         *out = self->expression.outr;
1637         return true;
1638     }
1639
1640     if (OPTS_FLAG(SHORT_LOGIC) &&
1641         (self->op == INSTR_AND || self->op == INSTR_OR))
1642     {
1643         /* short circuit evaluation */
1644         ir_block *other, *merge;
1645         ir_block *from_left, *from_right;
1646         ir_instr *phi;
1647         size_t    merge_id;
1648         uint16_t  notop;
1649
1650         /* Note about casting to true boolean values:
1651          * We use a single NOT for sub expressions, and an
1652          * overall NOT at the end, and for that purpose swap
1653          * all the jump conditions in order for the NOT to get
1654          * doubled.
1655          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1656          * but we translate this to (!(!a ? !a : !b))
1657          */
1658
1659         merge_id = vec_size(func->ir_func->blocks);
1660         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1661
1662         cgen = self->left->expression.codegen;
1663         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1664             return false;
1665         if (!OPTS_FLAG(PERL_LOGIC)) {
1666             notop = type_not_instr[left->vtype];
1667             if (notop == AINSTR_END) {
1668                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1669                 return false;
1670             }
1671             left = ir_block_create_unary(func->curblock,
1672                                          ast_function_label(func, "sce_not"),
1673                                          notop,
1674                                          left);
1675         }
1676         from_left = func->curblock;
1677
1678         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1679         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1680             if (!ir_block_create_if(func->curblock, left, other, merge))
1681                 return false;
1682         } else {
1683             if (!ir_block_create_if(func->curblock, left, merge, other))
1684                 return false;
1685         }
1686         /* use the likely flag */
1687         vec_last(func->curblock->instr)->likely = true;
1688
1689         func->curblock = other;
1690         cgen = self->right->expression.codegen;
1691         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1692             return false;
1693         if (!OPTS_FLAG(PERL_LOGIC)) {
1694             notop = type_not_instr[right->vtype];
1695             if (notop == AINSTR_END) {
1696                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1697                 return false;
1698             }
1699             right = ir_block_create_unary(func->curblock,
1700                                           ast_function_label(func, "sce_not"),
1701                                           notop,
1702                                           right);
1703         }
1704         from_right = func->curblock;
1705
1706         if (!ir_block_create_jump(func->curblock, merge))
1707             return false;
1708
1709         vec_remove(func->ir_func->blocks, merge_id, 1);
1710         vec_push(func->ir_func->blocks, merge);
1711
1712         func->curblock = merge;
1713         phi = ir_block_create_phi(func->curblock, ast_function_label(func, "sce_value"), TYPE_FLOAT);
1714         ir_phi_add(phi, from_left, left);
1715         ir_phi_add(phi, from_right, right);
1716         *out = ir_phi_value(phi);
1717         if (!OPTS_FLAG(PERL_LOGIC)) {
1718             notop = type_not_instr[(*out)->vtype];
1719             if (notop == AINSTR_END) {
1720                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1721                 return false;
1722             }
1723             *out = ir_block_create_unary(func->curblock,
1724                                          ast_function_label(func, "sce_final_not"),
1725                                          notop,
1726                                          *out);
1727         }
1728         if (!*out)
1729             return false;
1730         self->expression.outr = *out;
1731         return true;
1732     }
1733
1734     cgen = self->left->expression.codegen;
1735     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1736         return false;
1737
1738     cgen = self->right->expression.codegen;
1739     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1740         return false;
1741
1742     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1743                                  self->op, left, right);
1744     if (!*out)
1745         return false;
1746     self->expression.outr = *out;
1747
1748     return true;
1749 }
1750
1751 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1752 {
1753     ast_expression_codegen *cgen;
1754     ir_value *leftl = NULL, *leftr, *right, *bin;
1755
1756     ast_value       *arr;
1757     ast_value       *idx = 0;
1758     ast_array_index *ai = NULL;
1759     ir_value        *iridx = NULL;
1760
1761     if (lvalue && self->expression.outl) {
1762         *out = self->expression.outl;
1763         return true;
1764     }
1765
1766     if (!lvalue && self->expression.outr) {
1767         *out = self->expression.outr;
1768         return true;
1769     }
1770
1771     if (ast_istype(self->dest, ast_array_index))
1772     {
1773
1774         ai = (ast_array_index*)self->dest;
1775         idx = (ast_value*)ai->index;
1776
1777         if (ast_istype(ai->index, ast_value) && idx->hasvalue)
1778             ai = NULL;
1779     }
1780
1781     /* for a binstore we need both an lvalue and an rvalue for the left side */
1782     /* rvalue of destination! */
1783     if (ai) {
1784         cgen = idx->expression.codegen;
1785         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1786             return false;
1787     }
1788     cgen = self->dest->expression.codegen;
1789     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1790         return false;
1791
1792     /* source as rvalue only */
1793     cgen = self->source->expression.codegen;
1794     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1795         return false;
1796
1797     /* now the binary */
1798     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1799                                 self->opbin, leftr, right);
1800     self->expression.outr = bin;
1801
1802
1803     if (ai) {
1804         /* we need to call the setter */
1805         ir_value  *funval;
1806         ir_instr  *call;
1807
1808         if (lvalue) {
1809             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1810             return false;
1811         }
1812
1813         arr = (ast_value*)ai->array;
1814         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1815             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1816             return false;
1817         }
1818
1819         cgen = arr->setter->expression.codegen;
1820         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1821             return false;
1822
1823         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1824         if (!call)
1825             return false;
1826         ir_call_param(call, iridx);
1827         ir_call_param(call, bin);
1828         self->expression.outr = bin;
1829     } else {
1830         /* now store them */
1831         cgen = self->dest->expression.codegen;
1832         /* lvalue of destination */
1833         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1834             return false;
1835         self->expression.outl = leftl;
1836
1837         if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1838             return false;
1839         self->expression.outr = bin;
1840     }
1841
1842     /* Theoretically, an assinment returns its left side as an
1843      * lvalue, if we don't need an lvalue though, we return
1844      * the right side as an rvalue, otherwise we have to
1845      * somehow know whether or not we need to dereference the pointer
1846      * on the left side - that is: OP_LOAD if it was an address.
1847      * Also: in original QC we cannot OP_LOADP *anyway*.
1848      */
1849     *out = (lvalue ? leftl : bin);
1850
1851     return true;
1852 }
1853
1854 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1855 {
1856     ast_expression_codegen *cgen;
1857     ir_value *operand;
1858
1859     /* An unary operation cannot yield an l-value */
1860     if (lvalue) {
1861         compile_error(ast_ctx(self), "not an l-value (binop)");
1862         return false;
1863     }
1864
1865     if (self->expression.outr) {
1866         *out = self->expression.outr;
1867         return true;
1868     }
1869
1870     cgen = self->operand->expression.codegen;
1871     /* lvalue! */
1872     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1873         return false;
1874
1875     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1876                                  self->op, operand);
1877     if (!*out)
1878         return false;
1879     self->expression.outr = *out;
1880
1881     return true;
1882 }
1883
1884 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1885 {
1886     ast_expression_codegen *cgen;
1887     ir_value *operand;
1888
1889     *out = NULL;
1890
1891     /* In the context of a return operation, we don't actually return
1892      * anything...
1893      */
1894     if (lvalue) {
1895         compile_error(ast_ctx(self), "return-expression is not an l-value");
1896         return false;
1897     }
1898
1899     if (self->expression.outr) {
1900         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1901         return false;
1902     }
1903     self->expression.outr = (ir_value*)1;
1904
1905     if (self->operand) {
1906         cgen = self->operand->expression.codegen;
1907         /* lvalue! */
1908         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1909             return false;
1910
1911         if (!ir_block_create_return(func->curblock, operand))
1912             return false;
1913     } else {
1914         if (!ir_block_create_return(func->curblock, NULL))
1915             return false;
1916     }
1917
1918     return true;
1919 }
1920
1921 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1922 {
1923     ast_expression_codegen *cgen;
1924     ir_value *ent, *field;
1925
1926     /* This function needs to take the 'lvalue' flag into account!
1927      * As lvalue we provide a field-pointer, as rvalue we provide the
1928      * value in a temp.
1929      */
1930
1931     if (lvalue && self->expression.outl) {
1932         *out = self->expression.outl;
1933         return true;
1934     }
1935
1936     if (!lvalue && self->expression.outr) {
1937         *out = self->expression.outr;
1938         return true;
1939     }
1940
1941     cgen = self->entity->expression.codegen;
1942     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1943         return false;
1944
1945     cgen = self->field->expression.codegen;
1946     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1947         return false;
1948
1949     if (lvalue) {
1950         /* address! */
1951         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1952                                             ent, field);
1953     } else {
1954         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1955                                              ent, field, self->expression.vtype);
1956     }
1957     if (!*out) {
1958         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
1959                  (lvalue ? "ADDRESS" : "FIELD"),
1960                  type_name[self->expression.vtype]);
1961         return false;
1962     }
1963
1964     if (lvalue)
1965         self->expression.outl = *out;
1966     else
1967         self->expression.outr = *out;
1968
1969     /* Hm that should be it... */
1970     return true;
1971 }
1972
1973 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1974 {
1975     ast_expression_codegen *cgen;
1976     ir_value *vec;
1977
1978     /* in QC this is always an lvalue */
1979     (void)lvalue;
1980     if (self->expression.outl) {
1981         *out = self->expression.outl;
1982         return true;
1983     }
1984
1985     cgen = self->owner->expression.codegen;
1986     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1987         return false;
1988
1989     if (vec->vtype != TYPE_VECTOR &&
1990         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1991     {
1992         return false;
1993     }
1994
1995     *out = ir_value_vector_member(vec, self->field);
1996     self->expression.outl = *out;
1997
1998     return (*out != NULL);
1999 }
2000
2001 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2002 {
2003     ast_value *arr;
2004     ast_value *idx;
2005
2006     if (!lvalue && self->expression.outr) {
2007         *out = self->expression.outr;
2008     }
2009     if (lvalue && self->expression.outl) {
2010         *out = self->expression.outl;
2011     }
2012
2013     if (!ast_istype(self->array, ast_value)) {
2014         compile_error(ast_ctx(self), "array indexing this way is not supported");
2015         /* note this would actually be pointer indexing because the left side is
2016          * not an actual array but (hopefully) an indexable expression.
2017          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2018          * support this path will be filled.
2019          */
2020         return false;
2021     }
2022
2023     arr = (ast_value*)self->array;
2024     idx = (ast_value*)self->index;
2025
2026     if (!ast_istype(self->index, ast_value) || !idx->hasvalue) {
2027         /* Time to use accessor functions */
2028         ast_expression_codegen *cgen;
2029         ir_value               *iridx, *funval;
2030         ir_instr               *call;
2031
2032         if (lvalue) {
2033             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2034             return false;
2035         }
2036
2037         if (!arr->getter) {
2038             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2039             return false;
2040         }
2041
2042         cgen = self->index->expression.codegen;
2043         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2044             return false;
2045
2046         cgen = arr->getter->expression.codegen;
2047         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2048             return false;
2049
2050         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
2051         if (!call)
2052             return false;
2053         ir_call_param(call, iridx);
2054
2055         *out = ir_call_value(call);
2056         self->expression.outr = *out;
2057         return true;
2058     }
2059
2060     if (idx->expression.vtype == TYPE_FLOAT)
2061         *out = arr->ir_values[(int)idx->constval.vfloat];
2062     else if (idx->expression.vtype == TYPE_INTEGER)
2063         *out = arr->ir_values[idx->constval.vint];
2064     else {
2065         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2066         return false;
2067     }
2068     return true;
2069 }
2070
2071 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2072 {
2073     ast_expression_codegen *cgen;
2074
2075     ir_value *condval;
2076     ir_value *dummy;
2077
2078     ir_block *cond = func->curblock;
2079     ir_block *ontrue;
2080     ir_block *onfalse;
2081     ir_block *ontrue_endblock = NULL;
2082     ir_block *onfalse_endblock = NULL;
2083     ir_block *merge = NULL;
2084
2085     /* We don't output any value, thus also don't care about r/lvalue */
2086     (void)out;
2087     (void)lvalue;
2088
2089     if (self->expression.outr) {
2090         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2091         return false;
2092     }
2093     self->expression.outr = (ir_value*)1;
2094
2095     /* generate the condition */
2096     cgen = self->cond->expression.codegen;
2097     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2098         return false;
2099     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2100     cond = func->curblock;
2101
2102     /* on-true path */
2103
2104     if (self->on_true) {
2105         /* create on-true block */
2106         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2107         if (!ontrue)
2108             return false;
2109
2110         /* enter the block */
2111         func->curblock = ontrue;
2112
2113         /* generate */
2114         cgen = self->on_true->expression.codegen;
2115         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2116             return false;
2117
2118         /* we now need to work from the current endpoint */
2119         ontrue_endblock = func->curblock;
2120     } else
2121         ontrue = NULL;
2122
2123     /* on-false path */
2124     if (self->on_false) {
2125         /* create on-false block */
2126         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2127         if (!onfalse)
2128             return false;
2129
2130         /* enter the block */
2131         func->curblock = onfalse;
2132
2133         /* generate */
2134         cgen = self->on_false->expression.codegen;
2135         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2136             return false;
2137
2138         /* we now need to work from the current endpoint */
2139         onfalse_endblock = func->curblock;
2140     } else
2141         onfalse = NULL;
2142
2143     /* Merge block were they all merge in to */
2144     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2145     {
2146         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2147         if (!merge)
2148             return false;
2149         /* add jumps ot the merge block */
2150         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
2151             return false;
2152         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
2153             return false;
2154
2155         /* Now enter the merge block */
2156         func->curblock = merge;
2157     }
2158
2159     /* we create the if here, that way all blocks are ordered :)
2160      */
2161     if (!ir_block_create_if(cond, condval,
2162                             (ontrue  ? ontrue  : merge),
2163                             (onfalse ? onfalse : merge)))
2164     {
2165         return false;
2166     }
2167
2168     return true;
2169 }
2170
2171 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2172 {
2173     ast_expression_codegen *cgen;
2174
2175     ir_value *condval;
2176     ir_value *trueval, *falseval;
2177     ir_instr *phi;
2178
2179     ir_block *cond = func->curblock;
2180     ir_block *cond_out = NULL;
2181     ir_block *ontrue, *ontrue_out = NULL;
2182     ir_block *onfalse, *onfalse_out = NULL;
2183     ir_block *merge;
2184
2185     /* Ternary can never create an lvalue... */
2186     if (lvalue)
2187         return false;
2188
2189     /* In theory it shouldn't be possible to pass through a node twice, but
2190      * in case we add any kind of optimization pass for the AST itself, it
2191      * may still happen, thus we remember a created ir_value and simply return one
2192      * if it already exists.
2193      */
2194     if (self->expression.outr) {
2195         *out = self->expression.outr;
2196         return true;
2197     }
2198
2199     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2200
2201     /* generate the condition */
2202     func->curblock = cond;
2203     cgen = self->cond->expression.codegen;
2204     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2205         return false;
2206     cond_out = func->curblock;
2207
2208     /* create on-true block */
2209     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2210     if (!ontrue)
2211         return false;
2212     else
2213     {
2214         /* enter the block */
2215         func->curblock = ontrue;
2216
2217         /* generate */
2218         cgen = self->on_true->expression.codegen;
2219         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2220             return false;
2221
2222         ontrue_out = func->curblock;
2223     }
2224
2225     /* create on-false block */
2226     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2227     if (!onfalse)
2228         return false;
2229     else
2230     {
2231         /* enter the block */
2232         func->curblock = onfalse;
2233
2234         /* generate */
2235         cgen = self->on_false->expression.codegen;
2236         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2237             return false;
2238
2239         onfalse_out = func->curblock;
2240     }
2241
2242     /* create merge block */
2243     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2244     if (!merge)
2245         return false;
2246     /* jump to merge block */
2247     if (!ir_block_create_jump(ontrue_out, merge))
2248         return false;
2249     if (!ir_block_create_jump(onfalse_out, merge))
2250         return false;
2251
2252     /* create if instruction */
2253     if (!ir_block_create_if(cond_out, condval, ontrue, onfalse))
2254         return false;
2255
2256     /* Now enter the merge block */
2257     func->curblock = merge;
2258
2259     /* Here, now, we need a PHI node
2260      * but first some sanity checking...
2261      */
2262     if (trueval->vtype != falseval->vtype) {
2263         /* error("ternary with different types on the two sides"); */
2264         return false;
2265     }
2266
2267     /* create PHI */
2268     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
2269     if (!phi)
2270         return false;
2271     ir_phi_add(phi, ontrue_out,  trueval);
2272     ir_phi_add(phi, onfalse_out, falseval);
2273
2274     self->expression.outr = ir_phi_value(phi);
2275     *out = self->expression.outr;
2276
2277     return true;
2278 }
2279
2280 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2281 {
2282     ast_expression_codegen *cgen;
2283
2284     ir_value *dummy      = NULL;
2285     ir_value *precond    = NULL;
2286     ir_value *postcond   = NULL;
2287
2288     /* Since we insert some jumps "late" so we have blocks
2289      * ordered "nicely", we need to keep track of the actual end-blocks
2290      * of expressions to add the jumps to.
2291      */
2292     ir_block *bbody      = NULL, *end_bbody      = NULL;
2293     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2294     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2295     ir_block *bincrement = NULL, *end_bincrement = NULL;
2296     ir_block *bout       = NULL, *bin            = NULL;
2297
2298     /* let's at least move the outgoing block to the end */
2299     size_t    bout_id;
2300
2301     /* 'break' and 'continue' need to be able to find the right blocks */
2302     ir_block *bcontinue     = NULL;
2303     ir_block *bbreak        = NULL;
2304
2305     ir_block *old_bcontinue = NULL;
2306     ir_block *old_bbreak    = NULL;
2307
2308     ir_block *tmpblock      = NULL;
2309
2310     (void)lvalue;
2311     (void)out;
2312
2313     if (self->expression.outr) {
2314         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2315         return false;
2316     }
2317     self->expression.outr = (ir_value*)1;
2318
2319     /* NOTE:
2320      * Should we ever need some kind of block ordering, better make this function
2321      * move blocks around than write a block ordering algorithm later... after all
2322      * the ast and ir should work together, not against each other.
2323      */
2324
2325     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2326      * anyway if for example it contains a ternary.
2327      */
2328     if (self->initexpr)
2329     {
2330         cgen = self->initexpr->expression.codegen;
2331         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2332             return false;
2333     }
2334
2335     /* Store the block from which we enter this chaos */
2336     bin = func->curblock;
2337
2338     /* The pre-loop condition needs its own block since we
2339      * need to be able to jump to the start of that expression.
2340      */
2341     if (self->precond)
2342     {
2343         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2344         if (!bprecond)
2345             return false;
2346
2347         /* the pre-loop-condition the least important place to 'continue' at */
2348         bcontinue = bprecond;
2349
2350         /* enter */
2351         func->curblock = bprecond;
2352
2353         /* generate */
2354         cgen = self->precond->expression.codegen;
2355         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2356             return false;
2357
2358         end_bprecond = func->curblock;
2359     } else {
2360         bprecond = end_bprecond = NULL;
2361     }
2362
2363     /* Now the next blocks won't be ordered nicely, but we need to
2364      * generate them this early for 'break' and 'continue'.
2365      */
2366     if (self->increment) {
2367         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2368         if (!bincrement)
2369             return false;
2370         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2371     } else {
2372         bincrement = end_bincrement = NULL;
2373     }
2374
2375     if (self->postcond) {
2376         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2377         if (!bpostcond)
2378             return false;
2379         bcontinue = bpostcond; /* postcond comes before the increment */
2380     } else {
2381         bpostcond = end_bpostcond = NULL;
2382     }
2383
2384     bout_id = vec_size(func->ir_func->blocks);
2385     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2386     if (!bout)
2387         return false;
2388     bbreak = bout;
2389
2390     /* The loop body... */
2391     if (self->body)
2392     {
2393         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2394         if (!bbody)
2395             return false;
2396
2397         /* enter */
2398         func->curblock = bbody;
2399
2400         old_bbreak          = func->breakblock;
2401         old_bcontinue       = func->continueblock;
2402         func->breakblock    = bbreak;
2403         func->continueblock = bcontinue;
2404         if (!func->continueblock)
2405             func->continueblock = bbody;
2406
2407         /* generate */
2408         cgen = self->body->expression.codegen;
2409         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2410             return false;
2411
2412         end_bbody = func->curblock;
2413         func->breakblock    = old_bbreak;
2414         func->continueblock = old_bcontinue;
2415     }
2416
2417     /* post-loop-condition */
2418     if (self->postcond)
2419     {
2420         /* enter */
2421         func->curblock = bpostcond;
2422
2423         /* generate */
2424         cgen = self->postcond->expression.codegen;
2425         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2426             return false;
2427
2428         end_bpostcond = func->curblock;
2429     }
2430
2431     /* The incrementor */
2432     if (self->increment)
2433     {
2434         /* enter */
2435         func->curblock = bincrement;
2436
2437         /* generate */
2438         cgen = self->increment->expression.codegen;
2439         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2440             return false;
2441
2442         end_bincrement = func->curblock;
2443     }
2444
2445     /* In any case now, we continue from the outgoing block */
2446     func->curblock = bout;
2447
2448     /* Now all blocks are in place */
2449     /* From 'bin' we jump to whatever comes first */
2450     if      (bprecond)   tmpblock = bprecond;
2451     else if (bbody)      tmpblock = bbody;
2452     else if (bpostcond)  tmpblock = bpostcond;
2453     else                 tmpblock = bout;
2454     if (!ir_block_create_jump(bin, tmpblock))
2455         return false;
2456
2457     /* From precond */
2458     if (bprecond)
2459     {
2460         ir_block *ontrue, *onfalse;
2461         if      (bbody)      ontrue = bbody;
2462         else if (bincrement) ontrue = bincrement;
2463         else if (bpostcond)  ontrue = bpostcond;
2464         else                 ontrue = bprecond;
2465         onfalse = bout;
2466         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2467             return false;
2468     }
2469
2470     /* from body */
2471     if (bbody)
2472     {
2473         if      (bincrement) tmpblock = bincrement;
2474         else if (bpostcond)  tmpblock = bpostcond;
2475         else if (bprecond)   tmpblock = bprecond;
2476         else                 tmpblock = bbody;
2477         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2478             return false;
2479     }
2480
2481     /* from increment */
2482     if (bincrement)
2483     {
2484         if      (bpostcond)  tmpblock = bpostcond;
2485         else if (bprecond)   tmpblock = bprecond;
2486         else if (bbody)      tmpblock = bbody;
2487         else                 tmpblock = bout;
2488         if (!ir_block_create_jump(end_bincrement, tmpblock))
2489             return false;
2490     }
2491
2492     /* from postcond */
2493     if (bpostcond)
2494     {
2495         ir_block *ontrue, *onfalse;
2496         if      (bprecond)   ontrue = bprecond;
2497         else if (bbody)      ontrue = bbody;
2498         else if (bincrement) ontrue = bincrement;
2499         else                 ontrue = bpostcond;
2500         onfalse = bout;
2501         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2502             return false;
2503     }
2504
2505     /* Move 'bout' to the end */
2506     vec_remove(func->ir_func->blocks, bout_id, 1);
2507     vec_push(func->ir_func->blocks, bout);
2508
2509     return true;
2510 }
2511
2512 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2513 {
2514     ir_block *target;
2515
2516     *out = NULL;
2517
2518     if (lvalue) {
2519         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2520         return false;
2521     }
2522
2523     if (self->expression.outr) {
2524         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2525         return false;
2526     }
2527     self->expression.outr = (ir_value*)1;
2528
2529     if (self->is_continue)
2530         target = func->continueblock;
2531     else
2532         target = func->breakblock;
2533
2534     if (!target) {
2535         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2536         return false;
2537     }
2538
2539     if (!ir_block_create_jump(func->curblock, target))
2540         return false;
2541     return true;
2542 }
2543
2544 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2545 {
2546     ast_expression_codegen *cgen;
2547
2548     ast_switch_case *def_case  = NULL;
2549     ir_block        *def_bfall = NULL;
2550
2551     ir_value *dummy     = NULL;
2552     ir_value *irop      = NULL;
2553     ir_block *old_break = NULL;
2554     ir_block *bout      = NULL;
2555     ir_block *bfall     = NULL;
2556     size_t    bout_id;
2557     size_t    c;
2558
2559     char      typestr[1024];
2560     uint16_t  cmpinstr;
2561
2562     if (lvalue) {
2563         compile_error(ast_ctx(self), "switch expression is not an l-value");
2564         return false;
2565     }
2566
2567     if (self->expression.outr) {
2568         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2569         return false;
2570     }
2571     self->expression.outr = (ir_value*)1;
2572
2573     (void)lvalue;
2574     (void)out;
2575
2576     cgen = self->operand->expression.codegen;
2577     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2578         return false;
2579
2580     if (!vec_size(self->cases))
2581         return true;
2582
2583     cmpinstr = type_eq_instr[irop->vtype];
2584     if (cmpinstr >= AINSTR_END) {
2585         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2586         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2587         return false;
2588     }
2589
2590     bout_id = vec_size(func->ir_func->blocks);
2591     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2592     if (!bout)
2593         return false;
2594
2595     /* setup the break block */
2596     old_break        = func->breakblock;
2597     func->breakblock = bout;
2598
2599     /* Now create all cases */
2600     for (c = 0; c < vec_size(self->cases); ++c) {
2601         ir_value *cond, *val;
2602         ir_block *bcase, *bnot;
2603         size_t bnot_id;
2604
2605         ast_switch_case *swcase = &self->cases[c];
2606
2607         if (swcase->value) {
2608             /* A regular case */
2609             /* generate the condition operand */
2610             cgen = swcase->value->expression.codegen;
2611             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2612                 return false;
2613             /* generate the condition */
2614             cond = ir_block_create_binop(func->curblock, ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2615             if (!cond)
2616                 return false;
2617
2618             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2619             bnot_id = vec_size(func->ir_func->blocks);
2620             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2621             if (!bcase || !bnot)
2622                 return false;
2623             if (!ir_block_create_if(func->curblock, cond, bcase, bnot))
2624                 return false;
2625
2626             /* Make the previous case-end fall through */
2627             if (bfall && !bfall->final) {
2628                 if (!ir_block_create_jump(bfall, bcase))
2629                     return false;
2630             }
2631
2632             /* enter the case */
2633             func->curblock = bcase;
2634             cgen = swcase->code->expression.codegen;
2635             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2636                 return false;
2637
2638             /* remember this block to fall through from */
2639             bfall = func->curblock;
2640
2641             /* enter the else and move it down */
2642             func->curblock = bnot;
2643             vec_remove(func->ir_func->blocks, bnot_id, 1);
2644             vec_push(func->ir_func->blocks, bnot);
2645         } else {
2646             /* The default case */
2647             /* Remember where to fall through from: */
2648             def_bfall = bfall;
2649             bfall     = NULL;
2650             /* remember which case it was */
2651             def_case  = swcase;
2652         }
2653     }
2654
2655     /* Jump from the last bnot to bout */
2656     if (bfall && !bfall->final && !ir_block_create_jump(bfall, bout)) {
2657         /*
2658         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2659         */
2660         return false;
2661     }
2662
2663     /* If there was a default case, put it down here */
2664     if (def_case) {
2665         ir_block *bcase;
2666
2667         /* No need to create an extra block */
2668         bcase = func->curblock;
2669
2670         /* Insert the fallthrough jump */
2671         if (def_bfall && !def_bfall->final) {
2672             if (!ir_block_create_jump(def_bfall, bcase))
2673                 return false;
2674         }
2675
2676         /* Now generate the default code */
2677         cgen = def_case->code->expression.codegen;
2678         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2679             return false;
2680     }
2681
2682     /* Jump from the last bnot to bout */
2683     if (!func->curblock->final && !ir_block_create_jump(func->curblock, bout))
2684         return false;
2685     /* enter the outgoing block */
2686     func->curblock = bout;
2687
2688     /* restore the break block */
2689     func->breakblock = old_break;
2690
2691     /* Move 'bout' to the end, it's nicer */
2692     vec_remove(func->ir_func->blocks, bout_id, 1);
2693     vec_push(func->ir_func->blocks, bout);
2694
2695     return true;
2696 }
2697
2698 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2699 {
2700     size_t i;
2701     ir_value *dummy;
2702
2703     *out = NULL;
2704     if (lvalue) {
2705         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2706         return false;
2707     }
2708
2709     /* simply create a new block and jump to it */
2710     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2711     if (!self->irblock) {
2712         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2713         return false;
2714     }
2715     if (!func->curblock->final) {
2716         if (!ir_block_create_jump(func->curblock, self->irblock))
2717             return false;
2718     }
2719
2720     /* enter the new block */
2721     func->curblock = self->irblock;
2722
2723     /* Generate all the leftover gotos */
2724     for (i = 0; i < vec_size(self->gotos); ++i) {
2725         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2726             return false;
2727     }
2728
2729     return true;
2730 }
2731
2732 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2733 {
2734     *out = NULL;
2735     if (lvalue) {
2736         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2737         return false;
2738     }
2739
2740     if (self->target->irblock) {
2741         if (self->irblock_from) {
2742             /* we already tried once, this is the callback */
2743             self->irblock_from->final = false;
2744             if (!ir_block_create_jump(self->irblock_from, self->target->irblock)) {
2745                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2746                 return false;
2747             }
2748         }
2749         else
2750         {
2751             if (!ir_block_create_jump(func->curblock, self->target->irblock)) {
2752                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2753                 return false;
2754             }
2755         }
2756     }
2757     else
2758     {
2759         /* the target has not yet been created...
2760          * close this block in a sneaky way:
2761          */
2762         func->curblock->final = true;
2763         self->irblock_from = func->curblock;
2764         ast_label_register_goto(self->target, self);
2765     }
2766
2767     return true;
2768 }
2769
2770 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2771 {
2772     ast_expression_codegen *cgen;
2773     ir_value              **params;
2774     ir_instr               *callinstr;
2775     size_t i;
2776
2777     ir_value *funval = NULL;
2778
2779     /* return values are never lvalues */
2780     if (lvalue) {
2781         compile_error(ast_ctx(self), "not an l-value (function call)");
2782         return false;
2783     }
2784
2785     if (self->expression.outr) {
2786         *out = self->expression.outr;
2787         return true;
2788     }
2789
2790     cgen = self->func->expression.codegen;
2791     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2792         return false;
2793     if (!funval)
2794         return false;
2795
2796     params = NULL;
2797
2798     /* parameters */
2799     for (i = 0; i < vec_size(self->params); ++i)
2800     {
2801         ir_value *param;
2802         ast_expression *expr = self->params[i];
2803
2804         cgen = expr->expression.codegen;
2805         if (!(*cgen)(expr, func, false, &param))
2806             goto error;
2807         if (!param)
2808             goto error;
2809         vec_push(params, param);
2810     }
2811
2812     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2813     if (!callinstr)
2814         goto error;
2815
2816     for (i = 0; i < vec_size(params); ++i) {
2817         ir_call_param(callinstr, params[i]);
2818     }
2819
2820     *out = ir_call_value(callinstr);
2821     self->expression.outr = *out;
2822
2823     vec_free(params);
2824     return true;
2825 error:
2826     vec_free(params);
2827     return false;
2828 }