]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
VINSTR_NRCALL, translated like any other call for now; to be used to mark a call...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76     self->expression.count    = 0;
77 }
78
79 static void ast_expression_delete(ast_expression *self)
80 {
81     size_t i;
82     if (self->expression.next)
83         ast_delete(self->expression.next);
84     for (i = 0; i < vec_size(self->expression.params); ++i) {
85         ast_delete(self->expression.params[i]);
86     }
87     vec_free(self->expression.params);
88 }
89
90 static void ast_expression_delete_full(ast_expression *self)
91 {
92     ast_expression_delete(self);
93     mem_d(self);
94 }
95
96 ast_value* ast_value_copy(const ast_value *self)
97 {
98     size_t i;
99     const ast_expression_common *fromex;
100     ast_expression_common *selfex;
101     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
102     if (self->expression.next) {
103         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
104         if (!cp->expression.next) {
105             ast_value_delete(cp);
106             return NULL;
107         }
108     }
109     fromex   = &self->expression;
110     selfex = &cp->expression;
111     selfex->variadic = fromex->variadic;
112     selfex->count    = fromex->count;
113     for (i = 0; i < vec_size(fromex->params); ++i) {
114         ast_value *v = ast_value_copy(fromex->params[i]);
115         if (!v) {
116             ast_value_delete(cp);
117             return NULL;
118         }
119         vec_push(selfex->params, v);
120     }
121     return cp;
122 }
123
124 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
125 {
126     size_t i;
127     const ast_expression_common *fromex;
128     ast_expression_common *selfex;
129     self->expression.vtype = other->expression.vtype;
130     if (other->expression.next) {
131         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
132         if (!self->expression.next)
133             return false;
134     }
135     fromex   = &other->expression;
136     selfex = &self->expression;
137     selfex->variadic = fromex->variadic;
138     selfex->count    = fromex->count;
139     for (i = 0; i < vec_size(fromex->params); ++i) {
140         ast_value *v = ast_value_copy(fromex->params[i]);
141         if (!v)
142             return false;
143         vec_push(selfex->params, v);
144     }
145     return true;
146 }
147
148 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
149 {
150     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
151     ast_expression_init(self, NULL);
152     self->expression.codegen = NULL;
153     self->expression.next    = NULL;
154     self->expression.vtype   = vtype;
155     return self;
156 }
157
158 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
159 {
160     size_t i;
161     const ast_expression_common *fromex;
162     ast_expression_common *selfex;
163
164     if (!ex)
165         return NULL;
166     else
167     {
168         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
169         ast_expression_init(self, NULL);
170
171         fromex   = &ex->expression;
172         selfex = &self->expression;
173
174         /* This may never be codegen()d */
175         selfex->codegen = NULL;
176
177         selfex->vtype = fromex->vtype;
178         if (fromex->next)
179         {
180             selfex->next = ast_type_copy(ctx, fromex->next);
181             if (!selfex->next) {
182                 ast_expression_delete_full(self);
183                 return NULL;
184             }
185         }
186         else
187             selfex->next = NULL;
188
189         selfex->variadic = fromex->variadic;
190         selfex->count    = fromex->count;
191         for (i = 0; i < vec_size(fromex->params); ++i) {
192             ast_value *v = ast_value_copy(fromex->params[i]);
193             if (!v) {
194                 ast_expression_delete_full(self);
195                 return NULL;
196             }
197             vec_push(selfex->params, v);
198         }
199
200         return self;
201     }
202 }
203
204 bool ast_compare_type(ast_expression *a, ast_expression *b)
205 {
206     if (a->expression.vtype != b->expression.vtype)
207         return false;
208     if (!a->expression.next != !b->expression.next)
209         return false;
210     if (vec_size(a->expression.params) != vec_size(b->expression.params))
211         return false;
212     if (a->expression.variadic != b->expression.variadic)
213         return false;
214     if (vec_size(a->expression.params)) {
215         size_t i;
216         for (i = 0; i < vec_size(a->expression.params); ++i) {
217             if (!ast_compare_type((ast_expression*)a->expression.params[i],
218                                   (ast_expression*)b->expression.params[i]))
219                 return false;
220         }
221     }
222     if (a->expression.next)
223         return ast_compare_type(a->expression.next, b->expression.next);
224     return true;
225 }
226
227 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
228 {
229     const char *typestr;
230     size_t typelen;
231     size_t i;
232
233     if (!e) {
234         if (pos + 6 >= bufsize)
235             goto full;
236         strcpy(buf + pos, "(null)");
237         return pos + 6;
238     }
239
240     if (pos + 1 >= bufsize)
241         goto full;
242
243     switch (e->expression.vtype) {
244         case TYPE_VARIANT:
245             strcpy(buf + pos, "(variant)");
246             return pos + 9;
247
248         case TYPE_FIELD:
249             buf[pos++] = '.';
250             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251
252         case TYPE_POINTER:
253             if (pos + 3 >= bufsize)
254                 goto full;
255             buf[pos++] = '*';
256             buf[pos++] = '(';
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 1 >= bufsize)
259                 goto full;
260             buf[pos++] = ')';
261             return pos;
262
263         case TYPE_FUNCTION:
264             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
265             if (pos + 2 >= bufsize)
266                 goto full;
267             if (!vec_size(e->expression.params)) {
268                 buf[pos++] = '(';
269                 buf[pos++] = ')';
270                 return pos;
271             }
272             buf[pos++] = '(';
273             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
274             for (i = 1; i < vec_size(e->expression.params); ++i) {
275                 if (pos + 2 >= bufsize)
276                     goto full;
277                 buf[pos++] = ',';
278                 buf[pos++] = ' ';
279                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
280             }
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = ')';
284             return pos;
285
286         case TYPE_ARRAY:
287             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = '[';
291             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
292             if (pos + 1 >= bufsize)
293                 goto full;
294             buf[pos++] = ']';
295             return pos;
296
297         default:
298             typestr = type_name[e->expression.vtype];
299             typelen = strlen(typestr);
300             if (pos + typelen >= bufsize)
301                 goto full;
302             strcpy(buf + pos, typestr);
303             return pos + typelen;
304     }
305
306 full:
307     buf[bufsize-3] = '.';
308     buf[bufsize-2] = '.';
309     buf[bufsize-1] = '.';
310     return bufsize;
311 }
312
313 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
314 {
315     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
316     buf[pos] = 0;
317 }
318
319 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
320 {
321     ast_instantiate(ast_value, ctx, ast_value_delete);
322     ast_expression_init((ast_expression*)self,
323                         (ast_expression_codegen*)&ast_value_codegen);
324     self->expression.node.keep = true; /* keep */
325
326     self->name = name ? util_strdup(name) : NULL;
327     self->expression.vtype = t;
328     self->expression.next  = NULL;
329     self->isfield  = false;
330     self->cvq      = CV_NONE;
331     self->hasvalue = false;
332     self->uses    = 0;
333     memset(&self->constval, 0, sizeof(self->constval));
334
335     self->ir_v           = NULL;
336     self->ir_values      = NULL;
337     self->ir_value_count = 0;
338
339     self->setter = NULL;
340     self->getter = NULL;
341
342     return self;
343 }
344
345 void ast_value_delete(ast_value* self)
346 {
347     if (self->name)
348         mem_d((void*)self->name);
349     if (self->hasvalue) {
350         switch (self->expression.vtype)
351         {
352         case TYPE_STRING:
353             mem_d((void*)self->constval.vstring);
354             break;
355         case TYPE_FUNCTION:
356             /* unlink us from the function node */
357             self->constval.vfunc->vtype = NULL;
358             break;
359         /* NOTE: delete function? currently collected in
360          * the parser structure
361          */
362         default:
363             break;
364         }
365     }
366     if (self->ir_values)
367         mem_d(self->ir_values);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 void ast_value_params_add(ast_value *self, ast_value *p)
373 {
374     vec_push(self->expression.params, p);
375 }
376
377 bool ast_value_set_name(ast_value *self, const char *name)
378 {
379     if (self->name)
380         mem_d((void*)self->name);
381     self->name = util_strdup(name);
382     return !!self->name;
383 }
384
385 ast_binary* ast_binary_new(lex_ctx ctx, int op,
386                            ast_expression* left, ast_expression* right)
387 {
388     ast_instantiate(ast_binary, ctx, ast_binary_delete);
389     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
390
391     self->op = op;
392     self->left = left;
393     self->right = right;
394
395     ast_propagate_effects(self, left);
396     ast_propagate_effects(self, right);
397
398     if (op >= INSTR_EQ_F && op <= INSTR_GT)
399         self->expression.vtype = TYPE_FLOAT;
400     else if (op == INSTR_AND || op == INSTR_OR) {
401         if (OPTS_FLAG(PERL_LOGIC))
402             ast_type_adopt(self, right);
403         else
404             self->expression.vtype = TYPE_FLOAT;
405     }
406     else if (op == INSTR_BITAND || op == INSTR_BITOR)
407         self->expression.vtype = TYPE_FLOAT;
408     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
409         self->expression.vtype = TYPE_VECTOR;
410     else if (op == INSTR_MUL_V)
411         self->expression.vtype = TYPE_FLOAT;
412     else
413         self->expression.vtype = left->expression.vtype;
414
415     return self;
416 }
417
418 void ast_binary_delete(ast_binary *self)
419 {
420     ast_unref(self->left);
421     ast_unref(self->right);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
427                                ast_expression* left, ast_expression* right)
428 {
429     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
431
432     ast_side_effects(self) = true;
433
434     self->opstore = storop;
435     self->opbin   = op;
436     self->dest    = left;
437     self->source  = right;
438
439     self->keep_dest = false;
440
441     if (!ast_type_adopt(self, left)) {
442         ast_delete(self);
443         return NULL;
444     }
445
446     return self;
447 }
448
449 void ast_binstore_delete(ast_binstore *self)
450 {
451     if (!self->keep_dest)
452         ast_unref(self->dest);
453     ast_unref(self->source);
454     ast_expression_delete((ast_expression*)self);
455     mem_d(self);
456 }
457
458 ast_unary* ast_unary_new(lex_ctx ctx, int op,
459                          ast_expression *expr)
460 {
461     ast_instantiate(ast_unary, ctx, ast_unary_delete);
462     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
463
464     self->op = op;
465     self->operand = expr;
466
467     ast_propagate_effects(self, expr);
468
469     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
470         self->expression.vtype = TYPE_FLOAT;
471     } else
472         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
473
474     return self;
475 }
476
477 void ast_unary_delete(ast_unary *self)
478 {
479     ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
485 {
486     ast_instantiate(ast_return, ctx, ast_return_delete);
487     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
488
489     self->operand = expr;
490
491     if (expr)
492         ast_propagate_effects(self, expr);
493
494     return self;
495 }
496
497 void ast_return_delete(ast_return *self)
498 {
499     if (self->operand)
500         ast_unref(self->operand);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
506 {
507     if (field->expression.vtype != TYPE_FIELD) {
508         compile_error(ctx, "ast_entfield_new with expression not of type field");
509         return NULL;
510     }
511     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
512 }
513
514 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
515 {
516     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
517
518     if (!outtype) {
519         mem_d(self);
520         /* Error: field has no type... */
521         return NULL;
522     }
523
524     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
525
526     self->entity = entity;
527     self->field  = field;
528     ast_propagate_effects(self, entity);
529     ast_propagate_effects(self, field);
530
531     if (!ast_type_adopt(self, outtype)) {
532         ast_entfield_delete(self);
533         return NULL;
534     }
535
536     return self;
537 }
538
539 void ast_entfield_delete(ast_entfield *self)
540 {
541     ast_unref(self->entity);
542     ast_unref(self->field);
543     ast_expression_delete((ast_expression*)self);
544     mem_d(self);
545 }
546
547 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
548 {
549     ast_instantiate(ast_member, ctx, ast_member_delete);
550     if (field >= 3) {
551         mem_d(self);
552         return NULL;
553     }
554
555     if (owner->expression.vtype != TYPE_VECTOR &&
556         owner->expression.vtype != TYPE_FIELD) {
557         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
558         mem_d(self);
559         return NULL;
560     }
561
562     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
563     self->expression.node.keep = true; /* keep */
564
565     if (owner->expression.vtype == TYPE_VECTOR) {
566         self->expression.vtype = TYPE_FLOAT;
567         self->expression.next  = NULL;
568     } else {
569         self->expression.vtype = TYPE_FIELD;
570         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
571     }
572
573     self->owner = owner;
574     ast_propagate_effects(self, owner);
575
576     self->field = field;
577     if (name)
578         self->name = util_strdup(name);
579     else
580         self->name = NULL;
581
582     return self;
583 }
584
585 void ast_member_delete(ast_member *self)
586 {
587     /* The owner is always an ast_value, which has .keep=true,
588      * also: ast_members are usually deleted after the owner, thus
589      * this will cause invalid access
590     ast_unref(self->owner);
591      * once we allow (expression).x to access a vector-member, we need
592      * to change this: preferably by creating an alternate ast node for this
593      * purpose that is not garbage-collected.
594     */
595     ast_expression_delete((ast_expression*)self);
596     mem_d(self);
597 }
598
599 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
600 {
601     ast_expression *outtype;
602     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
603
604     outtype = array->expression.next;
605     if (!outtype) {
606         mem_d(self);
607         /* Error: field has no type... */
608         return NULL;
609     }
610
611     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
612
613     self->array = array;
614     self->index = index;
615     ast_propagate_effects(self, array);
616     ast_propagate_effects(self, index);
617
618     if (!ast_type_adopt(self, outtype)) {
619         ast_array_index_delete(self);
620         return NULL;
621     }
622     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
623         if (self->expression.vtype != TYPE_ARRAY) {
624             compile_error(ast_ctx(self), "array_index node on type");
625             ast_array_index_delete(self);
626             return NULL;
627         }
628         self->array = outtype;
629         self->expression.vtype = TYPE_FIELD;
630     }
631
632     return self;
633 }
634
635 void ast_array_index_delete(ast_array_index *self)
636 {
637     ast_unref(self->array);
638     ast_unref(self->index);
639     ast_expression_delete((ast_expression*)self);
640     mem_d(self);
641 }
642
643 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
644 {
645     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
646     if (!ontrue && !onfalse) {
647         /* because it is invalid */
648         mem_d(self);
649         return NULL;
650     }
651     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
652
653     self->cond     = cond;
654     self->on_true  = ontrue;
655     self->on_false = onfalse;
656     ast_propagate_effects(self, cond);
657     if (ontrue)
658         ast_propagate_effects(self, ontrue);
659     if (onfalse)
660         ast_propagate_effects(self, onfalse);
661
662     return self;
663 }
664
665 void ast_ifthen_delete(ast_ifthen *self)
666 {
667     ast_unref(self->cond);
668     if (self->on_true)
669         ast_unref(self->on_true);
670     if (self->on_false)
671         ast_unref(self->on_false);
672     ast_expression_delete((ast_expression*)self);
673     mem_d(self);
674 }
675
676 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
677 {
678     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
679     /* This time NEITHER must be NULL */
680     if (!ontrue || !onfalse) {
681         mem_d(self);
682         return NULL;
683     }
684     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
685
686     self->cond     = cond;
687     self->on_true  = ontrue;
688     self->on_false = onfalse;
689     ast_propagate_effects(self, cond);
690     ast_propagate_effects(self, ontrue);
691     ast_propagate_effects(self, onfalse);
692
693     if (!ast_type_adopt(self, ontrue)) {
694         ast_ternary_delete(self);
695         return NULL;
696     }
697
698     return self;
699 }
700
701 void ast_ternary_delete(ast_ternary *self)
702 {
703     ast_unref(self->cond);
704     ast_unref(self->on_true);
705     ast_unref(self->on_false);
706     ast_expression_delete((ast_expression*)self);
707     mem_d(self);
708 }
709
710 ast_loop* ast_loop_new(lex_ctx ctx,
711                        ast_expression *initexpr,
712                        ast_expression *precond,
713                        ast_expression *postcond,
714                        ast_expression *increment,
715                        ast_expression *body)
716 {
717     ast_instantiate(ast_loop, ctx, ast_loop_delete);
718     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
719
720     self->initexpr  = initexpr;
721     self->precond   = precond;
722     self->postcond  = postcond;
723     self->increment = increment;
724     self->body      = body;
725
726     if (initexpr)
727         ast_propagate_effects(self, initexpr);
728     if (precond)
729         ast_propagate_effects(self, precond);
730     if (postcond)
731         ast_propagate_effects(self, postcond);
732     if (increment)
733         ast_propagate_effects(self, increment);
734     if (body)
735         ast_propagate_effects(self, body);
736
737     return self;
738 }
739
740 void ast_loop_delete(ast_loop *self)
741 {
742     if (self->initexpr)
743         ast_unref(self->initexpr);
744     if (self->precond)
745         ast_unref(self->precond);
746     if (self->postcond)
747         ast_unref(self->postcond);
748     if (self->increment)
749         ast_unref(self->increment);
750     if (self->body)
751         ast_unref(self->body);
752     ast_expression_delete((ast_expression*)self);
753     mem_d(self);
754 }
755
756 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
757 {
758     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
759     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
760
761     self->is_continue = iscont;
762
763     return self;
764 }
765
766 void ast_breakcont_delete(ast_breakcont *self)
767 {
768     ast_expression_delete((ast_expression*)self);
769     mem_d(self);
770 }
771
772 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
773 {
774     ast_instantiate(ast_switch, ctx, ast_switch_delete);
775     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
776
777     self->operand = op;
778     self->cases   = NULL;
779
780     ast_propagate_effects(self, op);
781
782     return self;
783 }
784
785 void ast_switch_delete(ast_switch *self)
786 {
787     size_t i;
788     ast_unref(self->operand);
789
790     for (i = 0; i < vec_size(self->cases); ++i) {
791         if (self->cases[i].value)
792             ast_unref(self->cases[i].value);
793         ast_unref(self->cases[i].code);
794     }
795     vec_free(self->cases);
796
797     ast_expression_delete((ast_expression*)self);
798     mem_d(self);
799 }
800
801 ast_label* ast_label_new(lex_ctx ctx, const char *name)
802 {
803     ast_instantiate(ast_label, ctx, ast_label_delete);
804     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
805
806     self->name    = util_strdup(name);
807     self->irblock = NULL;
808     self->gotos   = NULL;
809
810     return self;
811 }
812
813 void ast_label_delete(ast_label *self)
814 {
815     mem_d((void*)self->name);
816     vec_free(self->gotos);
817     ast_expression_delete((ast_expression*)self);
818     mem_d(self);
819 }
820
821 void ast_label_register_goto(ast_label *self, ast_goto *g)
822 {
823     vec_push(self->gotos, g);
824 }
825
826 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
827 {
828     ast_instantiate(ast_goto, ctx, ast_goto_delete);
829     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
830
831     self->name    = util_strdup(name);
832     self->target  = NULL;
833     self->irblock_from = NULL;
834
835     return self;
836 }
837
838 void ast_goto_delete(ast_goto *self)
839 {
840     mem_d((void*)self->name);
841     ast_expression_delete((ast_expression*)self);
842     mem_d(self);
843 }
844
845 void ast_goto_set_label(ast_goto *self, ast_label *label)
846 {
847     self->target = label;
848 }
849
850 ast_call* ast_call_new(lex_ctx ctx,
851                        ast_expression *funcexpr)
852 {
853     ast_instantiate(ast_call, ctx, ast_call_delete);
854     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
855
856     ast_side_effects(self) = true;
857
858     self->params = NULL;
859     self->func   = funcexpr;
860
861     ast_type_adopt(self, funcexpr->expression.next);
862
863     return self;
864 }
865
866 void ast_call_delete(ast_call *self)
867 {
868     size_t i;
869     for (i = 0; i < vec_size(self->params); ++i)
870         ast_unref(self->params[i]);
871     vec_free(self->params);
872
873     if (self->func)
874         ast_unref(self->func);
875
876     ast_expression_delete((ast_expression*)self);
877     mem_d(self);
878 }
879
880 bool ast_call_check_types(ast_call *self)
881 {
882     size_t i;
883     bool   retval = true;
884     const  ast_expression *func = self->func;
885     size_t count = vec_size(self->params);
886     if (count > vec_size(func->expression.params))
887         count = vec_size(func->expression.params);
888
889     for (i = 0; i < count; ++i) {
890         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
891             char texp[1024];
892             char tgot[1024];
893             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
894             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
895             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
896                      (unsigned int)(i+1), texp, tgot);
897             /* we don't immediately return */
898             retval = false;
899         }
900     }
901     return retval;
902 }
903
904 ast_store* ast_store_new(lex_ctx ctx, int op,
905                          ast_expression *dest, ast_expression *source)
906 {
907     ast_instantiate(ast_store, ctx, ast_store_delete);
908     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
909
910     ast_side_effects(self) = true;
911
912     self->op = op;
913     self->dest = dest;
914     self->source = source;
915
916     if (!ast_type_adopt(self, dest)) {
917         ast_delete(self);
918         return NULL;
919     }
920
921     return self;
922 }
923
924 void ast_store_delete(ast_store *self)
925 {
926     ast_unref(self->dest);
927     ast_unref(self->source);
928     ast_expression_delete((ast_expression*)self);
929     mem_d(self);
930 }
931
932 ast_block* ast_block_new(lex_ctx ctx)
933 {
934     ast_instantiate(ast_block, ctx, ast_block_delete);
935     ast_expression_init((ast_expression*)self,
936                         (ast_expression_codegen*)&ast_block_codegen);
937
938     self->locals  = NULL;
939     self->exprs   = NULL;
940     self->collect = NULL;
941
942     return self;
943 }
944
945 bool ast_block_add_expr(ast_block *self, ast_expression *e)
946 {
947     ast_propagate_effects(self, e);
948     vec_push(self->exprs, e);
949     if (self->expression.next) {
950         ast_delete(self->expression.next);
951         self->expression.next = NULL;
952     }
953     if (!ast_type_adopt(self, e)) {
954         compile_error(ast_ctx(self), "internal error: failed to adopt type");
955         return false;
956     }
957     return true;
958 }
959
960 void ast_block_collect(ast_block *self, ast_expression *expr)
961 {
962     vec_push(self->collect, expr);
963     expr->expression.node.keep = true;
964 }
965
966 void ast_block_delete(ast_block *self)
967 {
968     size_t i;
969     for (i = 0; i < vec_size(self->exprs); ++i)
970         ast_unref(self->exprs[i]);
971     vec_free(self->exprs);
972     for (i = 0; i < vec_size(self->locals); ++i)
973         ast_delete(self->locals[i]);
974     vec_free(self->locals);
975     for (i = 0; i < vec_size(self->collect); ++i)
976         ast_delete(self->collect[i]);
977     vec_free(self->collect);
978     ast_expression_delete((ast_expression*)self);
979     mem_d(self);
980 }
981
982 bool ast_block_set_type(ast_block *self, ast_expression *from)
983 {
984     if (self->expression.next)
985         ast_delete(self->expression.next);
986     if (!ast_type_adopt(self, from))
987         return false;
988     return true;
989 }
990
991 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
992 {
993     ast_instantiate(ast_function, ctx, ast_function_delete);
994
995     if (!vtype ||
996         vtype->hasvalue ||
997         vtype->expression.vtype != TYPE_FUNCTION)
998     {
999         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1000                  (int)!vtype,
1001                  (int)vtype->hasvalue,
1002                  vtype->expression.vtype);
1003         mem_d(self);
1004         return NULL;
1005     }
1006
1007     self->vtype  = vtype;
1008     self->name   = name ? util_strdup(name) : NULL;
1009     self->blocks = NULL;
1010
1011     self->labelcount = 0;
1012     self->builtin = 0;
1013
1014     self->ir_func = NULL;
1015     self->curblock = NULL;
1016
1017     self->breakblock    = NULL;
1018     self->continueblock = NULL;
1019
1020     vtype->hasvalue = true;
1021     vtype->constval.vfunc = self;
1022
1023     return self;
1024 }
1025
1026 void ast_function_delete(ast_function *self)
1027 {
1028     size_t i;
1029     if (self->name)
1030         mem_d((void*)self->name);
1031     if (self->vtype) {
1032         /* ast_value_delete(self->vtype); */
1033         self->vtype->hasvalue = false;
1034         self->vtype->constval.vfunc = NULL;
1035         /* We use unref - if it was stored in a global table it is supposed
1036          * to be deleted from *there*
1037          */
1038         ast_unref(self->vtype);
1039     }
1040     for (i = 0; i < vec_size(self->blocks); ++i)
1041         ast_delete(self->blocks[i]);
1042     vec_free(self->blocks);
1043     mem_d(self);
1044 }
1045
1046 const char* ast_function_label(ast_function *self, const char *prefix)
1047 {
1048     size_t id;
1049     size_t len;
1050     char  *from;
1051
1052     if (!opts.dump && !opts.dumpfin)
1053         return NULL;
1054
1055     id  = (self->labelcount++);
1056     len = strlen(prefix);
1057
1058     from = self->labelbuf + sizeof(self->labelbuf)-1;
1059     *from-- = 0;
1060     do {
1061         unsigned int digit = id % 10;
1062         *from = digit + '0';
1063         id /= 10;
1064     } while (id);
1065     memcpy(from - len, prefix, len);
1066     return from - len;
1067 }
1068
1069 /*********************************************************************/
1070 /* AST codegen part
1071  * by convention you must never pass NULL to the 'ir_value **out'
1072  * parameter. If you really don't care about the output, pass a dummy.
1073  * But I can't imagine a pituation where the output is truly unnecessary.
1074  */
1075
1076 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1077 {
1078     if (out->vtype == TYPE_FIELD)
1079         out->fieldtype = self->next->expression.vtype;
1080     if (out->vtype == TYPE_FUNCTION)
1081         out->outtype = self->next->expression.vtype;
1082 }
1083
1084 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1085 #define codegen_output_type_expr(a,o) (_ast_codegen_output_type(a,(o)))
1086
1087 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1088 {
1089     (void)func;
1090     (void)lvalue;
1091     /* NOTE: This is the codegen for a variable used in an expression.
1092      * It is not the codegen to generate the value. For this purpose,
1093      * ast_local_codegen and ast_global_codegen are to be used before this
1094      * is executed. ast_function_codegen should take care of its locals,
1095      * and the ast-user should take care of ast_global_codegen to be used
1096      * on all the globals.
1097      */
1098     if (!self->ir_v) {
1099         char typename[1024];
1100         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1101         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1102         return false;
1103     }
1104     *out = self->ir_v;
1105     return true;
1106 }
1107
1108 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1109 {
1110     ir_value *v = NULL;
1111
1112     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1113     {
1114         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1115         if (!func)
1116             return false;
1117         func->context = ast_ctx(self);
1118         func->value->context = ast_ctx(self);
1119
1120         self->constval.vfunc->ir_func = func;
1121         self->ir_v = func->value;
1122         /* The function is filled later on ast_function_codegen... */
1123         return true;
1124     }
1125
1126     if (isfield && self->expression.vtype == TYPE_FIELD) {
1127         ast_expression *fieldtype = self->expression.next;
1128
1129         if (self->hasvalue) {
1130             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1131             goto error;
1132         }
1133
1134         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1135             size_t ai;
1136             char   *name;
1137             size_t  namelen;
1138
1139             ast_expression_common *elemtype;
1140             int                    vtype;
1141             ast_value             *array = (ast_value*)fieldtype;
1142
1143             if (!ast_istype(fieldtype, ast_value)) {
1144                 compile_error(ast_ctx(self), "internal error: ast_value required");
1145                 return false;
1146             }
1147
1148             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1149             if (!array->expression.count || array->expression.count > opts.max_array_size)
1150                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1151
1152             elemtype = &array->expression.next->expression;
1153             vtype = elemtype->vtype;
1154
1155             v = ir_builder_create_field(ir, self->name, vtype);
1156             if (!v) {
1157                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1158                 return false;
1159             }
1160             v->context = ast_ctx(self);
1161             v->unique_life = true;
1162             array->ir_v = self->ir_v = v;
1163
1164             namelen = strlen(self->name);
1165             name    = (char*)mem_a(namelen + 16);
1166             strcpy(name, self->name);
1167
1168             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1169             array->ir_values[0] = v;
1170             for (ai = 1; ai < array->expression.count; ++ai) {
1171                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1172                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1173                 if (!array->ir_values[ai]) {
1174                     mem_d(name);
1175                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1176                     return false;
1177                 }
1178                 array->ir_values[ai]->context = ast_ctx(self);
1179                 array->ir_values[ai]->unique_life = true;
1180             }
1181             mem_d(name);
1182         }
1183         else
1184         {
1185             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1186             if (!v)
1187                 return false;
1188             v->context = ast_ctx(self);
1189             self->ir_v = v;
1190         }
1191         return true;
1192     }
1193
1194     if (self->expression.vtype == TYPE_ARRAY) {
1195         size_t ai;
1196         char   *name;
1197         size_t  namelen;
1198
1199         ast_expression_common *elemtype = &self->expression.next->expression;
1200         int vtype = elemtype->vtype;
1201
1202         /* same as with field arrays */
1203         if (!self->expression.count || self->expression.count > opts.max_array_size)
1204             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1205
1206         v = ir_builder_create_global(ir, self->name, vtype);
1207         if (!v) {
1208             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1209             return false;
1210         }
1211         v->context = ast_ctx(self);
1212         v->unique_life = true;
1213
1214         namelen = strlen(self->name);
1215         name    = (char*)mem_a(namelen + 16);
1216         strcpy(name, self->name);
1217
1218         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1219         self->ir_values[0] = v;
1220         for (ai = 1; ai < self->expression.count; ++ai) {
1221             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1222             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1223             if (!self->ir_values[ai]) {
1224                 mem_d(name);
1225                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1226                 return false;
1227             }
1228             self->ir_values[ai]->context = ast_ctx(self);
1229             self->ir_values[ai]->unique_life = true;
1230         }
1231         mem_d(name);
1232     }
1233     else
1234     {
1235         /* Arrays don't do this since there's no "array" value which spans across the
1236          * whole thing.
1237          */
1238         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1239         if (!v) {
1240             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1241             return false;
1242         }
1243         codegen_output_type(self, v);
1244         v->context = ast_ctx(self);
1245     }
1246
1247     if (self->hasvalue) {
1248         switch (self->expression.vtype)
1249         {
1250             case TYPE_FLOAT:
1251                 if (!ir_value_set_float(v, self->constval.vfloat))
1252                     goto error;
1253                 break;
1254             case TYPE_VECTOR:
1255                 if (!ir_value_set_vector(v, self->constval.vvec))
1256                     goto error;
1257                 break;
1258             case TYPE_STRING:
1259                 if (!ir_value_set_string(v, self->constval.vstring))
1260                     goto error;
1261                 break;
1262             case TYPE_ARRAY:
1263                 compile_error(ast_ctx(self), "TODO: global constant array");
1264                 break;
1265             case TYPE_FUNCTION:
1266                 compile_error(ast_ctx(self), "global of type function not properly generated");
1267                 goto error;
1268                 /* Cannot generate an IR value for a function,
1269                  * need a pointer pointing to a function rather.
1270                  */
1271             case TYPE_FIELD:
1272                 if (!self->constval.vfield) {
1273                     compile_error(ast_ctx(self), "field constant without vfield set");
1274                     goto error;
1275                 }
1276                 if (!self->constval.vfield->ir_v) {
1277                     compile_error(ast_ctx(self), "field constant generated before its field");
1278                     goto error;
1279                 }
1280                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1281                     goto error;
1282                 break;
1283             default:
1284                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1285                 break;
1286         }
1287     }
1288
1289     /* link us to the ir_value */
1290     v->cvq = self->cvq;
1291     self->ir_v = v;
1292     return true;
1293
1294 error: /* clean up */
1295     ir_value_delete(v);
1296     return false;
1297 }
1298
1299 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1300 {
1301     ir_value *v = NULL;
1302     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1303     {
1304         /* Do we allow local functions? I think not...
1305          * this is NOT a function pointer atm.
1306          */
1307         return false;
1308     }
1309
1310     if (self->expression.vtype == TYPE_ARRAY) {
1311         size_t ai;
1312         char   *name;
1313         size_t  namelen;
1314
1315         ast_expression_common *elemtype = &self->expression.next->expression;
1316         int vtype = elemtype->vtype;
1317
1318         if (param) {
1319             compile_error(ast_ctx(self), "array-parameters are not supported");
1320             return false;
1321         }
1322
1323         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1324         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1325             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1326         }
1327
1328         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1329         if (!self->ir_values) {
1330             compile_error(ast_ctx(self), "failed to allocate array values");
1331             return false;
1332         }
1333
1334         v = ir_function_create_local(func, self->name, vtype, param);
1335         if (!v) {
1336             compile_error(ast_ctx(self), "ir_function_create_local failed");
1337             return false;
1338         }
1339         v->context = ast_ctx(self);
1340         v->unique_life = true;
1341
1342         namelen = strlen(self->name);
1343         name    = (char*)mem_a(namelen + 16);
1344         strcpy(name, self->name);
1345
1346         self->ir_values[0] = v;
1347         for (ai = 1; ai < self->expression.count; ++ai) {
1348             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1349             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1350             if (!self->ir_values[ai]) {
1351                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1352                 return false;
1353             }
1354             self->ir_values[ai]->context = ast_ctx(self);
1355             self->ir_values[ai]->unique_life = true;
1356         }
1357     }
1358     else
1359     {
1360         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1361         if (!v)
1362             return false;
1363         codegen_output_type(self, v);
1364         v->context = ast_ctx(self);
1365     }
1366
1367     /* A constant local... hmmm...
1368      * I suppose the IR will have to deal with this
1369      */
1370     if (self->hasvalue) {
1371         switch (self->expression.vtype)
1372         {
1373             case TYPE_FLOAT:
1374                 if (!ir_value_set_float(v, self->constval.vfloat))
1375                     goto error;
1376                 break;
1377             case TYPE_VECTOR:
1378                 if (!ir_value_set_vector(v, self->constval.vvec))
1379                     goto error;
1380                 break;
1381             case TYPE_STRING:
1382                 if (!ir_value_set_string(v, self->constval.vstring))
1383                     goto error;
1384                 break;
1385             default:
1386                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1387                 break;
1388         }
1389     }
1390
1391     /* link us to the ir_value */
1392     v->cvq = self->cvq;
1393     self->ir_v = v;
1394
1395     if (!ast_generate_accessors(self, func->owner))
1396         return false;
1397     return true;
1398
1399 error: /* clean up */
1400     ir_value_delete(v);
1401     return false;
1402 }
1403
1404 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1405 {
1406     size_t i;
1407     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1408     if (!self->setter || !self->getter)
1409         return true;
1410     for (i = 0; i < self->expression.count; ++i) {
1411         if (!self->ir_values) {
1412             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1413             return false;
1414         }
1415         if (!self->ir_values[i]) {
1416             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1417             return false;
1418         }
1419         if (self->ir_values[i]->life) {
1420             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1421             return false;
1422         }
1423     }
1424
1425     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1426     if (self->setter) {
1427         if (!ast_global_codegen  (self->setter, ir, false) ||
1428             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1429             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1430         {
1431             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1432             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1433             return false;
1434         }
1435     }
1436     if (self->getter) {
1437         if (!ast_global_codegen  (self->getter, ir, false) ||
1438             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1439             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1440         {
1441             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1442             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1443             return false;
1444         }
1445     }
1446     for (i = 0; i < self->expression.count; ++i) {
1447         vec_free(self->ir_values[i]->life);
1448     }
1449     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1450     return true;
1451 }
1452
1453 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1454 {
1455     ir_function *irf;
1456     ir_value    *dummy;
1457     ast_expression_common *ec;
1458     size_t    i;
1459
1460     (void)ir;
1461
1462     irf = self->ir_func;
1463     if (!irf) {
1464         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1465         return false;
1466     }
1467
1468     /* fill the parameter list */
1469     ec = &self->vtype->expression;
1470     for (i = 0; i < vec_size(ec->params); ++i)
1471     {
1472         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1473             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1474         else
1475             vec_push(irf->params, ec->params[i]->expression.vtype);
1476         if (!self->builtin) {
1477             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1478                 return false;
1479         }
1480     }
1481
1482     if (self->builtin) {
1483         irf->builtin = self->builtin;
1484         return true;
1485     }
1486
1487     if (!vec_size(self->blocks)) {
1488         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1489         return false;
1490     }
1491
1492     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1493     if (!self->curblock) {
1494         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1495         return false;
1496     }
1497
1498     for (i = 0; i < vec_size(self->blocks); ++i) {
1499         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1500         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1501             return false;
1502     }
1503
1504     /* TODO: check return types */
1505     if (!self->curblock->is_return)
1506     {
1507         if (!self->vtype->expression.next ||
1508             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1509         {
1510             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1511         }
1512         else if (vec_size(self->curblock->entries))
1513         {
1514             /* error("missing return"); */
1515             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1516                                 "control reaches end of non-void function (`%s`) via %s",
1517                                 self->name, self->curblock->label))
1518             {
1519                 return false;
1520             }
1521             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1522         }
1523     }
1524     return true;
1525 }
1526
1527 /* Note, you will not see ast_block_codegen generate ir_blocks.
1528  * To the AST and the IR, blocks are 2 different things.
1529  * In the AST it represents a block of code, usually enclosed in
1530  * curly braces {...}.
1531  * While in the IR it represents a block in terms of control-flow.
1532  */
1533 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1534 {
1535     size_t i;
1536
1537     /* We don't use this
1538      * Note: an ast-representation using the comma-operator
1539      * of the form: (a, b, c) = x should not assign to c...
1540      */
1541     if (lvalue) {
1542         compile_error(ast_ctx(self), "not an l-value (code-block)");
1543         return false;
1544     }
1545
1546     if (self->expression.outr) {
1547         *out = self->expression.outr;
1548         return true;
1549     }
1550
1551     /* output is NULL at first, we'll have each expression
1552      * assign to out output, thus, a comma-operator represention
1553      * using an ast_block will return the last generated value,
1554      * so: (b, c) + a  executed both b and c, and returns c,
1555      * which is then added to a.
1556      */
1557     *out = NULL;
1558
1559     /* generate locals */
1560     for (i = 0; i < vec_size(self->locals); ++i)
1561     {
1562         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1563             if (opts.debug)
1564                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1565             return false;
1566         }
1567     }
1568
1569     for (i = 0; i < vec_size(self->exprs); ++i)
1570     {
1571         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1572         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1573             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1574             return false;
1575         }
1576         if (!(*gen)(self->exprs[i], func, false, out))
1577             return false;
1578     }
1579
1580     self->expression.outr = *out;
1581
1582     return true;
1583 }
1584
1585 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1586 {
1587     ast_expression_codegen *cgen;
1588     ir_value *left  = NULL;
1589     ir_value *right = NULL;
1590
1591     ast_value       *arr;
1592     ast_value       *idx = 0;
1593     ast_array_index *ai = NULL;
1594
1595     if (lvalue && self->expression.outl) {
1596         *out = self->expression.outl;
1597         return true;
1598     }
1599
1600     if (!lvalue && self->expression.outr) {
1601         *out = self->expression.outr;
1602         return true;
1603     }
1604
1605     if (ast_istype(self->dest, ast_array_index))
1606     {
1607
1608         ai = (ast_array_index*)self->dest;
1609         idx = (ast_value*)ai->index;
1610
1611         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1612             ai = NULL;
1613     }
1614
1615     if (ai) {
1616         /* we need to call the setter */
1617         ir_value  *iridx, *funval;
1618         ir_instr  *call;
1619
1620         if (lvalue) {
1621             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1622             return false;
1623         }
1624
1625         arr = (ast_value*)ai->array;
1626         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1627             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1628             return false;
1629         }
1630
1631         cgen = idx->expression.codegen;
1632         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1633             return false;
1634
1635         cgen = arr->setter->expression.codegen;
1636         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1637             return false;
1638
1639         cgen = self->source->expression.codegen;
1640         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1641             return false;
1642
1643         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1644         if (!call)
1645             return false;
1646         ir_call_param(call, iridx);
1647         ir_call_param(call, right);
1648         self->expression.outr = right;
1649     }
1650     else
1651     {
1652         /* regular code */
1653
1654         cgen = self->dest->expression.codegen;
1655         /* lvalue! */
1656         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1657             return false;
1658         self->expression.outl = left;
1659
1660         cgen = self->source->expression.codegen;
1661         /* rvalue! */
1662         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1663             return false;
1664
1665         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1666             return false;
1667         self->expression.outr = right;
1668     }
1669
1670     /* Theoretically, an assinment returns its left side as an
1671      * lvalue, if we don't need an lvalue though, we return
1672      * the right side as an rvalue, otherwise we have to
1673      * somehow know whether or not we need to dereference the pointer
1674      * on the left side - that is: OP_LOAD if it was an address.
1675      * Also: in original QC we cannot OP_LOADP *anyway*.
1676      */
1677     *out = (lvalue ? left : right);
1678
1679     return true;
1680 }
1681
1682 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1683 {
1684     ast_expression_codegen *cgen;
1685     ir_value *left, *right;
1686
1687     /* A binary operation cannot yield an l-value */
1688     if (lvalue) {
1689         compile_error(ast_ctx(self), "not an l-value (binop)");
1690         return false;
1691     }
1692
1693     if (self->expression.outr) {
1694         *out = self->expression.outr;
1695         return true;
1696     }
1697
1698     if (OPTS_FLAG(SHORT_LOGIC) &&
1699         (self->op == INSTR_AND || self->op == INSTR_OR))
1700     {
1701         /* short circuit evaluation */
1702         ir_block *other, *merge;
1703         ir_block *from_left, *from_right;
1704         ir_instr *phi;
1705         size_t    merge_id;
1706         uint16_t  notop;
1707
1708         /* Note about casting to true boolean values:
1709          * We use a single NOT for sub expressions, and an
1710          * overall NOT at the end, and for that purpose swap
1711          * all the jump conditions in order for the NOT to get
1712          * doubled.
1713          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1714          * but we translate this to (!(!a ? !a : !b))
1715          */
1716
1717         merge_id = vec_size(func->ir_func->blocks);
1718         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1719
1720         cgen = self->left->expression.codegen;
1721         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1722             return false;
1723         if (!OPTS_FLAG(PERL_LOGIC)) {
1724             notop = type_not_instr[left->vtype];
1725             if (notop == AINSTR_END) {
1726                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1727                 return false;
1728             }
1729             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1730                                          ast_function_label(func, "sce_not"),
1731                                          notop,
1732                                          left);
1733         }
1734         from_left = func->curblock;
1735
1736         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1737         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1738             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1739                 return false;
1740         } else {
1741             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1742                 return false;
1743         }
1744         /* use the likely flag */
1745         vec_last(func->curblock->instr)->likely = true;
1746
1747         func->curblock = other;
1748         cgen = self->right->expression.codegen;
1749         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1750             return false;
1751         if (!OPTS_FLAG(PERL_LOGIC)) {
1752             notop = type_not_instr[right->vtype];
1753             if (notop == AINSTR_END) {
1754                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1755                 return false;
1756             }
1757             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1758                                           ast_function_label(func, "sce_not"),
1759                                           notop,
1760                                           right);
1761         }
1762         from_right = func->curblock;
1763
1764         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1765             return false;
1766
1767         vec_remove(func->ir_func->blocks, merge_id, 1);
1768         vec_push(func->ir_func->blocks, merge);
1769
1770         func->curblock = merge;
1771         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1772         ir_phi_add(phi, from_left, left);
1773         ir_phi_add(phi, from_right, right);
1774         *out = ir_phi_value(phi);
1775         if (!OPTS_FLAG(PERL_LOGIC)) {
1776             notop = type_not_instr[(*out)->vtype];
1777             if (notop == AINSTR_END) {
1778                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1779                 return false;
1780             }
1781             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1782                                          ast_function_label(func, "sce_final_not"),
1783                                          notop,
1784                                          *out);
1785         }
1786         if (!*out)
1787             return false;
1788         self->expression.outr = *out;
1789         return true;
1790     }
1791
1792     cgen = self->left->expression.codegen;
1793     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1794         return false;
1795
1796     cgen = self->right->expression.codegen;
1797     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1798         return false;
1799
1800     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1801                                  self->op, left, right);
1802     if (!*out)
1803         return false;
1804     self->expression.outr = *out;
1805
1806     return true;
1807 }
1808
1809 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1810 {
1811     ast_expression_codegen *cgen;
1812     ir_value *leftl = NULL, *leftr, *right, *bin;
1813
1814     ast_value       *arr;
1815     ast_value       *idx = 0;
1816     ast_array_index *ai = NULL;
1817     ir_value        *iridx = NULL;
1818
1819     if (lvalue && self->expression.outl) {
1820         *out = self->expression.outl;
1821         return true;
1822     }
1823
1824     if (!lvalue && self->expression.outr) {
1825         *out = self->expression.outr;
1826         return true;
1827     }
1828
1829     if (ast_istype(self->dest, ast_array_index))
1830     {
1831
1832         ai = (ast_array_index*)self->dest;
1833         idx = (ast_value*)ai->index;
1834
1835         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1836             ai = NULL;
1837     }
1838
1839     /* for a binstore we need both an lvalue and an rvalue for the left side */
1840     /* rvalue of destination! */
1841     if (ai) {
1842         cgen = idx->expression.codegen;
1843         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1844             return false;
1845     }
1846     cgen = self->dest->expression.codegen;
1847     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1848         return false;
1849
1850     /* source as rvalue only */
1851     cgen = self->source->expression.codegen;
1852     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1853         return false;
1854
1855     /* now the binary */
1856     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1857                                 self->opbin, leftr, right);
1858     self->expression.outr = bin;
1859
1860
1861     if (ai) {
1862         /* we need to call the setter */
1863         ir_value  *funval;
1864         ir_instr  *call;
1865
1866         if (lvalue) {
1867             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1868             return false;
1869         }
1870
1871         arr = (ast_value*)ai->array;
1872         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1873             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1874             return false;
1875         }
1876
1877         cgen = arr->setter->expression.codegen;
1878         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1879             return false;
1880
1881         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1882         if (!call)
1883             return false;
1884         ir_call_param(call, iridx);
1885         ir_call_param(call, bin);
1886         self->expression.outr = bin;
1887     } else {
1888         /* now store them */
1889         cgen = self->dest->expression.codegen;
1890         /* lvalue of destination */
1891         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1892             return false;
1893         self->expression.outl = leftl;
1894
1895         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1896             return false;
1897         self->expression.outr = bin;
1898     }
1899
1900     /* Theoretically, an assinment returns its left side as an
1901      * lvalue, if we don't need an lvalue though, we return
1902      * the right side as an rvalue, otherwise we have to
1903      * somehow know whether or not we need to dereference the pointer
1904      * on the left side - that is: OP_LOAD if it was an address.
1905      * Also: in original QC we cannot OP_LOADP *anyway*.
1906      */
1907     *out = (lvalue ? leftl : bin);
1908
1909     return true;
1910 }
1911
1912 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1913 {
1914     ast_expression_codegen *cgen;
1915     ir_value *operand;
1916
1917     /* An unary operation cannot yield an l-value */
1918     if (lvalue) {
1919         compile_error(ast_ctx(self), "not an l-value (binop)");
1920         return false;
1921     }
1922
1923     if (self->expression.outr) {
1924         *out = self->expression.outr;
1925         return true;
1926     }
1927
1928     cgen = self->operand->expression.codegen;
1929     /* lvalue! */
1930     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1931         return false;
1932
1933     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1934                                  self->op, operand);
1935     if (!*out)
1936         return false;
1937     self->expression.outr = *out;
1938
1939     return true;
1940 }
1941
1942 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1943 {
1944     ast_expression_codegen *cgen;
1945     ir_value *operand;
1946
1947     *out = NULL;
1948
1949     /* In the context of a return operation, we don't actually return
1950      * anything...
1951      */
1952     if (lvalue) {
1953         compile_error(ast_ctx(self), "return-expression is not an l-value");
1954         return false;
1955     }
1956
1957     if (self->expression.outr) {
1958         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1959         return false;
1960     }
1961     self->expression.outr = (ir_value*)1;
1962
1963     if (self->operand) {
1964         cgen = self->operand->expression.codegen;
1965         /* lvalue! */
1966         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1967             return false;
1968
1969         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1970             return false;
1971     } else {
1972         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1973             return false;
1974     }
1975
1976     return true;
1977 }
1978
1979 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1980 {
1981     ast_expression_codegen *cgen;
1982     ir_value *ent, *field;
1983
1984     /* This function needs to take the 'lvalue' flag into account!
1985      * As lvalue we provide a field-pointer, as rvalue we provide the
1986      * value in a temp.
1987      */
1988
1989     if (lvalue && self->expression.outl) {
1990         *out = self->expression.outl;
1991         return true;
1992     }
1993
1994     if (!lvalue && self->expression.outr) {
1995         *out = self->expression.outr;
1996         return true;
1997     }
1998
1999     cgen = self->entity->expression.codegen;
2000     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2001         return false;
2002
2003     cgen = self->field->expression.codegen;
2004     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2005         return false;
2006
2007     if (lvalue) {
2008         /* address! */
2009         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2010                                             ent, field);
2011     } else {
2012         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2013                                              ent, field, self->expression.vtype);
2014         /* Done AFTER error checking: 
2015         codegen_output_type(self, *out);
2016         */
2017     }
2018     if (!*out) {
2019         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2020                  (lvalue ? "ADDRESS" : "FIELD"),
2021                  type_name[self->expression.vtype]);
2022         return false;
2023     }
2024     if (!lvalue)
2025         codegen_output_type(self, *out);
2026
2027     if (lvalue)
2028         self->expression.outl = *out;
2029     else
2030         self->expression.outr = *out;
2031
2032     /* Hm that should be it... */
2033     return true;
2034 }
2035
2036 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2037 {
2038     ast_expression_codegen *cgen;
2039     ir_value *vec;
2040
2041     /* in QC this is always an lvalue */
2042     (void)lvalue;
2043     if (self->expression.outl) {
2044         *out = self->expression.outl;
2045         return true;
2046     }
2047
2048     cgen = self->owner->expression.codegen;
2049     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2050         return false;
2051
2052     if (vec->vtype != TYPE_VECTOR &&
2053         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2054     {
2055         return false;
2056     }
2057
2058     *out = ir_value_vector_member(vec, self->field);
2059     self->expression.outl = *out;
2060
2061     return (*out != NULL);
2062 }
2063
2064 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2065 {
2066     ast_value *arr;
2067     ast_value *idx;
2068
2069     if (!lvalue && self->expression.outr) {
2070         *out = self->expression.outr;
2071     }
2072     if (lvalue && self->expression.outl) {
2073         *out = self->expression.outl;
2074     }
2075
2076     if (!ast_istype(self->array, ast_value)) {
2077         compile_error(ast_ctx(self), "array indexing this way is not supported");
2078         /* note this would actually be pointer indexing because the left side is
2079          * not an actual array but (hopefully) an indexable expression.
2080          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2081          * support this path will be filled.
2082          */
2083         return false;
2084     }
2085
2086     arr = (ast_value*)self->array;
2087     idx = (ast_value*)self->index;
2088
2089     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2090         /* Time to use accessor functions */
2091         ast_expression_codegen *cgen;
2092         ir_value               *iridx, *funval;
2093         ir_instr               *call;
2094
2095         if (lvalue) {
2096             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2097             return false;
2098         }
2099
2100         if (!arr->getter) {
2101             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2102             return false;
2103         }
2104
2105         cgen = self->index->expression.codegen;
2106         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2107             return false;
2108
2109         cgen = arr->getter->expression.codegen;
2110         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2111             return false;
2112
2113         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2114         if (!call)
2115             return false;
2116         ir_call_param(call, iridx);
2117
2118         *out = ir_call_value(call);
2119         self->expression.outr = *out;
2120         return true;
2121     }
2122
2123     if (idx->expression.vtype == TYPE_FLOAT) {
2124         unsigned int arridx = idx->constval.vfloat;
2125         if (arridx >= self->array->expression.count)
2126         {
2127             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2128             return false;
2129         }
2130         *out = arr->ir_values[arridx];
2131     }
2132     else if (idx->expression.vtype == TYPE_INTEGER) {
2133         unsigned int arridx = idx->constval.vint;
2134         if (arridx >= self->array->expression.count)
2135         {
2136             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2137             return false;
2138         }
2139         *out = arr->ir_values[arridx];
2140     }
2141     else {
2142         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2143         return false;
2144     }
2145     return true;
2146 }
2147
2148 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2149 {
2150     ast_expression_codegen *cgen;
2151
2152     ir_value *condval;
2153     ir_value *dummy;
2154
2155     ir_block *cond;
2156     ir_block *ontrue;
2157     ir_block *onfalse;
2158     ir_block *ontrue_endblock = NULL;
2159     ir_block *onfalse_endblock = NULL;
2160     ir_block *merge = NULL;
2161
2162     /* We don't output any value, thus also don't care about r/lvalue */
2163     (void)out;
2164     (void)lvalue;
2165
2166     if (self->expression.outr) {
2167         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2168         return false;
2169     }
2170     self->expression.outr = (ir_value*)1;
2171
2172     /* generate the condition */
2173     cgen = self->cond->expression.codegen;
2174     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2175         return false;
2176     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2177     cond = func->curblock;
2178
2179     /* on-true path */
2180
2181     if (self->on_true) {
2182         /* create on-true block */
2183         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2184         if (!ontrue)
2185             return false;
2186
2187         /* enter the block */
2188         func->curblock = ontrue;
2189
2190         /* generate */
2191         cgen = self->on_true->expression.codegen;
2192         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2193             return false;
2194
2195         /* we now need to work from the current endpoint */
2196         ontrue_endblock = func->curblock;
2197     } else
2198         ontrue = NULL;
2199
2200     /* on-false path */
2201     if (self->on_false) {
2202         /* create on-false block */
2203         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2204         if (!onfalse)
2205             return false;
2206
2207         /* enter the block */
2208         func->curblock = onfalse;
2209
2210         /* generate */
2211         cgen = self->on_false->expression.codegen;
2212         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2213             return false;
2214
2215         /* we now need to work from the current endpoint */
2216         onfalse_endblock = func->curblock;
2217     } else
2218         onfalse = NULL;
2219
2220     /* Merge block were they all merge in to */
2221     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2222     {
2223         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2224         if (!merge)
2225             return false;
2226         /* add jumps ot the merge block */
2227         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2228             return false;
2229         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2230             return false;
2231
2232         /* Now enter the merge block */
2233         func->curblock = merge;
2234     }
2235
2236     /* we create the if here, that way all blocks are ordered :)
2237      */
2238     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2239                             (ontrue  ? ontrue  : merge),
2240                             (onfalse ? onfalse : merge)))
2241     {
2242         return false;
2243     }
2244
2245     return true;
2246 }
2247
2248 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2249 {
2250     ast_expression_codegen *cgen;
2251
2252     ir_value *condval;
2253     ir_value *trueval, *falseval;
2254     ir_instr *phi;
2255
2256     ir_block *cond = func->curblock;
2257     ir_block *cond_out = NULL;
2258     ir_block *ontrue, *ontrue_out = NULL;
2259     ir_block *onfalse, *onfalse_out = NULL;
2260     ir_block *merge;
2261
2262     /* Ternary can never create an lvalue... */
2263     if (lvalue)
2264         return false;
2265
2266     /* In theory it shouldn't be possible to pass through a node twice, but
2267      * in case we add any kind of optimization pass for the AST itself, it
2268      * may still happen, thus we remember a created ir_value and simply return one
2269      * if it already exists.
2270      */
2271     if (self->expression.outr) {
2272         *out = self->expression.outr;
2273         return true;
2274     }
2275
2276     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2277
2278     /* generate the condition */
2279     func->curblock = cond;
2280     cgen = self->cond->expression.codegen;
2281     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2282         return false;
2283     cond_out = func->curblock;
2284
2285     /* create on-true block */
2286     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2287     if (!ontrue)
2288         return false;
2289     else
2290     {
2291         /* enter the block */
2292         func->curblock = ontrue;
2293
2294         /* generate */
2295         cgen = self->on_true->expression.codegen;
2296         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2297             return false;
2298
2299         ontrue_out = func->curblock;
2300     }
2301
2302     /* create on-false block */
2303     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2304     if (!onfalse)
2305         return false;
2306     else
2307     {
2308         /* enter the block */
2309         func->curblock = onfalse;
2310
2311         /* generate */
2312         cgen = self->on_false->expression.codegen;
2313         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2314             return false;
2315
2316         onfalse_out = func->curblock;
2317     }
2318
2319     /* create merge block */
2320     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2321     if (!merge)
2322         return false;
2323     /* jump to merge block */
2324     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2325         return false;
2326     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2327         return false;
2328
2329     /* create if instruction */
2330     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2331         return false;
2332
2333     /* Now enter the merge block */
2334     func->curblock = merge;
2335
2336     /* Here, now, we need a PHI node
2337      * but first some sanity checking...
2338      */
2339     if (trueval->vtype != falseval->vtype) {
2340         /* error("ternary with different types on the two sides"); */
2341         return false;
2342     }
2343
2344     /* create PHI */
2345     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2346     if (!phi)
2347         return false;
2348     ir_phi_add(phi, ontrue_out,  trueval);
2349     ir_phi_add(phi, onfalse_out, falseval);
2350
2351     self->expression.outr = ir_phi_value(phi);
2352     *out = self->expression.outr;
2353
2354     codegen_output_type(self, *out);
2355
2356     return true;
2357 }
2358
2359 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2360 {
2361     ast_expression_codegen *cgen;
2362
2363     ir_value *dummy      = NULL;
2364     ir_value *precond    = NULL;
2365     ir_value *postcond   = NULL;
2366
2367     /* Since we insert some jumps "late" so we have blocks
2368      * ordered "nicely", we need to keep track of the actual end-blocks
2369      * of expressions to add the jumps to.
2370      */
2371     ir_block *bbody      = NULL, *end_bbody      = NULL;
2372     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2373     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2374     ir_block *bincrement = NULL, *end_bincrement = NULL;
2375     ir_block *bout       = NULL, *bin            = NULL;
2376
2377     /* let's at least move the outgoing block to the end */
2378     size_t    bout_id;
2379
2380     /* 'break' and 'continue' need to be able to find the right blocks */
2381     ir_block *bcontinue     = NULL;
2382     ir_block *bbreak        = NULL;
2383
2384     ir_block *old_bcontinue = NULL;
2385     ir_block *old_bbreak    = NULL;
2386
2387     ir_block *tmpblock      = NULL;
2388
2389     (void)lvalue;
2390     (void)out;
2391
2392     if (self->expression.outr) {
2393         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2394         return false;
2395     }
2396     self->expression.outr = (ir_value*)1;
2397
2398     /* NOTE:
2399      * Should we ever need some kind of block ordering, better make this function
2400      * move blocks around than write a block ordering algorithm later... after all
2401      * the ast and ir should work together, not against each other.
2402      */
2403
2404     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2405      * anyway if for example it contains a ternary.
2406      */
2407     if (self->initexpr)
2408     {
2409         cgen = self->initexpr->expression.codegen;
2410         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2411             return false;
2412     }
2413
2414     /* Store the block from which we enter this chaos */
2415     bin = func->curblock;
2416
2417     /* The pre-loop condition needs its own block since we
2418      * need to be able to jump to the start of that expression.
2419      */
2420     if (self->precond)
2421     {
2422         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2423         if (!bprecond)
2424             return false;
2425
2426         /* the pre-loop-condition the least important place to 'continue' at */
2427         bcontinue = bprecond;
2428
2429         /* enter */
2430         func->curblock = bprecond;
2431
2432         /* generate */
2433         cgen = self->precond->expression.codegen;
2434         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2435             return false;
2436
2437         end_bprecond = func->curblock;
2438     } else {
2439         bprecond = end_bprecond = NULL;
2440     }
2441
2442     /* Now the next blocks won't be ordered nicely, but we need to
2443      * generate them this early for 'break' and 'continue'.
2444      */
2445     if (self->increment) {
2446         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2447         if (!bincrement)
2448             return false;
2449         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2450     } else {
2451         bincrement = end_bincrement = NULL;
2452     }
2453
2454     if (self->postcond) {
2455         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2456         if (!bpostcond)
2457             return false;
2458         bcontinue = bpostcond; /* postcond comes before the increment */
2459     } else {
2460         bpostcond = end_bpostcond = NULL;
2461     }
2462
2463     bout_id = vec_size(func->ir_func->blocks);
2464     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2465     if (!bout)
2466         return false;
2467     bbreak = bout;
2468
2469     /* The loop body... */
2470     /* if (self->body) */
2471     {
2472         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2473         if (!bbody)
2474             return false;
2475
2476         /* enter */
2477         func->curblock = bbody;
2478
2479         old_bbreak          = func->breakblock;
2480         old_bcontinue       = func->continueblock;
2481         func->breakblock    = bbreak;
2482         func->continueblock = bcontinue;
2483         if (!func->continueblock)
2484             func->continueblock = bbody;
2485
2486         /* generate */
2487         if (self->body) {
2488             cgen = self->body->expression.codegen;
2489             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2490                 return false;
2491         }
2492
2493         end_bbody = func->curblock;
2494         func->breakblock    = old_bbreak;
2495         func->continueblock = old_bcontinue;
2496     }
2497
2498     /* post-loop-condition */
2499     if (self->postcond)
2500     {
2501         /* enter */
2502         func->curblock = bpostcond;
2503
2504         /* generate */
2505         cgen = self->postcond->expression.codegen;
2506         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2507             return false;
2508
2509         end_bpostcond = func->curblock;
2510     }
2511
2512     /* The incrementor */
2513     if (self->increment)
2514     {
2515         /* enter */
2516         func->curblock = bincrement;
2517
2518         /* generate */
2519         cgen = self->increment->expression.codegen;
2520         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2521             return false;
2522
2523         end_bincrement = func->curblock;
2524     }
2525
2526     /* In any case now, we continue from the outgoing block */
2527     func->curblock = bout;
2528
2529     /* Now all blocks are in place */
2530     /* From 'bin' we jump to whatever comes first */
2531     if      (bprecond)   tmpblock = bprecond;
2532     else if (bbody)      tmpblock = bbody;
2533     else if (bpostcond)  tmpblock = bpostcond;
2534     else                 tmpblock = bout;
2535     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2536         return false;
2537
2538     /* From precond */
2539     if (bprecond)
2540     {
2541         ir_block *ontrue, *onfalse;
2542         if      (bbody)      ontrue = bbody;
2543         else if (bincrement) ontrue = bincrement;
2544         else if (bpostcond)  ontrue = bpostcond;
2545         else                 ontrue = bprecond;
2546         onfalse = bout;
2547         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2548             return false;
2549     }
2550
2551     /* from body */
2552     if (bbody)
2553     {
2554         if      (bincrement) tmpblock = bincrement;
2555         else if (bpostcond)  tmpblock = bpostcond;
2556         else if (bprecond)   tmpblock = bprecond;
2557         else                 tmpblock = bbody;
2558         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2559             return false;
2560     }
2561
2562     /* from increment */
2563     if (bincrement)
2564     {
2565         if      (bpostcond)  tmpblock = bpostcond;
2566         else if (bprecond)   tmpblock = bprecond;
2567         else if (bbody)      tmpblock = bbody;
2568         else                 tmpblock = bout;
2569         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2570             return false;
2571     }
2572
2573     /* from postcond */
2574     if (bpostcond)
2575     {
2576         ir_block *ontrue, *onfalse;
2577         if      (bprecond)   ontrue = bprecond;
2578         else if (bbody)      ontrue = bbody;
2579         else if (bincrement) ontrue = bincrement;
2580         else                 ontrue = bpostcond;
2581         onfalse = bout;
2582         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2583             return false;
2584     }
2585
2586     /* Move 'bout' to the end */
2587     vec_remove(func->ir_func->blocks, bout_id, 1);
2588     vec_push(func->ir_func->blocks, bout);
2589
2590     return true;
2591 }
2592
2593 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2594 {
2595     ir_block *target;
2596
2597     *out = NULL;
2598
2599     if (lvalue) {
2600         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2601         return false;
2602     }
2603
2604     if (self->expression.outr) {
2605         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2606         return false;
2607     }
2608     self->expression.outr = (ir_value*)1;
2609
2610     if (self->is_continue)
2611         target = func->continueblock;
2612     else
2613         target = func->breakblock;
2614
2615     if (!target) {
2616         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2617         return false;
2618     }
2619
2620     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2621         return false;
2622     return true;
2623 }
2624
2625 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2626 {
2627     ast_expression_codegen *cgen;
2628
2629     ast_switch_case *def_case     = NULL;
2630     ir_block        *def_bfall    = NULL;
2631     ir_block        *def_bfall_to = NULL;
2632     bool set_def_bfall_to = false;
2633
2634     ir_value *dummy     = NULL;
2635     ir_value *irop      = NULL;
2636     ir_block *old_break = NULL;
2637     ir_block *bout      = NULL;
2638     ir_block *bfall     = NULL;
2639     size_t    bout_id;
2640     size_t    c;
2641
2642     char      typestr[1024];
2643     uint16_t  cmpinstr;
2644
2645     if (lvalue) {
2646         compile_error(ast_ctx(self), "switch expression is not an l-value");
2647         return false;
2648     }
2649
2650     if (self->expression.outr) {
2651         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2652         return false;
2653     }
2654     self->expression.outr = (ir_value*)1;
2655
2656     (void)lvalue;
2657     (void)out;
2658
2659     cgen = self->operand->expression.codegen;
2660     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2661         return false;
2662
2663     if (!vec_size(self->cases))
2664         return true;
2665
2666     cmpinstr = type_eq_instr[irop->vtype];
2667     if (cmpinstr >= AINSTR_END) {
2668         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2669         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2670         return false;
2671     }
2672
2673     bout_id = vec_size(func->ir_func->blocks);
2674     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2675     if (!bout)
2676         return false;
2677
2678     /* setup the break block */
2679     old_break        = func->breakblock;
2680     func->breakblock = bout;
2681
2682     /* Now create all cases */
2683     for (c = 0; c < vec_size(self->cases); ++c) {
2684         ir_value *cond, *val;
2685         ir_block *bcase, *bnot;
2686         size_t bnot_id;
2687
2688         ast_switch_case *swcase = &self->cases[c];
2689
2690         if (swcase->value) {
2691             /* A regular case */
2692             /* generate the condition operand */
2693             cgen = swcase->value->expression.codegen;
2694             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2695                 return false;
2696             /* generate the condition */
2697             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2698             if (!cond)
2699                 return false;
2700
2701             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2702             bnot_id = vec_size(func->ir_func->blocks);
2703             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2704             if (!bcase || !bnot)
2705                 return false;
2706             if (set_def_bfall_to) {
2707                 set_def_bfall_to = false;
2708                 def_bfall_to = bcase;
2709             }
2710             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2711                 return false;
2712
2713             /* Make the previous case-end fall through */
2714             if (bfall && !bfall->final) {
2715                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2716                     return false;
2717             }
2718
2719             /* enter the case */
2720             func->curblock = bcase;
2721             cgen = swcase->code->expression.codegen;
2722             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2723                 return false;
2724
2725             /* remember this block to fall through from */
2726             bfall = func->curblock;
2727
2728             /* enter the else and move it down */
2729             func->curblock = bnot;
2730             vec_remove(func->ir_func->blocks, bnot_id, 1);
2731             vec_push(func->ir_func->blocks, bnot);
2732         } else {
2733             /* The default case */
2734             /* Remember where to fall through from: */
2735             def_bfall = bfall;
2736             bfall     = NULL;
2737             /* remember which case it was */
2738             def_case  = swcase;
2739             /* And the next case will be remembered */
2740             set_def_bfall_to = true;
2741         }
2742     }
2743
2744     /* Jump from the last bnot to bout */
2745     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2746         /*
2747         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2748         */
2749         return false;
2750     }
2751
2752     /* If there was a default case, put it down here */
2753     if (def_case) {
2754         ir_block *bcase;
2755
2756         /* No need to create an extra block */
2757         bcase = func->curblock;
2758
2759         /* Insert the fallthrough jump */
2760         if (def_bfall && !def_bfall->final) {
2761             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2762                 return false;
2763         }
2764
2765         /* Now generate the default code */
2766         cgen = def_case->code->expression.codegen;
2767         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2768             return false;
2769
2770         /* see if we need to fall through */
2771         if (def_bfall_to && !func->curblock->final)
2772         {
2773             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2774                 return false;
2775         }
2776     }
2777
2778     /* Jump from the last bnot to bout */
2779     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2780         return false;
2781     /* enter the outgoing block */
2782     func->curblock = bout;
2783
2784     /* restore the break block */
2785     func->breakblock = old_break;
2786
2787     /* Move 'bout' to the end, it's nicer */
2788     vec_remove(func->ir_func->blocks, bout_id, 1);
2789     vec_push(func->ir_func->blocks, bout);
2790
2791     return true;
2792 }
2793
2794 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2795 {
2796     size_t i;
2797     ir_value *dummy;
2798
2799     *out = NULL;
2800     if (lvalue) {
2801         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2802         return false;
2803     }
2804
2805     /* simply create a new block and jump to it */
2806     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2807     if (!self->irblock) {
2808         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2809         return false;
2810     }
2811     if (!func->curblock->final) {
2812         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2813             return false;
2814     }
2815
2816     /* enter the new block */
2817     func->curblock = self->irblock;
2818
2819     /* Generate all the leftover gotos */
2820     for (i = 0; i < vec_size(self->gotos); ++i) {
2821         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2822             return false;
2823     }
2824
2825     return true;
2826 }
2827
2828 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2829 {
2830     *out = NULL;
2831     if (lvalue) {
2832         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2833         return false;
2834     }
2835
2836     if (self->target->irblock) {
2837         if (self->irblock_from) {
2838             /* we already tried once, this is the callback */
2839             self->irblock_from->final = false;
2840             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2841                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2842                 return false;
2843             }
2844         }
2845         else
2846         {
2847             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2848                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2849                 return false;
2850             }
2851         }
2852     }
2853     else
2854     {
2855         /* the target has not yet been created...
2856          * close this block in a sneaky way:
2857          */
2858         func->curblock->final = true;
2859         self->irblock_from = func->curblock;
2860         ast_label_register_goto(self->target, self);
2861     }
2862
2863     return true;
2864 }
2865
2866 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2867 {
2868     ast_expression_codegen *cgen;
2869     ir_value              **params;
2870     ir_instr               *callinstr;
2871     size_t i;
2872
2873     ir_value *funval = NULL;
2874
2875     /* return values are never lvalues */
2876     if (lvalue) {
2877         compile_error(ast_ctx(self), "not an l-value (function call)");
2878         return false;
2879     }
2880
2881     if (self->expression.outr) {
2882         *out = self->expression.outr;
2883         return true;
2884     }
2885
2886     cgen = self->func->expression.codegen;
2887     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2888         return false;
2889     if (!funval)
2890         return false;
2891
2892     params = NULL;
2893
2894     /* parameters */
2895     for (i = 0; i < vec_size(self->params); ++i)
2896     {
2897         ir_value *param;
2898         ast_expression *expr = self->params[i];
2899
2900         cgen = expr->expression.codegen;
2901         if (!(*cgen)(expr, func, false, &param))
2902             goto error;
2903         if (!param)
2904             goto error;
2905         vec_push(params, param);
2906     }
2907
2908     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval, false);
2909     if (!callinstr)
2910         goto error;
2911
2912     for (i = 0; i < vec_size(params); ++i) {
2913         ir_call_param(callinstr, params[i]);
2914     }
2915
2916     *out = ir_call_value(callinstr);
2917     self->expression.outr = *out;
2918
2919     codegen_output_type(self, *out);
2920
2921     vec_free(params);
2922     return true;
2923 error:
2924     vec_free(params);
2925     return false;
2926 }