]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
additional info in an internal error
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.variadic = false;
75     self->expression.params   = NULL;
76 }
77
78 static void ast_expression_delete(ast_expression *self)
79 {
80     size_t i;
81     if (self->expression.next)
82         ast_delete(self->expression.next);
83     for (i = 0; i < vec_size(self->expression.params); ++i) {
84         ast_delete(self->expression.params[i]);
85     }
86     vec_free(self->expression.params);
87 }
88
89 static void ast_expression_delete_full(ast_expression *self)
90 {
91     ast_expression_delete(self);
92     mem_d(self);
93 }
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < vec_size(fromex->params); ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117         vec_push(selfex->params, v);
118     }
119     return cp;
120 }
121
122 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
123 {
124     size_t i;
125     const ast_expression_common *fromex;
126     ast_expression_common *selfex;
127     self->expression.vtype = other->expression.vtype;
128     if (other->expression.next) {
129         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
130         if (!self->expression.next)
131             return false;
132     }
133     fromex   = &other->expression;
134     selfex = &self->expression;
135     selfex->variadic = fromex->variadic;
136     for (i = 0; i < vec_size(fromex->params); ++i) {
137         ast_value *v = ast_value_copy(fromex->params[i]);
138         if (!v)
139             return false;
140         vec_push(selfex->params, v);
141     }
142     return true;
143 }
144
145 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
146 {
147     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
148     ast_expression_init(self, NULL);
149     self->expression.codegen = NULL;
150     self->expression.next    = NULL;
151     self->expression.vtype   = vtype;
152     return self;
153 }
154
155 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
156 {
157     size_t i;
158     const ast_expression_common *fromex;
159     ast_expression_common *selfex;
160
161     if (!ex)
162         return NULL;
163     else
164     {
165         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
166         ast_expression_init(self, NULL);
167
168         fromex   = &ex->expression;
169         selfex = &self->expression;
170
171         /* This may never be codegen()d */
172         selfex->codegen = NULL;
173
174         selfex->vtype = fromex->vtype;
175         if (fromex->next)
176         {
177             selfex->next = ast_type_copy(ctx, fromex->next);
178             if (!selfex->next) {
179                 ast_expression_delete_full(self);
180                 return NULL;
181             }
182         }
183         else
184             selfex->next = NULL;
185
186         selfex->variadic = fromex->variadic;
187         for (i = 0; i < vec_size(fromex->params); ++i) {
188             ast_value *v = ast_value_copy(fromex->params[i]);
189             if (!v) {
190                 ast_expression_delete_full(self);
191                 return NULL;
192             }
193             vec_push(selfex->params, v);
194         }
195
196         return self;
197     }
198 }
199
200 bool ast_compare_type(ast_expression *a, ast_expression *b)
201 {
202     if (a->expression.vtype != b->expression.vtype)
203         return false;
204     if (!a->expression.next != !b->expression.next)
205         return false;
206     if (vec_size(a->expression.params) != vec_size(b->expression.params))
207         return false;
208     if (a->expression.variadic != b->expression.variadic)
209         return false;
210     if (vec_size(a->expression.params)) {
211         size_t i;
212         for (i = 0; i < vec_size(a->expression.params); ++i) {
213             if (!ast_compare_type((ast_expression*)a->expression.params[i],
214                                   (ast_expression*)b->expression.params[i]))
215                 return false;
216         }
217     }
218     if (a->expression.next)
219         return ast_compare_type(a->expression.next, b->expression.next);
220     return true;
221 }
222
223 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
224 {
225     const char *typestr;
226     size_t typelen;
227     size_t i;
228
229     if (!e) {
230         if (pos + 6 >= bufsize)
231             goto full;
232         strcpy(buf + pos, "(null)");
233         return pos + 6;
234     }
235
236     if (pos + 1 >= bufsize)
237         goto full;
238
239     switch (e->expression.vtype) {
240         case TYPE_VARIANT:
241             strcpy(buf + pos, "(variant)");
242             return pos + 9;
243
244         case TYPE_FIELD:
245             buf[pos++] = '.';
246             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
247
248         case TYPE_POINTER:
249             if (pos + 3 >= bufsize)
250                 goto full;
251             buf[pos++] = '*';
252             buf[pos++] = '(';
253             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
254             if (pos + 1 >= bufsize)
255                 goto full;
256             buf[pos++] = ')';
257             return pos;
258
259         case TYPE_FUNCTION:
260             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
261             if (pos + 2 >= bufsize)
262                 goto full;
263             if (!vec_size(e->expression.params)) {
264                 buf[pos++] = '(';
265                 buf[pos++] = ')';
266                 return pos;
267             }
268             buf[pos++] = '(';
269             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
270             for (i = 1; i < vec_size(e->expression.params); ++i) {
271                 if (pos + 2 >= bufsize)
272                     goto full;
273                 buf[pos++] = ',';
274                 buf[pos++] = ' ';
275                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
276             }
277             if (pos + 1 >= bufsize)
278                 goto full;
279             buf[pos++] = ')';
280             return pos;
281
282         case TYPE_ARRAY:
283             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
284             if (pos + 1 >= bufsize)
285                 goto full;
286             buf[pos++] = '[';
287             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = ']';
291             return pos;
292
293         default:
294             typestr = type_name[e->expression.vtype];
295             typelen = strlen(typestr);
296             if (pos + typelen >= bufsize)
297                 goto full;
298             strcpy(buf + pos, typestr);
299             return pos + typelen;
300     }
301
302 full:
303     buf[bufsize-3] = '.';
304     buf[bufsize-2] = '.';
305     buf[bufsize-1] = '.';
306     return bufsize;
307 }
308
309 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
310 {
311     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
312     buf[pos] = 0;
313 }
314
315 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
316 {
317     ast_instantiate(ast_value, ctx, ast_value_delete);
318     ast_expression_init((ast_expression*)self,
319                         (ast_expression_codegen*)&ast_value_codegen);
320     self->expression.node.keep = true; /* keep */
321
322     self->name = name ? util_strdup(name) : NULL;
323     self->expression.vtype = t;
324     self->expression.next  = NULL;
325     self->cvq      = CV_NONE;
326     self->hasvalue = false;
327     self->uses    = 0;
328     memset(&self->constval, 0, sizeof(self->constval));
329
330     self->ir_v           = NULL;
331     self->ir_values      = NULL;
332     self->ir_value_count = 0;
333
334     self->setter = NULL;
335     self->getter = NULL;
336
337     return self;
338 }
339
340 void ast_value_delete(ast_value* self)
341 {
342     if (self->name)
343         mem_d((void*)self->name);
344     if (self->hasvalue) {
345         switch (self->expression.vtype)
346         {
347         case TYPE_STRING:
348             mem_d((void*)self->constval.vstring);
349             break;
350         case TYPE_FUNCTION:
351             /* unlink us from the function node */
352             self->constval.vfunc->vtype = NULL;
353             break;
354         /* NOTE: delete function? currently collected in
355          * the parser structure
356          */
357         default:
358             break;
359         }
360     }
361     if (self->ir_values)
362         mem_d(self->ir_values);
363     ast_expression_delete((ast_expression*)self);
364     mem_d(self);
365 }
366
367 void ast_value_params_add(ast_value *self, ast_value *p)
368 {
369     vec_push(self->expression.params, p);
370 }
371
372 bool ast_value_set_name(ast_value *self, const char *name)
373 {
374     if (self->name)
375         mem_d((void*)self->name);
376     self->name = util_strdup(name);
377     return !!self->name;
378 }
379
380 ast_binary* ast_binary_new(lex_ctx ctx, int op,
381                            ast_expression* left, ast_expression* right)
382 {
383     ast_instantiate(ast_binary, ctx, ast_binary_delete);
384     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
385
386     self->op = op;
387     self->left = left;
388     self->right = right;
389
390     ast_propagate_effects(self, left);
391     ast_propagate_effects(self, right);
392
393     if (op >= INSTR_EQ_F && op <= INSTR_GT)
394         self->expression.vtype = TYPE_FLOAT;
395     else if (op == INSTR_AND || op == INSTR_OR ||
396              op == INSTR_BITAND || op == INSTR_BITOR)
397         self->expression.vtype = TYPE_FLOAT;
398     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
399         self->expression.vtype = TYPE_VECTOR;
400     else if (op == INSTR_MUL_V)
401         self->expression.vtype = TYPE_FLOAT;
402     else
403         self->expression.vtype = left->expression.vtype;
404
405     return self;
406 }
407
408 void ast_binary_delete(ast_binary *self)
409 {
410     ast_unref(self->left);
411     ast_unref(self->right);
412     ast_expression_delete((ast_expression*)self);
413     mem_d(self);
414 }
415
416 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
417                                ast_expression* left, ast_expression* right)
418 {
419     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
420     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
421
422     ast_side_effects(self) = true;
423
424     self->opstore = storop;
425     self->opbin   = op;
426     self->dest    = left;
427     self->source  = right;
428
429     self->keep_dest = false;
430
431     self->expression.vtype = left->expression.vtype;
432     if (left->expression.next) {
433         self->expression.next = ast_type_copy(ctx, left);
434         if (!self->expression.next) {
435             ast_delete(self);
436             return NULL;
437         }
438     }
439     else
440         self->expression.next = NULL;
441
442     return self;
443 }
444
445 void ast_binstore_delete(ast_binstore *self)
446 {
447     if (!self->keep_dest)
448         ast_unref(self->dest);
449     ast_unref(self->source);
450     ast_expression_delete((ast_expression*)self);
451     mem_d(self);
452 }
453
454 ast_unary* ast_unary_new(lex_ctx ctx, int op,
455                          ast_expression *expr)
456 {
457     ast_instantiate(ast_unary, ctx, ast_unary_delete);
458     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
459
460     self->op = op;
461     self->operand = expr;
462
463     ast_propagate_effects(self, expr);
464
465     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
466         self->expression.vtype = TYPE_FLOAT;
467     } else
468         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
469
470     return self;
471 }
472
473 void ast_unary_delete(ast_unary *self)
474 {
475     ast_unref(self->operand);
476     ast_expression_delete((ast_expression*)self);
477     mem_d(self);
478 }
479
480 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
481 {
482     ast_instantiate(ast_return, ctx, ast_return_delete);
483     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
484
485     self->operand = expr;
486
487     if (expr)
488         ast_propagate_effects(self, expr);
489
490     return self;
491 }
492
493 void ast_return_delete(ast_return *self)
494 {
495     if (self->operand)
496         ast_unref(self->operand);
497     ast_expression_delete((ast_expression*)self);
498     mem_d(self);
499 }
500
501 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
502 {
503     if (field->expression.vtype != TYPE_FIELD) {
504         compile_error(ctx, "ast_entfield_new with expression not of type field");
505         return NULL;
506     }
507     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
508 }
509
510 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
511 {
512     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
513
514     if (!outtype) {
515         mem_d(self);
516         /* Error: field has no type... */
517         return NULL;
518     }
519
520     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
521
522     self->entity = entity;
523     self->field  = field;
524     ast_propagate_effects(self, entity);
525     ast_propagate_effects(self, field);
526
527     if (!ast_type_adopt(self, outtype)) {
528         ast_entfield_delete(self);
529         return NULL;
530     }
531
532     return self;
533 }
534
535 void ast_entfield_delete(ast_entfield *self)
536 {
537     ast_unref(self->entity);
538     ast_unref(self->field);
539     ast_expression_delete((ast_expression*)self);
540     mem_d(self);
541 }
542
543 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
544 {
545     ast_instantiate(ast_member, ctx, ast_member_delete);
546     if (field >= 3) {
547         mem_d(self);
548         return NULL;
549     }
550
551     if (owner->expression.vtype != TYPE_VECTOR &&
552         owner->expression.vtype != TYPE_FIELD) {
553         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
554         mem_d(self);
555         return NULL;
556     }
557
558     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
559     self->expression.node.keep = true; /* keep */
560
561     if (owner->expression.vtype == TYPE_VECTOR) {
562         self->expression.vtype = TYPE_FLOAT;
563         self->expression.next  = NULL;
564     } else {
565         self->expression.vtype = TYPE_FIELD;
566         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
567     }
568
569     self->owner = owner;
570     ast_propagate_effects(self, owner);
571
572     self->field = field;
573     if (name)
574         self->name = util_strdup(name);
575     else
576         self->name = NULL;
577
578     return self;
579 }
580
581 void ast_member_delete(ast_member *self)
582 {
583     /* The owner is always an ast_value, which has .keep=true,
584      * also: ast_members are usually deleted after the owner, thus
585      * this will cause invalid access
586     ast_unref(self->owner);
587      * once we allow (expression).x to access a vector-member, we need
588      * to change this: preferably by creating an alternate ast node for this
589      * purpose that is not garbage-collected.
590     */
591     ast_expression_delete((ast_expression*)self);
592     mem_d(self);
593 }
594
595 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
596 {
597     ast_expression *outtype;
598     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
599
600     outtype = array->expression.next;
601     if (!outtype) {
602         mem_d(self);
603         /* Error: field has no type... */
604         return NULL;
605     }
606
607     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
608
609     self->array = array;
610     self->index = index;
611     ast_propagate_effects(self, array);
612     ast_propagate_effects(self, index);
613
614     if (!ast_type_adopt(self, outtype)) {
615         ast_array_index_delete(self);
616         return NULL;
617     }
618     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
619         if (self->expression.vtype != TYPE_ARRAY) {
620             compile_error(ast_ctx(self), "array_index node on type");
621             ast_array_index_delete(self);
622             return NULL;
623         }
624         self->array = outtype;
625         self->expression.vtype = TYPE_FIELD;
626     }
627
628     return self;
629 }
630
631 void ast_array_index_delete(ast_array_index *self)
632 {
633     ast_unref(self->array);
634     ast_unref(self->index);
635     ast_expression_delete((ast_expression*)self);
636     mem_d(self);
637 }
638
639 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
640 {
641     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
642     if (!ontrue && !onfalse) {
643         /* because it is invalid */
644         mem_d(self);
645         return NULL;
646     }
647     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
648
649     self->cond     = cond;
650     self->on_true  = ontrue;
651     self->on_false = onfalse;
652     ast_propagate_effects(self, cond);
653     if (ontrue)
654         ast_propagate_effects(self, ontrue);
655     if (onfalse)
656         ast_propagate_effects(self, onfalse);
657
658     return self;
659 }
660
661 void ast_ifthen_delete(ast_ifthen *self)
662 {
663     ast_unref(self->cond);
664     if (self->on_true)
665         ast_unref(self->on_true);
666     if (self->on_false)
667         ast_unref(self->on_false);
668     ast_expression_delete((ast_expression*)self);
669     mem_d(self);
670 }
671
672 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
673 {
674     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
675     /* This time NEITHER must be NULL */
676     if (!ontrue || !onfalse) {
677         mem_d(self);
678         return NULL;
679     }
680     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
681
682     self->cond     = cond;
683     self->on_true  = ontrue;
684     self->on_false = onfalse;
685     ast_propagate_effects(self, cond);
686     ast_propagate_effects(self, ontrue);
687     ast_propagate_effects(self, onfalse);
688
689     if (!ast_type_adopt(self, ontrue)) {
690         ast_ternary_delete(self);
691         return NULL;
692     }
693
694     return self;
695 }
696
697 void ast_ternary_delete(ast_ternary *self)
698 {
699     ast_unref(self->cond);
700     ast_unref(self->on_true);
701     ast_unref(self->on_false);
702     ast_expression_delete((ast_expression*)self);
703     mem_d(self);
704 }
705
706 ast_loop* ast_loop_new(lex_ctx ctx,
707                        ast_expression *initexpr,
708                        ast_expression *precond,
709                        ast_expression *postcond,
710                        ast_expression *increment,
711                        ast_expression *body)
712 {
713     ast_instantiate(ast_loop, ctx, ast_loop_delete);
714     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
715
716     self->initexpr  = initexpr;
717     self->precond   = precond;
718     self->postcond  = postcond;
719     self->increment = increment;
720     self->body      = body;
721
722     if (initexpr)
723         ast_propagate_effects(self, initexpr);
724     if (precond)
725         ast_propagate_effects(self, precond);
726     if (postcond)
727         ast_propagate_effects(self, postcond);
728     if (increment)
729         ast_propagate_effects(self, increment);
730     if (body)
731         ast_propagate_effects(self, body);
732
733     return self;
734 }
735
736 void ast_loop_delete(ast_loop *self)
737 {
738     if (self->initexpr)
739         ast_unref(self->initexpr);
740     if (self->precond)
741         ast_unref(self->precond);
742     if (self->postcond)
743         ast_unref(self->postcond);
744     if (self->increment)
745         ast_unref(self->increment);
746     if (self->body)
747         ast_unref(self->body);
748     ast_expression_delete((ast_expression*)self);
749     mem_d(self);
750 }
751
752 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
753 {
754     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
755     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
756
757     self->is_continue = iscont;
758
759     return self;
760 }
761
762 void ast_breakcont_delete(ast_breakcont *self)
763 {
764     ast_expression_delete((ast_expression*)self);
765     mem_d(self);
766 }
767
768 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
769 {
770     ast_instantiate(ast_switch, ctx, ast_switch_delete);
771     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
772
773     self->operand = op;
774     self->cases   = NULL;
775
776     ast_propagate_effects(self, op);
777
778     return self;
779 }
780
781 void ast_switch_delete(ast_switch *self)
782 {
783     size_t i;
784     ast_unref(self->operand);
785
786     for (i = 0; i < vec_size(self->cases); ++i) {
787         if (self->cases[i].value)
788             ast_unref(self->cases[i].value);
789         ast_unref(self->cases[i].code);
790     }
791     vec_free(self->cases);
792
793     ast_expression_delete((ast_expression*)self);
794     mem_d(self);
795 }
796
797 ast_label* ast_label_new(lex_ctx ctx, const char *name)
798 {
799     ast_instantiate(ast_label, ctx, ast_label_delete);
800     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
801
802     self->name    = util_strdup(name);
803     self->irblock = NULL;
804     self->gotos   = NULL;
805
806     return self;
807 }
808
809 void ast_label_delete(ast_label *self)
810 {
811     mem_d((void*)self->name);
812     vec_free(self->gotos);
813     ast_expression_delete((ast_expression*)self);
814     mem_d(self);
815 }
816
817 void ast_label_register_goto(ast_label *self, ast_goto *g)
818 {
819     vec_push(self->gotos, g);
820 }
821
822 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
823 {
824     ast_instantiate(ast_goto, ctx, ast_goto_delete);
825     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
826
827     self->name    = util_strdup(name);
828     self->target  = NULL;
829     self->irblock_from = NULL;
830
831     return self;
832 }
833
834 void ast_goto_delete(ast_goto *self)
835 {
836     mem_d((void*)self->name);
837     ast_expression_delete((ast_expression*)self);
838     mem_d(self);
839 }
840
841 void ast_goto_set_label(ast_goto *self, ast_label *label)
842 {
843     self->target = label;
844 }
845
846 ast_call* ast_call_new(lex_ctx ctx,
847                        ast_expression *funcexpr)
848 {
849     ast_instantiate(ast_call, ctx, ast_call_delete);
850     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
851
852     ast_side_effects(self) = true;
853
854     self->params = NULL;
855     self->func   = funcexpr;
856
857     self->expression.vtype = funcexpr->expression.next->expression.vtype;
858     if (funcexpr->expression.next->expression.next)
859         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
860
861     return self;
862 }
863
864 void ast_call_delete(ast_call *self)
865 {
866     size_t i;
867     for (i = 0; i < vec_size(self->params); ++i)
868         ast_unref(self->params[i]);
869     vec_free(self->params);
870
871     if (self->func)
872         ast_unref(self->func);
873
874     ast_expression_delete((ast_expression*)self);
875     mem_d(self);
876 }
877
878 bool ast_call_check_types(ast_call *self)
879 {
880     size_t i;
881     bool   retval = true;
882     const  ast_expression *func = self->func;
883     size_t count = vec_size(self->params);
884     if (count > vec_size(func->expression.params))
885         count = vec_size(func->expression.params);
886
887     for (i = 0; i < count; ++i) {
888         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
889             char texp[1024];
890             char tgot[1024];
891             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
892             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
893             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
894                      (unsigned int)(i+1), texp, tgot);
895             /* we don't immediately return */
896             retval = false;
897         }
898     }
899     return retval;
900 }
901
902 ast_store* ast_store_new(lex_ctx ctx, int op,
903                          ast_expression *dest, ast_expression *source)
904 {
905     ast_instantiate(ast_store, ctx, ast_store_delete);
906     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
907
908     ast_side_effects(self) = true;
909
910     self->op = op;
911     self->dest = dest;
912     self->source = source;
913
914     self->expression.vtype = dest->expression.vtype;
915     if (dest->expression.next) {
916         self->expression.next = ast_type_copy(ctx, dest);
917         if (!self->expression.next) {
918             ast_delete(self);
919             return NULL;
920         }
921     }
922     else
923         self->expression.next = NULL;
924
925     return self;
926 }
927
928 void ast_store_delete(ast_store *self)
929 {
930     ast_unref(self->dest);
931     ast_unref(self->source);
932     ast_expression_delete((ast_expression*)self);
933     mem_d(self);
934 }
935
936 ast_block* ast_block_new(lex_ctx ctx)
937 {
938     ast_instantiate(ast_block, ctx, ast_block_delete);
939     ast_expression_init((ast_expression*)self,
940                         (ast_expression_codegen*)&ast_block_codegen);
941
942     self->locals  = NULL;
943     self->exprs   = NULL;
944     self->collect = NULL;
945
946     return self;
947 }
948
949 void ast_block_add_expr(ast_block *self, ast_expression *e)
950 {
951     ast_propagate_effects(self, e);
952     vec_push(self->exprs, e);
953 }
954
955 void ast_block_collect(ast_block *self, ast_expression *expr)
956 {
957     vec_push(self->collect, expr);
958     expr->expression.node.keep = true;
959 }
960
961 void ast_block_delete(ast_block *self)
962 {
963     size_t i;
964     for (i = 0; i < vec_size(self->exprs); ++i)
965         ast_unref(self->exprs[i]);
966     vec_free(self->exprs);
967     for (i = 0; i < vec_size(self->locals); ++i)
968         ast_delete(self->locals[i]);
969     vec_free(self->locals);
970     for (i = 0; i < vec_size(self->collect); ++i)
971         ast_delete(self->collect[i]);
972     vec_free(self->collect);
973     ast_expression_delete((ast_expression*)self);
974     mem_d(self);
975 }
976
977 bool ast_block_set_type(ast_block *self, ast_expression *from)
978 {
979     if (self->expression.next)
980         ast_delete(self->expression.next);
981     self->expression.vtype = from->expression.vtype;
982     if (from->expression.next) {
983         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
984         if (!self->expression.next)
985             return false;
986     }
987     else
988         self->expression.next = NULL;
989     return true;
990 }
991
992 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
993 {
994     ast_instantiate(ast_function, ctx, ast_function_delete);
995
996     if (!vtype ||
997         vtype->hasvalue ||
998         vtype->expression.vtype != TYPE_FUNCTION)
999     {
1000         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1001                  (int)!vtype,
1002                  (int)vtype->hasvalue,
1003                  vtype->expression.vtype);
1004         mem_d(self);
1005         return NULL;
1006     }
1007
1008     self->vtype  = vtype;
1009     self->name   = name ? util_strdup(name) : NULL;
1010     self->blocks = NULL;
1011
1012     self->labelcount = 0;
1013     self->builtin = 0;
1014
1015     self->ir_func = NULL;
1016     self->curblock = NULL;
1017
1018     self->breakblock    = NULL;
1019     self->continueblock = NULL;
1020
1021     vtype->hasvalue = true;
1022     vtype->constval.vfunc = self;
1023
1024     return self;
1025 }
1026
1027 void ast_function_delete(ast_function *self)
1028 {
1029     size_t i;
1030     if (self->name)
1031         mem_d((void*)self->name);
1032     if (self->vtype) {
1033         /* ast_value_delete(self->vtype); */
1034         self->vtype->hasvalue = false;
1035         self->vtype->constval.vfunc = NULL;
1036         /* We use unref - if it was stored in a global table it is supposed
1037          * to be deleted from *there*
1038          */
1039         ast_unref(self->vtype);
1040     }
1041     for (i = 0; i < vec_size(self->blocks); ++i)
1042         ast_delete(self->blocks[i]);
1043     vec_free(self->blocks);
1044     mem_d(self);
1045 }
1046
1047 const char* ast_function_label(ast_function *self, const char *prefix)
1048 {
1049     size_t id;
1050     size_t len;
1051     char  *from;
1052
1053     if (!opts_dump && !opts_dumpfin)
1054         return NULL;
1055
1056     id  = (self->labelcount++);
1057     len = strlen(prefix);
1058
1059     from = self->labelbuf + sizeof(self->labelbuf)-1;
1060     *from-- = 0;
1061     do {
1062         unsigned int digit = id % 10;
1063         *from = digit + '0';
1064         id /= 10;
1065     } while (id);
1066     memcpy(from - len, prefix, len);
1067     return from - len;
1068 }
1069
1070 /*********************************************************************/
1071 /* AST codegen part
1072  * by convention you must never pass NULL to the 'ir_value **out'
1073  * parameter. If you really don't care about the output, pass a dummy.
1074  * But I can't imagine a pituation where the output is truly unnecessary.
1075  */
1076
1077 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1078 {
1079     (void)func;
1080     (void)lvalue;
1081     /* NOTE: This is the codegen for a variable used in an expression.
1082      * It is not the codegen to generate the value. For this purpose,
1083      * ast_local_codegen and ast_global_codegen are to be used before this
1084      * is executed. ast_function_codegen should take care of its locals,
1085      * and the ast-user should take care of ast_global_codegen to be used
1086      * on all the globals.
1087      */
1088     if (!self->ir_v) {
1089         char typename[1024];
1090         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
1091         compile_error(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
1092         return false;
1093     }
1094     *out = self->ir_v;
1095     return true;
1096 }
1097
1098 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1099 {
1100     ir_value *v = NULL;
1101
1102     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1103     {
1104         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1105         if (!func)
1106             return false;
1107         func->context = ast_ctx(self);
1108         func->value->context = ast_ctx(self);
1109
1110         self->constval.vfunc->ir_func = func;
1111         self->ir_v = func->value;
1112         /* The function is filled later on ast_function_codegen... */
1113         return true;
1114     }
1115
1116     if (isfield && self->expression.vtype == TYPE_FIELD) {
1117         ast_expression *fieldtype = self->expression.next;
1118
1119         if (self->hasvalue) {
1120             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1121             goto error;
1122         }
1123
1124         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1125             size_t ai;
1126             char   *name;
1127             size_t  namelen;
1128
1129             ast_expression_common *elemtype;
1130             int                    vtype;
1131             ast_value             *array = (ast_value*)fieldtype;
1132
1133             if (!ast_istype(fieldtype, ast_value)) {
1134                 compile_error(ast_ctx(self), "internal error: ast_value required");
1135                 return false;
1136             }
1137
1138             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1139             if (!array->expression.count || array->expression.count > opts_max_array_size)
1140                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1141
1142             elemtype = &array->expression.next->expression;
1143             vtype = elemtype->vtype;
1144
1145             v = ir_builder_create_field(ir, self->name, vtype);
1146             if (!v) {
1147                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1148                 return false;
1149             }
1150             if (vtype == TYPE_FIELD)
1151                 v->fieldtype = elemtype->next->expression.vtype;
1152             v->context = ast_ctx(self);
1153             array->ir_v = self->ir_v = v;
1154
1155             namelen = strlen(self->name);
1156             name    = (char*)mem_a(namelen + 16);
1157             strcpy(name, self->name);
1158
1159             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1160             array->ir_values[0] = v;
1161             for (ai = 1; ai < array->expression.count; ++ai) {
1162                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1163                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1164                 if (!array->ir_values[ai]) {
1165                     mem_d(name);
1166                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1167                     return false;
1168                 }
1169                 if (vtype == TYPE_FIELD)
1170                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1171                 array->ir_values[ai]->context = ast_ctx(self);
1172             }
1173             mem_d(name);
1174         }
1175         else
1176         {
1177             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1178             if (!v)
1179                 return false;
1180             v->context = ast_ctx(self);
1181             self->ir_v = v;
1182         }
1183         return true;
1184     }
1185
1186     if (self->expression.vtype == TYPE_ARRAY) {
1187         size_t ai;
1188         char   *name;
1189         size_t  namelen;
1190
1191         ast_expression_common *elemtype = &self->expression.next->expression;
1192         int vtype = elemtype->vtype;
1193
1194         /* same as with field arrays */
1195         if (!self->expression.count || self->expression.count > opts_max_array_size)
1196             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1197
1198         v = ir_builder_create_global(ir, self->name, vtype);
1199         if (!v) {
1200             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1201             return false;
1202         }
1203         if (vtype == TYPE_FIELD)
1204             v->fieldtype = elemtype->next->expression.vtype;
1205         v->context = ast_ctx(self);
1206
1207         namelen = strlen(self->name);
1208         name    = (char*)mem_a(namelen + 16);
1209         strcpy(name, self->name);
1210
1211         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1212         self->ir_values[0] = v;
1213         for (ai = 1; ai < self->expression.count; ++ai) {
1214             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1215             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1216             if (!self->ir_values[ai]) {
1217                 mem_d(name);
1218                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1219                 return false;
1220             }
1221             if (vtype == TYPE_FIELD)
1222                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1223             self->ir_values[ai]->context = ast_ctx(self);
1224         }
1225         mem_d(name);
1226     }
1227     else
1228     {
1229         /* Arrays don't do this since there's no "array" value which spans across the
1230          * whole thing.
1231          */
1232         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1233         if (!v) {
1234             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1235             return false;
1236         }
1237         if (self->expression.vtype == TYPE_FIELD)
1238             v->fieldtype = self->expression.next->expression.vtype;
1239         v->context = ast_ctx(self);
1240     }
1241
1242     if (self->hasvalue) {
1243         switch (self->expression.vtype)
1244         {
1245             case TYPE_FLOAT:
1246                 if (!ir_value_set_float(v, self->constval.vfloat))
1247                     goto error;
1248                 break;
1249             case TYPE_VECTOR:
1250                 if (!ir_value_set_vector(v, self->constval.vvec))
1251                     goto error;
1252                 break;
1253             case TYPE_STRING:
1254                 if (!ir_value_set_string(v, self->constval.vstring))
1255                     goto error;
1256                 break;
1257             case TYPE_ARRAY:
1258                 compile_error(ast_ctx(self), "TODO: global constant array");
1259                 break;
1260             case TYPE_FUNCTION:
1261                 compile_error(ast_ctx(self), "global of type function not properly generated");
1262                 goto error;
1263                 /* Cannot generate an IR value for a function,
1264                  * need a pointer pointing to a function rather.
1265                  */
1266             default:
1267                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1268                 break;
1269         }
1270     }
1271
1272     /* link us to the ir_value */
1273     v->cvq = self->cvq;
1274     self->ir_v = v;
1275     return true;
1276
1277 error: /* clean up */
1278     ir_value_delete(v);
1279     return false;
1280 }
1281
1282 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1283 {
1284     ir_value *v = NULL;
1285     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1286     {
1287         /* Do we allow local functions? I think not...
1288          * this is NOT a function pointer atm.
1289          */
1290         return false;
1291     }
1292
1293     if (self->expression.vtype == TYPE_ARRAY) {
1294         size_t ai;
1295         char   *name;
1296         size_t  namelen;
1297
1298         ast_expression_common *elemtype = &self->expression.next->expression;
1299         int vtype = elemtype->vtype;
1300
1301         if (param) {
1302             compile_error(ast_ctx(self), "array-parameters are not supported");
1303             return false;
1304         }
1305
1306         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1307         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1308             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1309         }
1310
1311         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1312         if (!self->ir_values) {
1313             compile_error(ast_ctx(self), "failed to allocate array values");
1314             return false;
1315         }
1316
1317         v = ir_function_create_local(func, self->name, vtype, param);
1318         if (!v) {
1319             compile_error(ast_ctx(self), "ir_function_create_local failed");
1320             return false;
1321         }
1322         if (vtype == TYPE_FIELD)
1323             v->fieldtype = elemtype->next->expression.vtype;
1324         v->context = ast_ctx(self);
1325
1326         namelen = strlen(self->name);
1327         name    = (char*)mem_a(namelen + 16);
1328         strcpy(name, self->name);
1329
1330         self->ir_values[0] = v;
1331         for (ai = 1; ai < self->expression.count; ++ai) {
1332             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1333             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1334             if (!self->ir_values[ai]) {
1335                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1336                 return false;
1337             }
1338             if (vtype == TYPE_FIELD)
1339                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1340             self->ir_values[ai]->context = ast_ctx(self);
1341         }
1342     }
1343     else
1344     {
1345         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1346         if (!v)
1347             return false;
1348         if (self->expression.vtype == TYPE_FIELD)
1349             v->fieldtype = self->expression.next->expression.vtype;
1350         v->context = ast_ctx(self);
1351     }
1352
1353     /* A constant local... hmmm...
1354      * I suppose the IR will have to deal with this
1355      */
1356     if (self->hasvalue) {
1357         switch (self->expression.vtype)
1358         {
1359             case TYPE_FLOAT:
1360                 if (!ir_value_set_float(v, self->constval.vfloat))
1361                     goto error;
1362                 break;
1363             case TYPE_VECTOR:
1364                 if (!ir_value_set_vector(v, self->constval.vvec))
1365                     goto error;
1366                 break;
1367             case TYPE_STRING:
1368                 if (!ir_value_set_string(v, self->constval.vstring))
1369                     goto error;
1370                 break;
1371             default:
1372                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1373                 break;
1374         }
1375     }
1376
1377     /* link us to the ir_value */
1378     v->cvq = self->cvq;
1379     self->ir_v = v;
1380
1381     if (self->setter) {
1382         if (!ast_global_codegen(self->setter, func->owner, false) ||
1383             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1384             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1385             return false;
1386     }
1387     if (self->getter) {
1388         if (!ast_global_codegen(self->getter, func->owner, false) ||
1389             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1390             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1391             return false;
1392     }
1393     return true;
1394
1395 error: /* clean up */
1396     ir_value_delete(v);
1397     return false;
1398 }
1399
1400 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1401 {
1402     ir_function *irf;
1403     ir_value    *dummy;
1404     ast_expression_common *ec;
1405     size_t    i;
1406
1407     (void)ir;
1408
1409     irf = self->ir_func;
1410     if (!irf) {
1411         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1412         return false;
1413     }
1414
1415     /* fill the parameter list */
1416     ec = &self->vtype->expression;
1417     for (i = 0; i < vec_size(ec->params); ++i)
1418     {
1419         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1420             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1421         else
1422             vec_push(irf->params, ec->params[i]->expression.vtype);
1423         if (!self->builtin) {
1424             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1425                 return false;
1426         }
1427     }
1428
1429     if (self->builtin) {
1430         irf->builtin = self->builtin;
1431         return true;
1432     }
1433
1434     if (!vec_size(self->blocks)) {
1435         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1436         return false;
1437     }
1438
1439     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1440     if (!self->curblock) {
1441         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1442         return false;
1443     }
1444
1445     for (i = 0; i < vec_size(self->blocks); ++i) {
1446         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1447         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1448             return false;
1449     }
1450
1451     /* TODO: check return types */
1452     if (!self->curblock->is_return)
1453     {
1454         if (!self->vtype->expression.next ||
1455             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1456         {
1457             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1458         }
1459         else if (vec_size(self->curblock->entries))
1460         {
1461             /* error("missing return"); */
1462             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1463                                 "control reaches end of non-void function (`%s`) via %s",
1464                                 self->name, self->curblock->label))
1465             {
1466                 return false;
1467             }
1468             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1469         }
1470     }
1471     return true;
1472 }
1473
1474 /* Note, you will not see ast_block_codegen generate ir_blocks.
1475  * To the AST and the IR, blocks are 2 different things.
1476  * In the AST it represents a block of code, usually enclosed in
1477  * curly braces {...}.
1478  * While in the IR it represents a block in terms of control-flow.
1479  */
1480 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1481 {
1482     size_t i;
1483
1484     /* We don't use this
1485      * Note: an ast-representation using the comma-operator
1486      * of the form: (a, b, c) = x should not assign to c...
1487      */
1488     if (lvalue) {
1489         compile_error(ast_ctx(self), "not an l-value (code-block)");
1490         return false;
1491     }
1492
1493     if (self->expression.outr) {
1494         *out = self->expression.outr;
1495         return true;
1496     }
1497
1498     /* output is NULL at first, we'll have each expression
1499      * assign to out output, thus, a comma-operator represention
1500      * using an ast_block will return the last generated value,
1501      * so: (b, c) + a  executed both b and c, and returns c,
1502      * which is then added to a.
1503      */
1504     *out = NULL;
1505
1506     /* generate locals */
1507     for (i = 0; i < vec_size(self->locals); ++i)
1508     {
1509         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1510             if (opts_debug)
1511                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1512             return false;
1513         }
1514     }
1515
1516     for (i = 0; i < vec_size(self->exprs); ++i)
1517     {
1518         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1519         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1520             compile_error(ast_ctx(self->exprs[i]), "unreachable statement");
1521             return false;
1522         }
1523         if (!(*gen)(self->exprs[i], func, false, out))
1524             return false;
1525     }
1526
1527     self->expression.outr = *out;
1528
1529     return true;
1530 }
1531
1532 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1533 {
1534     ast_expression_codegen *cgen;
1535     ir_value *left  = NULL;
1536     ir_value *right = NULL;
1537
1538     ast_value       *arr;
1539     ast_value       *idx = 0;
1540     ast_array_index *ai = NULL;
1541
1542     if (lvalue && self->expression.outl) {
1543         *out = self->expression.outl;
1544         return true;
1545     }
1546
1547     if (!lvalue && self->expression.outr) {
1548         *out = self->expression.outr;
1549         return true;
1550     }
1551
1552     if (ast_istype(self->dest, ast_array_index))
1553     {
1554
1555         ai = (ast_array_index*)self->dest;
1556         idx = (ast_value*)ai->index;
1557
1558         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1559             ai = NULL;
1560     }
1561
1562     if (ai) {
1563         /* we need to call the setter */
1564         ir_value  *iridx, *funval;
1565         ir_instr  *call;
1566
1567         if (lvalue) {
1568             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1569             return false;
1570         }
1571
1572         arr = (ast_value*)ai->array;
1573         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1574             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1575             return false;
1576         }
1577
1578         cgen = idx->expression.codegen;
1579         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1580             return false;
1581
1582         cgen = arr->setter->expression.codegen;
1583         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1584             return false;
1585
1586         cgen = self->source->expression.codegen;
1587         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1588             return false;
1589
1590         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1591         if (!call)
1592             return false;
1593         ir_call_param(call, iridx);
1594         ir_call_param(call, right);
1595         self->expression.outr = right;
1596     }
1597     else
1598     {
1599         /* regular code */
1600
1601         cgen = self->dest->expression.codegen;
1602         /* lvalue! */
1603         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1604             return false;
1605         self->expression.outl = left;
1606
1607         cgen = self->source->expression.codegen;
1608         /* rvalue! */
1609         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1610             return false;
1611
1612         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1613             return false;
1614         self->expression.outr = right;
1615     }
1616
1617     /* Theoretically, an assinment returns its left side as an
1618      * lvalue, if we don't need an lvalue though, we return
1619      * the right side as an rvalue, otherwise we have to
1620      * somehow know whether or not we need to dereference the pointer
1621      * on the left side - that is: OP_LOAD if it was an address.
1622      * Also: in original QC we cannot OP_LOADP *anyway*.
1623      */
1624     *out = (lvalue ? left : right);
1625
1626     return true;
1627 }
1628
1629 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1630 {
1631     ast_expression_codegen *cgen;
1632     ir_value *left, *right;
1633
1634     /* A binary operation cannot yield an l-value */
1635     if (lvalue) {
1636         compile_error(ast_ctx(self), "not an l-value (binop)");
1637         return false;
1638     }
1639
1640     if (self->expression.outr) {
1641         *out = self->expression.outr;
1642         return true;
1643     }
1644
1645     if (OPTS_FLAG(SHORT_LOGIC) &&
1646         (self->op == INSTR_AND || self->op == INSTR_OR))
1647     {
1648         /* short circuit evaluation */
1649         ir_block *other, *merge;
1650         ir_block *from_left, *from_right;
1651         ir_instr *phi;
1652         size_t    merge_id;
1653         uint16_t  notop;
1654
1655         /* Note about casting to true boolean values:
1656          * We use a single NOT for sub expressions, and an
1657          * overall NOT at the end, and for that purpose swap
1658          * all the jump conditions in order for the NOT to get
1659          * doubled.
1660          * ie: (a && b) usually becomes (!!a ? !!b : !!a)
1661          * but we translate this to (!(!a ? !a : !b))
1662          */
1663
1664         merge_id = vec_size(func->ir_func->blocks);
1665         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1666
1667         cgen = self->left->expression.codegen;
1668         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1669             return false;
1670         if (!OPTS_FLAG(PERL_LOGIC)) {
1671             notop = type_not_instr[left->vtype];
1672             if (notop == AINSTR_END) {
1673                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1674                 return false;
1675             }
1676             left = ir_block_create_unary(func->curblock, ast_ctx(self),
1677                                          ast_function_label(func, "sce_not"),
1678                                          notop,
1679                                          left);
1680         }
1681         from_left = func->curblock;
1682
1683         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1684         if ( !(self->op == INSTR_OR) != !OPTS_FLAG(PERL_LOGIC) ) {
1685             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1686                 return false;
1687         } else {
1688             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1689                 return false;
1690         }
1691         /* use the likely flag */
1692         vec_last(func->curblock->instr)->likely = true;
1693
1694         func->curblock = other;
1695         cgen = self->right->expression.codegen;
1696         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1697             return false;
1698         if (!OPTS_FLAG(PERL_LOGIC)) {
1699             notop = type_not_instr[right->vtype];
1700             if (notop == AINSTR_END) {
1701                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1702                 return false;
1703             }
1704             right = ir_block_create_unary(func->curblock, ast_ctx(self),
1705                                           ast_function_label(func, "sce_not"),
1706                                           notop,
1707                                           right);
1708         }
1709         from_right = func->curblock;
1710
1711         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1712             return false;
1713
1714         vec_remove(func->ir_func->blocks, merge_id, 1);
1715         vec_push(func->ir_func->blocks, merge);
1716
1717         func->curblock = merge;
1718         phi = ir_block_create_phi(func->curblock, ast_ctx(self), ast_function_label(func, "sce_value"), TYPE_FLOAT);
1719         ir_phi_add(phi, from_left, left);
1720         ir_phi_add(phi, from_right, right);
1721         *out = ir_phi_value(phi);
1722         if (!OPTS_FLAG(PERL_LOGIC)) {
1723             notop = type_not_instr[(*out)->vtype];
1724             if (notop == AINSTR_END) {
1725                 compile_error(ast_ctx(self), "don't know how to cast to bool...");
1726                 return false;
1727             }
1728             *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1729                                          ast_function_label(func, "sce_final_not"),
1730                                          notop,
1731                                          *out);
1732         }
1733         if (!*out)
1734             return false;
1735         self->expression.outr = *out;
1736         return true;
1737     }
1738
1739     cgen = self->left->expression.codegen;
1740     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1741         return false;
1742
1743     cgen = self->right->expression.codegen;
1744     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1745         return false;
1746
1747     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1748                                  self->op, left, right);
1749     if (!*out)
1750         return false;
1751     self->expression.outr = *out;
1752
1753     return true;
1754 }
1755
1756 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1757 {
1758     ast_expression_codegen *cgen;
1759     ir_value *leftl = NULL, *leftr, *right, *bin;
1760
1761     ast_value       *arr;
1762     ast_value       *idx = 0;
1763     ast_array_index *ai = NULL;
1764     ir_value        *iridx = NULL;
1765
1766     if (lvalue && self->expression.outl) {
1767         *out = self->expression.outl;
1768         return true;
1769     }
1770
1771     if (!lvalue && self->expression.outr) {
1772         *out = self->expression.outr;
1773         return true;
1774     }
1775
1776     if (ast_istype(self->dest, ast_array_index))
1777     {
1778
1779         ai = (ast_array_index*)self->dest;
1780         idx = (ast_value*)ai->index;
1781
1782         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1783             ai = NULL;
1784     }
1785
1786     /* for a binstore we need both an lvalue and an rvalue for the left side */
1787     /* rvalue of destination! */
1788     if (ai) {
1789         cgen = idx->expression.codegen;
1790         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1791             return false;
1792     }
1793     cgen = self->dest->expression.codegen;
1794     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1795         return false;
1796
1797     /* source as rvalue only */
1798     cgen = self->source->expression.codegen;
1799     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1800         return false;
1801
1802     /* now the binary */
1803     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1804                                 self->opbin, leftr, right);
1805     self->expression.outr = bin;
1806
1807
1808     if (ai) {
1809         /* we need to call the setter */
1810         ir_value  *funval;
1811         ir_instr  *call;
1812
1813         if (lvalue) {
1814             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1815             return false;
1816         }
1817
1818         arr = (ast_value*)ai->array;
1819         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1820             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1821             return false;
1822         }
1823
1824         cgen = arr->setter->expression.codegen;
1825         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1826             return false;
1827
1828         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval);
1829         if (!call)
1830             return false;
1831         ir_call_param(call, iridx);
1832         ir_call_param(call, bin);
1833         self->expression.outr = bin;
1834     } else {
1835         /* now store them */
1836         cgen = self->dest->expression.codegen;
1837         /* lvalue of destination */
1838         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1839             return false;
1840         self->expression.outl = leftl;
1841
1842         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1843             return false;
1844         self->expression.outr = bin;
1845     }
1846
1847     /* Theoretically, an assinment returns its left side as an
1848      * lvalue, if we don't need an lvalue though, we return
1849      * the right side as an rvalue, otherwise we have to
1850      * somehow know whether or not we need to dereference the pointer
1851      * on the left side - that is: OP_LOAD if it was an address.
1852      * Also: in original QC we cannot OP_LOADP *anyway*.
1853      */
1854     *out = (lvalue ? leftl : bin);
1855
1856     return true;
1857 }
1858
1859 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1860 {
1861     ast_expression_codegen *cgen;
1862     ir_value *operand;
1863
1864     /* An unary operation cannot yield an l-value */
1865     if (lvalue) {
1866         compile_error(ast_ctx(self), "not an l-value (binop)");
1867         return false;
1868     }
1869
1870     if (self->expression.outr) {
1871         *out = self->expression.outr;
1872         return true;
1873     }
1874
1875     cgen = self->operand->expression.codegen;
1876     /* lvalue! */
1877     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1878         return false;
1879
1880     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1881                                  self->op, operand);
1882     if (!*out)
1883         return false;
1884     self->expression.outr = *out;
1885
1886     return true;
1887 }
1888
1889 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1890 {
1891     ast_expression_codegen *cgen;
1892     ir_value *operand;
1893
1894     *out = NULL;
1895
1896     /* In the context of a return operation, we don't actually return
1897      * anything...
1898      */
1899     if (lvalue) {
1900         compile_error(ast_ctx(self), "return-expression is not an l-value");
1901         return false;
1902     }
1903
1904     if (self->expression.outr) {
1905         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1906         return false;
1907     }
1908     self->expression.outr = (ir_value*)1;
1909
1910     if (self->operand) {
1911         cgen = self->operand->expression.codegen;
1912         /* lvalue! */
1913         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1914             return false;
1915
1916         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1917             return false;
1918     } else {
1919         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1920             return false;
1921     }
1922
1923     return true;
1924 }
1925
1926 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1927 {
1928     ast_expression_codegen *cgen;
1929     ir_value *ent, *field;
1930
1931     /* This function needs to take the 'lvalue' flag into account!
1932      * As lvalue we provide a field-pointer, as rvalue we provide the
1933      * value in a temp.
1934      */
1935
1936     if (lvalue && self->expression.outl) {
1937         *out = self->expression.outl;
1938         return true;
1939     }
1940
1941     if (!lvalue && self->expression.outr) {
1942         *out = self->expression.outr;
1943         return true;
1944     }
1945
1946     cgen = self->entity->expression.codegen;
1947     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1948         return false;
1949
1950     cgen = self->field->expression.codegen;
1951     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1952         return false;
1953
1954     if (lvalue) {
1955         /* address! */
1956         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
1957                                             ent, field);
1958     } else {
1959         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
1960                                              ent, field, self->expression.vtype);
1961     }
1962     if (!*out) {
1963         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
1964                  (lvalue ? "ADDRESS" : "FIELD"),
1965                  type_name[self->expression.vtype]);
1966         return false;
1967     }
1968
1969     if (lvalue)
1970         self->expression.outl = *out;
1971     else
1972         self->expression.outr = *out;
1973
1974     /* Hm that should be it... */
1975     return true;
1976 }
1977
1978 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1979 {
1980     ast_expression_codegen *cgen;
1981     ir_value *vec;
1982
1983     /* in QC this is always an lvalue */
1984     (void)lvalue;
1985     if (self->expression.outl) {
1986         *out = self->expression.outl;
1987         return true;
1988     }
1989
1990     cgen = self->owner->expression.codegen;
1991     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1992         return false;
1993
1994     if (vec->vtype != TYPE_VECTOR &&
1995         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1996     {
1997         return false;
1998     }
1999
2000     *out = ir_value_vector_member(vec, self->field);
2001     self->expression.outl = *out;
2002
2003     return (*out != NULL);
2004 }
2005
2006 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2007 {
2008     ast_value *arr;
2009     ast_value *idx;
2010
2011     if (!lvalue && self->expression.outr) {
2012         *out = self->expression.outr;
2013     }
2014     if (lvalue && self->expression.outl) {
2015         *out = self->expression.outl;
2016     }
2017
2018     if (!ast_istype(self->array, ast_value)) {
2019         compile_error(ast_ctx(self), "array indexing this way is not supported");
2020         /* note this would actually be pointer indexing because the left side is
2021          * not an actual array but (hopefully) an indexable expression.
2022          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2023          * support this path will be filled.
2024          */
2025         return false;
2026     }
2027
2028     arr = (ast_value*)self->array;
2029     idx = (ast_value*)self->index;
2030
2031     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2032         /* Time to use accessor functions */
2033         ast_expression_codegen *cgen;
2034         ir_value               *iridx, *funval;
2035         ir_instr               *call;
2036
2037         if (lvalue) {
2038             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2039             return false;
2040         }
2041
2042         if (!arr->getter) {
2043             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2044             return false;
2045         }
2046
2047         cgen = self->index->expression.codegen;
2048         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2049             return false;
2050
2051         cgen = arr->getter->expression.codegen;
2052         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2053             return false;
2054
2055         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval);
2056         if (!call)
2057             return false;
2058         ir_call_param(call, iridx);
2059
2060         *out = ir_call_value(call);
2061         self->expression.outr = *out;
2062         return true;
2063     }
2064
2065     if (idx->expression.vtype == TYPE_FLOAT) {
2066         unsigned int arridx = idx->constval.vfloat;
2067         if (arridx >= self->array->expression.count)
2068         {
2069             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2070             return false;
2071         }
2072         *out = arr->ir_values[arridx];
2073     }
2074     else if (idx->expression.vtype == TYPE_INTEGER) {
2075         unsigned int arridx = idx->constval.vint;
2076         if (arridx >= self->array->expression.count)
2077         {
2078             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2079             return false;
2080         }
2081         *out = arr->ir_values[arridx];
2082     }
2083     else {
2084         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2085         return false;
2086     }
2087     return true;
2088 }
2089
2090 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2091 {
2092     ast_expression_codegen *cgen;
2093
2094     ir_value *condval;
2095     ir_value *dummy;
2096
2097     ir_block *cond = func->curblock;
2098     ir_block *ontrue;
2099     ir_block *onfalse;
2100     ir_block *ontrue_endblock = NULL;
2101     ir_block *onfalse_endblock = NULL;
2102     ir_block *merge = NULL;
2103
2104     /* We don't output any value, thus also don't care about r/lvalue */
2105     (void)out;
2106     (void)lvalue;
2107
2108     if (self->expression.outr) {
2109         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2110         return false;
2111     }
2112     self->expression.outr = (ir_value*)1;
2113
2114     /* generate the condition */
2115     cgen = self->cond->expression.codegen;
2116     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2117         return false;
2118     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2119     cond = func->curblock;
2120
2121     /* on-true path */
2122
2123     if (self->on_true) {
2124         /* create on-true block */
2125         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2126         if (!ontrue)
2127             return false;
2128
2129         /* enter the block */
2130         func->curblock = ontrue;
2131
2132         /* generate */
2133         cgen = self->on_true->expression.codegen;
2134         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2135             return false;
2136
2137         /* we now need to work from the current endpoint */
2138         ontrue_endblock = func->curblock;
2139     } else
2140         ontrue = NULL;
2141
2142     /* on-false path */
2143     if (self->on_false) {
2144         /* create on-false block */
2145         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2146         if (!onfalse)
2147             return false;
2148
2149         /* enter the block */
2150         func->curblock = onfalse;
2151
2152         /* generate */
2153         cgen = self->on_false->expression.codegen;
2154         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2155             return false;
2156
2157         /* we now need to work from the current endpoint */
2158         onfalse_endblock = func->curblock;
2159     } else
2160         onfalse = NULL;
2161
2162     /* Merge block were they all merge in to */
2163     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2164     {
2165         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2166         if (!merge)
2167             return false;
2168         /* add jumps ot the merge block */
2169         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2170             return false;
2171         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2172             return false;
2173
2174         /* Now enter the merge block */
2175         func->curblock = merge;
2176     }
2177
2178     /* we create the if here, that way all blocks are ordered :)
2179      */
2180     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2181                             (ontrue  ? ontrue  : merge),
2182                             (onfalse ? onfalse : merge)))
2183     {
2184         return false;
2185     }
2186
2187     return true;
2188 }
2189
2190 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2191 {
2192     ast_expression_codegen *cgen;
2193
2194     ir_value *condval;
2195     ir_value *trueval, *falseval;
2196     ir_instr *phi;
2197
2198     ir_block *cond = func->curblock;
2199     ir_block *cond_out = NULL;
2200     ir_block *ontrue, *ontrue_out = NULL;
2201     ir_block *onfalse, *onfalse_out = NULL;
2202     ir_block *merge;
2203
2204     /* Ternary can never create an lvalue... */
2205     if (lvalue)
2206         return false;
2207
2208     /* In theory it shouldn't be possible to pass through a node twice, but
2209      * in case we add any kind of optimization pass for the AST itself, it
2210      * may still happen, thus we remember a created ir_value and simply return one
2211      * if it already exists.
2212      */
2213     if (self->expression.outr) {
2214         *out = self->expression.outr;
2215         return true;
2216     }
2217
2218     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2219
2220     /* generate the condition */
2221     func->curblock = cond;
2222     cgen = self->cond->expression.codegen;
2223     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2224         return false;
2225     cond_out = func->curblock;
2226
2227     /* create on-true block */
2228     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2229     if (!ontrue)
2230         return false;
2231     else
2232     {
2233         /* enter the block */
2234         func->curblock = ontrue;
2235
2236         /* generate */
2237         cgen = self->on_true->expression.codegen;
2238         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2239             return false;
2240
2241         ontrue_out = func->curblock;
2242     }
2243
2244     /* create on-false block */
2245     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2246     if (!onfalse)
2247         return false;
2248     else
2249     {
2250         /* enter the block */
2251         func->curblock = onfalse;
2252
2253         /* generate */
2254         cgen = self->on_false->expression.codegen;
2255         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2256             return false;
2257
2258         onfalse_out = func->curblock;
2259     }
2260
2261     /* create merge block */
2262     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2263     if (!merge)
2264         return false;
2265     /* jump to merge block */
2266     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2267         return false;
2268     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2269         return false;
2270
2271     /* create if instruction */
2272     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2273         return false;
2274
2275     /* Now enter the merge block */
2276     func->curblock = merge;
2277
2278     /* Here, now, we need a PHI node
2279      * but first some sanity checking...
2280      */
2281     if (trueval->vtype != falseval->vtype) {
2282         /* error("ternary with different types on the two sides"); */
2283         return false;
2284     }
2285
2286     /* create PHI */
2287     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2288     if (!phi)
2289         return false;
2290     ir_phi_add(phi, ontrue_out,  trueval);
2291     ir_phi_add(phi, onfalse_out, falseval);
2292
2293     self->expression.outr = ir_phi_value(phi);
2294     *out = self->expression.outr;
2295
2296     return true;
2297 }
2298
2299 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2300 {
2301     ast_expression_codegen *cgen;
2302
2303     ir_value *dummy      = NULL;
2304     ir_value *precond    = NULL;
2305     ir_value *postcond   = NULL;
2306
2307     /* Since we insert some jumps "late" so we have blocks
2308      * ordered "nicely", we need to keep track of the actual end-blocks
2309      * of expressions to add the jumps to.
2310      */
2311     ir_block *bbody      = NULL, *end_bbody      = NULL;
2312     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2313     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2314     ir_block *bincrement = NULL, *end_bincrement = NULL;
2315     ir_block *bout       = NULL, *bin            = NULL;
2316
2317     /* let's at least move the outgoing block to the end */
2318     size_t    bout_id;
2319
2320     /* 'break' and 'continue' need to be able to find the right blocks */
2321     ir_block *bcontinue     = NULL;
2322     ir_block *bbreak        = NULL;
2323
2324     ir_block *old_bcontinue = NULL;
2325     ir_block *old_bbreak    = NULL;
2326
2327     ir_block *tmpblock      = NULL;
2328
2329     (void)lvalue;
2330     (void)out;
2331
2332     if (self->expression.outr) {
2333         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2334         return false;
2335     }
2336     self->expression.outr = (ir_value*)1;
2337
2338     /* NOTE:
2339      * Should we ever need some kind of block ordering, better make this function
2340      * move blocks around than write a block ordering algorithm later... after all
2341      * the ast and ir should work together, not against each other.
2342      */
2343
2344     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2345      * anyway if for example it contains a ternary.
2346      */
2347     if (self->initexpr)
2348     {
2349         cgen = self->initexpr->expression.codegen;
2350         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2351             return false;
2352     }
2353
2354     /* Store the block from which we enter this chaos */
2355     bin = func->curblock;
2356
2357     /* The pre-loop condition needs its own block since we
2358      * need to be able to jump to the start of that expression.
2359      */
2360     if (self->precond)
2361     {
2362         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2363         if (!bprecond)
2364             return false;
2365
2366         /* the pre-loop-condition the least important place to 'continue' at */
2367         bcontinue = bprecond;
2368
2369         /* enter */
2370         func->curblock = bprecond;
2371
2372         /* generate */
2373         cgen = self->precond->expression.codegen;
2374         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2375             return false;
2376
2377         end_bprecond = func->curblock;
2378     } else {
2379         bprecond = end_bprecond = NULL;
2380     }
2381
2382     /* Now the next blocks won't be ordered nicely, but we need to
2383      * generate them this early for 'break' and 'continue'.
2384      */
2385     if (self->increment) {
2386         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2387         if (!bincrement)
2388             return false;
2389         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2390     } else {
2391         bincrement = end_bincrement = NULL;
2392     }
2393
2394     if (self->postcond) {
2395         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2396         if (!bpostcond)
2397             return false;
2398         bcontinue = bpostcond; /* postcond comes before the increment */
2399     } else {
2400         bpostcond = end_bpostcond = NULL;
2401     }
2402
2403     bout_id = vec_size(func->ir_func->blocks);
2404     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2405     if (!bout)
2406         return false;
2407     bbreak = bout;
2408
2409     /* The loop body... */
2410     if (self->body)
2411     {
2412         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2413         if (!bbody)
2414             return false;
2415
2416         /* enter */
2417         func->curblock = bbody;
2418
2419         old_bbreak          = func->breakblock;
2420         old_bcontinue       = func->continueblock;
2421         func->breakblock    = bbreak;
2422         func->continueblock = bcontinue;
2423         if (!func->continueblock)
2424             func->continueblock = bbody;
2425
2426         /* generate */
2427         cgen = self->body->expression.codegen;
2428         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2429             return false;
2430
2431         end_bbody = func->curblock;
2432         func->breakblock    = old_bbreak;
2433         func->continueblock = old_bcontinue;
2434     }
2435
2436     /* post-loop-condition */
2437     if (self->postcond)
2438     {
2439         /* enter */
2440         func->curblock = bpostcond;
2441
2442         /* generate */
2443         cgen = self->postcond->expression.codegen;
2444         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2445             return false;
2446
2447         end_bpostcond = func->curblock;
2448     }
2449
2450     /* The incrementor */
2451     if (self->increment)
2452     {
2453         /* enter */
2454         func->curblock = bincrement;
2455
2456         /* generate */
2457         cgen = self->increment->expression.codegen;
2458         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2459             return false;
2460
2461         end_bincrement = func->curblock;
2462     }
2463
2464     /* In any case now, we continue from the outgoing block */
2465     func->curblock = bout;
2466
2467     /* Now all blocks are in place */
2468     /* From 'bin' we jump to whatever comes first */
2469     if      (bprecond)   tmpblock = bprecond;
2470     else if (bbody)      tmpblock = bbody;
2471     else if (bpostcond)  tmpblock = bpostcond;
2472     else                 tmpblock = bout;
2473     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2474         return false;
2475
2476     /* From precond */
2477     if (bprecond)
2478     {
2479         ir_block *ontrue, *onfalse;
2480         if      (bbody)      ontrue = bbody;
2481         else if (bincrement) ontrue = bincrement;
2482         else if (bpostcond)  ontrue = bpostcond;
2483         else                 ontrue = bprecond;
2484         onfalse = bout;
2485         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2486             return false;
2487     }
2488
2489     /* from body */
2490     if (bbody)
2491     {
2492         if      (bincrement) tmpblock = bincrement;
2493         else if (bpostcond)  tmpblock = bpostcond;
2494         else if (bprecond)   tmpblock = bprecond;
2495         else                 tmpblock = bbody;
2496         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2497             return false;
2498     }
2499
2500     /* from increment */
2501     if (bincrement)
2502     {
2503         if      (bpostcond)  tmpblock = bpostcond;
2504         else if (bprecond)   tmpblock = bprecond;
2505         else if (bbody)      tmpblock = bbody;
2506         else                 tmpblock = bout;
2507         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2508             return false;
2509     }
2510
2511     /* from postcond */
2512     if (bpostcond)
2513     {
2514         ir_block *ontrue, *onfalse;
2515         if      (bprecond)   ontrue = bprecond;
2516         else if (bbody)      ontrue = bbody;
2517         else if (bincrement) ontrue = bincrement;
2518         else                 ontrue = bpostcond;
2519         onfalse = bout;
2520         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2521             return false;
2522     }
2523
2524     /* Move 'bout' to the end */
2525     vec_remove(func->ir_func->blocks, bout_id, 1);
2526     vec_push(func->ir_func->blocks, bout);
2527
2528     return true;
2529 }
2530
2531 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2532 {
2533     ir_block *target;
2534
2535     *out = NULL;
2536
2537     if (lvalue) {
2538         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2539         return false;
2540     }
2541
2542     if (self->expression.outr) {
2543         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2544         return false;
2545     }
2546     self->expression.outr = (ir_value*)1;
2547
2548     if (self->is_continue)
2549         target = func->continueblock;
2550     else
2551         target = func->breakblock;
2552
2553     if (!target) {
2554         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2555         return false;
2556     }
2557
2558     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2559         return false;
2560     return true;
2561 }
2562
2563 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2564 {
2565     ast_expression_codegen *cgen;
2566
2567     ast_switch_case *def_case  = NULL;
2568     ir_block        *def_bfall = NULL;
2569
2570     ir_value *dummy     = NULL;
2571     ir_value *irop      = NULL;
2572     ir_block *old_break = NULL;
2573     ir_block *bout      = NULL;
2574     ir_block *bfall     = NULL;
2575     size_t    bout_id;
2576     size_t    c;
2577
2578     char      typestr[1024];
2579     uint16_t  cmpinstr;
2580
2581     if (lvalue) {
2582         compile_error(ast_ctx(self), "switch expression is not an l-value");
2583         return false;
2584     }
2585
2586     if (self->expression.outr) {
2587         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2588         return false;
2589     }
2590     self->expression.outr = (ir_value*)1;
2591
2592     (void)lvalue;
2593     (void)out;
2594
2595     cgen = self->operand->expression.codegen;
2596     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2597         return false;
2598
2599     if (!vec_size(self->cases))
2600         return true;
2601
2602     cmpinstr = type_eq_instr[irop->vtype];
2603     if (cmpinstr >= AINSTR_END) {
2604         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2605         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2606         return false;
2607     }
2608
2609     bout_id = vec_size(func->ir_func->blocks);
2610     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2611     if (!bout)
2612         return false;
2613
2614     /* setup the break block */
2615     old_break        = func->breakblock;
2616     func->breakblock = bout;
2617
2618     /* Now create all cases */
2619     for (c = 0; c < vec_size(self->cases); ++c) {
2620         ir_value *cond, *val;
2621         ir_block *bcase, *bnot;
2622         size_t bnot_id;
2623
2624         ast_switch_case *swcase = &self->cases[c];
2625
2626         if (swcase->value) {
2627             /* A regular case */
2628             /* generate the condition operand */
2629             cgen = swcase->value->expression.codegen;
2630             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2631                 return false;
2632             /* generate the condition */
2633             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2634             if (!cond)
2635                 return false;
2636
2637             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2638             bnot_id = vec_size(func->ir_func->blocks);
2639             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2640             if (!bcase || !bnot)
2641                 return false;
2642             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2643                 return false;
2644
2645             /* Make the previous case-end fall through */
2646             if (bfall && !bfall->final) {
2647                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2648                     return false;
2649             }
2650
2651             /* enter the case */
2652             func->curblock = bcase;
2653             cgen = swcase->code->expression.codegen;
2654             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2655                 return false;
2656
2657             /* remember this block to fall through from */
2658             bfall = func->curblock;
2659
2660             /* enter the else and move it down */
2661             func->curblock = bnot;
2662             vec_remove(func->ir_func->blocks, bnot_id, 1);
2663             vec_push(func->ir_func->blocks, bnot);
2664         } else {
2665             /* The default case */
2666             /* Remember where to fall through from: */
2667             def_bfall = bfall;
2668             bfall     = NULL;
2669             /* remember which case it was */
2670             def_case  = swcase;
2671         }
2672     }
2673
2674     /* Jump from the last bnot to bout */
2675     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2676         /*
2677         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2678         */
2679         return false;
2680     }
2681
2682     /* If there was a default case, put it down here */
2683     if (def_case) {
2684         ir_block *bcase;
2685
2686         /* No need to create an extra block */
2687         bcase = func->curblock;
2688
2689         /* Insert the fallthrough jump */
2690         if (def_bfall && !def_bfall->final) {
2691             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2692                 return false;
2693         }
2694
2695         /* Now generate the default code */
2696         cgen = def_case->code->expression.codegen;
2697         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2698             return false;
2699     }
2700
2701     /* Jump from the last bnot to bout */
2702     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2703         return false;
2704     /* enter the outgoing block */
2705     func->curblock = bout;
2706
2707     /* restore the break block */
2708     func->breakblock = old_break;
2709
2710     /* Move 'bout' to the end, it's nicer */
2711     vec_remove(func->ir_func->blocks, bout_id, 1);
2712     vec_push(func->ir_func->blocks, bout);
2713
2714     return true;
2715 }
2716
2717 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2718 {
2719     size_t i;
2720     ir_value *dummy;
2721
2722     *out = NULL;
2723     if (lvalue) {
2724         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2725         return false;
2726     }
2727
2728     /* simply create a new block and jump to it */
2729     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2730     if (!self->irblock) {
2731         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2732         return false;
2733     }
2734     if (!func->curblock->final) {
2735         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2736             return false;
2737     }
2738
2739     /* enter the new block */
2740     func->curblock = self->irblock;
2741
2742     /* Generate all the leftover gotos */
2743     for (i = 0; i < vec_size(self->gotos); ++i) {
2744         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2745             return false;
2746     }
2747
2748     return true;
2749 }
2750
2751 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2752 {
2753     *out = NULL;
2754     if (lvalue) {
2755         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2756         return false;
2757     }
2758
2759     if (self->target->irblock) {
2760         if (self->irblock_from) {
2761             /* we already tried once, this is the callback */
2762             self->irblock_from->final = false;
2763             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2764                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2765                 return false;
2766             }
2767         }
2768         else
2769         {
2770             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2771                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2772                 return false;
2773             }
2774         }
2775     }
2776     else
2777     {
2778         /* the target has not yet been created...
2779          * close this block in a sneaky way:
2780          */
2781         func->curblock->final = true;
2782         self->irblock_from = func->curblock;
2783         ast_label_register_goto(self->target, self);
2784     }
2785
2786     return true;
2787 }
2788
2789 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2790 {
2791     ast_expression_codegen *cgen;
2792     ir_value              **params;
2793     ir_instr               *callinstr;
2794     size_t i;
2795
2796     ir_value *funval = NULL;
2797
2798     /* return values are never lvalues */
2799     if (lvalue) {
2800         compile_error(ast_ctx(self), "not an l-value (function call)");
2801         return false;
2802     }
2803
2804     if (self->expression.outr) {
2805         *out = self->expression.outr;
2806         return true;
2807     }
2808
2809     cgen = self->func->expression.codegen;
2810     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2811         return false;
2812     if (!funval)
2813         return false;
2814
2815     params = NULL;
2816
2817     /* parameters */
2818     for (i = 0; i < vec_size(self->params); ++i)
2819     {
2820         ir_value *param;
2821         ast_expression *expr = self->params[i];
2822
2823         cgen = expr->expression.codegen;
2824         if (!(*cgen)(expr, func, false, &param))
2825             goto error;
2826         if (!param)
2827             goto error;
2828         vec_push(params, param);
2829     }
2830
2831     callinstr = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "call"), funval);
2832     if (!callinstr)
2833         goto error;
2834
2835     for (i = 0; i < vec_size(params); ++i) {
2836         ir_call_param(callinstr, params[i]);
2837     }
2838
2839     *out = ir_call_value(callinstr);
2840     self->expression.outr = *out;
2841
2842     vec_free(params);
2843     return true;
2844 error:
2845     vec_free(params);
2846     return false;
2847 }