]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
'likely' hint for IFs
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     con_cvprintmsg((void*)&ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     con_err("ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     self->expression.params   = NULL;
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < vec_size(self->expression.params); ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     vec_free(self->expression.params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 ast_value* ast_value_copy(const ast_value *self)
94 {
95     size_t i;
96     const ast_expression_common *fromex;
97     ast_expression_common *selfex;
98     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
99     if (self->expression.next) {
100         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
101         if (!cp->expression.next) {
102             ast_value_delete(cp);
103             return NULL;
104         }
105     }
106     fromex   = &self->expression;
107     selfex = &cp->expression;
108     selfex->variadic = fromex->variadic;
109     for (i = 0; i < vec_size(fromex->params); ++i) {
110         ast_value *v = ast_value_copy(fromex->params[i]);
111         if (!v) {
112             ast_value_delete(cp);
113             return NULL;
114         }
115         vec_push(selfex->params, v);
116     }
117     return cp;
118 }
119
120 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
121 {
122     size_t i;
123     const ast_expression_common *fromex;
124     ast_expression_common *selfex;
125     self->expression.vtype = other->expression.vtype;
126     if (other->expression.next) {
127         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
128         if (!self->expression.next)
129             return false;
130     }
131     fromex   = &other->expression;
132     selfex = &self->expression;
133     selfex->variadic = fromex->variadic;
134     for (i = 0; i < vec_size(fromex->params); ++i) {
135         ast_value *v = ast_value_copy(fromex->params[i]);
136         if (!v)
137             return false;
138         vec_push(selfex->params, v);
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < vec_size(fromex->params); ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191             vec_push(selfex->params, v);
192         }
193
194         return self;
195     }
196 }
197
198 bool ast_compare_type(ast_expression *a, ast_expression *b)
199 {
200     if (a->expression.vtype != b->expression.vtype)
201         return false;
202     if (!a->expression.next != !b->expression.next)
203         return false;
204     if (vec_size(a->expression.params) != vec_size(b->expression.params))
205         return false;
206     if (a->expression.variadic != b->expression.variadic)
207         return false;
208     if (vec_size(a->expression.params)) {
209         size_t i;
210         for (i = 0; i < vec_size(a->expression.params); ++i) {
211             if (!ast_compare_type((ast_expression*)a->expression.params[i],
212                                   (ast_expression*)b->expression.params[i]))
213                 return false;
214         }
215     }
216     if (a->expression.next)
217         return ast_compare_type(a->expression.next, b->expression.next);
218     return true;
219 }
220
221 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
222 {
223     const char *typestr;
224     size_t typelen;
225     size_t i;
226
227     if (!e) {
228         if (pos + 6 >= bufsize)
229             goto full;
230         strcpy(buf + pos, "(null)");
231         return pos + 6;
232     }
233
234     if (pos + 1 >= bufsize)
235         goto full;
236
237     switch (e->expression.vtype) {
238         case TYPE_VARIANT:
239             strcpy(buf + pos, "(variant)");
240             return pos + 9;
241
242         case TYPE_FIELD:
243             buf[pos++] = '.';
244             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
245
246         case TYPE_POINTER:
247             if (pos + 3 >= bufsize)
248                 goto full;
249             buf[pos++] = '*';
250             buf[pos++] = '(';
251             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
252             if (pos + 1 >= bufsize)
253                 goto full;
254             buf[pos++] = ')';
255             return pos;
256
257         case TYPE_FUNCTION:
258             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259             if (pos + 2 >= bufsize)
260                 goto full;
261             if (!vec_size(e->expression.params)) {
262                 buf[pos++] = '(';
263                 buf[pos++] = ')';
264                 return pos;
265             }
266             buf[pos++] = '(';
267             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
268             for (i = 1; i < vec_size(e->expression.params); ++i) {
269                 if (pos + 2 >= bufsize)
270                     goto full;
271                 buf[pos++] = ',';
272                 buf[pos++] = ' ';
273                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
274             }
275             if (pos + 1 >= bufsize)
276                 goto full;
277             buf[pos++] = ')';
278             return pos;
279
280         case TYPE_ARRAY:
281             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
282             if (pos + 1 >= bufsize)
283                 goto full;
284             buf[pos++] = '[';
285             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
286             if (pos + 1 >= bufsize)
287                 goto full;
288             buf[pos++] = ']';
289             return pos;
290
291         default:
292             typestr = type_name[e->expression.vtype];
293             typelen = strlen(typestr);
294             if (pos + typelen >= bufsize)
295                 goto full;
296             strcpy(buf + pos, typestr);
297             return pos + typelen;
298     }
299
300 full:
301     buf[bufsize-3] = '.';
302     buf[bufsize-2] = '.';
303     buf[bufsize-1] = '.';
304     return bufsize;
305 }
306
307 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
308 {
309     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
310     buf[pos] = 0;
311 }
312
313 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
314 {
315     ast_instantiate(ast_value, ctx, ast_value_delete);
316     ast_expression_init((ast_expression*)self,
317                         (ast_expression_codegen*)&ast_value_codegen);
318     self->expression.node.keep = true; /* keep */
319
320     self->name = name ? util_strdup(name) : NULL;
321     self->expression.vtype = t;
322     self->expression.next  = NULL;
323     self->isconst = false;
324     self->uses    = 0;
325     memset(&self->constval, 0, sizeof(self->constval));
326
327     self->ir_v           = NULL;
328     self->ir_values      = NULL;
329     self->ir_value_count = 0;
330
331     self->setter = NULL;
332     self->getter = NULL;
333
334     return self;
335 }
336
337 void ast_value_delete(ast_value* self)
338 {
339     if (self->name)
340         mem_d((void*)self->name);
341     if (self->isconst) {
342         switch (self->expression.vtype)
343         {
344         case TYPE_STRING:
345             mem_d((void*)self->constval.vstring);
346             break;
347         case TYPE_FUNCTION:
348             /* unlink us from the function node */
349             self->constval.vfunc->vtype = NULL;
350             break;
351         /* NOTE: delete function? currently collected in
352          * the parser structure
353          */
354         default:
355             break;
356         }
357     }
358     if (self->ir_values)
359         mem_d(self->ir_values);
360     ast_expression_delete((ast_expression*)self);
361     mem_d(self);
362 }
363
364 void ast_value_params_add(ast_value *self, ast_value *p)
365 {
366     vec_push(self->expression.params, p);
367 }
368
369 bool ast_value_set_name(ast_value *self, const char *name)
370 {
371     if (self->name)
372         mem_d((void*)self->name);
373     self->name = util_strdup(name);
374     return !!self->name;
375 }
376
377 ast_binary* ast_binary_new(lex_ctx ctx, int op,
378                            ast_expression* left, ast_expression* right)
379 {
380     ast_instantiate(ast_binary, ctx, ast_binary_delete);
381     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
382
383     self->op = op;
384     self->left = left;
385     self->right = right;
386
387     if (op >= INSTR_EQ_F && op <= INSTR_GT)
388         self->expression.vtype = TYPE_FLOAT;
389     else if (op == INSTR_AND || op == INSTR_OR ||
390              op == INSTR_BITAND || op == INSTR_BITOR)
391         self->expression.vtype = TYPE_FLOAT;
392     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
393         self->expression.vtype = TYPE_VECTOR;
394     else if (op == INSTR_MUL_V)
395         self->expression.vtype = TYPE_FLOAT;
396     else
397         self->expression.vtype = left->expression.vtype;
398
399     return self;
400 }
401
402 void ast_binary_delete(ast_binary *self)
403 {
404     ast_unref(self->left);
405     ast_unref(self->right);
406     ast_expression_delete((ast_expression*)self);
407     mem_d(self);
408 }
409
410 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
411                                ast_expression* left, ast_expression* right)
412 {
413     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
414     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
415
416     self->opstore = storop;
417     self->opbin   = op;
418     self->dest    = left;
419     self->source  = right;
420
421     self->expression.vtype = left->expression.vtype;
422     if (left->expression.next) {
423         self->expression.next = ast_type_copy(ctx, left);
424         if (!self->expression.next) {
425             ast_delete(self);
426             return NULL;
427         }
428     }
429     else
430         self->expression.next = NULL;
431
432     return self;
433 }
434
435 void ast_binstore_delete(ast_binstore *self)
436 {
437     ast_unref(self->dest);
438     ast_unref(self->source);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_unary* ast_unary_new(lex_ctx ctx, int op,
444                          ast_expression *expr)
445 {
446     ast_instantiate(ast_unary, ctx, ast_unary_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
448
449     self->op = op;
450     self->operand = expr;
451
452     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
453         self->expression.vtype = TYPE_FLOAT;
454     } else
455         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
456
457     return self;
458 }
459
460 void ast_unary_delete(ast_unary *self)
461 {
462     ast_unref(self->operand);
463     ast_expression_delete((ast_expression*)self);
464     mem_d(self);
465 }
466
467 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
468 {
469     ast_instantiate(ast_return, ctx, ast_return_delete);
470     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
471
472     self->operand = expr;
473
474     return self;
475 }
476
477 void ast_return_delete(ast_return *self)
478 {
479     if (self->operand)
480         ast_unref(self->operand);
481     ast_expression_delete((ast_expression*)self);
482     mem_d(self);
483 }
484
485 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
486 {
487     if (field->expression.vtype != TYPE_FIELD) {
488         asterror(ctx, "ast_entfield_new with expression not of type field");
489         return NULL;
490     }
491     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
492 }
493
494 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
495 {
496     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
497
498     if (!outtype) {
499         mem_d(self);
500         /* Error: field has no type... */
501         return NULL;
502     }
503
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
505
506     self->entity = entity;
507     self->field  = field;
508
509     if (!ast_type_adopt(self, outtype)) {
510         ast_entfield_delete(self);
511         return NULL;
512     }
513
514     return self;
515 }
516
517 void ast_entfield_delete(ast_entfield *self)
518 {
519     ast_unref(self->entity);
520     ast_unref(self->field);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
526 {
527     ast_instantiate(ast_member, ctx, ast_member_delete);
528     if (field >= 3) {
529         mem_d(self);
530         return NULL;
531     }
532
533     if (owner->expression.vtype != TYPE_VECTOR &&
534         owner->expression.vtype != TYPE_FIELD) {
535         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
536         mem_d(self);
537         return NULL;
538     }
539
540     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
541     self->expression.node.keep = true; /* keep */
542
543     if (owner->expression.vtype == TYPE_VECTOR) {
544         self->expression.vtype = TYPE_FLOAT;
545         self->expression.next  = NULL;
546     } else {
547         self->expression.vtype = TYPE_FIELD;
548         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
549     }
550
551     self->owner = owner;
552     self->field = field;
553
554     return self;
555 }
556
557 void ast_member_delete(ast_member *self)
558 {
559     /* The owner is always an ast_value, which has .keep=true,
560      * also: ast_members are usually deleted after the owner, thus
561      * this will cause invalid access
562     ast_unref(self->owner);
563      * once we allow (expression).x to access a vector-member, we need
564      * to change this: preferably by creating an alternate ast node for this
565      * purpose that is not garbage-collected.
566     */
567     ast_expression_delete((ast_expression*)self);
568     mem_d(self);
569 }
570
571 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
572 {
573     ast_expression *outtype;
574     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
575
576     outtype = array->expression.next;
577     if (!outtype) {
578         mem_d(self);
579         /* Error: field has no type... */
580         return NULL;
581     }
582
583     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
584
585     self->array = array;
586     self->index = index;
587
588     if (!ast_type_adopt(self, outtype)) {
589         ast_array_index_delete(self);
590         return NULL;
591     }
592     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
593         if (self->expression.vtype != TYPE_ARRAY) {
594             asterror(ast_ctx(self), "array_index node on type");
595             ast_array_index_delete(self);
596             return NULL;
597         }
598         self->array = outtype;
599         self->expression.vtype = TYPE_FIELD;
600     }
601
602     return self;
603 }
604
605 void ast_array_index_delete(ast_array_index *self)
606 {
607     ast_unref(self->array);
608     ast_unref(self->index);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
614 {
615     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
616     if (!ontrue && !onfalse) {
617         /* because it is invalid */
618         mem_d(self);
619         return NULL;
620     }
621     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
622
623     self->cond     = cond;
624     self->on_true  = ontrue;
625     self->on_false = onfalse;
626
627     return self;
628 }
629
630 void ast_ifthen_delete(ast_ifthen *self)
631 {
632     ast_unref(self->cond);
633     if (self->on_true)
634         ast_unref(self->on_true);
635     if (self->on_false)
636         ast_unref(self->on_false);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
642 {
643     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
644     /* This time NEITHER must be NULL */
645     if (!ontrue || !onfalse) {
646         mem_d(self);
647         return NULL;
648     }
649     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
650
651     self->cond     = cond;
652     self->on_true  = ontrue;
653     self->on_false = onfalse;
654     self->phi_out  = NULL;
655
656     return self;
657 }
658
659 void ast_ternary_delete(ast_ternary *self)
660 {
661     ast_unref(self->cond);
662     ast_unref(self->on_true);
663     ast_unref(self->on_false);
664     ast_expression_delete((ast_expression*)self);
665     mem_d(self);
666 }
667
668 ast_loop* ast_loop_new(lex_ctx ctx,
669                        ast_expression *initexpr,
670                        ast_expression *precond,
671                        ast_expression *postcond,
672                        ast_expression *increment,
673                        ast_expression *body)
674 {
675     ast_instantiate(ast_loop, ctx, ast_loop_delete);
676     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
677
678     self->initexpr  = initexpr;
679     self->precond   = precond;
680     self->postcond  = postcond;
681     self->increment = increment;
682     self->body      = body;
683
684     return self;
685 }
686
687 void ast_loop_delete(ast_loop *self)
688 {
689     if (self->initexpr)
690         ast_unref(self->initexpr);
691     if (self->precond)
692         ast_unref(self->precond);
693     if (self->postcond)
694         ast_unref(self->postcond);
695     if (self->increment)
696         ast_unref(self->increment);
697     if (self->body)
698         ast_unref(self->body);
699     ast_expression_delete((ast_expression*)self);
700     mem_d(self);
701 }
702
703 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
704 {
705     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
706     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
707
708     self->is_continue = iscont;
709
710     return self;
711 }
712
713 void ast_breakcont_delete(ast_breakcont *self)
714 {
715     ast_expression_delete((ast_expression*)self);
716     mem_d(self);
717 }
718
719 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
720 {
721     ast_instantiate(ast_switch, ctx, ast_switch_delete);
722     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
723
724     self->operand = op;
725     self->cases   = NULL;
726
727     return self;
728 }
729
730 void ast_switch_delete(ast_switch *self)
731 {
732     size_t i;
733     ast_unref(self->operand);
734
735     for (i = 0; i < vec_size(self->cases); ++i) {
736         if (self->cases[i].value)
737             ast_unref(self->cases[i].value);
738         ast_unref(self->cases[i].code);
739     }
740     vec_free(self->cases);
741
742     ast_expression_delete((ast_expression*)self);
743     mem_d(self);
744 }
745
746 ast_call* ast_call_new(lex_ctx ctx,
747                        ast_expression *funcexpr)
748 {
749     ast_instantiate(ast_call, ctx, ast_call_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
751
752     self->params = NULL;
753     self->func   = funcexpr;
754
755     self->expression.vtype = funcexpr->expression.next->expression.vtype;
756     if (funcexpr->expression.next->expression.next)
757         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
758
759     return self;
760 }
761
762 void ast_call_delete(ast_call *self)
763 {
764     size_t i;
765     for (i = 0; i < vec_size(self->params); ++i)
766         ast_unref(self->params[i]);
767     vec_free(self->params);
768
769     if (self->func)
770         ast_unref(self->func);
771
772     ast_expression_delete((ast_expression*)self);
773     mem_d(self);
774 }
775
776 bool ast_call_check_types(ast_call *self)
777 {
778     size_t i;
779     bool   retval = true;
780     const  ast_expression *func = self->func;
781     size_t count = vec_size(self->params);
782     if (count > vec_size(func->expression.params))
783         count = vec_size(func->expression.params);
784
785     for (i = 0; i < count; ++i) {
786         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
787             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
788                      (unsigned int)(i+1));
789             /* we don't immediately return */
790             retval = false;
791         }
792     }
793     return retval;
794 }
795
796 ast_store* ast_store_new(lex_ctx ctx, int op,
797                          ast_expression *dest, ast_expression *source)
798 {
799     ast_instantiate(ast_store, ctx, ast_store_delete);
800     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
801
802     self->op = op;
803     self->dest = dest;
804     self->source = source;
805
806     self->expression.vtype = dest->expression.vtype;
807     if (dest->expression.next) {
808         self->expression.next = ast_type_copy(ctx, dest);
809         if (!self->expression.next) {
810             ast_delete(self);
811             return NULL;
812         }
813     }
814     else
815         self->expression.next = NULL;
816
817     return self;
818 }
819
820 void ast_store_delete(ast_store *self)
821 {
822     ast_unref(self->dest);
823     ast_unref(self->source);
824     ast_expression_delete((ast_expression*)self);
825     mem_d(self);
826 }
827
828 ast_block* ast_block_new(lex_ctx ctx)
829 {
830     ast_instantiate(ast_block, ctx, ast_block_delete);
831     ast_expression_init((ast_expression*)self,
832                         (ast_expression_codegen*)&ast_block_codegen);
833
834     self->locals  = NULL;
835     self->exprs   = NULL;
836     self->collect = NULL;
837
838     return self;
839 }
840
841 void ast_block_collect(ast_block *self, ast_expression *expr)
842 {
843     vec_push(self->collect, expr);
844     expr->expression.node.keep = true;
845 }
846
847 void ast_block_delete(ast_block *self)
848 {
849     size_t i;
850     for (i = 0; i < vec_size(self->exprs); ++i)
851         ast_unref(self->exprs[i]);
852     vec_free(self->exprs);
853     for (i = 0; i < vec_size(self->locals); ++i)
854         ast_delete(self->locals[i]);
855     vec_free(self->locals);
856     for (i = 0; i < vec_size(self->collect); ++i)
857         ast_delete(self->collect[i]);
858     vec_free(self->collect);
859     ast_expression_delete((ast_expression*)self);
860     mem_d(self);
861 }
862
863 bool ast_block_set_type(ast_block *self, ast_expression *from)
864 {
865     if (self->expression.next)
866         ast_delete(self->expression.next);
867     self->expression.vtype = from->expression.vtype;
868     if (from->expression.next) {
869         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
870         if (!self->expression.next)
871             return false;
872     }
873     else
874         self->expression.next = NULL;
875     return true;
876 }
877
878 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
879 {
880     ast_instantiate(ast_function, ctx, ast_function_delete);
881
882     if (!vtype ||
883         vtype->isconst ||
884         vtype->expression.vtype != TYPE_FUNCTION)
885     {
886         mem_d(self);
887         return NULL;
888     }
889
890     self->vtype  = vtype;
891     self->name   = name ? util_strdup(name) : NULL;
892     self->blocks = NULL;
893
894     self->labelcount = 0;
895     self->builtin = 0;
896
897     self->ir_func = NULL;
898     self->curblock = NULL;
899
900     self->breakblock    = NULL;
901     self->continueblock = NULL;
902
903     vtype->isconst = true;
904     vtype->constval.vfunc = self;
905
906     return self;
907 }
908
909 void ast_function_delete(ast_function *self)
910 {
911     size_t i;
912     if (self->name)
913         mem_d((void*)self->name);
914     if (self->vtype) {
915         /* ast_value_delete(self->vtype); */
916         self->vtype->isconst = false;
917         self->vtype->constval.vfunc = NULL;
918         /* We use unref - if it was stored in a global table it is supposed
919          * to be deleted from *there*
920          */
921         ast_unref(self->vtype);
922     }
923     for (i = 0; i < vec_size(self->blocks); ++i)
924         ast_delete(self->blocks[i]);
925     vec_free(self->blocks);
926     mem_d(self);
927 }
928
929 const char* ast_function_label(ast_function *self, const char *prefix)
930 {
931     size_t id;
932     size_t len;
933     char  *from;
934
935     if (!opts_dump)
936         return NULL;
937
938     id  = (self->labelcount++);
939     len = strlen(prefix);
940
941     from = self->labelbuf + sizeof(self->labelbuf)-1;
942     *from-- = 0;
943     do {
944         unsigned int digit = id % 10;
945         *from = digit + '0';
946         id /= 10;
947     } while (id);
948     memcpy(from - len, prefix, len);
949     return from - len;
950 }
951
952 /*********************************************************************/
953 /* AST codegen part
954  * by convention you must never pass NULL to the 'ir_value **out'
955  * parameter. If you really don't care about the output, pass a dummy.
956  * But I can't imagine a pituation where the output is truly unnecessary.
957  */
958
959 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
960 {
961     /* NOTE: This is the codegen for a variable used in an expression.
962      * It is not the codegen to generate the value. For this purpose,
963      * ast_local_codegen and ast_global_codegen are to be used before this
964      * is executed. ast_function_codegen should take care of its locals,
965      * and the ast-user should take care of ast_global_codegen to be used
966      * on all the globals.
967      */
968     if (!self->ir_v) {
969         char typename[1024];
970         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
971         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
972         return false;
973     }
974     *out = self->ir_v;
975     return true;
976 }
977
978 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
979 {
980     ir_value *v = NULL;
981
982     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
983     {
984         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
985         if (!func)
986             return false;
987         func->context = ast_ctx(self);
988         func->value->context = ast_ctx(self);
989
990         self->constval.vfunc->ir_func = func;
991         self->ir_v = func->value;
992         /* The function is filled later on ast_function_codegen... */
993         return true;
994     }
995
996     if (isfield && self->expression.vtype == TYPE_FIELD) {
997         ast_expression *fieldtype = self->expression.next;
998
999         if (self->isconst) {
1000             asterror(ast_ctx(self), "TODO: constant field pointers with value");
1001             goto error;
1002         }
1003
1004         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1005             size_t ai;
1006             char   *name;
1007             size_t  namelen;
1008
1009             ast_expression_common *elemtype;
1010             int                    vtype;
1011             ast_value             *array = (ast_value*)fieldtype;
1012
1013             if (!ast_istype(fieldtype, ast_value)) {
1014                 asterror(ast_ctx(self), "internal error: ast_value required");
1015                 return false;
1016             }
1017
1018             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1019             if (!array->expression.count || array->expression.count > opts_max_array_size)
1020                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1021
1022             elemtype = &array->expression.next->expression;
1023             vtype = elemtype->vtype;
1024
1025             v = ir_builder_create_field(ir, self->name, vtype);
1026             if (!v) {
1027                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1028                 return false;
1029             }
1030             if (vtype == TYPE_FIELD)
1031                 v->fieldtype = elemtype->next->expression.vtype;
1032             v->context = ast_ctx(self);
1033             array->ir_v = self->ir_v = v;
1034
1035             namelen = strlen(self->name);
1036             name    = (char*)mem_a(namelen + 16);
1037             strcpy(name, self->name);
1038
1039             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1040             array->ir_values[0] = v;
1041             for (ai = 1; ai < array->expression.count; ++ai) {
1042                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1043                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1044                 if (!array->ir_values[ai]) {
1045                     mem_d(name);
1046                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1047                     return false;
1048                 }
1049                 if (vtype == TYPE_FIELD)
1050                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1051                 array->ir_values[ai]->context = ast_ctx(self);
1052             }
1053             mem_d(name);
1054         }
1055         else
1056         {
1057             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1058             if (!v)
1059                 return false;
1060             v->context = ast_ctx(self);
1061             self->ir_v = v;
1062         }
1063         return true;
1064     }
1065
1066     if (self->expression.vtype == TYPE_ARRAY) {
1067         size_t ai;
1068         char   *name;
1069         size_t  namelen;
1070
1071         ast_expression_common *elemtype = &self->expression.next->expression;
1072         int vtype = elemtype->vtype;
1073
1074         /* same as with field arrays */
1075         if (!self->expression.count || self->expression.count > opts_max_array_size)
1076             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1077
1078         v = ir_builder_create_global(ir, self->name, vtype);
1079         if (!v) {
1080             asterror(ast_ctx(self), "ir_builder_create_global failed");
1081             return false;
1082         }
1083         if (vtype == TYPE_FIELD)
1084             v->fieldtype = elemtype->next->expression.vtype;
1085         v->context = ast_ctx(self);
1086
1087         namelen = strlen(self->name);
1088         name    = (char*)mem_a(namelen + 16);
1089         strcpy(name, self->name);
1090
1091         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1092         self->ir_values[0] = v;
1093         for (ai = 1; ai < self->expression.count; ++ai) {
1094             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1095             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1096             if (!self->ir_values[ai]) {
1097                 mem_d(name);
1098                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1099                 return false;
1100             }
1101             if (vtype == TYPE_FIELD)
1102                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1103             self->ir_values[ai]->context = ast_ctx(self);
1104         }
1105         mem_d(name);
1106     }
1107     else
1108     {
1109         /* Arrays don't do this since there's no "array" value which spans across the
1110          * whole thing.
1111          */
1112         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1113         if (!v) {
1114             asterror(ast_ctx(self), "ir_builder_create_global failed");
1115             return false;
1116         }
1117         if (self->expression.vtype == TYPE_FIELD)
1118             v->fieldtype = self->expression.next->expression.vtype;
1119         v->context = ast_ctx(self);
1120     }
1121
1122     if (self->isconst) {
1123         switch (self->expression.vtype)
1124         {
1125             case TYPE_FLOAT:
1126                 if (!ir_value_set_float(v, self->constval.vfloat))
1127                     goto error;
1128                 break;
1129             case TYPE_VECTOR:
1130                 if (!ir_value_set_vector(v, self->constval.vvec))
1131                     goto error;
1132                 break;
1133             case TYPE_STRING:
1134                 if (!ir_value_set_string(v, self->constval.vstring))
1135                     goto error;
1136                 break;
1137             case TYPE_ARRAY:
1138                 asterror(ast_ctx(self), "TODO: global constant array");
1139                 break;
1140             case TYPE_FUNCTION:
1141                 asterror(ast_ctx(self), "global of type function not properly generated");
1142                 goto error;
1143                 /* Cannot generate an IR value for a function,
1144                  * need a pointer pointing to a function rather.
1145                  */
1146             default:
1147                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1148                 break;
1149         }
1150     }
1151
1152     /* link us to the ir_value */
1153     self->ir_v = v;
1154     return true;
1155
1156 error: /* clean up */
1157     ir_value_delete(v);
1158     return false;
1159 }
1160
1161 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1162 {
1163     ir_value *v = NULL;
1164     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1165     {
1166         /* Do we allow local functions? I think not...
1167          * this is NOT a function pointer atm.
1168          */
1169         return false;
1170     }
1171
1172     if (self->expression.vtype == TYPE_ARRAY) {
1173         size_t ai;
1174         char   *name;
1175         size_t  namelen;
1176
1177         ast_expression_common *elemtype = &self->expression.next->expression;
1178         int vtype = elemtype->vtype;
1179
1180         if (param) {
1181             asterror(ast_ctx(self), "array-parameters are not supported");
1182             return false;
1183         }
1184
1185         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1186         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1187             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1188         }
1189
1190         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1191         if (!self->ir_values) {
1192             asterror(ast_ctx(self), "failed to allocate array values");
1193             return false;
1194         }
1195
1196         v = ir_function_create_local(func, self->name, vtype, param);
1197         if (!v) {
1198             asterror(ast_ctx(self), "ir_function_create_local failed");
1199             return false;
1200         }
1201         if (vtype == TYPE_FIELD)
1202             v->fieldtype = elemtype->next->expression.vtype;
1203         v->context = ast_ctx(self);
1204
1205         namelen = strlen(self->name);
1206         name    = (char*)mem_a(namelen + 16);
1207         strcpy(name, self->name);
1208
1209         self->ir_values[0] = v;
1210         for (ai = 1; ai < self->expression.count; ++ai) {
1211             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1212             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1213             if (!self->ir_values[ai]) {
1214                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1215                 return false;
1216             }
1217             if (vtype == TYPE_FIELD)
1218                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1219             self->ir_values[ai]->context = ast_ctx(self);
1220         }
1221     }
1222     else
1223     {
1224         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1225         if (!v)
1226             return false;
1227         if (self->expression.vtype == TYPE_FIELD)
1228             v->fieldtype = self->expression.next->expression.vtype;
1229         v->context = ast_ctx(self);
1230     }
1231
1232     /* A constant local... hmmm...
1233      * I suppose the IR will have to deal with this
1234      */
1235     if (self->isconst) {
1236         switch (self->expression.vtype)
1237         {
1238             case TYPE_FLOAT:
1239                 if (!ir_value_set_float(v, self->constval.vfloat))
1240                     goto error;
1241                 break;
1242             case TYPE_VECTOR:
1243                 if (!ir_value_set_vector(v, self->constval.vvec))
1244                     goto error;
1245                 break;
1246             case TYPE_STRING:
1247                 if (!ir_value_set_string(v, self->constval.vstring))
1248                     goto error;
1249                 break;
1250             default:
1251                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1252                 break;
1253         }
1254     }
1255
1256     /* link us to the ir_value */
1257     self->ir_v = v;
1258
1259     if (self->setter) {
1260         if (!ast_global_codegen(self->setter, func->owner, false) ||
1261             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1262             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1263             return false;
1264     }
1265     if (self->getter) {
1266         if (!ast_global_codegen(self->getter, func->owner, false) ||
1267             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1268             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1269             return false;
1270     }
1271     return true;
1272
1273 error: /* clean up */
1274     ir_value_delete(v);
1275     return false;
1276 }
1277
1278 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1279 {
1280     ir_function *irf;
1281     ir_value    *dummy;
1282     ast_expression_common *ec;
1283     size_t    i;
1284
1285     irf = self->ir_func;
1286     if (!irf) {
1287         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1288         return false;
1289     }
1290
1291     /* fill the parameter list */
1292     ec = &self->vtype->expression;
1293     for (i = 0; i < vec_size(ec->params); ++i)
1294     {
1295         vec_push(irf->params, ec->params[i]->expression.vtype);
1296         if (!self->builtin) {
1297             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1298                 return false;
1299         }
1300     }
1301
1302     if (self->builtin) {
1303         irf->builtin = self->builtin;
1304         return true;
1305     }
1306
1307     if (!vec_size(self->blocks)) {
1308         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1309         return false;
1310     }
1311
1312     self->curblock = ir_function_create_block(irf, "entry");
1313     if (!self->curblock) {
1314         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1315         return false;
1316     }
1317
1318     for (i = 0; i < vec_size(self->blocks); ++i) {
1319         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1320         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1321             return false;
1322     }
1323
1324     /* TODO: check return types */
1325     if (!self->curblock->is_return)
1326     {
1327         return ir_block_create_return(self->curblock, NULL);
1328         /* From now on the parser has to handle this situation */
1329 #if 0
1330         if (!self->vtype->expression.next ||
1331             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1332         {
1333             return ir_block_create_return(self->curblock, NULL);
1334         }
1335         else
1336         {
1337             /* error("missing return"); */
1338             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1339             return false;
1340         }
1341 #endif
1342     }
1343     return true;
1344 }
1345
1346 /* Note, you will not see ast_block_codegen generate ir_blocks.
1347  * To the AST and the IR, blocks are 2 different things.
1348  * In the AST it represents a block of code, usually enclosed in
1349  * curly braces {...}.
1350  * While in the IR it represents a block in terms of control-flow.
1351  */
1352 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1353 {
1354     size_t i;
1355
1356     /* We don't use this
1357      * Note: an ast-representation using the comma-operator
1358      * of the form: (a, b, c) = x should not assign to c...
1359      */
1360     if (lvalue) {
1361         asterror(ast_ctx(self), "not an l-value (code-block)");
1362         return false;
1363     }
1364
1365     if (self->expression.outr) {
1366         *out = self->expression.outr;
1367         return true;
1368     }
1369
1370     /* output is NULL at first, we'll have each expression
1371      * assign to out output, thus, a comma-operator represention
1372      * using an ast_block will return the last generated value,
1373      * so: (b, c) + a  executed both b and c, and returns c,
1374      * which is then added to a.
1375      */
1376     *out = NULL;
1377
1378     /* generate locals */
1379     for (i = 0; i < vec_size(self->locals); ++i)
1380     {
1381         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1382             if (opts_debug)
1383                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1384             return false;
1385         }
1386     }
1387
1388     for (i = 0; i < vec_size(self->exprs); ++i)
1389     {
1390         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1391         if (func->curblock->final) {
1392             asterror(ast_ctx(self->exprs[i]), "unreachable statement");
1393             return false;
1394         }
1395         if (!(*gen)(self->exprs[i], func, false, out))
1396             return false;
1397     }
1398
1399     self->expression.outr = *out;
1400
1401     return true;
1402 }
1403
1404 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1405 {
1406     ast_expression_codegen *cgen;
1407     ir_value *left, *right;
1408
1409     ast_value       *arr;
1410     ast_value       *idx;
1411     ast_array_index *ai = NULL;
1412
1413     if (lvalue && self->expression.outl) {
1414         *out = self->expression.outl;
1415         return true;
1416     }
1417
1418     if (!lvalue && self->expression.outr) {
1419         *out = self->expression.outr;
1420         return true;
1421     }
1422
1423     if (ast_istype(self->dest, ast_array_index))
1424     {
1425
1426         ai = (ast_array_index*)self->dest;
1427         idx = (ast_value*)ai->index;
1428
1429         if (ast_istype(ai->index, ast_value) && idx->isconst)
1430             ai = NULL;
1431     }
1432
1433     if (ai) {
1434         /* we need to call the setter */
1435         ir_value  *iridx, *funval;
1436         ir_instr  *call;
1437
1438         if (lvalue) {
1439             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1440             return false;
1441         }
1442
1443         arr = (ast_value*)ai->array;
1444         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1445             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1446             return false;
1447         }
1448
1449         cgen = idx->expression.codegen;
1450         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1451             return false;
1452
1453         cgen = arr->setter->expression.codegen;
1454         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1455             return false;
1456
1457         cgen = self->source->expression.codegen;
1458         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1459             return false;
1460
1461         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1462         if (!call)
1463             return false;
1464         ir_call_param(call, iridx);
1465         ir_call_param(call, right);
1466         self->expression.outr = right;
1467     }
1468     else
1469     {
1470         /* regular code */
1471
1472         cgen = self->dest->expression.codegen;
1473         /* lvalue! */
1474         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1475             return false;
1476         self->expression.outl = left;
1477
1478         cgen = self->source->expression.codegen;
1479         /* rvalue! */
1480         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1481             return false;
1482
1483         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1484             return false;
1485         self->expression.outr = right;
1486     }
1487
1488     /* Theoretically, an assinment returns its left side as an
1489      * lvalue, if we don't need an lvalue though, we return
1490      * the right side as an rvalue, otherwise we have to
1491      * somehow know whether or not we need to dereference the pointer
1492      * on the left side - that is: OP_LOAD if it was an address.
1493      * Also: in original QC we cannot OP_LOADP *anyway*.
1494      */
1495     *out = (lvalue ? left : right);
1496
1497     return true;
1498 }
1499
1500 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1501 {
1502     ast_expression_codegen *cgen;
1503     ir_value *left, *right;
1504
1505     /* A binary operation cannot yield an l-value */
1506     if (lvalue) {
1507         asterror(ast_ctx(self), "not an l-value (binop)");
1508         return false;
1509     }
1510
1511     if (self->expression.outr) {
1512         *out = self->expression.outr;
1513         return true;
1514     }
1515
1516     if (OPTS_FLAG(SHORT_LOGIC) &&
1517         (self->op == INSTR_AND || self->op == INSTR_OR))
1518     {
1519         /* short circuit evaluation */
1520         ir_block *other, *merge;
1521         ir_block *from_left, *from_right;
1522         ir_instr *phi;
1523         size_t    merge_id;
1524
1525         merge_id = vec_size(func->blocks);
1526         merge = ir_function_create_block(func->ir_func, ast_function_label(func, "sce_merge"));
1527
1528         cgen = self->left->expression.codegen;
1529         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1530             return false;
1531
1532         from_left = func->curblock;
1533         other = ir_function_create_block(func->ir_func, ast_function_label(func, "sce_other"));
1534         if (self->op == INSTR_AND) {
1535             if (!ir_block_create_if(func->curblock, left, other, merge))
1536                 return false;
1537         } else {
1538             if (!ir_block_create_if(func->curblock, left, merge, other))
1539                 return false;
1540         }
1541         /* use the unlikely flag */
1542         vec_last(func->curblock->instr)->likely = false;
1543
1544         func->curblock = other;
1545         cgen = self->right->expression.codegen;
1546         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1547             return false;
1548         from_right = func->curblock;
1549
1550         if (!ir_block_create_jump(func->curblock, merge))
1551             return false;
1552
1553         vec_remove(func->ir_func->blocks, merge_id, 1);
1554         vec_push(func->ir_func->blocks, merge);
1555
1556         func->curblock = merge;
1557         phi = ir_block_create_phi(func->curblock, ast_function_label(func, "sce_value"), TYPE_FLOAT);
1558         ir_phi_add(phi, from_left, left);
1559         ir_phi_add(phi, from_right, right);
1560         *out = ir_phi_value(phi);
1561         self->expression.outr = *out;
1562         return true;
1563     }
1564
1565     cgen = self->left->expression.codegen;
1566     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1567         return false;
1568
1569     cgen = self->right->expression.codegen;
1570     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1571         return false;
1572
1573     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1574                                  self->op, left, right);
1575     if (!*out)
1576         return false;
1577     self->expression.outr = *out;
1578
1579     return true;
1580 }
1581
1582 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1583 {
1584     ast_expression_codegen *cgen;
1585     ir_value *leftl, *leftr, *right, *bin;
1586
1587     if (lvalue && self->expression.outl) {
1588         *out = self->expression.outl;
1589         return true;
1590     }
1591
1592     if (!lvalue && self->expression.outr) {
1593         *out = self->expression.outr;
1594         return true;
1595     }
1596
1597     /* for a binstore we need both an lvalue and an rvalue for the left side */
1598     /* rvalue of destination! */
1599     cgen = self->dest->expression.codegen;
1600     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1601         return false;
1602
1603     /* source as rvalue only */
1604     cgen = self->source->expression.codegen;
1605     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1606         return false;
1607
1608     /* now the binary */
1609     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1610                                 self->opbin, leftr, right);
1611     self->expression.outr = bin;
1612
1613     /* now store them */
1614     cgen = self->dest->expression.codegen;
1615     /* lvalue of destination */
1616     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1617         return false;
1618     self->expression.outl = leftl;
1619
1620     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1621         return false;
1622     self->expression.outr = bin;
1623
1624     /* Theoretically, an assinment returns its left side as an
1625      * lvalue, if we don't need an lvalue though, we return
1626      * the right side as an rvalue, otherwise we have to
1627      * somehow know whether or not we need to dereference the pointer
1628      * on the left side - that is: OP_LOAD if it was an address.
1629      * Also: in original QC we cannot OP_LOADP *anyway*.
1630      */
1631     *out = (lvalue ? leftl : bin);
1632
1633     return true;
1634 }
1635
1636 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1637 {
1638     ast_expression_codegen *cgen;
1639     ir_value *operand;
1640
1641     /* An unary operation cannot yield an l-value */
1642     if (lvalue) {
1643         asterror(ast_ctx(self), "not an l-value (binop)");
1644         return false;
1645     }
1646
1647     if (self->expression.outr) {
1648         *out = self->expression.outr;
1649         return true;
1650     }
1651
1652     cgen = self->operand->expression.codegen;
1653     /* lvalue! */
1654     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1655         return false;
1656
1657     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1658                                  self->op, operand);
1659     if (!*out)
1660         return false;
1661     self->expression.outr = *out;
1662
1663     return true;
1664 }
1665
1666 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1667 {
1668     ast_expression_codegen *cgen;
1669     ir_value *operand;
1670
1671     /* In the context of a return operation, we don't actually return
1672      * anything...
1673      */
1674     if (lvalue) {
1675         asterror(ast_ctx(self), "return-expression is not an l-value");
1676         return false;
1677     }
1678
1679     if (self->expression.outr) {
1680         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1681         return false;
1682     }
1683     self->expression.outr = (ir_value*)1;
1684
1685     if (self->operand) {
1686         cgen = self->operand->expression.codegen;
1687         /* lvalue! */
1688         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1689             return false;
1690
1691         if (!ir_block_create_return(func->curblock, operand))
1692             return false;
1693     } else {
1694         if (!ir_block_create_return(func->curblock, NULL))
1695             return false;
1696     }
1697
1698     return true;
1699 }
1700
1701 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1702 {
1703     ast_expression_codegen *cgen;
1704     ir_value *ent, *field;
1705
1706     /* This function needs to take the 'lvalue' flag into account!
1707      * As lvalue we provide a field-pointer, as rvalue we provide the
1708      * value in a temp.
1709      */
1710
1711     if (lvalue && self->expression.outl) {
1712         *out = self->expression.outl;
1713         return true;
1714     }
1715
1716     if (!lvalue && self->expression.outr) {
1717         *out = self->expression.outr;
1718         return true;
1719     }
1720
1721     cgen = self->entity->expression.codegen;
1722     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1723         return false;
1724
1725     cgen = self->field->expression.codegen;
1726     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1727         return false;
1728
1729     if (lvalue) {
1730         /* address! */
1731         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1732                                             ent, field);
1733     } else {
1734         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1735                                              ent, field, self->expression.vtype);
1736     }
1737     if (!*out) {
1738         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1739                  (lvalue ? "ADDRESS" : "FIELD"),
1740                  type_name[self->expression.vtype]);
1741         return false;
1742     }
1743
1744     if (lvalue)
1745         self->expression.outl = *out;
1746     else
1747         self->expression.outr = *out;
1748
1749     /* Hm that should be it... */
1750     return true;
1751 }
1752
1753 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1754 {
1755     ast_expression_codegen *cgen;
1756     ir_value *vec;
1757
1758     /* in QC this is always an lvalue */
1759     (void)lvalue;
1760     if (self->expression.outl) {
1761         *out = self->expression.outl;
1762         return true;
1763     }
1764
1765     cgen = self->owner->expression.codegen;
1766     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1767         return false;
1768
1769     if (vec->vtype != TYPE_VECTOR &&
1770         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1771     {
1772         return false;
1773     }
1774
1775     *out = ir_value_vector_member(vec, self->field);
1776     self->expression.outl = *out;
1777
1778     return (*out != NULL);
1779 }
1780
1781 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1782 {
1783     ast_value *arr;
1784     ast_value *idx;
1785
1786     if (!lvalue && self->expression.outr) {
1787         *out = self->expression.outr;
1788     }
1789     if (lvalue && self->expression.outl) {
1790         *out = self->expression.outl;
1791     }
1792
1793     if (!ast_istype(self->array, ast_value)) {
1794         asterror(ast_ctx(self), "array indexing this way is not supported");
1795         /* note this would actually be pointer indexing because the left side is
1796          * not an actual array but (hopefully) an indexable expression.
1797          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1798          * support this path will be filled.
1799          */
1800         return false;
1801     }
1802
1803     arr = (ast_value*)self->array;
1804     idx = (ast_value*)self->index;
1805
1806     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1807         /* Time to use accessor functions */
1808         ast_expression_codegen *cgen;
1809         ir_value               *iridx, *funval;
1810         ir_instr               *call;
1811
1812         if (lvalue) {
1813             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1814             return false;
1815         }
1816
1817         if (!arr->getter) {
1818             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1819             return false;
1820         }
1821
1822         cgen = self->index->expression.codegen;
1823         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1824             return false;
1825
1826         cgen = arr->getter->expression.codegen;
1827         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1828             return false;
1829
1830         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1831         if (!call)
1832             return false;
1833         ir_call_param(call, iridx);
1834
1835         *out = ir_call_value(call);
1836         self->expression.outr = *out;
1837         return true;
1838     }
1839
1840     if (idx->expression.vtype == TYPE_FLOAT)
1841         *out = arr->ir_values[(int)idx->constval.vfloat];
1842     else if (idx->expression.vtype == TYPE_INTEGER)
1843         *out = arr->ir_values[idx->constval.vint];
1844     else {
1845         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1846         return false;
1847     }
1848     return true;
1849 }
1850
1851 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1852 {
1853     ast_expression_codegen *cgen;
1854
1855     ir_value *condval;
1856     ir_value *dummy;
1857
1858     ir_block *cond = func->curblock;
1859     ir_block *ontrue;
1860     ir_block *onfalse;
1861     ir_block *ontrue_endblock = NULL;
1862     ir_block *onfalse_endblock = NULL;
1863     ir_block *merge;
1864
1865     /* We don't output any value, thus also don't care about r/lvalue */
1866     (void)out;
1867     (void)lvalue;
1868
1869     if (self->expression.outr) {
1870         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1871         return false;
1872     }
1873     self->expression.outr = (ir_value*)1;
1874
1875     /* generate the condition */
1876     func->curblock = cond;
1877     cgen = self->cond->expression.codegen;
1878     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1879         return false;
1880
1881     /* on-true path */
1882
1883     if (self->on_true) {
1884         /* create on-true block */
1885         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1886         if (!ontrue)
1887             return false;
1888
1889         /* enter the block */
1890         func->curblock = ontrue;
1891
1892         /* generate */
1893         cgen = self->on_true->expression.codegen;
1894         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1895             return false;
1896
1897         /* we now need to work from the current endpoint */
1898         ontrue_endblock = func->curblock;
1899     } else
1900         ontrue = NULL;
1901
1902     /* on-false path */
1903     if (self->on_false) {
1904         /* create on-false block */
1905         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1906         if (!onfalse)
1907             return false;
1908
1909         /* enter the block */
1910         func->curblock = onfalse;
1911
1912         /* generate */
1913         cgen = self->on_false->expression.codegen;
1914         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1915             return false;
1916
1917         /* we now need to work from the current endpoint */
1918         onfalse_endblock = func->curblock;
1919     } else
1920         onfalse = NULL;
1921
1922     /* Merge block were they all merge in to */
1923     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1924     if (!merge)
1925         return false;
1926
1927     /* add jumps ot the merge block */
1928     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1929         return false;
1930     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1931         return false;
1932
1933     /* we create the if here, that way all blocks are ordered :)
1934      */
1935     if (!ir_block_create_if(cond, condval,
1936                             (ontrue  ? ontrue  : merge),
1937                             (onfalse ? onfalse : merge)))
1938     {
1939         return false;
1940     }
1941
1942     /* Now enter the merge block */
1943     func->curblock = merge;
1944
1945     return true;
1946 }
1947
1948 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1949 {
1950     ast_expression_codegen *cgen;
1951
1952     ir_value *condval;
1953     ir_value *trueval, *falseval;
1954     ir_instr *phi;
1955
1956     ir_block *cond = func->curblock;
1957     ir_block *ontrue;
1958     ir_block *onfalse;
1959     ir_block *merge;
1960
1961     /* Ternary can never create an lvalue... */
1962     if (lvalue)
1963         return false;
1964
1965     /* In theory it shouldn't be possible to pass through a node twice, but
1966      * in case we add any kind of optimization pass for the AST itself, it
1967      * may still happen, thus we remember a created ir_value and simply return one
1968      * if it already exists.
1969      */
1970     if (self->phi_out) {
1971         *out = self->phi_out;
1972         return true;
1973     }
1974
1975     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1976
1977     /* generate the condition */
1978     func->curblock = cond;
1979     cgen = self->cond->expression.codegen;
1980     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1981         return false;
1982
1983     /* create on-true block */
1984     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1985     if (!ontrue)
1986         return false;
1987     else
1988     {
1989         /* enter the block */
1990         func->curblock = ontrue;
1991
1992         /* generate */
1993         cgen = self->on_true->expression.codegen;
1994         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1995             return false;
1996     }
1997
1998     /* create on-false block */
1999     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
2000     if (!onfalse)
2001         return false;
2002     else
2003     {
2004         /* enter the block */
2005         func->curblock = onfalse;
2006
2007         /* generate */
2008         cgen = self->on_false->expression.codegen;
2009         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2010             return false;
2011     }
2012
2013     /* create merge block */
2014     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
2015     if (!merge)
2016         return false;
2017     /* jump to merge block */
2018     if (!ir_block_create_jump(ontrue, merge))
2019         return false;
2020     if (!ir_block_create_jump(onfalse, merge))
2021         return false;
2022
2023     /* create if instruction */
2024     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
2025         return false;
2026
2027     /* Now enter the merge block */
2028     func->curblock = merge;
2029
2030     /* Here, now, we need a PHI node
2031      * but first some sanity checking...
2032      */
2033     if (trueval->vtype != falseval->vtype) {
2034         /* error("ternary with different types on the two sides"); */
2035         return false;
2036     }
2037
2038     /* create PHI */
2039     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
2040     if (!phi)
2041         return false;
2042     ir_phi_add(phi, ontrue,  trueval);
2043     ir_phi_add(phi, onfalse, falseval);
2044
2045     self->phi_out = ir_phi_value(phi);
2046     *out = self->phi_out;
2047
2048     return true;
2049 }
2050
2051 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2052 {
2053     ast_expression_codegen *cgen;
2054
2055     ir_value *dummy      = NULL;
2056     ir_value *precond    = NULL;
2057     ir_value *postcond   = NULL;
2058
2059     /* Since we insert some jumps "late" so we have blocks
2060      * ordered "nicely", we need to keep track of the actual end-blocks
2061      * of expressions to add the jumps to.
2062      */
2063     ir_block *bbody      = NULL, *end_bbody      = NULL;
2064     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2065     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2066     ir_block *bincrement = NULL, *end_bincrement = NULL;
2067     ir_block *bout       = NULL, *bin            = NULL;
2068
2069     /* let's at least move the outgoing block to the end */
2070     size_t    bout_id;
2071
2072     /* 'break' and 'continue' need to be able to find the right blocks */
2073     ir_block *bcontinue     = NULL;
2074     ir_block *bbreak        = NULL;
2075
2076     ir_block *old_bcontinue = NULL;
2077     ir_block *old_bbreak    = NULL;
2078
2079     ir_block *tmpblock      = NULL;
2080
2081     (void)lvalue;
2082     (void)out;
2083
2084     if (self->expression.outr) {
2085         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2086         return false;
2087     }
2088     self->expression.outr = (ir_value*)1;
2089
2090     /* NOTE:
2091      * Should we ever need some kind of block ordering, better make this function
2092      * move blocks around than write a block ordering algorithm later... after all
2093      * the ast and ir should work together, not against each other.
2094      */
2095
2096     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2097      * anyway if for example it contains a ternary.
2098      */
2099     if (self->initexpr)
2100     {
2101         cgen = self->initexpr->expression.codegen;
2102         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2103             return false;
2104     }
2105
2106     /* Store the block from which we enter this chaos */
2107     bin = func->curblock;
2108
2109     /* The pre-loop condition needs its own block since we
2110      * need to be able to jump to the start of that expression.
2111      */
2112     if (self->precond)
2113     {
2114         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2115         if (!bprecond)
2116             return false;
2117
2118         /* the pre-loop-condition the least important place to 'continue' at */
2119         bcontinue = bprecond;
2120
2121         /* enter */
2122         func->curblock = bprecond;
2123
2124         /* generate */
2125         cgen = self->precond->expression.codegen;
2126         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2127             return false;
2128
2129         end_bprecond = func->curblock;
2130     } else {
2131         bprecond = end_bprecond = NULL;
2132     }
2133
2134     /* Now the next blocks won't be ordered nicely, but we need to
2135      * generate them this early for 'break' and 'continue'.
2136      */
2137     if (self->increment) {
2138         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2139         if (!bincrement)
2140             return false;
2141         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2142     } else {
2143         bincrement = end_bincrement = NULL;
2144     }
2145
2146     if (self->postcond) {
2147         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2148         if (!bpostcond)
2149             return false;
2150         bcontinue = bpostcond; /* postcond comes before the increment */
2151     } else {
2152         bpostcond = end_bpostcond = NULL;
2153     }
2154
2155     bout_id = vec_size(func->ir_func->blocks);
2156     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2157     if (!bout)
2158         return false;
2159     bbreak = bout;
2160
2161     /* The loop body... */
2162     if (self->body)
2163     {
2164         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2165         if (!bbody)
2166             return false;
2167
2168         /* enter */
2169         func->curblock = bbody;
2170
2171         old_bbreak          = func->breakblock;
2172         old_bcontinue       = func->continueblock;
2173         func->breakblock    = bbreak;
2174         func->continueblock = bcontinue;
2175
2176         /* generate */
2177         cgen = self->body->expression.codegen;
2178         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2179             return false;
2180
2181         end_bbody = func->curblock;
2182         func->breakblock    = old_bbreak;
2183         func->continueblock = old_bcontinue;
2184     }
2185
2186     /* post-loop-condition */
2187     if (self->postcond)
2188     {
2189         /* enter */
2190         func->curblock = bpostcond;
2191
2192         /* generate */
2193         cgen = self->postcond->expression.codegen;
2194         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2195             return false;
2196
2197         end_bpostcond = func->curblock;
2198     }
2199
2200     /* The incrementor */
2201     if (self->increment)
2202     {
2203         /* enter */
2204         func->curblock = bincrement;
2205
2206         /* generate */
2207         cgen = self->increment->expression.codegen;
2208         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2209             return false;
2210
2211         end_bincrement = func->curblock;
2212     }
2213
2214     /* In any case now, we continue from the outgoing block */
2215     func->curblock = bout;
2216
2217     /* Now all blocks are in place */
2218     /* From 'bin' we jump to whatever comes first */
2219     if      (bprecond)   tmpblock = bprecond;
2220     else if (bbody)      tmpblock = bbody;
2221     else if (bpostcond)  tmpblock = bpostcond;
2222     else                 tmpblock = bout;
2223     if (!ir_block_create_jump(bin, tmpblock))
2224         return false;
2225
2226     /* From precond */
2227     if (bprecond)
2228     {
2229         ir_block *ontrue, *onfalse;
2230         if      (bbody)      ontrue = bbody;
2231         else if (bincrement) ontrue = bincrement;
2232         else if (bpostcond)  ontrue = bpostcond;
2233         else                 ontrue = bprecond;
2234         onfalse = bout;
2235         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2236             return false;
2237     }
2238
2239     /* from body */
2240     if (bbody)
2241     {
2242         if      (bincrement) tmpblock = bincrement;
2243         else if (bpostcond)  tmpblock = bpostcond;
2244         else if (bprecond)   tmpblock = bprecond;
2245         else                 tmpblock = bout;
2246         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2247             return false;
2248     }
2249
2250     /* from increment */
2251     if (bincrement)
2252     {
2253         if      (bpostcond)  tmpblock = bpostcond;
2254         else if (bprecond)   tmpblock = bprecond;
2255         else if (bbody)      tmpblock = bbody;
2256         else                 tmpblock = bout;
2257         if (!ir_block_create_jump(end_bincrement, tmpblock))
2258             return false;
2259     }
2260
2261     /* from postcond */
2262     if (bpostcond)
2263     {
2264         ir_block *ontrue, *onfalse;
2265         if      (bprecond)   ontrue = bprecond;
2266         else if (bbody)      ontrue = bbody;
2267         else if (bincrement) ontrue = bincrement;
2268         else                 ontrue = bpostcond;
2269         onfalse = bout;
2270         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2271             return false;
2272     }
2273
2274     /* Move 'bout' to the end */
2275     vec_remove(func->ir_func->blocks, bout_id, 1);
2276     vec_push(func->ir_func->blocks, bout);
2277
2278     return true;
2279 }
2280
2281 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2282 {
2283     ir_block *target;
2284
2285     if (lvalue) {
2286         asterror(ast_ctx(self), "break/continue expression is not an l-value");
2287         return false;
2288     }
2289
2290     if (self->expression.outr) {
2291         asterror(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2292         return false;
2293     }
2294     self->expression.outr = (ir_value*)1;
2295
2296     if (self->is_continue)
2297         target = func->continueblock;
2298     else
2299         target = func->breakblock;
2300
2301     if (!ir_block_create_jump(func->curblock, target))
2302         return false;
2303     return true;
2304 }
2305
2306 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2307 {
2308     ast_expression_codegen *cgen;
2309
2310     ast_switch_case *def_case  = NULL;
2311     ir_block        *def_bfall = NULL;
2312
2313     ir_value *dummy     = NULL;
2314     ir_value *irop      = NULL;
2315     ir_block *old_break = NULL;
2316     ir_block *bout      = NULL;
2317     ir_block *bfall     = NULL;
2318     size_t    bout_id;
2319     size_t    c;
2320
2321     char      typestr[1024];
2322     uint16_t  cmpinstr;
2323
2324     if (lvalue) {
2325         asterror(ast_ctx(self), "switch expression is not an l-value");
2326         return false;
2327     }
2328
2329     if (self->expression.outr) {
2330         asterror(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2331         return false;
2332     }
2333     self->expression.outr = (ir_value*)1;
2334
2335     (void)lvalue;
2336     (void)out;
2337
2338     cgen = self->operand->expression.codegen;
2339     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2340         return false;
2341
2342     if (!vec_size(self->cases))
2343         return true;
2344
2345     cmpinstr = type_eq_instr[irop->vtype];
2346     if (cmpinstr >= AINSTR_END) {
2347         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2348         asterror(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2349         return false;
2350     }
2351
2352     bout_id = vec_size(func->ir_func->blocks);
2353     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_switch"));
2354     if (!bout)
2355         return false;
2356
2357     /* setup the break block */
2358     old_break        = func->breakblock;
2359     func->breakblock = bout;
2360
2361     /* Now create all cases */
2362     for (c = 0; c < vec_size(self->cases); ++c) {
2363         ir_value *cond, *val;
2364         ir_block *bcase, *bnot;
2365         size_t bnot_id;
2366
2367         ast_switch_case *swcase = &self->cases[c];
2368
2369         if (swcase->value) {
2370             /* A regular case */
2371             /* generate the condition operand */
2372             cgen = swcase->value->expression.codegen;
2373             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2374                 return false;
2375             /* generate the condition */
2376             cond = ir_block_create_binop(func->curblock, ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2377             if (!cond)
2378                 return false;
2379
2380             bcase = ir_function_create_block(func->ir_func, ast_function_label(func, "case"));
2381             bnot_id = vec_size(func->ir_func->blocks);
2382             bnot = ir_function_create_block(func->ir_func, ast_function_label(func, "not_case"));
2383             if (!bcase || !bnot)
2384                 return false;
2385             if (!ir_block_create_if(func->curblock, cond, bcase, bnot))
2386                 return false;
2387
2388             /* Make the previous case-end fall through */
2389             if (bfall && !bfall->final) {
2390                 if (!ir_block_create_jump(bfall, bcase))
2391                     return false;
2392             }
2393
2394             /* enter the case */
2395             func->curblock = bcase;
2396             cgen = swcase->code->expression.codegen;
2397             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2398                 return false;
2399
2400             /* remember this block to fall through from */
2401             bfall = func->curblock;
2402
2403             /* enter the else and move it down */
2404             func->curblock = bnot;
2405             vec_remove(func->ir_func->blocks, bnot_id, 1);
2406             vec_push(func->ir_func->blocks, bnot);
2407         } else {
2408             /* The default case */
2409             /* Remember where to fall through from: */
2410             def_bfall = bfall;
2411             bfall     = NULL;
2412             /* remember which case it was */
2413             def_case  = swcase;
2414         }
2415     }
2416
2417     /* Jump from the last bnot to bout */
2418     if (bfall && !bfall->final && !ir_block_create_jump(bfall, bout)) {
2419         /*
2420         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2421         */
2422         return false;
2423     }
2424
2425     /* If there was a default case, put it down here */
2426     if (def_case) {
2427         ir_block *bcase;
2428
2429         /* No need to create an extra block */
2430         bcase = func->curblock;
2431
2432         /* Insert the fallthrough jump */
2433         if (def_bfall && !def_bfall->final) {
2434             if (!ir_block_create_jump(def_bfall, bcase))
2435                 return false;
2436         }
2437
2438         /* Now generate the default code */
2439         cgen = def_case->code->expression.codegen;
2440         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2441             return false;
2442     }
2443
2444     /* Jump from the last bnot to bout */
2445     if (!func->curblock->final && !ir_block_create_jump(func->curblock, bout))
2446         return false;
2447     /* enter the outgoing block */
2448     func->curblock = bout;
2449
2450     /* restore the break block */
2451     func->breakblock = old_break;
2452
2453     /* Move 'bout' to the end, it's nicer */
2454     vec_remove(func->ir_func->blocks, bout_id, 1);
2455     vec_push(func->ir_func->blocks, bout);
2456
2457     return true;
2458 }
2459
2460 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2461 {
2462     ast_expression_codegen *cgen;
2463     ir_value              **params;
2464     ir_instr               *callinstr;
2465     size_t i;
2466
2467     ir_value *funval = NULL;
2468
2469     /* return values are never lvalues */
2470     if (lvalue) {
2471         asterror(ast_ctx(self), "not an l-value (function call)");
2472         return false;
2473     }
2474
2475     if (self->expression.outr) {
2476         *out = self->expression.outr;
2477         return true;
2478     }
2479
2480     cgen = self->func->expression.codegen;
2481     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2482         return false;
2483     if (!funval)
2484         return false;
2485
2486     params = NULL;
2487
2488     /* parameters */
2489     for (i = 0; i < vec_size(self->params); ++i)
2490     {
2491         ir_value *param;
2492         ast_expression *expr = self->params[i];
2493
2494         cgen = expr->expression.codegen;
2495         if (!(*cgen)(expr, func, false, &param))
2496             goto error;
2497         if (!param)
2498             goto error;
2499         vec_push(params, param);
2500     }
2501
2502     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2503     if (!callinstr)
2504         goto error;
2505
2506     for (i = 0; i < vec_size(params); ++i) {
2507         ir_call_param(callinstr, params[i]);
2508     }
2509
2510     *out = ir_call_value(callinstr);
2511     self->expression.outr = *out;
2512
2513     vec_free(params);
2514     return true;
2515 error:
2516     vec_free(params);
2517     return false;
2518 }