]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
ef24336cc4fd684812a07d822b1bc074eb756d5b
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler 
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include "gmqcc.h"
29 #include "ast.h"
30
31 #define ast_instantiate(T, ctx, destroyfn)                          \
32     T* self = (T*)mem_a(sizeof(T));                                 \
33     if (!self) {                                                    \
34         return NULL;                                                \
35     }                                                               \
36     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
37     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
38
39
40 /* It must not be possible to get here. */
41 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
42 {
43     (void)self;
44     con_err("ast node missing destroy()\n");
45     abort();
46 }
47
48 /* Initialize main ast node aprts */
49 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
50 {
51     self->node.context = ctx;
52     self->node.destroy = &_ast_node_destroy;
53     self->node.keep    = false;
54     self->node.nodetype = nodetype;
55     self->node.side_effects = false;
56 }
57
58 /* weight and side effects */
59 static void _ast_propagate_effects(ast_node *self, ast_node *other)
60 {
61     if (ast_side_effects(other))
62         ast_side_effects(self) = true;
63 }
64 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
65
66 /* General expression initialization */
67 static void ast_expression_init(ast_expression *self,
68                                 ast_expression_codegen *codegen)
69 {
70     self->expression.codegen  = codegen;
71     self->expression.vtype    = TYPE_VOID;
72     self->expression.next     = NULL;
73     self->expression.outl     = NULL;
74     self->expression.outr     = NULL;
75     self->expression.params   = NULL;
76     self->expression.count    = 0;
77     self->expression.flags    = 0;
78     self->expression.varparam = NULL;
79 }
80
81 static void ast_expression_delete(ast_expression *self)
82 {
83     size_t i;
84     if (self->expression.next)
85         ast_delete(self->expression.next);
86     for (i = 0; i < vec_size(self->expression.params); ++i) {
87         ast_delete(self->expression.params[i]);
88     }
89     vec_free(self->expression.params);
90 }
91
92 static void ast_expression_delete_full(ast_expression *self)
93 {
94     ast_expression_delete(self);
95     mem_d(self);
96 }
97
98 ast_value* ast_value_copy(const ast_value *self)
99 {
100     size_t i;
101     const ast_expression_common *fromex;
102     ast_expression_common *selfex;
103     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
104     if (self->expression.next) {
105         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
106         if (!cp->expression.next) {
107             ast_value_delete(cp);
108             return NULL;
109         }
110     }
111     fromex   = &self->expression;
112     selfex = &cp->expression;
113     selfex->count    = fromex->count;
114     selfex->flags    = fromex->flags;
115     for (i = 0; i < vec_size(fromex->params); ++i) {
116         ast_value *v = ast_value_copy(fromex->params[i]);
117         if (!v) {
118             ast_value_delete(cp);
119             return NULL;
120         }
121         vec_push(selfex->params, v);
122     }
123     return cp;
124 }
125
126 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
127 {
128     size_t i;
129     const ast_expression_common *fromex;
130     ast_expression_common *selfex;
131     self->expression.vtype = other->expression.vtype;
132     if (other->expression.next) {
133         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
134         if (!self->expression.next)
135             return false;
136     }
137     fromex   = &other->expression;
138     selfex = &self->expression;
139     selfex->count    = fromex->count;
140     selfex->flags    = fromex->flags;
141     for (i = 0; i < vec_size(fromex->params); ++i) {
142         ast_value *v = ast_value_copy(fromex->params[i]);
143         if (!v)
144             return false;
145         vec_push(selfex->params, v);
146     }
147     return true;
148 }
149
150 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
151 {
152     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
153     ast_expression_init(self, NULL);
154     self->expression.codegen = NULL;
155     self->expression.next    = NULL;
156     self->expression.vtype   = vtype;
157     return self;
158 }
159
160 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
161 {
162     size_t i;
163     const ast_expression_common *fromex;
164     ast_expression_common *selfex;
165
166     if (!ex)
167         return NULL;
168     else
169     {
170         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
171         ast_expression_init(self, NULL);
172
173         fromex   = &ex->expression;
174         selfex = &self->expression;
175
176         /* This may never be codegen()d */
177         selfex->codegen = NULL;
178
179         selfex->vtype = fromex->vtype;
180         if (fromex->next)
181         {
182             selfex->next = ast_type_copy(ctx, fromex->next);
183             if (!selfex->next) {
184                 ast_expression_delete_full(self);
185                 return NULL;
186             }
187         }
188         else
189             selfex->next = NULL;
190
191         selfex->count    = fromex->count;
192         selfex->flags    = fromex->flags;
193         for (i = 0; i < vec_size(fromex->params); ++i) {
194             ast_value *v = ast_value_copy(fromex->params[i]);
195             if (!v) {
196                 ast_expression_delete_full(self);
197                 return NULL;
198             }
199             vec_push(selfex->params, v);
200         }
201
202         return self;
203     }
204 }
205
206 bool ast_compare_type(ast_expression *a, ast_expression *b)
207 {
208     if (a->expression.vtype == TYPE_NIL ||
209         b->expression.vtype == TYPE_NIL)
210         return true;
211     if (a->expression.vtype != b->expression.vtype)
212         return false;
213     if (!a->expression.next != !b->expression.next)
214         return false;
215     if (vec_size(a->expression.params) != vec_size(b->expression.params))
216         return false;
217     if ((a->expression.flags & AST_FLAG_TYPE_MASK) !=
218         (b->expression.flags & AST_FLAG_TYPE_MASK) )
219     {
220         return false;
221     }
222     if (vec_size(a->expression.params)) {
223         size_t i;
224         for (i = 0; i < vec_size(a->expression.params); ++i) {
225             if (!ast_compare_type((ast_expression*)a->expression.params[i],
226                                   (ast_expression*)b->expression.params[i]))
227                 return false;
228         }
229     }
230     if (a->expression.next)
231         return ast_compare_type(a->expression.next, b->expression.next);
232     return true;
233 }
234
235 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
236 {
237     const char *typestr;
238     size_t typelen;
239     size_t i;
240
241     if (!e) {
242         if (pos + 6 >= bufsize)
243             goto full;
244         strcpy(buf + pos, "(null)");
245         return pos + 6;
246     }
247
248     if (pos + 1 >= bufsize)
249         goto full;
250
251     switch (e->expression.vtype) {
252         case TYPE_VARIANT:
253             strcpy(buf + pos, "(variant)");
254             return pos + 9;
255
256         case TYPE_FIELD:
257             buf[pos++] = '.';
258             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259
260         case TYPE_POINTER:
261             if (pos + 3 >= bufsize)
262                 goto full;
263             buf[pos++] = '*';
264             buf[pos++] = '(';
265             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
266             if (pos + 1 >= bufsize)
267                 goto full;
268             buf[pos++] = ')';
269             return pos;
270
271         case TYPE_FUNCTION:
272             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
273             if (pos + 2 >= bufsize)
274                 goto full;
275             if (!vec_size(e->expression.params)) {
276                 buf[pos++] = '(';
277                 buf[pos++] = ')';
278                 return pos;
279             }
280             buf[pos++] = '(';
281             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
282             for (i = 1; i < vec_size(e->expression.params); ++i) {
283                 if (pos + 2 >= bufsize)
284                     goto full;
285                 buf[pos++] = ',';
286                 buf[pos++] = ' ';
287                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
288             }
289             if (pos + 1 >= bufsize)
290                 goto full;
291             buf[pos++] = ')';
292             return pos;
293
294         case TYPE_ARRAY:
295             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
296             if (pos + 1 >= bufsize)
297                 goto full;
298             buf[pos++] = '[';
299             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
300             if (pos + 1 >= bufsize)
301                 goto full;
302             buf[pos++] = ']';
303             return pos;
304
305         default:
306             typestr = type_name[e->expression.vtype];
307             typelen = strlen(typestr);
308             if (pos + typelen >= bufsize)
309                 goto full;
310             strcpy(buf + pos, typestr);
311             return pos + typelen;
312     }
313
314 full:
315     buf[bufsize-3] = '.';
316     buf[bufsize-2] = '.';
317     buf[bufsize-1] = '.';
318     return bufsize;
319 }
320
321 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
322 {
323     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
324     buf[pos] = 0;
325 }
326
327 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
328 {
329     ast_instantiate(ast_value, ctx, ast_value_delete);
330     ast_expression_init((ast_expression*)self,
331                         (ast_expression_codegen*)&ast_value_codegen);
332     self->expression.node.keep = true; /* keep */
333
334     self->name = name ? util_strdup(name) : NULL;
335     self->expression.vtype = t;
336     self->expression.next  = NULL;
337     self->isfield  = false;
338     self->cvq      = CV_NONE;
339     self->hasvalue = false;
340     self->uses    = 0;
341     memset(&self->constval, 0, sizeof(self->constval));
342
343     self->ir_v           = NULL;
344     self->ir_values      = NULL;
345     self->ir_value_count = 0;
346
347     self->setter = NULL;
348     self->getter = NULL;
349     self->desc   = NULL;
350
351     self->argcounter = NULL;
352
353     return self;
354 }
355
356 void ast_value_delete(ast_value* self)
357 {
358     if (self->name)
359         mem_d((void*)self->name);
360     if (self->argcounter)
361         mem_d((void*)self->argcounter);
362     if (self->hasvalue) {
363         switch (self->expression.vtype)
364         {
365         case TYPE_STRING:
366             mem_d((void*)self->constval.vstring);
367             break;
368         case TYPE_FUNCTION:
369             /* unlink us from the function node */
370             self->constval.vfunc->vtype = NULL;
371             break;
372         /* NOTE: delete function? currently collected in
373          * the parser structure
374          */
375         default:
376             break;
377         }
378     }
379     if (self->ir_values)
380         mem_d(self->ir_values);
381
382     if (self->desc)
383         mem_d(self->desc);
384
385     ast_expression_delete((ast_expression*)self);
386     mem_d(self);
387 }
388
389 void ast_value_params_add(ast_value *self, ast_value *p)
390 {
391     vec_push(self->expression.params, p);
392 }
393
394 bool ast_value_set_name(ast_value *self, const char *name)
395 {
396     if (self->name)
397         mem_d((void*)self->name);
398     self->name = util_strdup(name);
399     return !!self->name;
400 }
401
402 ast_binary* ast_binary_new(lex_ctx ctx, int op,
403                            ast_expression* left, ast_expression* right)
404 {
405     ast_instantiate(ast_binary, ctx, ast_binary_delete);
406     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
407
408     self->op = op;
409     self->left = left;
410     self->right = right;
411
412     ast_propagate_effects(self, left);
413     ast_propagate_effects(self, right);
414
415     if (op >= INSTR_EQ_F && op <= INSTR_GT)
416         self->expression.vtype = TYPE_FLOAT;
417     else if (op == INSTR_AND || op == INSTR_OR) {
418         if (OPTS_FLAG(PERL_LOGIC))
419             ast_type_adopt(self, right);
420         else
421             self->expression.vtype = TYPE_FLOAT;
422     }
423     else if (op == INSTR_BITAND || op == INSTR_BITOR)
424         self->expression.vtype = TYPE_FLOAT;
425     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
426         self->expression.vtype = TYPE_VECTOR;
427     else if (op == INSTR_MUL_V)
428         self->expression.vtype = TYPE_FLOAT;
429     else
430         self->expression.vtype = left->expression.vtype;
431
432     return self;
433 }
434
435 void ast_binary_delete(ast_binary *self)
436 {
437     ast_unref(self->left);
438     ast_unref(self->right);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
444                                ast_expression* left, ast_expression* right)
445 {
446     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
448
449     ast_side_effects(self) = true;
450
451     self->opstore = storop;
452     self->opbin   = op;
453     self->dest    = left;
454     self->source  = right;
455
456     self->keep_dest = false;
457
458     if (!ast_type_adopt(self, left)) {
459         ast_delete(self);
460         return NULL;
461     }
462
463     return self;
464 }
465
466 void ast_binstore_delete(ast_binstore *self)
467 {
468     if (!self->keep_dest)
469         ast_unref(self->dest);
470     ast_unref(self->source);
471     ast_expression_delete((ast_expression*)self);
472     mem_d(self);
473 }
474
475 ast_unary* ast_unary_new(lex_ctx ctx, int op,
476                          ast_expression *expr)
477 {
478     ast_instantiate(ast_unary, ctx, ast_unary_delete);
479     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
480
481     self->op = op;
482     self->operand = expr;
483
484     ast_propagate_effects(self, expr);
485
486     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
487         self->expression.vtype = TYPE_FLOAT;
488     } else
489         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
490
491     return self;
492 }
493
494 void ast_unary_delete(ast_unary *self)
495 {
496     if (self->operand) ast_unref(self->operand);
497     ast_expression_delete((ast_expression*)self);
498     mem_d(self);
499 }
500
501 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
502 {
503     ast_instantiate(ast_return, ctx, ast_return_delete);
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
505
506     self->operand = expr;
507
508     if (expr)
509         ast_propagate_effects(self, expr);
510
511     return self;
512 }
513
514 void ast_return_delete(ast_return *self)
515 {
516     if (self->operand)
517         ast_unref(self->operand);
518     ast_expression_delete((ast_expression*)self);
519     mem_d(self);
520 }
521
522 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
523 {
524     if (field->expression.vtype != TYPE_FIELD) {
525         compile_error(ctx, "ast_entfield_new with expression not of type field");
526         return NULL;
527     }
528     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
529 }
530
531 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
532 {
533     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
534
535     if (!outtype) {
536         mem_d(self);
537         /* Error: field has no type... */
538         return NULL;
539     }
540
541     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
542
543     self->entity = entity;
544     self->field  = field;
545     ast_propagate_effects(self, entity);
546     ast_propagate_effects(self, field);
547
548     if (!ast_type_adopt(self, outtype)) {
549         ast_entfield_delete(self);
550         return NULL;
551     }
552
553     return self;
554 }
555
556 void ast_entfield_delete(ast_entfield *self)
557 {
558     ast_unref(self->entity);
559     ast_unref(self->field);
560     ast_expression_delete((ast_expression*)self);
561     mem_d(self);
562 }
563
564 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
565 {
566     ast_instantiate(ast_member, ctx, ast_member_delete);
567     if (field >= 3) {
568         mem_d(self);
569         return NULL;
570     }
571
572     if (owner->expression.vtype != TYPE_VECTOR &&
573         owner->expression.vtype != TYPE_FIELD) {
574         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
575         mem_d(self);
576         return NULL;
577     }
578
579     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
580     self->expression.node.keep = true; /* keep */
581
582     if (owner->expression.vtype == TYPE_VECTOR) {
583         self->expression.vtype = TYPE_FLOAT;
584         self->expression.next  = NULL;
585     } else {
586         self->expression.vtype = TYPE_FIELD;
587         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
588     }
589
590     self->rvalue = false;
591     self->owner  = owner;
592     ast_propagate_effects(self, owner);
593
594     self->field = field;
595     if (name)
596         self->name = util_strdup(name);
597     else
598         self->name = NULL;
599
600     return self;
601 }
602
603 void ast_member_delete(ast_member *self)
604 {
605     /* The owner is always an ast_value, which has .keep=true,
606      * also: ast_members are usually deleted after the owner, thus
607      * this will cause invalid access
608     ast_unref(self->owner);
609      * once we allow (expression).x to access a vector-member, we need
610      * to change this: preferably by creating an alternate ast node for this
611      * purpose that is not garbage-collected.
612     */
613     ast_expression_delete((ast_expression*)self);
614     mem_d(self);
615 }
616
617 bool ast_member_set_name(ast_member *self, const char *name)
618 {
619     if (self->name)
620         mem_d((void*)self->name);
621     self->name = util_strdup(name);
622     return !!self->name;
623 }
624
625 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
626 {
627     ast_expression *outtype;
628     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
629
630     outtype = array->expression.next;
631     if (!outtype) {
632         mem_d(self);
633         /* Error: field has no type... */
634         return NULL;
635     }
636
637     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
638
639     self->array = array;
640     self->index = index;
641     ast_propagate_effects(self, array);
642     ast_propagate_effects(self, index);
643
644     if (!ast_type_adopt(self, outtype)) {
645         ast_array_index_delete(self);
646         return NULL;
647     }
648     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
649         if (self->expression.vtype != TYPE_ARRAY) {
650             compile_error(ast_ctx(self), "array_index node on type");
651             ast_array_index_delete(self);
652             return NULL;
653         }
654         self->array = outtype;
655         self->expression.vtype = TYPE_FIELD;
656     }
657
658     return self;
659 }
660
661 void ast_array_index_delete(ast_array_index *self)
662 {
663     ast_unref(self->array);
664     ast_unref(self->index);
665     ast_expression_delete((ast_expression*)self);
666     mem_d(self);
667 }
668
669 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
670 {
671     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
672     if (!ontrue && !onfalse) {
673         /* because it is invalid */
674         mem_d(self);
675         return NULL;
676     }
677     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
678
679     self->cond     = cond;
680     self->on_true  = ontrue;
681     self->on_false = onfalse;
682     ast_propagate_effects(self, cond);
683     if (ontrue)
684         ast_propagate_effects(self, ontrue);
685     if (onfalse)
686         ast_propagate_effects(self, onfalse);
687
688     return self;
689 }
690
691 void ast_ifthen_delete(ast_ifthen *self)
692 {
693     ast_unref(self->cond);
694     if (self->on_true)
695         ast_unref(self->on_true);
696     if (self->on_false)
697         ast_unref(self->on_false);
698     ast_expression_delete((ast_expression*)self);
699     mem_d(self);
700 }
701
702 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
703 {
704     ast_expression *exprtype = ontrue;
705     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
706     /* This time NEITHER must be NULL */
707     if (!ontrue || !onfalse) {
708         mem_d(self);
709         return NULL;
710     }
711     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
712
713     self->cond     = cond;
714     self->on_true  = ontrue;
715     self->on_false = onfalse;
716     ast_propagate_effects(self, cond);
717     ast_propagate_effects(self, ontrue);
718     ast_propagate_effects(self, onfalse);
719
720     if (ontrue->expression.vtype == TYPE_NIL)
721         exprtype = onfalse;
722     if (!ast_type_adopt(self, exprtype)) {
723         ast_ternary_delete(self);
724         return NULL;
725     }
726
727     return self;
728 }
729
730 void ast_ternary_delete(ast_ternary *self)
731 {
732     /* the if()s are only there because computed-gotos can set them
733      * to NULL
734      */
735     if (self->cond)     ast_unref(self->cond);
736     if (self->on_true)  ast_unref(self->on_true);
737     if (self->on_false) ast_unref(self->on_false);
738     ast_expression_delete((ast_expression*)self);
739     mem_d(self);
740 }
741
742 ast_loop* ast_loop_new(lex_ctx ctx,
743                        ast_expression *initexpr,
744                        ast_expression *precond, bool pre_not,
745                        ast_expression *postcond, bool post_not,
746                        ast_expression *increment,
747                        ast_expression *body)
748 {
749     ast_instantiate(ast_loop, ctx, ast_loop_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
751
752     self->initexpr  = initexpr;
753     self->precond   = precond;
754     self->postcond  = postcond;
755     self->increment = increment;
756     self->body      = body;
757
758     self->pre_not   = pre_not;
759     self->post_not  = post_not;
760
761     if (initexpr)
762         ast_propagate_effects(self, initexpr);
763     if (precond)
764         ast_propagate_effects(self, precond);
765     if (postcond)
766         ast_propagate_effects(self, postcond);
767     if (increment)
768         ast_propagate_effects(self, increment);
769     if (body)
770         ast_propagate_effects(self, body);
771
772     return self;
773 }
774
775 void ast_loop_delete(ast_loop *self)
776 {
777     if (self->initexpr)
778         ast_unref(self->initexpr);
779     if (self->precond)
780         ast_unref(self->precond);
781     if (self->postcond)
782         ast_unref(self->postcond);
783     if (self->increment)
784         ast_unref(self->increment);
785     if (self->body)
786         ast_unref(self->body);
787     ast_expression_delete((ast_expression*)self);
788     mem_d(self);
789 }
790
791 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont, unsigned int levels)
792 {
793     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
794     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
795
796     self->is_continue = iscont;
797     self->levels      = levels;
798
799     return self;
800 }
801
802 void ast_breakcont_delete(ast_breakcont *self)
803 {
804     ast_expression_delete((ast_expression*)self);
805     mem_d(self);
806 }
807
808 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
809 {
810     ast_instantiate(ast_switch, ctx, ast_switch_delete);
811     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
812
813     self->operand = op;
814     self->cases   = NULL;
815
816     ast_propagate_effects(self, op);
817
818     return self;
819 }
820
821 void ast_switch_delete(ast_switch *self)
822 {
823     size_t i;
824     ast_unref(self->operand);
825
826     for (i = 0; i < vec_size(self->cases); ++i) {
827         if (self->cases[i].value)
828             ast_unref(self->cases[i].value);
829         ast_unref(self->cases[i].code);
830     }
831     vec_free(self->cases);
832
833     ast_expression_delete((ast_expression*)self);
834     mem_d(self);
835 }
836
837 ast_label* ast_label_new(lex_ctx ctx, const char *name, bool undefined)
838 {
839     ast_instantiate(ast_label, ctx, ast_label_delete);
840     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
841
842     self->expression.vtype = TYPE_NOEXPR;
843
844     self->name      = util_strdup(name);
845     self->irblock   = NULL;
846     self->gotos     = NULL;
847     self->undefined = undefined;
848
849     return self;
850 }
851
852 void ast_label_delete(ast_label *self)
853 {
854     mem_d((void*)self->name);
855     vec_free(self->gotos);
856     ast_expression_delete((ast_expression*)self);
857     mem_d(self);
858 }
859
860 void ast_label_register_goto(ast_label *self, ast_goto *g)
861 {
862     vec_push(self->gotos, g);
863 }
864
865 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
866 {
867     ast_instantiate(ast_goto, ctx, ast_goto_delete);
868     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
869
870     self->name    = util_strdup(name);
871     self->target  = NULL;
872     self->irblock_from = NULL;
873
874     return self;
875 }
876
877 void ast_goto_delete(ast_goto *self)
878 {
879     mem_d((void*)self->name);
880     ast_expression_delete((ast_expression*)self);
881     mem_d(self);
882 }
883
884 void ast_goto_set_label(ast_goto *self, ast_label *label)
885 {
886     self->target = label;
887 }
888
889 ast_call* ast_call_new(lex_ctx ctx,
890                        ast_expression *funcexpr)
891 {
892     ast_instantiate(ast_call, ctx, ast_call_delete);
893     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
894
895     ast_side_effects(self) = true;
896
897     self->params   = NULL;
898     self->func     = funcexpr;
899     self->va_count = NULL;
900
901     ast_type_adopt(self, funcexpr->expression.next);
902
903     return self;
904 }
905
906 void ast_call_delete(ast_call *self)
907 {
908     size_t i;
909     for (i = 0; i < vec_size(self->params); ++i)
910         ast_unref(self->params[i]);
911     vec_free(self->params);
912
913     if (self->func)
914         ast_unref(self->func);
915
916     if (self->va_count)
917         ast_unref(self->va_count);
918
919     ast_expression_delete((ast_expression*)self);
920     mem_d(self);
921 }
922
923 bool ast_call_check_types(ast_call *self)
924 {
925     char texp[1024];
926     char tgot[1024];
927     size_t i;
928     bool   retval = true;
929     const  ast_expression *func = self->func;
930     size_t count = vec_size(self->params);
931     if (count > vec_size(func->expression.params))
932         count = vec_size(func->expression.params);
933
934     for (i = 0; i < count; ++i) {
935         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i])))
936         {
937             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
938             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
939             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
940                      (unsigned int)(i+1), texp, tgot);
941             /* we don't immediately return */
942             retval = false;
943         }
944     }
945     count = vec_size(self->params);
946     if (count > vec_size(func->expression.params) && func->expression.varparam) {
947         for (; i < count; ++i) {
948             if (!ast_compare_type(self->params[i], func->expression.varparam))
949             {
950                 ast_type_to_string(self->params[i], tgot, sizeof(tgot));
951                 ast_type_to_string(func->expression.varparam, texp, sizeof(texp));
952                 compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
953                          (unsigned int)(i+1), texp, tgot);
954                 /* we don't immediately return */
955                 retval = false;
956             }
957         }
958     }
959     return retval;
960 }
961
962 ast_store* ast_store_new(lex_ctx ctx, int op,
963                          ast_expression *dest, ast_expression *source)
964 {
965     ast_instantiate(ast_store, ctx, ast_store_delete);
966     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
967
968     ast_side_effects(self) = true;
969
970     self->op = op;
971     self->dest = dest;
972     self->source = source;
973
974     if (!ast_type_adopt(self, dest)) {
975         ast_delete(self);
976         return NULL;
977     }
978
979     return self;
980 }
981
982 void ast_store_delete(ast_store *self)
983 {
984     ast_unref(self->dest);
985     ast_unref(self->source);
986     ast_expression_delete((ast_expression*)self);
987     mem_d(self);
988 }
989
990 ast_block* ast_block_new(lex_ctx ctx)
991 {
992     ast_instantiate(ast_block, ctx, ast_block_delete);
993     ast_expression_init((ast_expression*)self,
994                         (ast_expression_codegen*)&ast_block_codegen);
995
996     self->locals  = NULL;
997     self->exprs   = NULL;
998     self->collect = NULL;
999
1000     return self;
1001 }
1002
1003 bool ast_block_add_expr(ast_block *self, ast_expression *e)
1004 {
1005     ast_propagate_effects(self, e);
1006     vec_push(self->exprs, e);
1007     if (self->expression.next) {
1008         ast_delete(self->expression.next);
1009         self->expression.next = NULL;
1010     }
1011     if (!ast_type_adopt(self, e)) {
1012         compile_error(ast_ctx(self), "internal error: failed to adopt type");
1013         return false;
1014     }
1015     return true;
1016 }
1017
1018 void ast_block_collect(ast_block *self, ast_expression *expr)
1019 {
1020     vec_push(self->collect, expr);
1021     expr->expression.node.keep = true;
1022 }
1023
1024 void ast_block_delete(ast_block *self)
1025 {
1026     size_t i;
1027     for (i = 0; i < vec_size(self->exprs); ++i)
1028         ast_unref(self->exprs[i]);
1029     vec_free(self->exprs);
1030     for (i = 0; i < vec_size(self->locals); ++i)
1031         ast_delete(self->locals[i]);
1032     vec_free(self->locals);
1033     for (i = 0; i < vec_size(self->collect); ++i)
1034         ast_delete(self->collect[i]);
1035     vec_free(self->collect);
1036     ast_expression_delete((ast_expression*)self);
1037     mem_d(self);
1038 }
1039
1040 bool ast_block_set_type(ast_block *self, ast_expression *from)
1041 {
1042     if (self->expression.next)
1043         ast_delete(self->expression.next);
1044     if (!ast_type_adopt(self, from))
1045         return false;
1046     return true;
1047 }
1048
1049 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1050 {
1051     ast_instantiate(ast_function, ctx, ast_function_delete);
1052
1053     if (!vtype ||
1054         vtype->hasvalue ||
1055         vtype->expression.vtype != TYPE_FUNCTION)
1056     {
1057         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1058                  (int)!vtype,
1059                  (int)vtype->hasvalue,
1060                  vtype->expression.vtype);
1061         mem_d(self);
1062         return NULL;
1063     }
1064
1065     self->vtype  = vtype;
1066     self->name   = name ? util_strdup(name) : NULL;
1067     self->blocks = NULL;
1068
1069     self->labelcount = 0;
1070     self->builtin = 0;
1071
1072     self->ir_func = NULL;
1073     self->curblock = NULL;
1074
1075     self->breakblocks    = NULL;
1076     self->continueblocks = NULL;
1077
1078     vtype->hasvalue = true;
1079     vtype->constval.vfunc = self;
1080
1081     self->varargs = NULL;
1082
1083     return self;
1084 }
1085
1086 void ast_function_delete(ast_function *self)
1087 {
1088     size_t i;
1089     if (self->name)
1090         mem_d((void*)self->name);
1091     if (self->vtype) {
1092         /* ast_value_delete(self->vtype); */
1093         self->vtype->hasvalue = false;
1094         self->vtype->constval.vfunc = NULL;
1095         /* We use unref - if it was stored in a global table it is supposed
1096          * to be deleted from *there*
1097          */
1098         ast_unref(self->vtype);
1099     }
1100     for (i = 0; i < vec_size(self->blocks); ++i)
1101         ast_delete(self->blocks[i]);
1102     vec_free(self->blocks);
1103     vec_free(self->breakblocks);
1104     vec_free(self->continueblocks);
1105     if (self->varargs)
1106         ast_delete(self->varargs);
1107     mem_d(self);
1108 }
1109
1110 const char* ast_function_label(ast_function *self, const char *prefix)
1111 {
1112     size_t id;
1113     size_t len;
1114     char  *from;
1115
1116     if (!opts.dump && !opts.dumpfin && !opts.debug)
1117         return NULL;
1118
1119     id  = (self->labelcount++);
1120     len = strlen(prefix);
1121
1122     from = self->labelbuf + sizeof(self->labelbuf)-1;
1123     *from-- = 0;
1124     do {
1125         *from-- = (id%10) + '0';
1126         id /= 10;
1127     } while (id);
1128     ++from;
1129     memcpy(from - len, prefix, len);
1130     return from - len;
1131 }
1132
1133 /*********************************************************************/
1134 /* AST codegen part
1135  * by convention you must never pass NULL to the 'ir_value **out'
1136  * parameter. If you really don't care about the output, pass a dummy.
1137  * But I can't imagine a pituation where the output is truly unnecessary.
1138  */
1139
1140 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1141 {
1142     if (out->vtype == TYPE_FIELD)
1143         out->fieldtype = self->next->expression.vtype;
1144     if (out->vtype == TYPE_FUNCTION)
1145         out->outtype = self->next->expression.vtype;
1146 }
1147
1148 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1149
1150 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1151 {
1152     (void)func;
1153     (void)lvalue;
1154     if (self->expression.vtype == TYPE_NIL) {
1155         *out = func->ir_func->owner->nil;
1156         return true;
1157     }
1158     /* NOTE: This is the codegen for a variable used in an expression.
1159      * It is not the codegen to generate the value. For this purpose,
1160      * ast_local_codegen and ast_global_codegen are to be used before this
1161      * is executed. ast_function_codegen should take care of its locals,
1162      * and the ast-user should take care of ast_global_codegen to be used
1163      * on all the globals.
1164      */
1165     if (!self->ir_v) {
1166         char tname[1024]; /* typename is reserved in C++ */
1167         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1168         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1169         return false;
1170     }
1171     *out = self->ir_v;
1172     return true;
1173 }
1174
1175 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1176 {
1177     ir_value *v = NULL;
1178
1179     if (self->expression.vtype == TYPE_NIL) {
1180         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1181         return false;
1182     }
1183
1184     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1185     {
1186         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1187         if (!func)
1188             return false;
1189         func->context = ast_ctx(self);
1190         func->value->context = ast_ctx(self);
1191
1192         self->constval.vfunc->ir_func = func;
1193         self->ir_v = func->value;
1194         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1195             self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1196         /* The function is filled later on ast_function_codegen... */
1197         return true;
1198     }
1199
1200     if (isfield && self->expression.vtype == TYPE_FIELD) {
1201         ast_expression *fieldtype = self->expression.next;
1202
1203         if (self->hasvalue) {
1204             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1205             goto error;
1206         }
1207
1208         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1209             size_t ai;
1210             char   *name;
1211             size_t  namelen;
1212
1213             ast_expression_common *elemtype;
1214             int                    vtype;
1215             ast_value             *array = (ast_value*)fieldtype;
1216
1217             if (!ast_istype(fieldtype, ast_value)) {
1218                 compile_error(ast_ctx(self), "internal error: ast_value required");
1219                 return false;
1220             }
1221
1222             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1223             if (!array->expression.count || array->expression.count > opts.max_array_size)
1224                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1225
1226             elemtype = &array->expression.next->expression;
1227             vtype = elemtype->vtype;
1228
1229             v = ir_builder_create_field(ir, self->name, vtype);
1230             if (!v) {
1231                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1232                 return false;
1233             }
1234             v->context = ast_ctx(self);
1235             v->unique_life = true;
1236             v->locked      = true;
1237             array->ir_v = self->ir_v = v;
1238             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1239                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1240
1241             namelen = strlen(self->name);
1242             name    = (char*)mem_a(namelen + 16);
1243             strcpy(name, self->name);
1244
1245             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1246             array->ir_values[0] = v;
1247             for (ai = 1; ai < array->expression.count; ++ai) {
1248                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1249                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1250                 if (!array->ir_values[ai]) {
1251                     mem_d(name);
1252                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1253                     return false;
1254                 }
1255                 array->ir_values[ai]->context = ast_ctx(self);
1256                 array->ir_values[ai]->unique_life = true;
1257                 array->ir_values[ai]->locked      = true;
1258                 if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1259                     self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1260             }
1261             mem_d(name);
1262         }
1263         else
1264         {
1265             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1266             if (!v)
1267                 return false;
1268             v->context = ast_ctx(self);
1269             self->ir_v = v;
1270             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1271                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1272         }
1273         return true;
1274     }
1275
1276     if (self->expression.vtype == TYPE_ARRAY) {
1277         size_t ai;
1278         char   *name;
1279         size_t  namelen;
1280
1281         ast_expression_common *elemtype = &self->expression.next->expression;
1282         int vtype = elemtype->vtype;
1283
1284         /* same as with field arrays */
1285         if (!self->expression.count || self->expression.count > opts.max_array_size)
1286             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1287
1288         v = ir_builder_create_global(ir, self->name, vtype);
1289         if (!v) {
1290             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1291             return false;
1292         }
1293         v->context = ast_ctx(self);
1294         v->unique_life = true;
1295         v->locked      = true;
1296         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1297             v->flags |= IR_FLAG_INCLUDE_DEF;
1298
1299         namelen = strlen(self->name);
1300         name    = (char*)mem_a(namelen + 16);
1301         strcpy(name, self->name);
1302
1303         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1304         self->ir_values[0] = v;
1305         for (ai = 1; ai < self->expression.count; ++ai) {
1306             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1307             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1308             if (!self->ir_values[ai]) {
1309                 mem_d(name);
1310                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1311                 return false;
1312             }
1313             self->ir_values[ai]->context = ast_ctx(self);
1314             self->ir_values[ai]->unique_life = true;
1315             self->ir_values[ai]->locked      = true;
1316             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1317                 self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1318         }
1319         mem_d(name);
1320     }
1321     else
1322     {
1323         /* Arrays don't do this since there's no "array" value which spans across the
1324          * whole thing.
1325          */
1326         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1327         if (!v) {
1328             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1329             return false;
1330         }
1331         codegen_output_type(self, v);
1332         v->context = ast_ctx(self);
1333     }
1334
1335     if (self->hasvalue) {
1336         switch (self->expression.vtype)
1337         {
1338             case TYPE_FLOAT:
1339                 if (!ir_value_set_float(v, self->constval.vfloat))
1340                     goto error;
1341                 break;
1342             case TYPE_VECTOR:
1343                 if (!ir_value_set_vector(v, self->constval.vvec))
1344                     goto error;
1345                 break;
1346             case TYPE_STRING:
1347                 if (!ir_value_set_string(v, self->constval.vstring))
1348                     goto error;
1349                 break;
1350             case TYPE_ARRAY:
1351                 compile_error(ast_ctx(self), "TODO: global constant array");
1352                 break;
1353             case TYPE_FUNCTION:
1354                 compile_error(ast_ctx(self), "global of type function not properly generated");
1355                 goto error;
1356                 /* Cannot generate an IR value for a function,
1357                  * need a pointer pointing to a function rather.
1358                  */
1359             case TYPE_FIELD:
1360                 if (!self->constval.vfield) {
1361                     compile_error(ast_ctx(self), "field constant without vfield set");
1362                     goto error;
1363                 }
1364                 if (!self->constval.vfield->ir_v) {
1365                     compile_error(ast_ctx(self), "field constant generated before its field");
1366                     goto error;
1367                 }
1368                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1369                     goto error;
1370                 break;
1371             default:
1372                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1373                 break;
1374         }
1375     }
1376
1377     /* link us to the ir_value */
1378     v->cvq = self->cvq;
1379     self->ir_v = v;
1380     if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1381         self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1382     return true;
1383
1384 error: /* clean up */
1385     ir_value_delete(v);
1386     return false;
1387 }
1388
1389 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1390 {
1391     ir_value *v = NULL;
1392
1393     if (self->expression.vtype == TYPE_NIL) {
1394         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1395         return false;
1396     }
1397
1398     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1399     {
1400         /* Do we allow local functions? I think not...
1401          * this is NOT a function pointer atm.
1402          */
1403         return false;
1404     }
1405
1406     if (self->expression.vtype == TYPE_ARRAY) {
1407         size_t ai;
1408         char   *name;
1409         size_t  namelen;
1410
1411         ast_expression_common *elemtype = &self->expression.next->expression;
1412         int vtype = elemtype->vtype;
1413
1414         func->flags |= IR_FLAG_HAS_ARRAYS;
1415
1416         if (param && !(self->expression.flags & AST_FLAG_IS_VARARG)) {
1417             compile_error(ast_ctx(self), "array-parameters are not supported");
1418             return false;
1419         }
1420
1421         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1422         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1423             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1424         }
1425
1426         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1427         if (!self->ir_values) {
1428             compile_error(ast_ctx(self), "failed to allocate array values");
1429             return false;
1430         }
1431
1432         v = ir_function_create_local(func, self->name, vtype, param);
1433         if (!v) {
1434             compile_error(ast_ctx(self), "ir_function_create_local failed");
1435             return false;
1436         }
1437         v->context = ast_ctx(self);
1438         v->unique_life = true;
1439         v->locked      = true;
1440
1441         namelen = strlen(self->name);
1442         name    = (char*)mem_a(namelen + 16);
1443         strcpy(name, self->name);
1444
1445         self->ir_values[0] = v;
1446         for (ai = 1; ai < self->expression.count; ++ai) {
1447             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1448             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1449             if (!self->ir_values[ai]) {
1450                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1451                 return false;
1452             }
1453             self->ir_values[ai]->context = ast_ctx(self);
1454             self->ir_values[ai]->unique_life = true;
1455             self->ir_values[ai]->locked      = true;
1456         }
1457     }
1458     else
1459     {
1460         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1461         if (!v)
1462             return false;
1463         codegen_output_type(self, v);
1464         v->context = ast_ctx(self);
1465     }
1466
1467     /* A constant local... hmmm...
1468      * I suppose the IR will have to deal with this
1469      */
1470     if (self->hasvalue) {
1471         switch (self->expression.vtype)
1472         {
1473             case TYPE_FLOAT:
1474                 if (!ir_value_set_float(v, self->constval.vfloat))
1475                     goto error;
1476                 break;
1477             case TYPE_VECTOR:
1478                 if (!ir_value_set_vector(v, self->constval.vvec))
1479                     goto error;
1480                 break;
1481             case TYPE_STRING:
1482                 if (!ir_value_set_string(v, self->constval.vstring))
1483                     goto error;
1484                 break;
1485             default:
1486                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1487                 break;
1488         }
1489     }
1490
1491     /* link us to the ir_value */
1492     v->cvq = self->cvq;
1493     self->ir_v = v;
1494
1495     if (!ast_generate_accessors(self, func->owner))
1496         return false;
1497     return true;
1498
1499 error: /* clean up */
1500     ir_value_delete(v);
1501     return false;
1502 }
1503
1504 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1505 {
1506     size_t i;
1507     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1508     if (!self->setter || !self->getter)
1509         return true;
1510     for (i = 0; i < self->expression.count; ++i) {
1511         if (!self->ir_values) {
1512             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1513             return false;
1514         }
1515         if (!self->ir_values[i]) {
1516             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1517             return false;
1518         }
1519         if (self->ir_values[i]->life) {
1520             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1521             return false;
1522         }
1523     }
1524
1525     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1526     if (self->setter) {
1527         if (!ast_global_codegen  (self->setter, ir, false) ||
1528             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1529             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1530         {
1531             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1532             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1533             return false;
1534         }
1535     }
1536     if (self->getter) {
1537         if (!ast_global_codegen  (self->getter, ir, false) ||
1538             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1539             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1540         {
1541             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1542             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1543             return false;
1544         }
1545     }
1546     for (i = 0; i < self->expression.count; ++i) {
1547         vec_free(self->ir_values[i]->life);
1548     }
1549     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1550     return true;
1551 }
1552
1553 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1554 {
1555     ir_function *irf;
1556     ir_value    *dummy;
1557     ast_expression_common *ec;
1558     size_t    i;
1559
1560     (void)ir;
1561
1562     irf = self->ir_func;
1563     if (!irf) {
1564         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1565         return false;
1566     }
1567
1568     /* fill the parameter list */
1569     ec = &self->vtype->expression;
1570     for (i = 0; i < vec_size(ec->params); ++i)
1571     {
1572         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1573             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1574         else
1575             vec_push(irf->params, ec->params[i]->expression.vtype);
1576         if (!self->builtin) {
1577             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1578                 return false;
1579         }
1580     }
1581
1582     if (self->varargs) {
1583         if (!ast_local_codegen(self->varargs, self->ir_func, true))
1584             return false;
1585     }
1586
1587     if (self->builtin) {
1588         irf->builtin = self->builtin;
1589         return true;
1590     }
1591
1592     if (!vec_size(self->blocks)) {
1593         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1594         return false;
1595     }
1596
1597     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1598     if (!self->curblock) {
1599         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1600         return false;
1601     }
1602
1603     for (i = 0; i < vec_size(self->blocks); ++i) {
1604         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1605         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1606             return false;
1607     }
1608
1609     /* TODO: check return types */
1610     if (!self->curblock->final)
1611     {
1612         if (!self->vtype->expression.next ||
1613             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1614         {
1615             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1616         }
1617         else if (vec_size(self->curblock->entries))
1618         {
1619             /* error("missing return"); */
1620             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1621                                 "control reaches end of non-void function (`%s`) via %s",
1622                                 self->name, self->curblock->label))
1623             {
1624                 return false;
1625             }
1626             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1627         }
1628     }
1629     return true;
1630 }
1631
1632 /* Note, you will not see ast_block_codegen generate ir_blocks.
1633  * To the AST and the IR, blocks are 2 different things.
1634  * In the AST it represents a block of code, usually enclosed in
1635  * curly braces {...}.
1636  * While in the IR it represents a block in terms of control-flow.
1637  */
1638 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1639 {
1640     size_t i;
1641
1642     /* We don't use this
1643      * Note: an ast-representation using the comma-operator
1644      * of the form: (a, b, c) = x should not assign to c...
1645      */
1646     if (lvalue) {
1647         compile_error(ast_ctx(self), "not an l-value (code-block)");
1648         return false;
1649     }
1650
1651     if (self->expression.outr) {
1652         *out = self->expression.outr;
1653         return true;
1654     }
1655
1656     /* output is NULL at first, we'll have each expression
1657      * assign to out output, thus, a comma-operator represention
1658      * using an ast_block will return the last generated value,
1659      * so: (b, c) + a  executed both b and c, and returns c,
1660      * which is then added to a.
1661      */
1662     *out = NULL;
1663
1664     /* generate locals */
1665     for (i = 0; i < vec_size(self->locals); ++i)
1666     {
1667         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1668             if (opts.debug)
1669                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1670             return false;
1671         }
1672     }
1673
1674     for (i = 0; i < vec_size(self->exprs); ++i)
1675     {
1676         ast_expression_codegen *gen;
1677         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1678             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1679                 return false;
1680             continue;
1681         }
1682         gen = self->exprs[i]->expression.codegen;
1683         if (!(*gen)(self->exprs[i], func, false, out))
1684             return false;
1685     }
1686
1687     self->expression.outr = *out;
1688
1689     return true;
1690 }
1691
1692 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1693 {
1694     ast_expression_codegen *cgen;
1695     ir_value *left  = NULL;
1696     ir_value *right = NULL;
1697
1698     ast_value       *arr;
1699     ast_value       *idx = 0;
1700     ast_array_index *ai = NULL;
1701
1702     if (lvalue && self->expression.outl) {
1703         *out = self->expression.outl;
1704         return true;
1705     }
1706
1707     if (!lvalue && self->expression.outr) {
1708         *out = self->expression.outr;
1709         return true;
1710     }
1711
1712     if (ast_istype(self->dest, ast_array_index))
1713     {
1714
1715         ai = (ast_array_index*)self->dest;
1716         idx = (ast_value*)ai->index;
1717
1718         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1719             ai = NULL;
1720     }
1721
1722     if (ai) {
1723         /* we need to call the setter */
1724         ir_value  *iridx, *funval;
1725         ir_instr  *call;
1726
1727         if (lvalue) {
1728             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1729             return false;
1730         }
1731
1732         arr = (ast_value*)ai->array;
1733         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1734             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1735             return false;
1736         }
1737
1738         cgen = idx->expression.codegen;
1739         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1740             return false;
1741
1742         cgen = arr->setter->expression.codegen;
1743         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1744             return false;
1745
1746         cgen = self->source->expression.codegen;
1747         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1748             return false;
1749
1750         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1751         if (!call)
1752             return false;
1753         ir_call_param(call, iridx);
1754         ir_call_param(call, right);
1755         self->expression.outr = right;
1756     }
1757     else
1758     {
1759         /* regular code */
1760
1761         cgen = self->dest->expression.codegen;
1762         /* lvalue! */
1763         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1764             return false;
1765         self->expression.outl = left;
1766
1767         cgen = self->source->expression.codegen;
1768         /* rvalue! */
1769         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1770             return false;
1771
1772         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1773             return false;
1774         self->expression.outr = right;
1775     }
1776
1777     /* Theoretically, an assinment returns its left side as an
1778      * lvalue, if we don't need an lvalue though, we return
1779      * the right side as an rvalue, otherwise we have to
1780      * somehow know whether or not we need to dereference the pointer
1781      * on the left side - that is: OP_LOAD if it was an address.
1782      * Also: in original QC we cannot OP_LOADP *anyway*.
1783      */
1784     *out = (lvalue ? left : right);
1785
1786     return true;
1787 }
1788
1789 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1790 {
1791     ast_expression_codegen *cgen;
1792     ir_value *left, *right;
1793
1794     /* A binary operation cannot yield an l-value */
1795     if (lvalue) {
1796         compile_error(ast_ctx(self), "not an l-value (binop)");
1797         return false;
1798     }
1799
1800     if (self->expression.outr) {
1801         *out = self->expression.outr;
1802         return true;
1803     }
1804
1805     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1806         (self->op == INSTR_AND || self->op == INSTR_OR))
1807     {
1808         /* short circuit evaluation */
1809         ir_block *other, *merge;
1810         ir_block *from_left, *from_right;
1811         ir_instr *phi;
1812         size_t    merge_id;
1813
1814         /* prepare end-block */
1815         merge_id = vec_size(func->ir_func->blocks);
1816         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1817
1818         /* generate the left expression */
1819         cgen = self->left->expression.codegen;
1820         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1821             return false;
1822         /* remember the block */
1823         from_left = func->curblock;
1824
1825         /* create a new block for the right expression */
1826         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1827         if (self->op == INSTR_AND) {
1828             /* on AND: left==true -> other */
1829             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1830                 return false;
1831         } else {
1832             /* on OR: left==false -> other */
1833             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1834                 return false;
1835         }
1836         /* use the likely flag */
1837         vec_last(func->curblock->instr)->likely = true;
1838
1839         /* enter the right-expression's block */
1840         func->curblock = other;
1841         /* generate */
1842         cgen = self->right->expression.codegen;
1843         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1844             return false;
1845         /* remember block */
1846         from_right = func->curblock;
1847
1848         /* jump to the merge block */
1849         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1850             return false;
1851
1852         vec_remove(func->ir_func->blocks, merge_id, 1);
1853         vec_push(func->ir_func->blocks, merge);
1854
1855         func->curblock = merge;
1856         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1857                                   ast_function_label(func, "sce_value"),
1858                                   self->expression.vtype);
1859         ir_phi_add(phi, from_left, left);
1860         ir_phi_add(phi, from_right, right);
1861         *out = ir_phi_value(phi);
1862         if (!*out)
1863             return false;
1864
1865         if (!OPTS_FLAG(PERL_LOGIC)) {
1866             /* cast-to-bool */
1867             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1868                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1869                                              ast_function_label(func, "sce_bool_v"),
1870                                              INSTR_NOT_V, *out);
1871                 if (!*out)
1872                     return false;
1873                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1874                                              ast_function_label(func, "sce_bool"),
1875                                              INSTR_NOT_F, *out);
1876                 if (!*out)
1877                     return false;
1878             }
1879             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1880                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1881                                              ast_function_label(func, "sce_bool_s"),
1882                                              INSTR_NOT_S, *out);
1883                 if (!*out)
1884                     return false;
1885                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1886                                              ast_function_label(func, "sce_bool"),
1887                                              INSTR_NOT_F, *out);
1888                 if (!*out)
1889                     return false;
1890             }
1891             else {
1892                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1893                                              ast_function_label(func, "sce_bool"),
1894                                              INSTR_AND, *out, *out);
1895                 if (!*out)
1896                     return false;
1897             }
1898         }
1899
1900         self->expression.outr = *out;
1901         codegen_output_type(self, *out);
1902         return true;
1903     }
1904
1905     cgen = self->left->expression.codegen;
1906     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1907         return false;
1908
1909     cgen = self->right->expression.codegen;
1910     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1911         return false;
1912
1913     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1914                                  self->op, left, right);
1915     if (!*out)
1916         return false;
1917     self->expression.outr = *out;
1918     codegen_output_type(self, *out);
1919
1920     return true;
1921 }
1922
1923 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1924 {
1925     ast_expression_codegen *cgen;
1926     ir_value *leftl = NULL, *leftr, *right, *bin;
1927
1928     ast_value       *arr;
1929     ast_value       *idx = 0;
1930     ast_array_index *ai = NULL;
1931     ir_value        *iridx = NULL;
1932
1933     if (lvalue && self->expression.outl) {
1934         *out = self->expression.outl;
1935         return true;
1936     }
1937
1938     if (!lvalue && self->expression.outr) {
1939         *out = self->expression.outr;
1940         return true;
1941     }
1942
1943     if (ast_istype(self->dest, ast_array_index))
1944     {
1945
1946         ai = (ast_array_index*)self->dest;
1947         idx = (ast_value*)ai->index;
1948
1949         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1950             ai = NULL;
1951     }
1952
1953     /* for a binstore we need both an lvalue and an rvalue for the left side */
1954     /* rvalue of destination! */
1955     if (ai) {
1956         cgen = idx->expression.codegen;
1957         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1958             return false;
1959     }
1960     cgen = self->dest->expression.codegen;
1961     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1962         return false;
1963
1964     /* source as rvalue only */
1965     cgen = self->source->expression.codegen;
1966     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1967         return false;
1968
1969     /* now the binary */
1970     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1971                                 self->opbin, leftr, right);
1972     self->expression.outr = bin;
1973
1974
1975     if (ai) {
1976         /* we need to call the setter */
1977         ir_value  *funval;
1978         ir_instr  *call;
1979
1980         if (lvalue) {
1981             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1982             return false;
1983         }
1984
1985         arr = (ast_value*)ai->array;
1986         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1987             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1988             return false;
1989         }
1990
1991         cgen = arr->setter->expression.codegen;
1992         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1993             return false;
1994
1995         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1996         if (!call)
1997             return false;
1998         ir_call_param(call, iridx);
1999         ir_call_param(call, bin);
2000         self->expression.outr = bin;
2001     } else {
2002         /* now store them */
2003         cgen = self->dest->expression.codegen;
2004         /* lvalue of destination */
2005         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
2006             return false;
2007         self->expression.outl = leftl;
2008
2009         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
2010             return false;
2011         self->expression.outr = bin;
2012     }
2013
2014     /* Theoretically, an assinment returns its left side as an
2015      * lvalue, if we don't need an lvalue though, we return
2016      * the right side as an rvalue, otherwise we have to
2017      * somehow know whether or not we need to dereference the pointer
2018      * on the left side - that is: OP_LOAD if it was an address.
2019      * Also: in original QC we cannot OP_LOADP *anyway*.
2020      */
2021     *out = (lvalue ? leftl : bin);
2022
2023     return true;
2024 }
2025
2026 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
2027 {
2028     ast_expression_codegen *cgen;
2029     ir_value *operand;
2030
2031     /* An unary operation cannot yield an l-value */
2032     if (lvalue) {
2033         compile_error(ast_ctx(self), "not an l-value (binop)");
2034         return false;
2035     }
2036
2037     if (self->expression.outr) {
2038         *out = self->expression.outr;
2039         return true;
2040     }
2041
2042     cgen = self->operand->expression.codegen;
2043     /* lvalue! */
2044     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2045         return false;
2046
2047     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2048                                  self->op, operand);
2049     if (!*out)
2050         return false;
2051     self->expression.outr = *out;
2052
2053     return true;
2054 }
2055
2056 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2057 {
2058     ast_expression_codegen *cgen;
2059     ir_value *operand;
2060
2061     *out = NULL;
2062
2063     /* In the context of a return operation, we don't actually return
2064      * anything...
2065      */
2066     if (lvalue) {
2067         compile_error(ast_ctx(self), "return-expression is not an l-value");
2068         return false;
2069     }
2070
2071     if (self->expression.outr) {
2072         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2073         return false;
2074     }
2075     self->expression.outr = (ir_value*)1;
2076
2077     if (self->operand) {
2078         cgen = self->operand->expression.codegen;
2079         /* lvalue! */
2080         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2081             return false;
2082
2083         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2084             return false;
2085     } else {
2086         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2087             return false;
2088     }
2089
2090     return true;
2091 }
2092
2093 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2094 {
2095     ast_expression_codegen *cgen;
2096     ir_value *ent, *field;
2097
2098     /* This function needs to take the 'lvalue' flag into account!
2099      * As lvalue we provide a field-pointer, as rvalue we provide the
2100      * value in a temp.
2101      */
2102
2103     if (lvalue && self->expression.outl) {
2104         *out = self->expression.outl;
2105         return true;
2106     }
2107
2108     if (!lvalue && self->expression.outr) {
2109         *out = self->expression.outr;
2110         return true;
2111     }
2112
2113     cgen = self->entity->expression.codegen;
2114     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2115         return false;
2116
2117     cgen = self->field->expression.codegen;
2118     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2119         return false;
2120
2121     if (lvalue) {
2122         /* address! */
2123         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2124                                             ent, field);
2125     } else {
2126         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2127                                              ent, field, self->expression.vtype);
2128         /* Done AFTER error checking: 
2129         codegen_output_type(self, *out);
2130         */
2131     }
2132     if (!*out) {
2133         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2134                  (lvalue ? "ADDRESS" : "FIELD"),
2135                  type_name[self->expression.vtype]);
2136         return false;
2137     }
2138     if (!lvalue)
2139         codegen_output_type(self, *out);
2140
2141     if (lvalue)
2142         self->expression.outl = *out;
2143     else
2144         self->expression.outr = *out;
2145
2146     /* Hm that should be it... */
2147     return true;
2148 }
2149
2150 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2151 {
2152     ast_expression_codegen *cgen;
2153     ir_value *vec;
2154
2155     /* in QC this is always an lvalue */
2156     if (lvalue && self->rvalue) {
2157         compile_error(ast_ctx(self), "not an l-value (member access)");
2158         return false;
2159     }
2160     if (self->expression.outl) {
2161         *out = self->expression.outl;
2162         return true;
2163     }
2164
2165     cgen = self->owner->expression.codegen;
2166     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2167         return false;
2168
2169     if (vec->vtype != TYPE_VECTOR &&
2170         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2171     {
2172         return false;
2173     }
2174
2175     *out = ir_value_vector_member(vec, self->field);
2176     self->expression.outl = *out;
2177
2178     return (*out != NULL);
2179 }
2180
2181 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2182 {
2183     ast_value *arr;
2184     ast_value *idx;
2185
2186     if (!lvalue && self->expression.outr) {
2187         *out = self->expression.outr;
2188     }
2189     if (lvalue && self->expression.outl) {
2190         *out = self->expression.outl;
2191     }
2192
2193     if (!ast_istype(self->array, ast_value)) {
2194         compile_error(ast_ctx(self), "array indexing this way is not supported");
2195         /* note this would actually be pointer indexing because the left side is
2196          * not an actual array but (hopefully) an indexable expression.
2197          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2198          * support this path will be filled.
2199          */
2200         return false;
2201     }
2202
2203     arr = (ast_value*)self->array;
2204     idx = (ast_value*)self->index;
2205
2206     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2207         /* Time to use accessor functions */
2208         ast_expression_codegen *cgen;
2209         ir_value               *iridx, *funval;
2210         ir_instr               *call;
2211
2212         if (lvalue) {
2213             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2214             return false;
2215         }
2216
2217         if (!arr->getter) {
2218             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2219             return false;
2220         }
2221
2222         cgen = self->index->expression.codegen;
2223         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2224             return false;
2225
2226         cgen = arr->getter->expression.codegen;
2227         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2228             return false;
2229
2230         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2231         if (!call)
2232             return false;
2233         ir_call_param(call, iridx);
2234
2235         *out = ir_call_value(call);
2236         self->expression.outr = *out;
2237         return true;
2238     }
2239
2240     if (idx->expression.vtype == TYPE_FLOAT) {
2241         unsigned int arridx = idx->constval.vfloat;
2242         if (arridx >= self->array->expression.count)
2243         {
2244             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2245             return false;
2246         }
2247         *out = arr->ir_values[arridx];
2248     }
2249     else if (idx->expression.vtype == TYPE_INTEGER) {
2250         unsigned int arridx = idx->constval.vint;
2251         if (arridx >= self->array->expression.count)
2252         {
2253             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2254             return false;
2255         }
2256         *out = arr->ir_values[arridx];
2257     }
2258     else {
2259         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2260         return false;
2261     }
2262     return true;
2263 }
2264
2265 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2266 {
2267     ast_expression_codegen *cgen;
2268
2269     ir_value *condval;
2270     ir_value *dummy;
2271
2272     ir_block *cond;
2273     ir_block *ontrue;
2274     ir_block *onfalse;
2275     ir_block *ontrue_endblock = NULL;
2276     ir_block *onfalse_endblock = NULL;
2277     ir_block *merge = NULL;
2278
2279     /* We don't output any value, thus also don't care about r/lvalue */
2280     (void)out;
2281     (void)lvalue;
2282
2283     if (self->expression.outr) {
2284         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2285         return false;
2286     }
2287     self->expression.outr = (ir_value*)1;
2288
2289     /* generate the condition */
2290     cgen = self->cond->expression.codegen;
2291     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2292         return false;
2293     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2294     cond = func->curblock;
2295
2296     /* on-true path */
2297
2298     if (self->on_true) {
2299         /* create on-true block */
2300         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2301         if (!ontrue)
2302             return false;
2303
2304         /* enter the block */
2305         func->curblock = ontrue;
2306
2307         /* generate */
2308         cgen = self->on_true->expression.codegen;
2309         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2310             return false;
2311
2312         /* we now need to work from the current endpoint */
2313         ontrue_endblock = func->curblock;
2314     } else
2315         ontrue = NULL;
2316
2317     /* on-false path */
2318     if (self->on_false) {
2319         /* create on-false block */
2320         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2321         if (!onfalse)
2322             return false;
2323
2324         /* enter the block */
2325         func->curblock = onfalse;
2326
2327         /* generate */
2328         cgen = self->on_false->expression.codegen;
2329         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2330             return false;
2331
2332         /* we now need to work from the current endpoint */
2333         onfalse_endblock = func->curblock;
2334     } else
2335         onfalse = NULL;
2336
2337     /* Merge block were they all merge in to */
2338     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2339     {
2340         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2341         if (!merge)
2342             return false;
2343         /* add jumps ot the merge block */
2344         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2345             return false;
2346         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2347             return false;
2348
2349         /* Now enter the merge block */
2350         func->curblock = merge;
2351     }
2352
2353     /* we create the if here, that way all blocks are ordered :)
2354      */
2355     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2356                             (ontrue  ? ontrue  : merge),
2357                             (onfalse ? onfalse : merge)))
2358     {
2359         return false;
2360     }
2361
2362     return true;
2363 }
2364
2365 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2366 {
2367     ast_expression_codegen *cgen;
2368
2369     ir_value *condval;
2370     ir_value *trueval, *falseval;
2371     ir_instr *phi;
2372
2373     ir_block *cond = func->curblock;
2374     ir_block *cond_out = NULL;
2375     ir_block *ontrue, *ontrue_out = NULL;
2376     ir_block *onfalse, *onfalse_out = NULL;
2377     ir_block *merge;
2378
2379     /* Ternary can never create an lvalue... */
2380     if (lvalue)
2381         return false;
2382
2383     /* In theory it shouldn't be possible to pass through a node twice, but
2384      * in case we add any kind of optimization pass for the AST itself, it
2385      * may still happen, thus we remember a created ir_value and simply return one
2386      * if it already exists.
2387      */
2388     if (self->expression.outr) {
2389         *out = self->expression.outr;
2390         return true;
2391     }
2392
2393     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2394
2395     /* generate the condition */
2396     func->curblock = cond;
2397     cgen = self->cond->expression.codegen;
2398     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2399         return false;
2400     cond_out = func->curblock;
2401
2402     /* create on-true block */
2403     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2404     if (!ontrue)
2405         return false;
2406     else
2407     {
2408         /* enter the block */
2409         func->curblock = ontrue;
2410
2411         /* generate */
2412         cgen = self->on_true->expression.codegen;
2413         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2414             return false;
2415
2416         ontrue_out = func->curblock;
2417     }
2418
2419     /* create on-false block */
2420     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2421     if (!onfalse)
2422         return false;
2423     else
2424     {
2425         /* enter the block */
2426         func->curblock = onfalse;
2427
2428         /* generate */
2429         cgen = self->on_false->expression.codegen;
2430         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2431             return false;
2432
2433         onfalse_out = func->curblock;
2434     }
2435
2436     /* create merge block */
2437     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2438     if (!merge)
2439         return false;
2440     /* jump to merge block */
2441     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2442         return false;
2443     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2444         return false;
2445
2446     /* create if instruction */
2447     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2448         return false;
2449
2450     /* Now enter the merge block */
2451     func->curblock = merge;
2452
2453     /* Here, now, we need a PHI node
2454      * but first some sanity checking...
2455      */
2456     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2457         /* error("ternary with different types on the two sides"); */
2458         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2459         return false;
2460     }
2461
2462     /* create PHI */
2463     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2464     if (!phi) {
2465         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2466         return false;
2467     }
2468     ir_phi_add(phi, ontrue_out,  trueval);
2469     ir_phi_add(phi, onfalse_out, falseval);
2470
2471     self->expression.outr = ir_phi_value(phi);
2472     *out = self->expression.outr;
2473
2474     codegen_output_type(self, *out);
2475
2476     return true;
2477 }
2478
2479 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2480 {
2481     ast_expression_codegen *cgen;
2482
2483     ir_value *dummy      = NULL;
2484     ir_value *precond    = NULL;
2485     ir_value *postcond   = NULL;
2486
2487     /* Since we insert some jumps "late" so we have blocks
2488      * ordered "nicely", we need to keep track of the actual end-blocks
2489      * of expressions to add the jumps to.
2490      */
2491     ir_block *bbody      = NULL, *end_bbody      = NULL;
2492     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2493     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2494     ir_block *bincrement = NULL, *end_bincrement = NULL;
2495     ir_block *bout       = NULL, *bin            = NULL;
2496
2497     /* let's at least move the outgoing block to the end */
2498     size_t    bout_id;
2499
2500     /* 'break' and 'continue' need to be able to find the right blocks */
2501     ir_block *bcontinue     = NULL;
2502     ir_block *bbreak        = NULL;
2503
2504     ir_block *tmpblock      = NULL;
2505
2506     (void)lvalue;
2507     (void)out;
2508
2509     if (self->expression.outr) {
2510         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2511         return false;
2512     }
2513     self->expression.outr = (ir_value*)1;
2514
2515     /* NOTE:
2516      * Should we ever need some kind of block ordering, better make this function
2517      * move blocks around than write a block ordering algorithm later... after all
2518      * the ast and ir should work together, not against each other.
2519      */
2520
2521     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2522      * anyway if for example it contains a ternary.
2523      */
2524     if (self->initexpr)
2525     {
2526         cgen = self->initexpr->expression.codegen;
2527         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2528             return false;
2529     }
2530
2531     /* Store the block from which we enter this chaos */
2532     bin = func->curblock;
2533
2534     /* The pre-loop condition needs its own block since we
2535      * need to be able to jump to the start of that expression.
2536      */
2537     if (self->precond)
2538     {
2539         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2540         if (!bprecond)
2541             return false;
2542
2543         /* the pre-loop-condition the least important place to 'continue' at */
2544         bcontinue = bprecond;
2545
2546         /* enter */
2547         func->curblock = bprecond;
2548
2549         /* generate */
2550         cgen = self->precond->expression.codegen;
2551         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2552             return false;
2553
2554         end_bprecond = func->curblock;
2555     } else {
2556         bprecond = end_bprecond = NULL;
2557     }
2558
2559     /* Now the next blocks won't be ordered nicely, but we need to
2560      * generate them this early for 'break' and 'continue'.
2561      */
2562     if (self->increment) {
2563         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2564         if (!bincrement)
2565             return false;
2566         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2567     } else {
2568         bincrement = end_bincrement = NULL;
2569     }
2570
2571     if (self->postcond) {
2572         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2573         if (!bpostcond)
2574             return false;
2575         bcontinue = bpostcond; /* postcond comes before the increment */
2576     } else {
2577         bpostcond = end_bpostcond = NULL;
2578     }
2579
2580     bout_id = vec_size(func->ir_func->blocks);
2581     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2582     if (!bout)
2583         return false;
2584     bbreak = bout;
2585
2586     /* The loop body... */
2587     /* if (self->body) */
2588     {
2589         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2590         if (!bbody)
2591             return false;
2592
2593         /* enter */
2594         func->curblock = bbody;
2595
2596         vec_push(func->breakblocks,    bbreak);
2597         if (bcontinue)
2598             vec_push(func->continueblocks, bcontinue);
2599         else
2600             vec_push(func->continueblocks, bbody);
2601
2602         /* generate */
2603         if (self->body) {
2604             cgen = self->body->expression.codegen;
2605             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2606                 return false;
2607         }
2608
2609         end_bbody = func->curblock;
2610         vec_pop(func->breakblocks);
2611         vec_pop(func->continueblocks);
2612     }
2613
2614     /* post-loop-condition */
2615     if (self->postcond)
2616     {
2617         /* enter */
2618         func->curblock = bpostcond;
2619
2620         /* generate */
2621         cgen = self->postcond->expression.codegen;
2622         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2623             return false;
2624
2625         end_bpostcond = func->curblock;
2626     }
2627
2628     /* The incrementor */
2629     if (self->increment)
2630     {
2631         /* enter */
2632         func->curblock = bincrement;
2633
2634         /* generate */
2635         cgen = self->increment->expression.codegen;
2636         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2637             return false;
2638
2639         end_bincrement = func->curblock;
2640     }
2641
2642     /* In any case now, we continue from the outgoing block */
2643     func->curblock = bout;
2644
2645     /* Now all blocks are in place */
2646     /* From 'bin' we jump to whatever comes first */
2647     if      (bprecond)   tmpblock = bprecond;
2648     else if (bbody)      tmpblock = bbody;
2649     else if (bpostcond)  tmpblock = bpostcond;
2650     else                 tmpblock = bout;
2651     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2652         return false;
2653
2654     /* From precond */
2655     if (bprecond)
2656     {
2657         ir_block *ontrue, *onfalse;
2658         if      (bbody)      ontrue = bbody;
2659         else if (bincrement) ontrue = bincrement;
2660         else if (bpostcond)  ontrue = bpostcond;
2661         else                 ontrue = bprecond;
2662         onfalse = bout;
2663         if (self->pre_not) {
2664             tmpblock = ontrue;
2665             ontrue   = onfalse;
2666             onfalse  = tmpblock;
2667         }
2668         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2669             return false;
2670     }
2671
2672     /* from body */
2673     if (bbody)
2674     {
2675         if      (bincrement) tmpblock = bincrement;
2676         else if (bpostcond)  tmpblock = bpostcond;
2677         else if (bprecond)   tmpblock = bprecond;
2678         else                 tmpblock = bbody;
2679         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2680             return false;
2681     }
2682
2683     /* from increment */
2684     if (bincrement)
2685     {
2686         if      (bpostcond)  tmpblock = bpostcond;
2687         else if (bprecond)   tmpblock = bprecond;
2688         else if (bbody)      tmpblock = bbody;
2689         else                 tmpblock = bout;
2690         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2691             return false;
2692     }
2693
2694     /* from postcond */
2695     if (bpostcond)
2696     {
2697         ir_block *ontrue, *onfalse;
2698         if      (bprecond)   ontrue = bprecond;
2699         else if (bbody)      ontrue = bbody;
2700         else if (bincrement) ontrue = bincrement;
2701         else                 ontrue = bpostcond;
2702         onfalse = bout;
2703         if (self->post_not) {
2704             tmpblock = ontrue;
2705             ontrue   = onfalse;
2706             onfalse  = tmpblock;
2707         }
2708         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2709             return false;
2710     }
2711
2712     /* Move 'bout' to the end */
2713     vec_remove(func->ir_func->blocks, bout_id, 1);
2714     vec_push(func->ir_func->blocks, bout);
2715
2716     return true;
2717 }
2718
2719 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2720 {
2721     ir_block *target;
2722
2723     *out = NULL;
2724
2725     if (lvalue) {
2726         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2727         return false;
2728     }
2729
2730     if (self->expression.outr) {
2731         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2732         return false;
2733     }
2734     self->expression.outr = (ir_value*)1;
2735
2736     if (self->is_continue)
2737         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
2738     else
2739         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
2740
2741     if (!target) {
2742         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2743         return false;
2744     }
2745
2746     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2747         return false;
2748     return true;
2749 }
2750
2751 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2752 {
2753     ast_expression_codegen *cgen;
2754
2755     ast_switch_case *def_case     = NULL;
2756     ir_block        *def_bfall    = NULL;
2757     ir_block        *def_bfall_to = NULL;
2758     bool set_def_bfall_to = false;
2759
2760     ir_value *dummy     = NULL;
2761     ir_value *irop      = NULL;
2762     ir_block *bout      = NULL;
2763     ir_block *bfall     = NULL;
2764     size_t    bout_id;
2765     size_t    c;
2766
2767     char      typestr[1024];
2768     uint16_t  cmpinstr;
2769
2770     if (lvalue) {
2771         compile_error(ast_ctx(self), "switch expression is not an l-value");
2772         return false;
2773     }
2774
2775     if (self->expression.outr) {
2776         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2777         return false;
2778     }
2779     self->expression.outr = (ir_value*)1;
2780
2781     (void)lvalue;
2782     (void)out;
2783
2784     cgen = self->operand->expression.codegen;
2785     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2786         return false;
2787
2788     if (!vec_size(self->cases))
2789         return true;
2790
2791     cmpinstr = type_eq_instr[irop->vtype];
2792     if (cmpinstr >= AINSTR_END) {
2793         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2794         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2795         return false;
2796     }
2797
2798     bout_id = vec_size(func->ir_func->blocks);
2799     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2800     if (!bout)
2801         return false;
2802
2803     /* setup the break block */
2804     vec_push(func->breakblocks, bout);
2805
2806     /* Now create all cases */
2807     for (c = 0; c < vec_size(self->cases); ++c) {
2808         ir_value *cond, *val;
2809         ir_block *bcase, *bnot;
2810         size_t bnot_id;
2811
2812         ast_switch_case *swcase = &self->cases[c];
2813
2814         if (swcase->value) {
2815             /* A regular case */
2816             /* generate the condition operand */
2817             cgen = swcase->value->expression.codegen;
2818             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2819                 return false;
2820             /* generate the condition */
2821             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2822             if (!cond)
2823                 return false;
2824
2825             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2826             bnot_id = vec_size(func->ir_func->blocks);
2827             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2828             if (!bcase || !bnot)
2829                 return false;
2830             if (set_def_bfall_to) {
2831                 set_def_bfall_to = false;
2832                 def_bfall_to = bcase;
2833             }
2834             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2835                 return false;
2836
2837             /* Make the previous case-end fall through */
2838             if (bfall && !bfall->final) {
2839                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2840                     return false;
2841             }
2842
2843             /* enter the case */
2844             func->curblock = bcase;
2845             cgen = swcase->code->expression.codegen;
2846             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2847                 return false;
2848
2849             /* remember this block to fall through from */
2850             bfall = func->curblock;
2851
2852             /* enter the else and move it down */
2853             func->curblock = bnot;
2854             vec_remove(func->ir_func->blocks, bnot_id, 1);
2855             vec_push(func->ir_func->blocks, bnot);
2856         } else {
2857             /* The default case */
2858             /* Remember where to fall through from: */
2859             def_bfall = bfall;
2860             bfall     = NULL;
2861             /* remember which case it was */
2862             def_case  = swcase;
2863             /* And the next case will be remembered */
2864             set_def_bfall_to = true;
2865         }
2866     }
2867
2868     /* Jump from the last bnot to bout */
2869     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2870         /*
2871         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2872         */
2873         return false;
2874     }
2875
2876     /* If there was a default case, put it down here */
2877     if (def_case) {
2878         ir_block *bcase;
2879
2880         /* No need to create an extra block */
2881         bcase = func->curblock;
2882
2883         /* Insert the fallthrough jump */
2884         if (def_bfall && !def_bfall->final) {
2885             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2886                 return false;
2887         }
2888
2889         /* Now generate the default code */
2890         cgen = def_case->code->expression.codegen;
2891         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2892             return false;
2893
2894         /* see if we need to fall through */
2895         if (def_bfall_to && !func->curblock->final)
2896         {
2897             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2898                 return false;
2899         }
2900     }
2901
2902     /* Jump from the last bnot to bout */
2903     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2904         return false;
2905     /* enter the outgoing block */
2906     func->curblock = bout;
2907
2908     /* restore the break block */
2909     vec_pop(func->breakblocks);
2910
2911     /* Move 'bout' to the end, it's nicer */
2912     vec_remove(func->ir_func->blocks, bout_id, 1);
2913     vec_push(func->ir_func->blocks, bout);
2914
2915     return true;
2916 }
2917
2918 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2919 {
2920     size_t i;
2921     ir_value *dummy;
2922
2923     if (self->undefined) {
2924         compile_error(ast_ctx(self), "internal error: ast_label never defined");
2925         return false;
2926     }
2927
2928     *out = NULL;
2929     if (lvalue) {
2930         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2931         return false;
2932     }
2933
2934     /* simply create a new block and jump to it */
2935     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2936     if (!self->irblock) {
2937         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2938         return false;
2939     }
2940     if (!func->curblock->final) {
2941         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2942             return false;
2943     }
2944
2945     /* enter the new block */
2946     func->curblock = self->irblock;
2947
2948     /* Generate all the leftover gotos */
2949     for (i = 0; i < vec_size(self->gotos); ++i) {
2950         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2951             return false;
2952     }
2953
2954     return true;
2955 }
2956
2957 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2958 {
2959     *out = NULL;
2960     if (lvalue) {
2961         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2962         return false;
2963     }
2964
2965     if (self->target->irblock) {
2966         if (self->irblock_from) {
2967             /* we already tried once, this is the callback */
2968             self->irblock_from->final = false;
2969             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2970                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2971                 return false;
2972             }
2973         }
2974         else
2975         {
2976             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
2977                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2978                 return false;
2979             }
2980         }
2981     }
2982     else
2983     {
2984         /* the target has not yet been created...
2985          * close this block in a sneaky way:
2986          */
2987         func->curblock->final = true;
2988         self->irblock_from = func->curblock;
2989         ast_label_register_goto(self->target, self);
2990     }
2991
2992     return true;
2993 }
2994
2995 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2996 {
2997     ast_expression_codegen *cgen;
2998     ir_value              **params;
2999     ir_instr               *callinstr;
3000     size_t i;
3001
3002     ir_value *funval = NULL;
3003
3004     /* return values are never lvalues */
3005     if (lvalue) {
3006         compile_error(ast_ctx(self), "not an l-value (function call)");
3007         return false;
3008     }
3009
3010     if (self->expression.outr) {
3011         *out = self->expression.outr;
3012         return true;
3013     }
3014
3015     cgen = self->func->expression.codegen;
3016     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
3017         return false;
3018     if (!funval)
3019         return false;
3020
3021     params = NULL;
3022
3023     /* parameters */
3024     for (i = 0; i < vec_size(self->params); ++i)
3025     {
3026         ir_value *param;
3027         ast_expression *expr = self->params[i];
3028
3029         cgen = expr->expression.codegen;
3030         if (!(*cgen)(expr, func, false, &param))
3031             goto error;
3032         if (!param)
3033             goto error;
3034         vec_push(params, param);
3035     }
3036
3037     /* varargs counter */
3038     if (self->va_count) {
3039         ir_value   *va_count;
3040         ir_builder *builder = func->curblock->owner->owner;
3041         cgen = self->va_count->expression.codegen;
3042         if (!(*cgen)((ast_expression*)(self->va_count), func, false, &va_count))
3043             return false;
3044         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), INSTR_STORE_F,
3045                                       ir_builder_get_va_count(builder), va_count))
3046         {
3047             return false;
3048         }
3049     }
3050
3051     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
3052                                      ast_function_label(func, "call"),
3053                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
3054     if (!callinstr)
3055         goto error;
3056
3057     for (i = 0; i < vec_size(params); ++i) {
3058         ir_call_param(callinstr, params[i]);
3059     }
3060
3061     *out = ir_call_value(callinstr);
3062     self->expression.outr = *out;
3063
3064     codegen_output_type(self, *out);
3065
3066     vec_free(params);
3067     return true;
3068 error:
3069     vec_free(params);
3070     return false;
3071 }