]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
7fb5ec4f4cceaf7cc7e3cff73318658fc26c64a8
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     cvprintmsg(ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     fprintf(stderr, "ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         default:
280             typestr = type_name[e->expression.vtype];
281             typelen = strlen(typestr);
282             if (pos + typelen >= bufsize)
283                 goto full;
284             strcpy(buf + pos, typestr);
285             return pos + typelen;
286     }
287
288 full:
289     buf[bufsize-3] = '.';
290     buf[bufsize-2] = '.';
291     buf[bufsize-1] = '.';
292     return bufsize;
293 }
294
295 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
296 {
297     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
298     buf[pos] = 0;
299 }
300
301 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
302 {
303     ast_instantiate(ast_value, ctx, ast_value_delete);
304     ast_expression_init((ast_expression*)self,
305                         (ast_expression_codegen*)&ast_value_codegen);
306     self->expression.node.keep = true; /* keep */
307
308     self->name = name ? util_strdup(name) : NULL;
309     self->expression.vtype = t;
310     self->expression.next  = NULL;
311     self->isconst = false;
312     self->uses    = 0;
313     memset(&self->constval, 0, sizeof(self->constval));
314
315     self->ir_v    = NULL;
316
317     return self;
318 }
319
320 void ast_value_delete(ast_value* self)
321 {
322     if (self->name)
323         mem_d((void*)self->name);
324     if (self->isconst) {
325         switch (self->expression.vtype)
326         {
327         case TYPE_STRING:
328             mem_d((void*)self->constval.vstring);
329             break;
330         case TYPE_FUNCTION:
331             /* unlink us from the function node */
332             self->constval.vfunc->vtype = NULL;
333             break;
334         /* NOTE: delete function? currently collected in
335          * the parser structure
336          */
337         default:
338             break;
339         }
340     }
341     ast_expression_delete((ast_expression*)self);
342     mem_d(self);
343 }
344
345 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
346 {
347     return ast_expression_common_params_add(&self->expression, p);
348 }
349
350 bool ast_value_set_name(ast_value *self, const char *name)
351 {
352     if (self->name)
353         mem_d((void*)self->name);
354     self->name = util_strdup(name);
355     return !!self->name;
356 }
357
358 ast_binary* ast_binary_new(lex_ctx ctx, int op,
359                            ast_expression* left, ast_expression* right)
360 {
361     ast_instantiate(ast_binary, ctx, ast_binary_delete);
362     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
363
364     self->op = op;
365     self->left = left;
366     self->right = right;
367
368     if (op >= INSTR_EQ_F && op <= INSTR_GT)
369         self->expression.vtype = TYPE_FLOAT;
370     else if (op == INSTR_AND || op == INSTR_OR ||
371              op == INSTR_BITAND || op == INSTR_BITOR)
372         self->expression.vtype = TYPE_FLOAT;
373     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
374         self->expression.vtype = TYPE_VECTOR;
375     else if (op == INSTR_MUL_V)
376         self->expression.vtype = TYPE_FLOAT;
377     else
378         self->expression.vtype = left->expression.vtype;
379
380     return self;
381 }
382
383 void ast_binary_delete(ast_binary *self)
384 {
385     ast_unref(self->left);
386     ast_unref(self->right);
387     ast_expression_delete((ast_expression*)self);
388     mem_d(self);
389 }
390
391 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
392                                ast_expression* left, ast_expression* right)
393 {
394     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
395     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
396
397     self->opstore = storop;
398     self->opbin   = op;
399     self->dest    = left;
400     self->source  = right;
401
402     self->expression.vtype = left->expression.vtype;
403     if (left->expression.next) {
404         self->expression.next = ast_type_copy(ctx, left);
405         if (!self->expression.next) {
406             ast_delete(self);
407             return NULL;
408         }
409     }
410     else
411         self->expression.next = NULL;
412
413     return self;
414 }
415
416 void ast_binstore_delete(ast_binstore *self)
417 {
418     ast_unref(self->dest);
419     ast_unref(self->source);
420     ast_expression_delete((ast_expression*)self);
421     mem_d(self);
422 }
423
424 ast_unary* ast_unary_new(lex_ctx ctx, int op,
425                          ast_expression *expr)
426 {
427     ast_instantiate(ast_unary, ctx, ast_unary_delete);
428     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
429
430     self->op = op;
431     self->operand = expr;
432
433     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
434         self->expression.vtype = TYPE_FLOAT;
435     } else
436         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
437
438     return self;
439 }
440
441 void ast_unary_delete(ast_unary *self)
442 {
443     ast_unref(self->operand);
444     ast_expression_delete((ast_expression*)self);
445     mem_d(self);
446 }
447
448 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
449 {
450     ast_instantiate(ast_return, ctx, ast_return_delete);
451     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
452
453     self->operand = expr;
454
455     return self;
456 }
457
458 void ast_return_delete(ast_return *self)
459 {
460     if (self->operand)
461         ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
467 {
468     const ast_expression *outtype;
469
470     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
471
472     if (field->expression.vtype != TYPE_FIELD) {
473         mem_d(self);
474         return NULL;
475     }
476
477     outtype = field->expression.next;
478     if (!outtype) {
479         mem_d(self);
480         /* Error: field has no type... */
481         return NULL;
482     }
483
484     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
485
486     self->entity = entity;
487     self->field  = field;
488
489     if (!ast_type_adopt(self, outtype)) {
490         ast_entfield_delete(self);
491         return NULL;
492     }
493
494     return self;
495 }
496
497 void ast_entfield_delete(ast_entfield *self)
498 {
499     ast_unref(self->entity);
500     ast_unref(self->field);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
506 {
507     ast_instantiate(ast_member, ctx, ast_member_delete);
508     if (field >= 3) {
509         mem_d(self);
510         return NULL;
511     }
512
513     if (owner->expression.vtype != TYPE_VECTOR &&
514         owner->expression.vtype != TYPE_FIELD) {
515         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
516         mem_d(self);
517         return NULL;
518     }
519
520     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
521     self->expression.node.keep = true; /* keep */
522
523     if (owner->expression.vtype == TYPE_VECTOR) {
524         self->expression.vtype = TYPE_FLOAT;
525         self->expression.next  = NULL;
526     } else {
527         self->expression.vtype = TYPE_FIELD;
528         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
529     }
530
531     self->owner = owner;
532     self->field = field;
533
534     return self;
535 }
536
537 void ast_member_delete(ast_member *self)
538 {
539     /* The owner is always an ast_value, which has .keep=true,
540      * also: ast_members are usually deleted after the owner, thus
541      * this will cause invalid access
542     ast_unref(self->owner);
543      * once we allow (expression).x to access a vector-member, we need
544      * to change this: preferably by creating an alternate ast node for this
545      * purpose that is not garbage-collected.
546     */
547     ast_expression_delete((ast_expression*)self);
548     mem_d(self);
549 }
550
551 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
552 {
553     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
554     if (!ontrue && !onfalse) {
555         /* because it is invalid */
556         mem_d(self);
557         return NULL;
558     }
559     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
560
561     self->cond     = cond;
562     self->on_true  = ontrue;
563     self->on_false = onfalse;
564
565     return self;
566 }
567
568 void ast_ifthen_delete(ast_ifthen *self)
569 {
570     ast_unref(self->cond);
571     if (self->on_true)
572         ast_unref(self->on_true);
573     if (self->on_false)
574         ast_unref(self->on_false);
575     ast_expression_delete((ast_expression*)self);
576     mem_d(self);
577 }
578
579 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
580 {
581     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
582     /* This time NEITHER must be NULL */
583     if (!ontrue || !onfalse) {
584         mem_d(self);
585         return NULL;
586     }
587     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
588
589     self->cond     = cond;
590     self->on_true  = ontrue;
591     self->on_false = onfalse;
592     self->phi_out  = NULL;
593
594     return self;
595 }
596
597 void ast_ternary_delete(ast_ternary *self)
598 {
599     ast_unref(self->cond);
600     ast_unref(self->on_true);
601     ast_unref(self->on_false);
602     ast_expression_delete((ast_expression*)self);
603     mem_d(self);
604 }
605
606 ast_loop* ast_loop_new(lex_ctx ctx,
607                        ast_expression *initexpr,
608                        ast_expression *precond,
609                        ast_expression *postcond,
610                        ast_expression *increment,
611                        ast_expression *body)
612 {
613     ast_instantiate(ast_loop, ctx, ast_loop_delete);
614     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
615
616     self->initexpr  = initexpr;
617     self->precond   = precond;
618     self->postcond  = postcond;
619     self->increment = increment;
620     self->body      = body;
621
622     return self;
623 }
624
625 void ast_loop_delete(ast_loop *self)
626 {
627     if (self->initexpr)
628         ast_unref(self->initexpr);
629     if (self->precond)
630         ast_unref(self->precond);
631     if (self->postcond)
632         ast_unref(self->postcond);
633     if (self->increment)
634         ast_unref(self->increment);
635     if (self->body)
636         ast_unref(self->body);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_call* ast_call_new(lex_ctx ctx,
642                        ast_expression *funcexpr)
643 {
644     ast_instantiate(ast_call, ctx, ast_call_delete);
645     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
646
647     MEM_VECTOR_INIT(self, params);
648
649     self->func = funcexpr;
650
651     self->expression.vtype = funcexpr->expression.next->expression.vtype;
652     if (funcexpr->expression.next->expression.next)
653         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
654
655     return self;
656 }
657 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
658
659 void ast_call_delete(ast_call *self)
660 {
661     size_t i;
662     for (i = 0; i < self->params_count; ++i)
663         ast_unref(self->params[i]);
664     MEM_VECTOR_CLEAR(self, params);
665
666     if (self->func)
667         ast_unref(self->func);
668
669     ast_expression_delete((ast_expression*)self);
670     mem_d(self);
671 }
672
673 bool ast_call_check_types(ast_call *self)
674 {
675     size_t i;
676     bool   retval = true;
677     const  ast_expression *func = self->func;
678     size_t count = self->params_count;
679     if (count > func->expression.params_count)
680         count = func->expression.params_count;
681
682     for (i = 0; i < count; ++i) {
683         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
684             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
685                      (unsigned int)(i+1));
686             /* we don't immediately return */
687             retval = false;
688         }
689     }
690     return retval;
691 }
692
693 ast_store* ast_store_new(lex_ctx ctx, int op,
694                          ast_expression *dest, ast_expression *source)
695 {
696     ast_instantiate(ast_store, ctx, ast_store_delete);
697     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
698
699     self->op = op;
700     self->dest = dest;
701     self->source = source;
702
703     self->expression.vtype = dest->expression.vtype;
704     if (dest->expression.next) {
705         self->expression.next = ast_type_copy(ctx, dest);
706         if (!self->expression.next) {
707             ast_delete(self);
708             return NULL;
709         }
710     }
711     else
712         self->expression.next = NULL;
713
714     return self;
715 }
716
717 void ast_store_delete(ast_store *self)
718 {
719     ast_unref(self->dest);
720     ast_unref(self->source);
721     ast_expression_delete((ast_expression*)self);
722     mem_d(self);
723 }
724
725 ast_block* ast_block_new(lex_ctx ctx)
726 {
727     ast_instantiate(ast_block, ctx, ast_block_delete);
728     ast_expression_init((ast_expression*)self,
729                         (ast_expression_codegen*)&ast_block_codegen);
730
731     MEM_VECTOR_INIT(self, locals);
732     MEM_VECTOR_INIT(self, exprs);
733     MEM_VECTOR_INIT(self, collect);
734
735     return self;
736 }
737 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
738 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
739 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
740
741 bool ast_block_collect(ast_block *self, ast_expression *expr)
742 {
743     if (!ast_block_collect_add(self, expr))
744         return false;
745     expr->expression.node.keep = true;
746     return true;
747 }
748
749 void ast_block_delete(ast_block *self)
750 {
751     size_t i;
752     for (i = 0; i < self->exprs_count; ++i)
753         ast_unref(self->exprs[i]);
754     MEM_VECTOR_CLEAR(self, exprs);
755     for (i = 0; i < self->locals_count; ++i)
756         ast_delete(self->locals[i]);
757     MEM_VECTOR_CLEAR(self, locals);
758     for (i = 0; i < self->collect_count; ++i)
759         ast_delete(self->collect[i]);
760     MEM_VECTOR_CLEAR(self, collect);
761     ast_expression_delete((ast_expression*)self);
762     mem_d(self);
763 }
764
765 bool ast_block_set_type(ast_block *self, ast_expression *from)
766 {
767     if (self->expression.next)
768         ast_delete(self->expression.next);
769     self->expression.vtype = from->expression.vtype;
770     if (from->expression.next) {
771         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
772         if (!self->expression.next)
773             return false;
774     }
775     else
776         self->expression.next = NULL;
777     return true;
778 }
779
780 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
781 {
782     ast_instantiate(ast_function, ctx, ast_function_delete);
783
784     if (!vtype ||
785         vtype->isconst ||
786         vtype->expression.vtype != TYPE_FUNCTION)
787     {
788         mem_d(self);
789         return NULL;
790     }
791
792     self->vtype = vtype;
793     self->name = name ? util_strdup(name) : NULL;
794     MEM_VECTOR_INIT(self, blocks);
795
796     self->labelcount = 0;
797     self->builtin = 0;
798
799     self->ir_func = NULL;
800     self->curblock = NULL;
801
802     self->breakblock    = NULL;
803     self->continueblock = NULL;
804
805     vtype->isconst = true;
806     vtype->constval.vfunc = self;
807
808     return self;
809 }
810
811 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
812
813 void ast_function_delete(ast_function *self)
814 {
815     size_t i;
816     if (self->name)
817         mem_d((void*)self->name);
818     if (self->vtype) {
819         /* ast_value_delete(self->vtype); */
820         self->vtype->isconst = false;
821         self->vtype->constval.vfunc = NULL;
822         /* We use unref - if it was stored in a global table it is supposed
823          * to be deleted from *there*
824          */
825         ast_unref(self->vtype);
826     }
827     for (i = 0; i < self->blocks_count; ++i)
828         ast_delete(self->blocks[i]);
829     MEM_VECTOR_CLEAR(self, blocks);
830     mem_d(self);
831 }
832
833 const char* ast_function_label(ast_function *self, const char *prefix)
834 {
835     size_t id;
836     size_t len;
837     char  *from;
838
839     if (!opts_dump)
840         return NULL;
841
842     id  = (self->labelcount++);
843     len = strlen(prefix);
844
845     from = self->labelbuf + sizeof(self->labelbuf)-1;
846     *from-- = 0;
847     do {
848         unsigned int digit = id % 10;
849         *from = digit + '0';
850         id /= 10;
851     } while (id);
852     memcpy(from - len, prefix, len);
853     return from - len;
854 }
855
856 /*********************************************************************/
857 /* AST codegen part
858  * by convention you must never pass NULL to the 'ir_value **out'
859  * parameter. If you really don't care about the output, pass a dummy.
860  * But I can't imagine a pituation where the output is truly unnecessary.
861  */
862
863 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
864 {
865     /* NOTE: This is the codegen for a variable used in an expression.
866      * It is not the codegen to generate the value. For this purpose,
867      * ast_local_codegen and ast_global_codegen are to be used before this
868      * is executed. ast_function_codegen should take care of its locals,
869      * and the ast-user should take care of ast_global_codegen to be used
870      * on all the globals.
871      */
872     if (!self->ir_v) {
873         asterror(ast_ctx(self), "ast_value used before generated (%s)", self->name);
874         return false;
875     }
876     *out = self->ir_v;
877     return true;
878 }
879
880 bool ast_global_codegen(ast_value *self, ir_builder *ir)
881 {
882     ir_value *v = NULL;
883     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
884     {
885         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
886         if (!func)
887             return false;
888         func->context = ast_ctx(self);
889         func->value->context = ast_ctx(self);
890
891         self->constval.vfunc->ir_func = func;
892         self->ir_v = func->value;
893         /* The function is filled later on ast_function_codegen... */
894         return true;
895     }
896
897     if (self->expression.vtype == TYPE_FIELD) {
898         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
899         if (!v)
900             return false;
901         v->context = ast_ctx(self);
902         if (self->isconst) {
903             asterror(ast_ctx(self), "TODO: constant field pointers with value");
904             goto error;
905         }
906         self->ir_v = v;
907         return true;
908     }
909
910     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
911     if (!v) {
912         asterror(ast_ctx(self), "ir_builder_create_global failed");
913         return false;
914     }
915     v->context = ast_ctx(self);
916
917     if (self->isconst) {
918         switch (self->expression.vtype)
919         {
920             case TYPE_FLOAT:
921                 if (!ir_value_set_float(v, self->constval.vfloat))
922                     goto error;
923                 break;
924             case TYPE_VECTOR:
925                 if (!ir_value_set_vector(v, self->constval.vvec))
926                     goto error;
927                 break;
928             case TYPE_STRING:
929                 if (!ir_value_set_string(v, self->constval.vstring))
930                     goto error;
931                 break;
932             case TYPE_FUNCTION:
933                 asterror(ast_ctx(self), "global of type function not properly generated");
934                 goto error;
935                 /* Cannot generate an IR value for a function,
936                  * need a pointer pointing to a function rather.
937                  */
938             default:
939                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
940                 break;
941         }
942     }
943
944     /* link us to the ir_value */
945     self->ir_v = v;
946     return true;
947
948 error: /* clean up */
949     ir_value_delete(v);
950     return false;
951 }
952
953 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
954 {
955     ir_value *v = NULL;
956     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
957     {
958         /* Do we allow local functions? I think not...
959          * this is NOT a function pointer atm.
960          */
961         return false;
962     }
963
964     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
965     if (!v)
966         return false;
967     v->context = ast_ctx(self);
968
969     /* A constant local... hmmm...
970      * I suppose the IR will have to deal with this
971      */
972     if (self->isconst) {
973         switch (self->expression.vtype)
974         {
975             case TYPE_FLOAT:
976                 if (!ir_value_set_float(v, self->constval.vfloat))
977                     goto error;
978                 break;
979             case TYPE_VECTOR:
980                 if (!ir_value_set_vector(v, self->constval.vvec))
981                     goto error;
982                 break;
983             case TYPE_STRING:
984                 if (!ir_value_set_string(v, self->constval.vstring))
985                     goto error;
986                 break;
987             default:
988                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
989                 break;
990         }
991     }
992
993     /* link us to the ir_value */
994     self->ir_v = v;
995     return true;
996
997 error: /* clean up */
998     ir_value_delete(v);
999     return false;
1000 }
1001
1002 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1003 {
1004     ir_function *irf;
1005     ir_value    *dummy;
1006     ast_expression_common *ec;
1007     size_t    i;
1008
1009     irf = self->ir_func;
1010     if (!irf) {
1011         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1012         return false;
1013     }
1014
1015     /* fill the parameter list */
1016     ec = &self->vtype->expression;
1017     for (i = 0; i < ec->params_count; ++i)
1018     {
1019         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1020             return false;
1021         if (!self->builtin) {
1022             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1023                 return false;
1024         }
1025     }
1026
1027     if (self->builtin) {
1028         irf->builtin = self->builtin;
1029         return true;
1030     }
1031
1032     if (!self->blocks_count) {
1033         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1034         return false;
1035     }
1036
1037     self->curblock = ir_function_create_block(irf, "entry");
1038     if (!self->curblock) {
1039         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1040         return false;
1041     }
1042
1043     for (i = 0; i < self->blocks_count; ++i) {
1044         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1045         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1046             return false;
1047     }
1048
1049     /* TODO: check return types */
1050     if (!self->curblock->is_return)
1051     {
1052         return ir_block_create_return(self->curblock, NULL);
1053         /* From now on the parser has to handle this situation */
1054 #if 0
1055         if (!self->vtype->expression.next ||
1056             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1057         {
1058             return ir_block_create_return(self->curblock, NULL);
1059         }
1060         else
1061         {
1062             /* error("missing return"); */
1063             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1064             return false;
1065         }
1066 #endif
1067     }
1068     return true;
1069 }
1070
1071 /* Note, you will not see ast_block_codegen generate ir_blocks.
1072  * To the AST and the IR, blocks are 2 different things.
1073  * In the AST it represents a block of code, usually enclosed in
1074  * curly braces {...}.
1075  * While in the IR it represents a block in terms of control-flow.
1076  */
1077 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1078 {
1079     size_t i;
1080
1081     /* We don't use this
1082      * Note: an ast-representation using the comma-operator
1083      * of the form: (a, b, c) = x should not assign to c...
1084      */
1085     if (lvalue) {
1086         asterror(ast_ctx(self), "not an l-value (code-block)");
1087         return false;
1088     }
1089
1090     if (self->expression.outr) {
1091         *out = self->expression.outr;
1092         return true;
1093     }
1094
1095     /* output is NULL at first, we'll have each expression
1096      * assign to out output, thus, a comma-operator represention
1097      * using an ast_block will return the last generated value,
1098      * so: (b, c) + a  executed both b and c, and returns c,
1099      * which is then added to a.
1100      */
1101     *out = NULL;
1102
1103     /* generate locals */
1104     for (i = 0; i < self->locals_count; ++i)
1105     {
1106         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1107             if (opts_debug)
1108                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1109             return false;
1110         }
1111     }
1112
1113     for (i = 0; i < self->exprs_count; ++i)
1114     {
1115         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1116         if (!(*gen)(self->exprs[i], func, false, out))
1117             return false;
1118     }
1119
1120     self->expression.outr = *out;
1121
1122     return true;
1123 }
1124
1125 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1126 {
1127     ast_expression_codegen *cgen;
1128     ir_value *left, *right;
1129
1130     if (lvalue && self->expression.outl) {
1131         *out = self->expression.outl;
1132         return true;
1133     }
1134
1135     if (!lvalue && self->expression.outr) {
1136         *out = self->expression.outr;
1137         return true;
1138     }
1139
1140     cgen = self->dest->expression.codegen;
1141     /* lvalue! */
1142     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1143         return false;
1144     self->expression.outl = left;
1145
1146     cgen = self->source->expression.codegen;
1147     /* rvalue! */
1148     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1149         return false;
1150
1151     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1152         return false;
1153     self->expression.outr = right;
1154
1155     /* Theoretically, an assinment returns its left side as an
1156      * lvalue, if we don't need an lvalue though, we return
1157      * the right side as an rvalue, otherwise we have to
1158      * somehow know whether or not we need to dereference the pointer
1159      * on the left side - that is: OP_LOAD if it was an address.
1160      * Also: in original QC we cannot OP_LOADP *anyway*.
1161      */
1162     *out = (lvalue ? left : right);
1163
1164     return true;
1165 }
1166
1167 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1168 {
1169     ast_expression_codegen *cgen;
1170     ir_value *left, *right;
1171
1172     /* A binary operation cannot yield an l-value */
1173     if (lvalue) {
1174         asterror(ast_ctx(self), "not an l-value (binop)");
1175         return false;
1176     }
1177
1178     if (self->expression.outr) {
1179         *out = self->expression.outr;
1180         return true;
1181     }
1182
1183     cgen = self->left->expression.codegen;
1184     /* lvalue! */
1185     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1186         return false;
1187
1188     cgen = self->right->expression.codegen;
1189     /* rvalue! */
1190     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1191         return false;
1192
1193     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1194                                  self->op, left, right);
1195     if (!*out)
1196         return false;
1197     self->expression.outr = *out;
1198
1199     return true;
1200 }
1201
1202 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1203 {
1204     ast_expression_codegen *cgen;
1205     ir_value *leftl, *leftr, *right, *bin;
1206
1207     if (lvalue && self->expression.outl) {
1208         *out = self->expression.outl;
1209         return true;
1210     }
1211
1212     if (!lvalue && self->expression.outr) {
1213         *out = self->expression.outr;
1214         return true;
1215     }
1216
1217     /* for a binstore we need both an lvalue and an rvalue for the left side */
1218     /* rvalue of destination! */
1219     cgen = self->dest->expression.codegen;
1220     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1221         return false;
1222
1223     /* source as rvalue only */
1224     cgen = self->source->expression.codegen;
1225     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1226         return false;
1227
1228     /* now the binary */
1229     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1230                                 self->opbin, leftr, right);
1231     self->expression.outr = bin;
1232
1233     /* now store them */
1234     cgen = self->dest->expression.codegen;
1235     /* lvalue of destination */
1236     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1237         return false;
1238     self->expression.outl = leftl;
1239
1240     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1241         return false;
1242     self->expression.outr = bin;
1243
1244     /* Theoretically, an assinment returns its left side as an
1245      * lvalue, if we don't need an lvalue though, we return
1246      * the right side as an rvalue, otherwise we have to
1247      * somehow know whether or not we need to dereference the pointer
1248      * on the left side - that is: OP_LOAD if it was an address.
1249      * Also: in original QC we cannot OP_LOADP *anyway*.
1250      */
1251     *out = (lvalue ? leftl : bin);
1252
1253     return true;
1254 }
1255
1256 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1257 {
1258     ast_expression_codegen *cgen;
1259     ir_value *operand;
1260
1261     /* An unary operation cannot yield an l-value */
1262     if (lvalue) {
1263         asterror(ast_ctx(self), "not an l-value (binop)");
1264         return false;
1265     }
1266
1267     if (self->expression.outr) {
1268         *out = self->expression.outr;
1269         return true;
1270     }
1271
1272     cgen = self->operand->expression.codegen;
1273     /* lvalue! */
1274     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1275         return false;
1276
1277     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1278                                  self->op, operand);
1279     if (!*out)
1280         return false;
1281     self->expression.outr = *out;
1282
1283     return true;
1284 }
1285
1286 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1287 {
1288     ast_expression_codegen *cgen;
1289     ir_value *operand;
1290
1291     /* In the context of a return operation, we don't actually return
1292      * anything...
1293      */
1294     if (lvalue) {
1295         asterror(ast_ctx(self), "return-expression is not an l-value");
1296         return false;
1297     }
1298
1299     if (self->expression.outr) {
1300         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1301         return false;
1302     }
1303     self->expression.outr = (ir_value*)1;
1304
1305     if (self->operand) {
1306         cgen = self->operand->expression.codegen;
1307         /* lvalue! */
1308         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1309             return false;
1310
1311         if (!ir_block_create_return(func->curblock, operand))
1312             return false;
1313     } else {
1314         if (!ir_block_create_return(func->curblock, NULL))
1315             return false;
1316     }
1317
1318     return true;
1319 }
1320
1321 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1322 {
1323     ast_expression_codegen *cgen;
1324     ir_value *ent, *field;
1325
1326     /* This function needs to take the 'lvalue' flag into account!
1327      * As lvalue we provide a field-pointer, as rvalue we provide the
1328      * value in a temp.
1329      */
1330
1331     if (lvalue && self->expression.outl) {
1332         *out = self->expression.outl;
1333         return true;
1334     }
1335
1336     if (!lvalue && self->expression.outr) {
1337         *out = self->expression.outr;
1338         return true;
1339     }
1340
1341     cgen = self->entity->expression.codegen;
1342     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1343         return false;
1344
1345     cgen = self->field->expression.codegen;
1346     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1347         return false;
1348
1349     if (lvalue) {
1350         /* address! */
1351         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1352                                             ent, field);
1353     } else {
1354         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1355                                              ent, field, self->expression.vtype);
1356     }
1357     if (!*out) {
1358         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1359                  (lvalue ? "ADDRESS" : "FIELD"),
1360                  type_name[self->expression.vtype]);
1361         return false;
1362     }
1363
1364     if (lvalue)
1365         self->expression.outl = *out;
1366     else
1367         self->expression.outr = *out;
1368
1369     /* Hm that should be it... */
1370     return true;
1371 }
1372
1373 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1374 {
1375     ast_expression_codegen *cgen;
1376     ir_value *vec;
1377
1378     /* in QC this is always an lvalue */
1379     (void)lvalue;
1380     if (self->expression.outl) {
1381         *out = self->expression.outl;
1382         return true;
1383     }
1384
1385     cgen = self->owner->expression.codegen;
1386     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1387         return false;
1388
1389     if (vec->vtype != TYPE_VECTOR &&
1390         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1391     {
1392         return false;
1393     }
1394
1395     *out = ir_value_vector_member(vec, self->field);
1396     self->expression.outl = *out;
1397
1398     return (*out != NULL);
1399 }
1400
1401 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1402 {
1403     ast_expression_codegen *cgen;
1404
1405     ir_value *condval;
1406     ir_value *dummy;
1407
1408     ir_block *cond = func->curblock;
1409     ir_block *ontrue;
1410     ir_block *onfalse;
1411     ir_block *ontrue_endblock;
1412     ir_block *onfalse_endblock;
1413     ir_block *merge;
1414
1415     /* We don't output any value, thus also don't care about r/lvalue */
1416     (void)out;
1417     (void)lvalue;
1418
1419     if (self->expression.outr) {
1420         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1421         return false;
1422     }
1423     self->expression.outr = (ir_value*)1;
1424
1425     /* generate the condition */
1426     func->curblock = cond;
1427     cgen = self->cond->expression.codegen;
1428     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1429         return false;
1430
1431     /* on-true path */
1432
1433     if (self->on_true) {
1434         /* create on-true block */
1435         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1436         if (!ontrue)
1437             return false;
1438
1439         /* enter the block */
1440         func->curblock = ontrue;
1441
1442         /* generate */
1443         cgen = self->on_true->expression.codegen;
1444         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1445             return false;
1446
1447         /* we now need to work from the current endpoint */
1448         ontrue_endblock = func->curblock;
1449     } else
1450         ontrue = NULL;
1451
1452     /* on-false path */
1453     if (self->on_false) {
1454         /* create on-false block */
1455         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1456         if (!onfalse)
1457             return false;
1458
1459         /* enter the block */
1460         func->curblock = onfalse;
1461
1462         /* generate */
1463         cgen = self->on_false->expression.codegen;
1464         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1465             return false;
1466
1467         /* we now need to work from the current endpoint */
1468         onfalse_endblock = func->curblock;
1469     } else
1470         onfalse = NULL;
1471
1472     /* Merge block were they all merge in to */
1473     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1474     if (!merge)
1475         return false;
1476
1477     /* add jumps ot the merge block */
1478     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1479         return false;
1480     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1481         return false;
1482
1483     /* we create the if here, that way all blocks are ordered :)
1484      */
1485     if (!ir_block_create_if(cond, condval,
1486                             (ontrue  ? ontrue  : merge),
1487                             (onfalse ? onfalse : merge)))
1488     {
1489         return false;
1490     }
1491
1492     /* Now enter the merge block */
1493     func->curblock = merge;
1494
1495     return true;
1496 }
1497
1498 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1499 {
1500     ast_expression_codegen *cgen;
1501
1502     ir_value *condval;
1503     ir_value *trueval, *falseval;
1504     ir_instr *phi;
1505
1506     ir_block *cond = func->curblock;
1507     ir_block *ontrue;
1508     ir_block *onfalse;
1509     ir_block *merge;
1510
1511     /* Ternary can never create an lvalue... */
1512     if (lvalue)
1513         return false;
1514
1515     /* In theory it shouldn't be possible to pass through a node twice, but
1516      * in case we add any kind of optimization pass for the AST itself, it
1517      * may still happen, thus we remember a created ir_value and simply return one
1518      * if it already exists.
1519      */
1520     if (self->phi_out) {
1521         *out = self->phi_out;
1522         return true;
1523     }
1524
1525     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1526
1527     /* generate the condition */
1528     func->curblock = cond;
1529     cgen = self->cond->expression.codegen;
1530     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1531         return false;
1532
1533     /* create on-true block */
1534     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1535     if (!ontrue)
1536         return false;
1537     else
1538     {
1539         /* enter the block */
1540         func->curblock = ontrue;
1541
1542         /* generate */
1543         cgen = self->on_true->expression.codegen;
1544         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1545             return false;
1546     }
1547
1548     /* create on-false block */
1549     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1550     if (!onfalse)
1551         return false;
1552     else
1553     {
1554         /* enter the block */
1555         func->curblock = onfalse;
1556
1557         /* generate */
1558         cgen = self->on_false->expression.codegen;
1559         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1560             return false;
1561     }
1562
1563     /* create merge block */
1564     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1565     if (!merge)
1566         return false;
1567     /* jump to merge block */
1568     if (!ir_block_create_jump(ontrue, merge))
1569         return false;
1570     if (!ir_block_create_jump(onfalse, merge))
1571         return false;
1572
1573     /* create if instruction */
1574     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1575         return false;
1576
1577     /* Now enter the merge block */
1578     func->curblock = merge;
1579
1580     /* Here, now, we need a PHI node
1581      * but first some sanity checking...
1582      */
1583     if (trueval->vtype != falseval->vtype) {
1584         /* error("ternary with different types on the two sides"); */
1585         return false;
1586     }
1587
1588     /* create PHI */
1589     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1590     if (!phi ||
1591         !ir_phi_add(phi, ontrue,  trueval) ||
1592         !ir_phi_add(phi, onfalse, falseval))
1593     {
1594         return false;
1595     }
1596
1597     self->phi_out = ir_phi_value(phi);
1598     *out = self->phi_out;
1599
1600     return true;
1601 }
1602
1603 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1604 {
1605     ast_expression_codegen *cgen;
1606
1607     ir_value *dummy      = NULL;
1608     ir_value *precond    = NULL;
1609     ir_value *postcond   = NULL;
1610
1611     /* Since we insert some jumps "late" so we have blocks
1612      * ordered "nicely", we need to keep track of the actual end-blocks
1613      * of expressions to add the jumps to.
1614      */
1615     ir_block *bbody      = NULL, *end_bbody      = NULL;
1616     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1617     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1618     ir_block *bincrement = NULL, *end_bincrement = NULL;
1619     ir_block *bout       = NULL, *bin            = NULL;
1620
1621     /* let's at least move the outgoing block to the end */
1622     size_t    bout_id;
1623
1624     /* 'break' and 'continue' need to be able to find the right blocks */
1625     ir_block *bcontinue     = NULL;
1626     ir_block *bbreak        = NULL;
1627
1628     ir_block *old_bcontinue = NULL;
1629     ir_block *old_bbreak    = NULL;
1630
1631     ir_block *tmpblock      = NULL;
1632
1633     (void)lvalue;
1634     (void)out;
1635
1636     if (self->expression.outr) {
1637         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1638         return false;
1639     }
1640     self->expression.outr = (ir_value*)1;
1641
1642     /* NOTE:
1643      * Should we ever need some kind of block ordering, better make this function
1644      * move blocks around than write a block ordering algorithm later... after all
1645      * the ast and ir should work together, not against each other.
1646      */
1647
1648     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1649      * anyway if for example it contains a ternary.
1650      */
1651     if (self->initexpr)
1652     {
1653         cgen = self->initexpr->expression.codegen;
1654         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1655             return false;
1656     }
1657
1658     /* Store the block from which we enter this chaos */
1659     bin = func->curblock;
1660
1661     /* The pre-loop condition needs its own block since we
1662      * need to be able to jump to the start of that expression.
1663      */
1664     if (self->precond)
1665     {
1666         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1667         if (!bprecond)
1668             return false;
1669
1670         /* the pre-loop-condition the least important place to 'continue' at */
1671         bcontinue = bprecond;
1672
1673         /* enter */
1674         func->curblock = bprecond;
1675
1676         /* generate */
1677         cgen = self->precond->expression.codegen;
1678         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1679             return false;
1680
1681         end_bprecond = func->curblock;
1682     } else {
1683         bprecond = end_bprecond = NULL;
1684     }
1685
1686     /* Now the next blocks won't be ordered nicely, but we need to
1687      * generate them this early for 'break' and 'continue'.
1688      */
1689     if (self->increment) {
1690         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1691         if (!bincrement)
1692             return false;
1693         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1694     } else {
1695         bincrement = end_bincrement = NULL;
1696     }
1697
1698     if (self->postcond) {
1699         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1700         if (!bpostcond)
1701             return false;
1702         bcontinue = bpostcond; /* postcond comes before the increment */
1703     } else {
1704         bpostcond = end_bpostcond = NULL;
1705     }
1706
1707     bout_id = func->ir_func->blocks_count;
1708     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1709     if (!bout)
1710         return false;
1711     bbreak = bout;
1712
1713     /* The loop body... */
1714     if (self->body)
1715     {
1716         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1717         if (!bbody)
1718             return false;
1719
1720         /* enter */
1721         func->curblock = bbody;
1722
1723         old_bbreak          = func->breakblock;
1724         old_bcontinue       = func->continueblock;
1725         func->breakblock    = bbreak;
1726         func->continueblock = bcontinue;
1727
1728         /* generate */
1729         cgen = self->body->expression.codegen;
1730         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1731             return false;
1732
1733         end_bbody = func->curblock;
1734         func->breakblock    = old_bbreak;
1735         func->continueblock = old_bcontinue;
1736     }
1737
1738     /* post-loop-condition */
1739     if (self->postcond)
1740     {
1741         /* enter */
1742         func->curblock = bpostcond;
1743
1744         /* generate */
1745         cgen = self->postcond->expression.codegen;
1746         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1747             return false;
1748
1749         end_bpostcond = func->curblock;
1750     }
1751
1752     /* The incrementor */
1753     if (self->increment)
1754     {
1755         /* enter */
1756         func->curblock = bincrement;
1757
1758         /* generate */
1759         cgen = self->increment->expression.codegen;
1760         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1761             return false;
1762
1763         end_bincrement = func->curblock;
1764     }
1765
1766     /* In any case now, we continue from the outgoing block */
1767     func->curblock = bout;
1768
1769     /* Now all blocks are in place */
1770     /* From 'bin' we jump to whatever comes first */
1771     if      (bprecond)   tmpblock = bprecond;
1772     else if (bbody)      tmpblock = bbody;
1773     else if (bpostcond)  tmpblock = bpostcond;
1774     else                 tmpblock = bout;
1775     if (!ir_block_create_jump(bin, tmpblock))
1776         return false;
1777
1778     /* From precond */
1779     if (bprecond)
1780     {
1781         ir_block *ontrue, *onfalse;
1782         if      (bbody)      ontrue = bbody;
1783         else if (bincrement) ontrue = bincrement;
1784         else if (bpostcond)  ontrue = bpostcond;
1785         else                 ontrue = bprecond;
1786         onfalse = bout;
1787         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1788             return false;
1789     }
1790
1791     /* from body */
1792     if (bbody)
1793     {
1794         if      (bincrement) tmpblock = bincrement;
1795         else if (bpostcond)  tmpblock = bpostcond;
1796         else if (bprecond)   tmpblock = bprecond;
1797         else                 tmpblock = bout;
1798         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
1799             return false;
1800     }
1801
1802     /* from increment */
1803     if (bincrement)
1804     {
1805         if      (bpostcond)  tmpblock = bpostcond;
1806         else if (bprecond)   tmpblock = bprecond;
1807         else if (bbody)      tmpblock = bbody;
1808         else                 tmpblock = bout;
1809         if (!ir_block_create_jump(end_bincrement, tmpblock))
1810             return false;
1811     }
1812
1813     /* from postcond */
1814     if (bpostcond)
1815     {
1816         ir_block *ontrue, *onfalse;
1817         if      (bprecond)   ontrue = bprecond;
1818         else if (bbody)      ontrue = bbody;
1819         else if (bincrement) ontrue = bincrement;
1820         else                 ontrue = bpostcond;
1821         onfalse = bout;
1822         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1823             return false;
1824     }
1825
1826     /* Move 'bout' to the end */
1827     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1828         !ir_function_blocks_add(func->ir_func, bout))
1829     {
1830         ir_block_delete(bout);
1831         return false;
1832     }
1833
1834     return true;
1835 }
1836
1837 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1838 {
1839     ast_expression_codegen *cgen;
1840     ir_value_vector         params;
1841     ir_instr               *callinstr;
1842     size_t i;
1843
1844     ir_value *funval = NULL;
1845
1846     /* return values are never lvalues */
1847     if (lvalue) {
1848         asterror(ast_ctx(self), "not an l-value (function call)");
1849         return false;
1850     }
1851
1852     if (self->expression.outr) {
1853         *out = self->expression.outr;
1854         return true;
1855     }
1856
1857     cgen = self->func->expression.codegen;
1858     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1859         return false;
1860     if (!funval)
1861         return false;
1862
1863     MEM_VECTOR_INIT(&params, v);
1864
1865     /* parameters */
1866     for (i = 0; i < self->params_count; ++i)
1867     {
1868         ir_value *param;
1869         ast_expression *expr = self->params[i];
1870
1871         cgen = expr->expression.codegen;
1872         if (!(*cgen)(expr, func, false, &param))
1873             goto error;
1874         if (!param)
1875             goto error;
1876         if (!ir_value_vector_v_add(&params, param))
1877             goto error;
1878     }
1879
1880     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1881     if (!callinstr)
1882         goto error;
1883
1884     for (i = 0; i < params.v_count; ++i) {
1885         if (!ir_call_param(callinstr, params.v[i]))
1886             goto error;
1887     }
1888
1889     *out = ir_call_value(callinstr);
1890     self->expression.outr = *out;
1891
1892     MEM_VECTOR_CLEAR(&params, v);
1893     return true;
1894 error:
1895     MEM_VECTOR_CLEAR(&params, v);
1896     return false;
1897 }