]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
tempcomitting parser changes for fields
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51     self->node.nodetype = nodetype;
52 }
53
54 /* General expression initialization */
55 static void ast_expression_init(ast_expression *self,
56                                 ast_expression_codegen *codegen)
57 {
58     self->expression.codegen = codegen;
59     self->expression.vtype   = TYPE_VOID;
60     self->expression.next    = NULL;
61     MEM_VECTOR_INIT(&self->expression, params);
62 }
63
64 static void ast_expression_delete(ast_expression *self)
65 {
66     size_t i;
67     if (self->expression.next)
68         ast_delete(self->expression.next);
69     for (i = 0; i < self->expression.params_count; ++i) {
70         ast_delete(self->expression.params[i]);
71     }
72     MEM_VECTOR_CLEAR(&self->expression, params);
73 }
74
75 static void ast_expression_delete_full(ast_expression *self)
76 {
77     ast_expression_delete(self);
78     mem_d(self);
79 }
80
81 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
82
83 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
84 static ast_value* ast_value_copy(const ast_value *self)
85 {
86     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
87     if (self->expression.next) {
88         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
89         if (!cp->expression.next) {
90             ast_value_delete(cp);
91             return NULL;
92         }
93     }
94     return cp;
95 }
96
97 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
98 {
99     size_t i;
100     const ast_expression_common *fromex;
101     ast_expression_common *selfex;
102
103     if (!ex)
104         return NULL;
105     else
106     {
107         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
108
109         fromex   = &ex->expression;
110         selfex = &self->expression;
111
112         /* This may never be codegen()d */
113         selfex->codegen = NULL;
114
115         selfex->vtype = fromex->vtype;
116         if (fromex->next)
117         {
118             selfex->next = ast_type_copy(ctx, fromex->next);
119             if (!selfex->next) {
120                 ast_expression_delete_full(self);
121                 return NULL;
122             }
123         }
124         else
125             selfex->next = NULL;
126
127         for (i = 0; i < fromex->params_count; ++i) {
128             ast_value *v = ast_value_copy(fromex->params[i]);
129             if (!v || !ast_expression_common_params_add(selfex, v)) {
130                 ast_expression_delete_full(self);
131                 return NULL;
132             }
133         }
134
135         return self;
136     }
137 }
138
139 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
140 {
141     ast_instantiate(ast_value, ctx, ast_value_delete);
142     ast_expression_init((ast_expression*)self,
143                         (ast_expression_codegen*)&ast_value_codegen);
144     self->expression.node.keep = true; /* keep */
145
146     self->name = name ? util_strdup(name) : NULL;
147     self->expression.vtype = t;
148     self->expression.next  = NULL;
149     self->isconst = false;
150     memset(&self->constval, 0, sizeof(self->constval));
151
152     self->ir_v    = NULL;
153
154     return self;
155 }
156
157 void ast_value_delete(ast_value* self)
158 {
159     if (self->name)
160         mem_d((void*)self->name);
161     if (self->isconst) {
162         switch (self->expression.vtype)
163         {
164         case TYPE_STRING:
165             mem_d((void*)self->constval.vstring);
166             break;
167         case TYPE_FUNCTION:
168             /* unlink us from the function node */
169             self->constval.vfunc->vtype = NULL;
170             break;
171         /* NOTE: delete function? currently collected in
172          * the parser structure
173          */
174         default:
175             break;
176         }
177     }
178     ast_expression_delete((ast_expression*)self);
179     mem_d(self);
180 }
181
182 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
183 {
184     return ast_expression_common_params_add(&self->expression, p);
185 }
186
187 bool ast_value_set_name(ast_value *self, const char *name)
188 {
189     if (self->name)
190         mem_d((void*)self->name);
191     self->name = util_strdup(name);
192     return !!self->name;
193 }
194
195 ast_binary* ast_binary_new(lex_ctx ctx, int op,
196                            ast_expression* left, ast_expression* right)
197 {
198     ast_instantiate(ast_binary, ctx, ast_binary_delete);
199     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
200
201     self->op = op;
202     self->left = left;
203     self->right = right;
204
205     if (op >= INSTR_EQ_F && op <= INSTR_GT)
206         self->expression.vtype = TYPE_FLOAT;
207     else if (op == INSTR_AND || op == INSTR_OR ||
208              op == INSTR_BITAND || op == INSTR_BITOR)
209         self->expression.vtype = TYPE_FLOAT;
210     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
211         self->expression.vtype = TYPE_VECTOR;
212     else if (op == INSTR_MUL_V)
213         self->expression.vtype = TYPE_FLOAT;
214     else
215         self->expression.vtype = left->expression.vtype;
216
217     return self;
218 }
219
220 void ast_binary_delete(ast_binary *self)
221 {
222     ast_unref(self->left);
223     ast_unref(self->right);
224     ast_expression_delete((ast_expression*)self);
225     mem_d(self);
226 }
227
228 ast_unary* ast_unary_new(lex_ctx ctx, int op,
229                          ast_expression *expr)
230 {
231     ast_instantiate(ast_unary, ctx, ast_unary_delete);
232     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
233
234     self->op = op;
235     self->operand = expr;
236
237     return self;
238 }
239
240 void ast_unary_delete(ast_unary *self)
241 {
242     ast_unref(self->operand);
243     ast_expression_delete((ast_expression*)self);
244     mem_d(self);
245 }
246
247 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
248 {
249     ast_instantiate(ast_return, ctx, ast_return_delete);
250     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
251
252     self->operand = expr;
253
254     return self;
255 }
256
257 void ast_return_delete(ast_return *self)
258 {
259     ast_unref(self->operand);
260     ast_expression_delete((ast_expression*)self);
261     mem_d(self);
262 }
263
264 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
265 {
266     const ast_expression *outtype;
267
268     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
269
270     if (field->expression.vtype != TYPE_FIELD) {
271         mem_d(self);
272         return NULL;
273     }
274
275     outtype = field->expression.next;
276     if (!outtype) {
277         mem_d(self);
278         /* Error: field has no type... */
279         return NULL;
280     }
281
282     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
283
284     self->expression.vtype = outtype->expression.vtype;
285     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
286
287     self->entity = entity;
288     self->field  = field;
289
290     return self;
291 }
292
293 void ast_entfield_delete(ast_entfield *self)
294 {
295     ast_unref(self->entity);
296     ast_unref(self->field);
297     ast_expression_delete((ast_expression*)self);
298     mem_d(self);
299 }
300
301 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
302 {
303     ast_instantiate(ast_member, ctx, ast_member_delete);
304     if (field >= 3) {
305         mem_d(self);
306         return NULL;
307     }
308
309     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
310
311     self->expression.vtype = TYPE_FLOAT;
312     self->expression.next  = NULL;
313
314     self->owner = owner;
315     self->field = field;
316
317     return self;
318 }
319
320 void ast_member_delete(ast_member *self)
321 {
322     ast_unref(self->owner);
323     ast_expression_delete((ast_expression*)self);
324     mem_d(self);
325 }
326
327 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
328 {
329     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
330     if (!ontrue && !onfalse) {
331         /* because it is invalid */
332         mem_d(self);
333         return NULL;
334     }
335     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
336
337     self->cond     = cond;
338     self->on_true  = ontrue;
339     self->on_false = onfalse;
340
341     return self;
342 }
343
344 void ast_ifthen_delete(ast_ifthen *self)
345 {
346     ast_unref(self->cond);
347     if (self->on_true)
348         ast_unref(self->on_true);
349     if (self->on_false)
350         ast_unref(self->on_false);
351     ast_expression_delete((ast_expression*)self);
352     mem_d(self);
353 }
354
355 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
356 {
357     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
358     /* This time NEITHER must be NULL */
359     if (!ontrue || !onfalse) {
360         mem_d(self);
361         return NULL;
362     }
363     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
364
365     self->cond     = cond;
366     self->on_true  = ontrue;
367     self->on_false = onfalse;
368     self->phi_out  = NULL;
369
370     return self;
371 }
372
373 void ast_ternary_delete(ast_ternary *self)
374 {
375     ast_unref(self->cond);
376     ast_unref(self->on_true);
377     ast_unref(self->on_false);
378     ast_expression_delete((ast_expression*)self);
379     mem_d(self);
380 }
381
382 ast_loop* ast_loop_new(lex_ctx ctx,
383                        ast_expression *initexpr,
384                        ast_expression *precond,
385                        ast_expression *postcond,
386                        ast_expression *increment,
387                        ast_expression *body)
388 {
389     ast_instantiate(ast_loop, ctx, ast_loop_delete);
390     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
391
392     self->initexpr  = initexpr;
393     self->precond   = precond;
394     self->postcond  = postcond;
395     self->increment = increment;
396     self->body      = body;
397
398     return self;
399 }
400
401 void ast_loop_delete(ast_loop *self)
402 {
403     if (self->initexpr)
404         ast_unref(self->initexpr);
405     if (self->precond)
406         ast_unref(self->precond);
407     if (self->postcond)
408         ast_unref(self->postcond);
409     if (self->increment)
410         ast_unref(self->increment);
411     if (self->body)
412         ast_unref(self->body);
413     ast_expression_delete((ast_expression*)self);
414     mem_d(self);
415 }
416
417 ast_call* ast_call_new(lex_ctx ctx,
418                        ast_expression *funcexpr)
419 {
420     ast_instantiate(ast_call, ctx, ast_call_delete);
421     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
422
423     MEM_VECTOR_INIT(self, params);
424
425     self->func = funcexpr;
426
427     return self;
428 }
429 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
430
431 void ast_call_delete(ast_call *self)
432 {
433     size_t i;
434     for (i = 0; i < self->params_count; ++i)
435         ast_unref(self->params[i]);
436     MEM_VECTOR_CLEAR(self, params);
437
438     if (self->func)
439         ast_unref(self->func);
440
441     ast_expression_delete((ast_expression*)self);
442     mem_d(self);
443 }
444
445 ast_store* ast_store_new(lex_ctx ctx, int op,
446                          ast_expression *dest, ast_expression *source)
447 {
448     ast_instantiate(ast_store, ctx, ast_store_delete);
449     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
450
451     self->op = op;
452     self->dest = dest;
453     self->source = source;
454
455     return self;
456 }
457
458 void ast_store_delete(ast_store *self)
459 {
460     ast_unref(self->dest);
461     ast_unref(self->source);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_block* ast_block_new(lex_ctx ctx)
467 {
468     ast_instantiate(ast_block, ctx, ast_block_delete);
469     ast_expression_init((ast_expression*)self,
470                         (ast_expression_codegen*)&ast_block_codegen);
471
472     MEM_VECTOR_INIT(self, locals);
473     MEM_VECTOR_INIT(self, exprs);
474
475     return self;
476 }
477 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
478 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
479
480 void ast_block_delete(ast_block *self)
481 {
482     size_t i;
483     for (i = 0; i < self->exprs_count; ++i)
484         ast_unref(self->exprs[i]);
485     MEM_VECTOR_CLEAR(self, exprs);
486     for (i = 0; i < self->locals_count; ++i)
487         ast_delete(self->locals[i]);
488     MEM_VECTOR_CLEAR(self, locals);
489     ast_expression_delete((ast_expression*)self);
490     mem_d(self);
491 }
492
493 bool ast_block_set_type(ast_block *self, ast_expression *from)
494 {
495     if (self->expression.next)
496         ast_delete(self->expression.next);
497     self->expression.vtype = from->expression.vtype;
498     if (from->expression.next) {
499         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
500         if (!self->expression.next)
501             return false;
502     }
503     return true;
504 }
505
506 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
507 {
508     ast_instantiate(ast_function, ctx, ast_function_delete);
509
510     if (!vtype ||
511         vtype->isconst ||
512         vtype->expression.vtype != TYPE_FUNCTION)
513     {
514         mem_d(self);
515         return NULL;
516     }
517
518     self->vtype = vtype;
519     self->name = name ? util_strdup(name) : NULL;
520     MEM_VECTOR_INIT(self, blocks);
521
522     self->labelcount = 0;
523     self->builtin = 0;
524
525     self->ir_func = NULL;
526     self->curblock = NULL;
527
528     self->breakblock    = NULL;
529     self->continueblock = NULL;
530
531     vtype->isconst = true;
532     vtype->constval.vfunc = self;
533
534     return self;
535 }
536
537 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
538
539 void ast_function_delete(ast_function *self)
540 {
541     size_t i;
542     if (self->name)
543         mem_d((void*)self->name);
544     if (self->vtype) {
545         /* ast_value_delete(self->vtype); */
546         self->vtype->isconst = false;
547         self->vtype->constval.vfunc = NULL;
548         /* We use unref - if it was stored in a global table it is supposed
549          * to be deleted from *there*
550          */
551         ast_unref(self->vtype);
552     }
553     for (i = 0; i < self->blocks_count; ++i)
554         ast_delete(self->blocks[i]);
555     MEM_VECTOR_CLEAR(self, blocks);
556     mem_d(self);
557 }
558
559 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
560 {
561     unsigned int base = 10;
562 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
563 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
564     if (size < 1)
565         return;
566     checknul();
567     if (!num)
568         addch('0');
569     else {
570         while (num)
571         {
572             int digit = num % base;
573             num /= base;
574             addch('0' + digit);
575         }
576     }
577
578     *buf = 0;
579 #undef addch
580 #undef checknul
581 }
582
583 const char* ast_function_label(ast_function *self, const char *prefix)
584 {
585     size_t id = (self->labelcount++);
586     size_t len = strlen(prefix);
587     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
588     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
589     return self->labelbuf;
590 }
591
592 /*********************************************************************/
593 /* AST codegen part
594  * by convention you must never pass NULL to the 'ir_value **out'
595  * parameter. If you really don't care about the output, pass a dummy.
596  * But I can't imagine a pituation where the output is truly unnecessary.
597  */
598
599 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
600 {
601     /* NOTE: This is the codegen for a variable used in an expression.
602      * It is not the codegen to generate the value. For this purpose,
603      * ast_local_codegen and ast_global_codegen are to be used before this
604      * is executed. ast_function_codegen should take care of its locals,
605      * and the ast-user should take care of ast_global_codegen to be used
606      * on all the globals.
607      */
608     if (!self->ir_v) {
609         printf("ast_value used before generated (%s)\n", self->name);
610         return false;
611     }
612     *out = self->ir_v;
613     return true;
614 }
615
616 bool ast_global_codegen(ast_value *self, ir_builder *ir)
617 {
618     ir_value *v = NULL;
619     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
620     {
621         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
622         if (!func)
623             return false;
624
625         self->constval.vfunc->ir_func = func;
626         self->ir_v = func->value;
627         /* The function is filled later on ast_function_codegen... */
628         return true;
629     }
630
631     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
632     if (!v) {
633         printf("ir_builder_create_global failed\n");
634         return false;
635     }
636
637     if (self->isconst) {
638         switch (self->expression.vtype)
639         {
640             case TYPE_FLOAT:
641                 if (!ir_value_set_float(v, self->constval.vfloat))
642                     goto error;
643                 break;
644             case TYPE_VECTOR:
645                 if (!ir_value_set_vector(v, self->constval.vvec))
646                     goto error;
647                 break;
648             case TYPE_STRING:
649                 if (!ir_value_set_string(v, self->constval.vstring))
650                     goto error;
651                 break;
652             case TYPE_FUNCTION:
653                 printf("global of type function not properly generated\n");
654                 goto error;
655                 /* Cannot generate an IR value for a function,
656                  * need a pointer pointing to a function rather.
657                  */
658             default:
659                 printf("TODO: global constant type %i\n", self->expression.vtype);
660                 break;
661         }
662     }
663
664     /* link us to the ir_value */
665     self->ir_v = v;
666     return true;
667
668 error: /* clean up */
669     ir_value_delete(v);
670     return false;
671 }
672
673 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
674 {
675     ir_value *v = NULL;
676     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
677     {
678         /* Do we allow local functions? I think not...
679          * this is NOT a function pointer atm.
680          */
681         return false;
682     }
683
684     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
685     if (!v)
686         return false;
687
688     /* A constant local... hmmm...
689      * I suppose the IR will have to deal with this
690      */
691     if (self->isconst) {
692         switch (self->expression.vtype)
693         {
694             case TYPE_FLOAT:
695                 if (!ir_value_set_float(v, self->constval.vfloat))
696                     goto error;
697                 break;
698             case TYPE_VECTOR:
699                 if (!ir_value_set_vector(v, self->constval.vvec))
700                     goto error;
701                 break;
702             case TYPE_STRING:
703                 if (!ir_value_set_string(v, self->constval.vstring))
704                     goto error;
705                 break;
706             default:
707                 printf("TODO: global constant type %i\n", self->expression.vtype);
708                 break;
709         }
710     }
711
712     /* link us to the ir_value */
713     self->ir_v = v;
714     return true;
715
716 error: /* clean up */
717     ir_value_delete(v);
718     return false;
719 }
720
721 bool ast_function_codegen(ast_function *self, ir_builder *ir)
722 {
723     ir_function *irf;
724     ir_value    *dummy;
725     ast_expression_common *ec;
726     size_t    i;
727
728     irf = self->ir_func;
729     if (!irf) {
730         printf("ast_function's related ast_value was not generated yet\n");
731         return false;
732     }
733
734     /* fill the parameter list */
735     ec = &self->vtype->expression;
736     for (i = 0; i < ec->params_count; ++i)
737     {
738         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
739             return false;
740         if (!self->builtin) {
741             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
742                 return false;
743         }
744     }
745
746     if (self->builtin) {
747         irf->builtin = self->builtin;
748         return true;
749     }
750
751     self->curblock = ir_function_create_block(irf, "entry");
752     if (!self->curblock)
753         return false;
754
755     for (i = 0; i < self->blocks_count; ++i) {
756         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
757         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
758             return false;
759     }
760
761     /* TODO: check return types */
762     if (!self->curblock->is_return)
763     {
764         if (!self->vtype->expression.next ||
765             self->vtype->expression.next->expression.vtype == TYPE_VOID)
766         {
767             return ir_block_create_return(self->curblock, NULL);
768         }
769         else
770         {
771             /* error("missing return"); */
772             return false;
773         }
774     }
775     return true;
776 }
777
778 /* Note, you will not see ast_block_codegen generate ir_blocks.
779  * To the AST and the IR, blocks are 2 different things.
780  * In the AST it represents a block of code, usually enclosed in
781  * curly braces {...}.
782  * While in the IR it represents a block in terms of control-flow.
783  */
784 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
785 {
786     size_t i;
787
788     /* We don't use this
789      * Note: an ast-representation using the comma-operator
790      * of the form: (a, b, c) = x should not assign to c...
791      */
792     (void)lvalue;
793
794     /* output is NULL at first, we'll have each expression
795      * assign to out output, thus, a comma-operator represention
796      * using an ast_block will return the last generated value,
797      * so: (b, c) + a  executed both b and c, and returns c,
798      * which is then added to a.
799      */
800     *out = NULL;
801
802     /* generate locals */
803     for (i = 0; i < self->locals_count; ++i)
804     {
805         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
806             return false;
807     }
808
809     for (i = 0; i < self->exprs_count; ++i)
810     {
811         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
812         if (!(*gen)(self->exprs[i], func, false, out))
813             return false;
814     }
815
816     return true;
817 }
818
819 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
820 {
821     ast_expression_codegen *cgen;
822     ir_value *left, *right;
823
824     cgen = self->dest->expression.codegen;
825     /* lvalue! */
826     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
827         return false;
828
829     cgen = self->source->expression.codegen;
830     /* rvalue! */
831     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
832         return false;
833
834     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
835         return false;
836
837     /* Theoretically, an assinment returns its left side as an
838      * lvalue, if we don't need an lvalue though, we return
839      * the right side as an rvalue, otherwise we have to
840      * somehow know whether or not we need to dereference the pointer
841      * on the left side - that is: OP_LOAD if it was an address.
842      * Also: in original QC we cannot OP_LOADP *anyway*.
843      */
844     *out = (lvalue ? left : right);
845
846     return true;
847 }
848
849 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
850 {
851     ast_expression_codegen *cgen;
852     ir_value *left, *right;
853
854     /* In the context of a binary operation, we can disregard
855      * the lvalue flag.
856      */
857      (void)lvalue;
858
859     cgen = self->left->expression.codegen;
860     /* lvalue! */
861     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
862         return false;
863
864     cgen = self->right->expression.codegen;
865     /* rvalue! */
866     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
867         return false;
868
869     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
870                                  self->op, left, right);
871     if (!*out)
872         return false;
873
874     return true;
875 }
876
877 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
878 {
879     ast_expression_codegen *cgen;
880     ir_value *operand;
881
882     /* In the context of a unary operation, we can disregard
883      * the lvalue flag.
884      */
885     (void)lvalue;
886
887     cgen = self->operand->expression.codegen;
888     /* lvalue! */
889     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
890         return false;
891
892     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
893                                  self->op, operand);
894     if (!*out)
895         return false;
896
897     return true;
898 }
899
900 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
901 {
902     ast_expression_codegen *cgen;
903     ir_value *operand;
904
905     /* In the context of a return operation, we can disregard
906      * the lvalue flag.
907      */
908     (void)lvalue;
909
910     cgen = self->operand->expression.codegen;
911     /* lvalue! */
912     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
913         return false;
914
915     if (!ir_block_create_return(func->curblock, operand))
916         return false;
917
918     return true;
919 }
920
921 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
922 {
923     ast_expression_codegen *cgen;
924     ir_value *ent, *field;
925
926     /* This function needs to take the 'lvalue' flag into account!
927      * As lvalue we provide a field-pointer, as rvalue we provide the
928      * value in a temp.
929      */
930
931     cgen = self->entity->expression.codegen;
932     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
933         return false;
934
935     cgen = self->field->expression.codegen;
936     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
937         return false;
938
939     if (lvalue) {
940         /* address! */
941         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
942                                             ent, field);
943     } else {
944         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
945                                              ent, field, self->expression.vtype);
946     }
947     if (!*out)
948         return false;
949
950     /* Hm that should be it... */
951     return true;
952 }
953
954 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
955 {
956     ast_expression_codegen *cgen;
957     ir_value *vec, *field;
958
959     cgen = self->owner->expression.codegen;
960     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
961         return false;
962
963     if (vec->vtype != TYPE_VECTOR)
964         return false;
965
966     *out = ir_value_vector_member(vec, self->field);
967
968     return (*out != NULL);
969 }
970
971 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
972 {
973     ast_expression_codegen *cgen;
974
975     ir_value *condval;
976     ir_value *dummy;
977
978     ir_block *cond = func->curblock;
979     ir_block *ontrue;
980     ir_block *onfalse;
981     ir_block *merge;
982
983     /* We don't output any value, thus also don't care about r/lvalue */
984     (void)out;
985     (void)lvalue;
986
987     /* generate the condition */
988     func->curblock = cond;
989     cgen = self->cond->expression.codegen;
990     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
991         return false;
992
993     /* on-true path */
994
995     if (self->on_true) {
996         /* create on-true block */
997         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
998         if (!ontrue)
999             return false;
1000
1001         /* enter the block */
1002         func->curblock = ontrue;
1003
1004         /* generate */
1005         cgen = self->on_true->expression.codegen;
1006         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1007             return false;
1008     } else
1009         ontrue = NULL;
1010
1011     /* on-false path */
1012     if (self->on_false) {
1013         /* create on-false block */
1014         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1015         if (!onfalse)
1016             return false;
1017
1018         /* enter the block */
1019         func->curblock = onfalse;
1020
1021         /* generate */
1022         cgen = self->on_false->expression.codegen;
1023         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1024             return false;
1025     } else
1026         onfalse = NULL;
1027
1028     /* Merge block were they all merge in to */
1029     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1030     if (!merge)
1031         return false;
1032
1033     /* add jumps ot the merge block */
1034     if (ontrue && !ir_block_create_jump(ontrue, merge))
1035         return false;
1036     if (onfalse && !ir_block_create_jump(onfalse, merge))
1037         return false;
1038
1039     /* we create the if here, that way all blocks are ordered :)
1040      */
1041     if (!ir_block_create_if(cond, condval,
1042                             (ontrue  ? ontrue  : merge),
1043                             (onfalse ? onfalse : merge)))
1044     {
1045         return false;
1046     }
1047
1048     /* Now enter the merge block */
1049     func->curblock = merge;
1050
1051     return true;
1052 }
1053
1054 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1055 {
1056     ast_expression_codegen *cgen;
1057
1058     ir_value *condval;
1059     ir_value *trueval, *falseval;
1060     ir_instr *phi;
1061
1062     ir_block *cond = func->curblock;
1063     ir_block *ontrue;
1064     ir_block *onfalse;
1065     ir_block *merge;
1066
1067     /* In theory it shouldn't be possible to pass through a node twice, but
1068      * in case we add any kind of optimization pass for the AST itself, it
1069      * may still happen, thus we remember a created ir_value and simply return one
1070      * if it already exists.
1071      */
1072     if (self->phi_out) {
1073         *out = self->phi_out;
1074         return true;
1075     }
1076
1077     /* Ternary can never create an lvalue... */
1078     if (lvalue)
1079         return false;
1080
1081     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1082
1083     /* generate the condition */
1084     func->curblock = cond;
1085     cgen = self->cond->expression.codegen;
1086     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1087         return false;
1088
1089     /* create on-true block */
1090     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1091     if (!ontrue)
1092         return false;
1093     else
1094     {
1095         /* enter the block */
1096         func->curblock = ontrue;
1097
1098         /* generate */
1099         cgen = self->on_true->expression.codegen;
1100         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1101             return false;
1102     }
1103
1104     /* create on-false block */
1105     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1106     if (!onfalse)
1107         return false;
1108     else
1109     {
1110         /* enter the block */
1111         func->curblock = onfalse;
1112
1113         /* generate */
1114         cgen = self->on_false->expression.codegen;
1115         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1116             return false;
1117     }
1118
1119     /* create merge block */
1120     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1121     if (!merge)
1122         return false;
1123     /* jump to merge block */
1124     if (!ir_block_create_jump(ontrue, merge))
1125         return false;
1126     if (!ir_block_create_jump(onfalse, merge))
1127         return false;
1128
1129     /* create if instruction */
1130     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1131         return false;
1132
1133     /* Now enter the merge block */
1134     func->curblock = merge;
1135
1136     /* Here, now, we need a PHI node
1137      * but first some sanity checking...
1138      */
1139     if (trueval->vtype != falseval->vtype) {
1140         /* error("ternary with different types on the two sides"); */
1141         return false;
1142     }
1143
1144     /* create PHI */
1145     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1146     if (!phi ||
1147         !ir_phi_add(phi, ontrue,  trueval) ||
1148         !ir_phi_add(phi, onfalse, falseval))
1149     {
1150         return false;
1151     }
1152
1153     self->phi_out = ir_phi_value(phi);
1154     *out = self->phi_out;
1155
1156     return true;
1157 }
1158
1159 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1160 {
1161     ast_expression_codegen *cgen;
1162
1163     ir_value *dummy      = NULL;
1164     ir_value *precond    = NULL;
1165     ir_value *postcond   = NULL;
1166
1167     /* Since we insert some jumps "late" so we have blocks
1168      * ordered "nicely", we need to keep track of the actual end-blocks
1169      * of expressions to add the jumps to.
1170      */
1171     ir_block *bbody      = NULL, *end_bbody      = NULL;
1172     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1173     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1174     ir_block *bincrement = NULL, *end_bincrement = NULL;
1175     ir_block *bout       = NULL, *bin            = NULL;
1176
1177     /* let's at least move the outgoing block to the end */
1178     size_t    bout_id;
1179
1180     /* 'break' and 'continue' need to be able to find the right blocks */
1181     ir_block *bcontinue     = NULL;
1182     ir_block *bbreak        = NULL;
1183
1184     ir_block *old_bcontinue = NULL;
1185     ir_block *old_bbreak    = NULL;
1186
1187     ir_block *tmpblock      = NULL;
1188
1189     (void)lvalue;
1190     (void)out;
1191
1192     /* NOTE:
1193      * Should we ever need some kind of block ordering, better make this function
1194      * move blocks around than write a block ordering algorithm later... after all
1195      * the ast and ir should work together, not against each other.
1196      */
1197
1198     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1199      * anyway if for example it contains a ternary.
1200      */
1201     if (self->initexpr)
1202     {
1203         cgen = self->initexpr->expression.codegen;
1204         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1205             return false;
1206     }
1207
1208     /* Store the block from which we enter this chaos */
1209     bin = func->curblock;
1210
1211     /* The pre-loop condition needs its own block since we
1212      * need to be able to jump to the start of that expression.
1213      */
1214     if (self->precond)
1215     {
1216         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1217         if (!bprecond)
1218             return false;
1219
1220         /* the pre-loop-condition the least important place to 'continue' at */
1221         bcontinue = bprecond;
1222
1223         /* enter */
1224         func->curblock = bprecond;
1225
1226         /* generate */
1227         cgen = self->precond->expression.codegen;
1228         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1229             return false;
1230
1231         end_bprecond = func->curblock;
1232     } else {
1233         bprecond = end_bprecond = NULL;
1234     }
1235
1236     /* Now the next blocks won't be ordered nicely, but we need to
1237      * generate them this early for 'break' and 'continue'.
1238      */
1239     if (self->increment) {
1240         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1241         if (!bincrement)
1242             return false;
1243         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1244     } else {
1245         bincrement = end_bincrement = NULL;
1246     }
1247
1248     if (self->postcond) {
1249         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1250         if (!bpostcond)
1251             return false;
1252         bcontinue = bpostcond; /* postcond comes before the increment */
1253     } else {
1254         bpostcond = end_bpostcond = NULL;
1255     }
1256
1257     bout_id = func->ir_func->blocks_count;
1258     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1259     if (!bout)
1260         return false;
1261     bbreak = bout;
1262
1263     /* The loop body... */
1264     if (self->body)
1265     {
1266         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1267         if (!bbody)
1268             return false;
1269
1270         /* enter */
1271         func->curblock = bbody;
1272
1273         old_bbreak          = func->breakblock;
1274         old_bcontinue       = func->continueblock;
1275         func->breakblock    = bbreak;
1276         func->continueblock = bcontinue;
1277
1278         /* generate */
1279         cgen = self->body->expression.codegen;
1280         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1281             return false;
1282
1283         end_bbody = func->curblock;
1284         func->breakblock    = old_bbreak;
1285         func->continueblock = old_bcontinue;
1286     }
1287
1288     /* post-loop-condition */
1289     if (self->postcond)
1290     {
1291         /* enter */
1292         func->curblock = bpostcond;
1293
1294         /* generate */
1295         cgen = self->postcond->expression.codegen;
1296         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1297             return false;
1298
1299         end_bpostcond = func->curblock;
1300     }
1301
1302     /* The incrementor */
1303     if (self->increment)
1304     {
1305         /* enter */
1306         func->curblock = bincrement;
1307
1308         /* generate */
1309         cgen = self->increment->expression.codegen;
1310         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1311             return false;
1312
1313         end_bincrement = func->curblock;
1314     }
1315
1316     /* In any case now, we continue from the outgoing block */
1317     func->curblock = bout;
1318
1319     /* Now all blocks are in place */
1320     /* From 'bin' we jump to whatever comes first */
1321     if      (bprecond)   tmpblock = bprecond;
1322     else if (bbody)      tmpblock = bbody;
1323     else if (bpostcond)  tmpblock = bpostcond;
1324     else                 tmpblock = bout;
1325     if (!ir_block_create_jump(bin, tmpblock))
1326         return false;
1327
1328     /* From precond */
1329     if (bprecond)
1330     {
1331         ir_block *ontrue, *onfalse;
1332         if      (bbody)      ontrue = bbody;
1333         else if (bincrement) ontrue = bincrement;
1334         else if (bpostcond)  ontrue = bpostcond;
1335         else                 ontrue = bprecond;
1336         onfalse = bout;
1337         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1338             return false;
1339     }
1340
1341     /* from body */
1342     if (bbody)
1343     {
1344         if      (bincrement) tmpblock = bincrement;
1345         else if (bpostcond)  tmpblock = bpostcond;
1346         else if (bprecond)   tmpblock = bprecond;
1347         else                 tmpblock = bout;
1348         if (!ir_block_create_jump(end_bbody, tmpblock))
1349             return false;
1350     }
1351
1352     /* from increment */
1353     if (bincrement)
1354     {
1355         if      (bpostcond)  tmpblock = bpostcond;
1356         else if (bprecond)   tmpblock = bprecond;
1357         else if (bbody)      tmpblock = bbody;
1358         else                 tmpblock = bout;
1359         if (!ir_block_create_jump(end_bincrement, tmpblock))
1360             return false;
1361     }
1362
1363     /* from postcond */
1364     if (bpostcond)
1365     {
1366         ir_block *ontrue, *onfalse;
1367         if      (bprecond)   ontrue = bprecond;
1368         else if (bbody)      ontrue = bbody;
1369         else if (bincrement) ontrue = bincrement;
1370         else                 ontrue = bpostcond;
1371         onfalse = bout;
1372         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1373             return false;
1374     }
1375
1376     /* Move 'bout' to the end */
1377     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1378         !ir_function_blocks_add(func->ir_func, bout))
1379     {
1380         ir_block_delete(bout);
1381         return false;
1382     }
1383
1384     return true;
1385 }
1386
1387 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1388 {
1389     ast_expression_codegen *cgen;
1390     ir_value_vector         params;
1391     ir_instr               *callinstr;
1392     size_t i;
1393
1394     ir_value *funval = NULL;
1395
1396     /* return values are never rvalues */
1397     (void)lvalue;
1398
1399     cgen = self->func->expression.codegen;
1400     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1401         return false;
1402     if (!funval)
1403         return false;
1404
1405     MEM_VECTOR_INIT(&params, v);
1406
1407     /* parameters */
1408     for (i = 0; i < self->params_count; ++i)
1409     {
1410         ir_value *param;
1411         ast_expression *expr = self->params[i];
1412
1413         cgen = expr->expression.codegen;
1414         if (!(*cgen)(expr, func, false, &param))
1415             goto error;
1416         if (!param)
1417             goto error;
1418         if (!ir_value_vector_v_add(&params, param))
1419             goto error;
1420     }
1421
1422     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1423     if (!callinstr)
1424         goto error;
1425
1426     for (i = 0; i < params.v_count; ++i) {
1427         if (!ir_call_param(callinstr, params.v[i]))
1428             goto error;
1429     }
1430
1431     *out = ir_call_value(callinstr);
1432
1433     MEM_VECTOR_CLEAR(&params, v);
1434     return true;
1435 error:
1436     MEM_VECTOR_CLEAR(&params, v);
1437     return false;
1438 }