]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Make functions copy their extparams
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     con_cvprintmsg((void*)&ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     con_err("ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     self->expression.params   = NULL;
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < vec_size(self->expression.params); ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     vec_free(self->expression.params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 ast_value* ast_value_copy(const ast_value *self)
94 {
95     size_t i;
96     const ast_expression_common *fromex;
97     ast_expression_common *selfex;
98     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
99     if (self->expression.next) {
100         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
101         if (!cp->expression.next) {
102             ast_value_delete(cp);
103             return NULL;
104         }
105     }
106     fromex   = &self->expression;
107     selfex = &cp->expression;
108     selfex->variadic = fromex->variadic;
109     for (i = 0; i < vec_size(fromex->params); ++i) {
110         ast_value *v = ast_value_copy(fromex->params[i]);
111         if (!v) {
112             ast_value_delete(cp);
113             return NULL;
114         }
115         vec_push(selfex->params, v);
116     }
117     return cp;
118 }
119
120 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
121 {
122     size_t i;
123     const ast_expression_common *fromex;
124     ast_expression_common *selfex;
125     self->expression.vtype = other->expression.vtype;
126     if (other->expression.next) {
127         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
128         if (!self->expression.next)
129             return false;
130     }
131     fromex   = &other->expression;
132     selfex = &self->expression;
133     selfex->variadic = fromex->variadic;
134     for (i = 0; i < vec_size(fromex->params); ++i) {
135         ast_value *v = ast_value_copy(fromex->params[i]);
136         if (!v)
137             return false;
138         vec_push(selfex->params, v);
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < vec_size(fromex->params); ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191             vec_push(selfex->params, v);
192         }
193
194         return self;
195     }
196 }
197
198 bool ast_compare_type(ast_expression *a, ast_expression *b)
199 {
200     if (a->expression.vtype != b->expression.vtype)
201         return false;
202     if (!a->expression.next != !b->expression.next)
203         return false;
204     if (vec_size(a->expression.params) != vec_size(b->expression.params))
205         return false;
206     if (a->expression.variadic != b->expression.variadic)
207         return false;
208     if (vec_size(a->expression.params)) {
209         size_t i;
210         for (i = 0; i < vec_size(a->expression.params); ++i) {
211             if (!ast_compare_type((ast_expression*)a->expression.params[i],
212                                   (ast_expression*)b->expression.params[i]))
213                 return false;
214         }
215     }
216     if (a->expression.next)
217         return ast_compare_type(a->expression.next, b->expression.next);
218     return true;
219 }
220
221 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
222 {
223     const char *typestr;
224     size_t typelen;
225     size_t i;
226
227     if (!e) {
228         if (pos + 6 >= bufsize)
229             goto full;
230         strcpy(buf + pos, "(null)");
231         return pos + 6;
232     }
233
234     if (pos + 1 >= bufsize)
235         goto full;
236
237     switch (e->expression.vtype) {
238         case TYPE_VARIANT:
239             strcpy(buf + pos, "(variant)");
240             return pos + 9;
241
242         case TYPE_FIELD:
243             buf[pos++] = '.';
244             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
245
246         case TYPE_POINTER:
247             if (pos + 3 >= bufsize)
248                 goto full;
249             buf[pos++] = '*';
250             buf[pos++] = '(';
251             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
252             if (pos + 1 >= bufsize)
253                 goto full;
254             buf[pos++] = ')';
255             return pos;
256
257         case TYPE_FUNCTION:
258             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259             if (pos + 2 >= bufsize)
260                 goto full;
261             if (!vec_size(e->expression.params)) {
262                 buf[pos++] = '(';
263                 buf[pos++] = ')';
264                 return pos;
265             }
266             buf[pos++] = '(';
267             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
268             for (i = 1; i < vec_size(e->expression.params); ++i) {
269                 if (pos + 2 >= bufsize)
270                     goto full;
271                 buf[pos++] = ',';
272                 buf[pos++] = ' ';
273                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
274             }
275             if (pos + 1 >= bufsize)
276                 goto full;
277             buf[pos++] = ')';
278             return pos;
279
280         case TYPE_ARRAY:
281             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
282             if (pos + 1 >= bufsize)
283                 goto full;
284             buf[pos++] = '[';
285             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
286             if (pos + 1 >= bufsize)
287                 goto full;
288             buf[pos++] = ']';
289             return pos;
290
291         default:
292             typestr = type_name[e->expression.vtype];
293             typelen = strlen(typestr);
294             if (pos + typelen >= bufsize)
295                 goto full;
296             strcpy(buf + pos, typestr);
297             return pos + typelen;
298     }
299
300 full:
301     buf[bufsize-3] = '.';
302     buf[bufsize-2] = '.';
303     buf[bufsize-1] = '.';
304     return bufsize;
305 }
306
307 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
308 {
309     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
310     buf[pos] = 0;
311 }
312
313 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
314 {
315     ast_instantiate(ast_value, ctx, ast_value_delete);
316     ast_expression_init((ast_expression*)self,
317                         (ast_expression_codegen*)&ast_value_codegen);
318     self->expression.node.keep = true; /* keep */
319
320     self->name = name ? util_strdup(name) : NULL;
321     self->expression.vtype = t;
322     self->expression.next  = NULL;
323     self->isconst = false;
324     self->uses    = 0;
325     memset(&self->constval, 0, sizeof(self->constval));
326
327     self->ir_v           = NULL;
328     self->ir_values      = NULL;
329     self->ir_value_count = 0;
330
331     self->setter = NULL;
332     self->getter = NULL;
333
334     return self;
335 }
336
337 void ast_value_delete(ast_value* self)
338 {
339     if (self->name)
340         mem_d((void*)self->name);
341     if (self->isconst) {
342         switch (self->expression.vtype)
343         {
344         case TYPE_STRING:
345             mem_d((void*)self->constval.vstring);
346             break;
347         case TYPE_FUNCTION:
348             /* unlink us from the function node */
349             self->constval.vfunc->vtype = NULL;
350             break;
351         /* NOTE: delete function? currently collected in
352          * the parser structure
353          */
354         default:
355             break;
356         }
357     }
358     if (self->ir_values)
359         mem_d(self->ir_values);
360     ast_expression_delete((ast_expression*)self);
361     mem_d(self);
362 }
363
364 void ast_value_params_add(ast_value *self, ast_value *p)
365 {
366     vec_push(self->expression.params, p);
367 }
368
369 bool ast_value_set_name(ast_value *self, const char *name)
370 {
371     if (self->name)
372         mem_d((void*)self->name);
373     self->name = util_strdup(name);
374     return !!self->name;
375 }
376
377 ast_binary* ast_binary_new(lex_ctx ctx, int op,
378                            ast_expression* left, ast_expression* right)
379 {
380     ast_instantiate(ast_binary, ctx, ast_binary_delete);
381     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
382
383     self->op = op;
384     self->left = left;
385     self->right = right;
386
387     if (op >= INSTR_EQ_F && op <= INSTR_GT)
388         self->expression.vtype = TYPE_FLOAT;
389     else if (op == INSTR_AND || op == INSTR_OR ||
390              op == INSTR_BITAND || op == INSTR_BITOR)
391         self->expression.vtype = TYPE_FLOAT;
392     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
393         self->expression.vtype = TYPE_VECTOR;
394     else if (op == INSTR_MUL_V)
395         self->expression.vtype = TYPE_FLOAT;
396     else
397         self->expression.vtype = left->expression.vtype;
398
399     return self;
400 }
401
402 void ast_binary_delete(ast_binary *self)
403 {
404     ast_unref(self->left);
405     ast_unref(self->right);
406     ast_expression_delete((ast_expression*)self);
407     mem_d(self);
408 }
409
410 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
411                                ast_expression* left, ast_expression* right)
412 {
413     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
414     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
415
416     self->opstore = storop;
417     self->opbin   = op;
418     self->dest    = left;
419     self->source  = right;
420
421     self->expression.vtype = left->expression.vtype;
422     if (left->expression.next) {
423         self->expression.next = ast_type_copy(ctx, left);
424         if (!self->expression.next) {
425             ast_delete(self);
426             return NULL;
427         }
428     }
429     else
430         self->expression.next = NULL;
431
432     return self;
433 }
434
435 void ast_binstore_delete(ast_binstore *self)
436 {
437     ast_unref(self->dest);
438     ast_unref(self->source);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_unary* ast_unary_new(lex_ctx ctx, int op,
444                          ast_expression *expr)
445 {
446     ast_instantiate(ast_unary, ctx, ast_unary_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
448
449     self->op = op;
450     self->operand = expr;
451
452     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
453         self->expression.vtype = TYPE_FLOAT;
454     } else
455         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
456
457     return self;
458 }
459
460 void ast_unary_delete(ast_unary *self)
461 {
462     ast_unref(self->operand);
463     ast_expression_delete((ast_expression*)self);
464     mem_d(self);
465 }
466
467 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
468 {
469     ast_instantiate(ast_return, ctx, ast_return_delete);
470     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
471
472     self->operand = expr;
473
474     return self;
475 }
476
477 void ast_return_delete(ast_return *self)
478 {
479     if (self->operand)
480         ast_unref(self->operand);
481     ast_expression_delete((ast_expression*)self);
482     mem_d(self);
483 }
484
485 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
486 {
487     if (field->expression.vtype != TYPE_FIELD) {
488         asterror(ctx, "ast_entfield_new with expression not of type field");
489         return NULL;
490     }
491     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
492 }
493
494 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
495 {
496     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
497
498     if (!outtype) {
499         mem_d(self);
500         /* Error: field has no type... */
501         return NULL;
502     }
503
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
505
506     self->entity = entity;
507     self->field  = field;
508
509     if (!ast_type_adopt(self, outtype)) {
510         ast_entfield_delete(self);
511         return NULL;
512     }
513
514     return self;
515 }
516
517 void ast_entfield_delete(ast_entfield *self)
518 {
519     ast_unref(self->entity);
520     ast_unref(self->field);
521     ast_expression_delete((ast_expression*)self);
522     mem_d(self);
523 }
524
525 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
526 {
527     ast_instantiate(ast_member, ctx, ast_member_delete);
528     if (field >= 3) {
529         mem_d(self);
530         return NULL;
531     }
532
533     if (owner->expression.vtype != TYPE_VECTOR &&
534         owner->expression.vtype != TYPE_FIELD) {
535         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
536         mem_d(self);
537         return NULL;
538     }
539
540     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
541     self->expression.node.keep = true; /* keep */
542
543     if (owner->expression.vtype == TYPE_VECTOR) {
544         self->expression.vtype = TYPE_FLOAT;
545         self->expression.next  = NULL;
546     } else {
547         self->expression.vtype = TYPE_FIELD;
548         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
549     }
550
551     self->owner = owner;
552     self->field = field;
553
554     return self;
555 }
556
557 void ast_member_delete(ast_member *self)
558 {
559     /* The owner is always an ast_value, which has .keep=true,
560      * also: ast_members are usually deleted after the owner, thus
561      * this will cause invalid access
562     ast_unref(self->owner);
563      * once we allow (expression).x to access a vector-member, we need
564      * to change this: preferably by creating an alternate ast node for this
565      * purpose that is not garbage-collected.
566     */
567     ast_expression_delete((ast_expression*)self);
568     mem_d(self);
569 }
570
571 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
572 {
573     ast_expression *outtype;
574     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
575
576     outtype = array->expression.next;
577     if (!outtype) {
578         mem_d(self);
579         /* Error: field has no type... */
580         return NULL;
581     }
582
583     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
584
585     self->array = array;
586     self->index = index;
587
588     if (!ast_type_adopt(self, outtype)) {
589         ast_array_index_delete(self);
590         return NULL;
591     }
592     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
593         if (self->expression.vtype != TYPE_ARRAY) {
594             asterror(ast_ctx(self), "array_index node on type");
595             ast_array_index_delete(self);
596             return NULL;
597         }
598         self->array = outtype;
599         self->expression.vtype = TYPE_FIELD;
600     }
601
602     return self;
603 }
604
605 void ast_array_index_delete(ast_array_index *self)
606 {
607     ast_unref(self->array);
608     ast_unref(self->index);
609     ast_expression_delete((ast_expression*)self);
610     mem_d(self);
611 }
612
613 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
614 {
615     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
616     if (!ontrue && !onfalse) {
617         /* because it is invalid */
618         mem_d(self);
619         return NULL;
620     }
621     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
622
623     self->cond     = cond;
624     self->on_true  = ontrue;
625     self->on_false = onfalse;
626
627     return self;
628 }
629
630 void ast_ifthen_delete(ast_ifthen *self)
631 {
632     ast_unref(self->cond);
633     if (self->on_true)
634         ast_unref(self->on_true);
635     if (self->on_false)
636         ast_unref(self->on_false);
637     ast_expression_delete((ast_expression*)self);
638     mem_d(self);
639 }
640
641 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
642 {
643     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
644     /* This time NEITHER must be NULL */
645     if (!ontrue || !onfalse) {
646         mem_d(self);
647         return NULL;
648     }
649     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
650
651     self->cond     = cond;
652     self->on_true  = ontrue;
653     self->on_false = onfalse;
654     self->phi_out  = NULL;
655
656     return self;
657 }
658
659 void ast_ternary_delete(ast_ternary *self)
660 {
661     ast_unref(self->cond);
662     ast_unref(self->on_true);
663     ast_unref(self->on_false);
664     ast_expression_delete((ast_expression*)self);
665     mem_d(self);
666 }
667
668 ast_loop* ast_loop_new(lex_ctx ctx,
669                        ast_expression *initexpr,
670                        ast_expression *precond,
671                        ast_expression *postcond,
672                        ast_expression *increment,
673                        ast_expression *body)
674 {
675     ast_instantiate(ast_loop, ctx, ast_loop_delete);
676     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
677
678     self->initexpr  = initexpr;
679     self->precond   = precond;
680     self->postcond  = postcond;
681     self->increment = increment;
682     self->body      = body;
683
684     return self;
685 }
686
687 void ast_loop_delete(ast_loop *self)
688 {
689     if (self->initexpr)
690         ast_unref(self->initexpr);
691     if (self->precond)
692         ast_unref(self->precond);
693     if (self->postcond)
694         ast_unref(self->postcond);
695     if (self->increment)
696         ast_unref(self->increment);
697     if (self->body)
698         ast_unref(self->body);
699     ast_expression_delete((ast_expression*)self);
700     mem_d(self);
701 }
702
703 ast_call* ast_call_new(lex_ctx ctx,
704                        ast_expression *funcexpr)
705 {
706     ast_instantiate(ast_call, ctx, ast_call_delete);
707     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
708
709     self->params = NULL;
710     self->func   = funcexpr;
711
712     self->expression.vtype = funcexpr->expression.next->expression.vtype;
713     if (funcexpr->expression.next->expression.next)
714         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
715
716     return self;
717 }
718
719 void ast_call_delete(ast_call *self)
720 {
721     size_t i;
722     for (i = 0; i < vec_size(self->params); ++i)
723         ast_unref(self->params[i]);
724     vec_free(self->params);
725
726     if (self->func)
727         ast_unref(self->func);
728
729     ast_expression_delete((ast_expression*)self);
730     mem_d(self);
731 }
732
733 bool ast_call_check_types(ast_call *self)
734 {
735     size_t i;
736     bool   retval = true;
737     const  ast_expression *func = self->func;
738     size_t count = vec_size(self->params);
739     if (count > vec_size(func->expression.params))
740         count = vec_size(func->expression.params);
741
742     for (i = 0; i < count; ++i) {
743         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
744             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
745                      (unsigned int)(i+1));
746             /* we don't immediately return */
747             retval = false;
748         }
749     }
750     return retval;
751 }
752
753 ast_store* ast_store_new(lex_ctx ctx, int op,
754                          ast_expression *dest, ast_expression *source)
755 {
756     ast_instantiate(ast_store, ctx, ast_store_delete);
757     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
758
759     self->op = op;
760     self->dest = dest;
761     self->source = source;
762
763     self->expression.vtype = dest->expression.vtype;
764     if (dest->expression.next) {
765         self->expression.next = ast_type_copy(ctx, dest);
766         if (!self->expression.next) {
767             ast_delete(self);
768             return NULL;
769         }
770     }
771     else
772         self->expression.next = NULL;
773
774     return self;
775 }
776
777 void ast_store_delete(ast_store *self)
778 {
779     ast_unref(self->dest);
780     ast_unref(self->source);
781     ast_expression_delete((ast_expression*)self);
782     mem_d(self);
783 }
784
785 ast_block* ast_block_new(lex_ctx ctx)
786 {
787     ast_instantiate(ast_block, ctx, ast_block_delete);
788     ast_expression_init((ast_expression*)self,
789                         (ast_expression_codegen*)&ast_block_codegen);
790
791     self->locals  = NULL;
792     self->exprs   = NULL;
793     self->collect = NULL;
794
795     return self;
796 }
797
798 void ast_block_collect(ast_block *self, ast_expression *expr)
799 {
800     vec_push(self->collect, expr);
801     expr->expression.node.keep = true;
802 }
803
804 void ast_block_delete(ast_block *self)
805 {
806     size_t i;
807     for (i = 0; i < vec_size(self->exprs); ++i)
808         ast_unref(self->exprs[i]);
809     vec_free(self->exprs);
810     for (i = 0; i < vec_size(self->locals); ++i)
811         ast_delete(self->locals[i]);
812     vec_free(self->locals);
813     for (i = 0; i < vec_size(self->collect); ++i)
814         ast_delete(self->collect[i]);
815     vec_free(self->collect);
816     ast_expression_delete((ast_expression*)self);
817     mem_d(self);
818 }
819
820 bool ast_block_set_type(ast_block *self, ast_expression *from)
821 {
822     if (self->expression.next)
823         ast_delete(self->expression.next);
824     self->expression.vtype = from->expression.vtype;
825     if (from->expression.next) {
826         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
827         if (!self->expression.next)
828             return false;
829     }
830     else
831         self->expression.next = NULL;
832     return true;
833 }
834
835 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
836 {
837     ast_instantiate(ast_function, ctx, ast_function_delete);
838
839     if (!vtype ||
840         vtype->isconst ||
841         vtype->expression.vtype != TYPE_FUNCTION)
842     {
843         mem_d(self);
844         return NULL;
845     }
846
847     self->vtype  = vtype;
848     self->name   = name ? util_strdup(name) : NULL;
849     self->blocks = NULL;
850
851     self->labelcount = 0;
852     self->builtin = 0;
853
854     self->ir_func = NULL;
855     self->curblock = NULL;
856
857     self->breakblock    = NULL;
858     self->continueblock = NULL;
859
860     vtype->isconst = true;
861     vtype->constval.vfunc = self;
862
863     return self;
864 }
865
866 void ast_function_delete(ast_function *self)
867 {
868     size_t i;
869     if (self->name)
870         mem_d((void*)self->name);
871     if (self->vtype) {
872         /* ast_value_delete(self->vtype); */
873         self->vtype->isconst = false;
874         self->vtype->constval.vfunc = NULL;
875         /* We use unref - if it was stored in a global table it is supposed
876          * to be deleted from *there*
877          */
878         ast_unref(self->vtype);
879     }
880     for (i = 0; i < vec_size(self->blocks); ++i)
881         ast_delete(self->blocks[i]);
882     vec_free(self->blocks);
883     mem_d(self);
884 }
885
886 const char* ast_function_label(ast_function *self, const char *prefix)
887 {
888     size_t id;
889     size_t len;
890     char  *from;
891
892     if (!opts_dump)
893         return NULL;
894
895     id  = (self->labelcount++);
896     len = strlen(prefix);
897
898     from = self->labelbuf + sizeof(self->labelbuf)-1;
899     *from-- = 0;
900     do {
901         unsigned int digit = id % 10;
902         *from = digit + '0';
903         id /= 10;
904     } while (id);
905     memcpy(from - len, prefix, len);
906     return from - len;
907 }
908
909 /*********************************************************************/
910 /* AST codegen part
911  * by convention you must never pass NULL to the 'ir_value **out'
912  * parameter. If you really don't care about the output, pass a dummy.
913  * But I can't imagine a pituation where the output is truly unnecessary.
914  */
915
916 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
917 {
918     /* NOTE: This is the codegen for a variable used in an expression.
919      * It is not the codegen to generate the value. For this purpose,
920      * ast_local_codegen and ast_global_codegen are to be used before this
921      * is executed. ast_function_codegen should take care of its locals,
922      * and the ast-user should take care of ast_global_codegen to be used
923      * on all the globals.
924      */
925     if (!self->ir_v) {
926         char typename[1024];
927         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
928         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
929         return false;
930     }
931     *out = self->ir_v;
932     return true;
933 }
934
935 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
936 {
937     ir_value *v = NULL;
938
939     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
940     {
941         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
942         if (!func)
943             return false;
944         func->context = ast_ctx(self);
945         func->value->context = ast_ctx(self);
946
947         self->constval.vfunc->ir_func = func;
948         self->ir_v = func->value;
949         /* The function is filled later on ast_function_codegen... */
950         return true;
951     }
952
953     if (isfield && self->expression.vtype == TYPE_FIELD) {
954         ast_expression *fieldtype = self->expression.next;
955
956         if (self->isconst) {
957             asterror(ast_ctx(self), "TODO: constant field pointers with value");
958             goto error;
959         }
960
961         if (fieldtype->expression.vtype == TYPE_ARRAY) {
962             size_t ai;
963             char   *name;
964             size_t  namelen;
965
966             ast_expression_common *elemtype;
967             int                    vtype;
968             ast_value             *array = (ast_value*)fieldtype;
969
970             if (!ast_istype(fieldtype, ast_value)) {
971                 asterror(ast_ctx(self), "internal error: ast_value required");
972                 return false;
973             }
974
975             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
976             if (!array->expression.count || array->expression.count > opts_max_array_size)
977                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
978
979             elemtype = &array->expression.next->expression;
980             vtype = elemtype->vtype;
981
982             v = ir_builder_create_field(ir, self->name, vtype);
983             if (!v) {
984                 asterror(ast_ctx(self), "ir_builder_create_global failed");
985                 return false;
986             }
987             if (vtype == TYPE_FIELD)
988                 v->fieldtype = elemtype->next->expression.vtype;
989             v->context = ast_ctx(self);
990             array->ir_v = self->ir_v = v;
991
992             namelen = strlen(self->name);
993             name    = (char*)mem_a(namelen + 16);
994             strcpy(name, self->name);
995
996             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
997             array->ir_values[0] = v;
998             for (ai = 1; ai < array->expression.count; ++ai) {
999                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1000                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1001                 if (!array->ir_values[ai]) {
1002                     mem_d(name);
1003                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1004                     return false;
1005                 }
1006                 if (vtype == TYPE_FIELD)
1007                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1008                 array->ir_values[ai]->context = ast_ctx(self);
1009             }
1010             mem_d(name);
1011         }
1012         else
1013         {
1014             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1015             if (!v)
1016                 return false;
1017             v->context = ast_ctx(self);
1018             self->ir_v = v;
1019         }
1020         return true;
1021     }
1022
1023     if (self->expression.vtype == TYPE_ARRAY) {
1024         size_t ai;
1025         char   *name;
1026         size_t  namelen;
1027
1028         ast_expression_common *elemtype = &self->expression.next->expression;
1029         int vtype = elemtype->vtype;
1030
1031         /* same as with field arrays */
1032         if (!self->expression.count || self->expression.count > opts_max_array_size)
1033             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1034
1035         v = ir_builder_create_global(ir, self->name, vtype);
1036         if (!v) {
1037             asterror(ast_ctx(self), "ir_builder_create_global failed");
1038             return false;
1039         }
1040         if (vtype == TYPE_FIELD)
1041             v->fieldtype = elemtype->next->expression.vtype;
1042         v->context = ast_ctx(self);
1043
1044         namelen = strlen(self->name);
1045         name    = (char*)mem_a(namelen + 16);
1046         strcpy(name, self->name);
1047
1048         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1049         self->ir_values[0] = v;
1050         for (ai = 1; ai < self->expression.count; ++ai) {
1051             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1052             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1053             if (!self->ir_values[ai]) {
1054                 mem_d(name);
1055                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1056                 return false;
1057             }
1058             if (vtype == TYPE_FIELD)
1059                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1060             self->ir_values[ai]->context = ast_ctx(self);
1061         }
1062         mem_d(name);
1063     }
1064     else
1065     {
1066         /* Arrays don't do this since there's no "array" value which spans across the
1067          * whole thing.
1068          */
1069         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1070         if (!v) {
1071             asterror(ast_ctx(self), "ir_builder_create_global failed");
1072             return false;
1073         }
1074         if (self->expression.vtype == TYPE_FIELD)
1075             v->fieldtype = self->expression.next->expression.vtype;
1076         v->context = ast_ctx(self);
1077     }
1078
1079     if (self->isconst) {
1080         switch (self->expression.vtype)
1081         {
1082             case TYPE_FLOAT:
1083                 if (!ir_value_set_float(v, self->constval.vfloat))
1084                     goto error;
1085                 break;
1086             case TYPE_VECTOR:
1087                 if (!ir_value_set_vector(v, self->constval.vvec))
1088                     goto error;
1089                 break;
1090             case TYPE_STRING:
1091                 if (!ir_value_set_string(v, self->constval.vstring))
1092                     goto error;
1093                 break;
1094             case TYPE_ARRAY:
1095                 asterror(ast_ctx(self), "TODO: global constant array");
1096                 break;
1097             case TYPE_FUNCTION:
1098                 asterror(ast_ctx(self), "global of type function not properly generated");
1099                 goto error;
1100                 /* Cannot generate an IR value for a function,
1101                  * need a pointer pointing to a function rather.
1102                  */
1103             default:
1104                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1105                 break;
1106         }
1107     }
1108
1109     /* link us to the ir_value */
1110     self->ir_v = v;
1111     return true;
1112
1113 error: /* clean up */
1114     ir_value_delete(v);
1115     return false;
1116 }
1117
1118 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1119 {
1120     ir_value *v = NULL;
1121     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1122     {
1123         /* Do we allow local functions? I think not...
1124          * this is NOT a function pointer atm.
1125          */
1126         return false;
1127     }
1128
1129     if (self->expression.vtype == TYPE_ARRAY) {
1130         size_t ai;
1131         char   *name;
1132         size_t  namelen;
1133
1134         ast_expression_common *elemtype = &self->expression.next->expression;
1135         int vtype = elemtype->vtype;
1136
1137         if (param) {
1138             asterror(ast_ctx(self), "array-parameters are not supported");
1139             return false;
1140         }
1141
1142         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1143         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1144             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1145         }
1146
1147         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1148         if (!self->ir_values) {
1149             asterror(ast_ctx(self), "failed to allocate array values");
1150             return false;
1151         }
1152
1153         v = ir_function_create_local(func, self->name, vtype, param);
1154         if (!v) {
1155             asterror(ast_ctx(self), "ir_function_create_local failed");
1156             return false;
1157         }
1158         if (vtype == TYPE_FIELD)
1159             v->fieldtype = elemtype->next->expression.vtype;
1160         v->context = ast_ctx(self);
1161
1162         namelen = strlen(self->name);
1163         name    = (char*)mem_a(namelen + 16);
1164         strcpy(name, self->name);
1165
1166         self->ir_values[0] = v;
1167         for (ai = 1; ai < self->expression.count; ++ai) {
1168             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1169             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1170             if (!self->ir_values[ai]) {
1171                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1172                 return false;
1173             }
1174             if (vtype == TYPE_FIELD)
1175                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1176             self->ir_values[ai]->context = ast_ctx(self);
1177         }
1178     }
1179     else
1180     {
1181         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1182         if (!v)
1183             return false;
1184         if (self->expression.vtype == TYPE_FIELD)
1185             v->fieldtype = self->expression.next->expression.vtype;
1186         v->context = ast_ctx(self);
1187     }
1188
1189     /* A constant local... hmmm...
1190      * I suppose the IR will have to deal with this
1191      */
1192     if (self->isconst) {
1193         switch (self->expression.vtype)
1194         {
1195             case TYPE_FLOAT:
1196                 if (!ir_value_set_float(v, self->constval.vfloat))
1197                     goto error;
1198                 break;
1199             case TYPE_VECTOR:
1200                 if (!ir_value_set_vector(v, self->constval.vvec))
1201                     goto error;
1202                 break;
1203             case TYPE_STRING:
1204                 if (!ir_value_set_string(v, self->constval.vstring))
1205                     goto error;
1206                 break;
1207             default:
1208                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1209                 break;
1210         }
1211     }
1212
1213     /* link us to the ir_value */
1214     self->ir_v = v;
1215
1216     if (self->setter) {
1217         if (!ast_global_codegen(self->setter, func->owner, false) ||
1218             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1219             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1220             return false;
1221     }
1222     if (self->getter) {
1223         if (!ast_global_codegen(self->getter, func->owner, false) ||
1224             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1225             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1226             return false;
1227     }
1228     return true;
1229
1230 error: /* clean up */
1231     ir_value_delete(v);
1232     return false;
1233 }
1234
1235 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1236 {
1237     ir_function *irf;
1238     ir_value    *dummy;
1239     ast_expression_common *ec;
1240     size_t    i;
1241
1242     irf = self->ir_func;
1243     if (!irf) {
1244         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1245         return false;
1246     }
1247
1248     /* fill the parameter list */
1249     ec = &self->vtype->expression;
1250     irf->max_parameters = vec_size(ec->params);
1251     for (i = 0; i < vec_size(ec->params); ++i)
1252     {
1253         vec_push(irf->params, ec->params[i]->expression.vtype);
1254         if (!self->builtin) {
1255             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1256                 return false;
1257         }
1258     }
1259
1260     if (self->builtin) {
1261         irf->builtin = self->builtin;
1262         return true;
1263     }
1264
1265     if (!vec_size(self->blocks)) {
1266         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1267         return false;
1268     }
1269
1270     self->curblock = ir_function_create_block(irf, "entry");
1271     if (!self->curblock) {
1272         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1273         return false;
1274     }
1275
1276     for (i = 0; i < vec_size(self->blocks); ++i) {
1277         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1278         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1279             return false;
1280     }
1281
1282     /* TODO: check return types */
1283     if (!self->curblock->is_return)
1284     {
1285         return ir_block_create_return(self->curblock, NULL);
1286         /* From now on the parser has to handle this situation */
1287 #if 0
1288         if (!self->vtype->expression.next ||
1289             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1290         {
1291             return ir_block_create_return(self->curblock, NULL);
1292         }
1293         else
1294         {
1295             /* error("missing return"); */
1296             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1297             return false;
1298         }
1299 #endif
1300     }
1301     return true;
1302 }
1303
1304 /* Note, you will not see ast_block_codegen generate ir_blocks.
1305  * To the AST and the IR, blocks are 2 different things.
1306  * In the AST it represents a block of code, usually enclosed in
1307  * curly braces {...}.
1308  * While in the IR it represents a block in terms of control-flow.
1309  */
1310 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1311 {
1312     size_t i;
1313
1314     /* We don't use this
1315      * Note: an ast-representation using the comma-operator
1316      * of the form: (a, b, c) = x should not assign to c...
1317      */
1318     if (lvalue) {
1319         asterror(ast_ctx(self), "not an l-value (code-block)");
1320         return false;
1321     }
1322
1323     if (self->expression.outr) {
1324         *out = self->expression.outr;
1325         return true;
1326     }
1327
1328     /* output is NULL at first, we'll have each expression
1329      * assign to out output, thus, a comma-operator represention
1330      * using an ast_block will return the last generated value,
1331      * so: (b, c) + a  executed both b and c, and returns c,
1332      * which is then added to a.
1333      */
1334     *out = NULL;
1335
1336     /* generate locals */
1337     for (i = 0; i < vec_size(self->locals); ++i)
1338     {
1339         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1340             if (opts_debug)
1341                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1342             return false;
1343         }
1344     }
1345
1346     for (i = 0; i < vec_size(self->exprs); ++i)
1347     {
1348         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1349         if (!(*gen)(self->exprs[i], func, false, out))
1350             return false;
1351     }
1352
1353     self->expression.outr = *out;
1354
1355     return true;
1356 }
1357
1358 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1359 {
1360     ast_expression_codegen *cgen;
1361     ir_value *left, *right;
1362
1363     ast_value       *arr;
1364     ast_value       *idx;
1365     ast_array_index *ai = NULL;
1366
1367     if (lvalue && self->expression.outl) {
1368         *out = self->expression.outl;
1369         return true;
1370     }
1371
1372     if (!lvalue && self->expression.outr) {
1373         *out = self->expression.outr;
1374         return true;
1375     }
1376
1377     if (ast_istype(self->dest, ast_array_index))
1378     {
1379
1380         ai = (ast_array_index*)self->dest;
1381         idx = (ast_value*)ai->index;
1382
1383         if (ast_istype(ai->index, ast_value) && idx->isconst)
1384             ai = NULL;
1385     }
1386
1387     if (ai) {
1388         /* we need to call the setter */
1389         ir_value  *iridx, *funval;
1390         ir_instr  *call;
1391
1392         if (lvalue) {
1393             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1394             return false;
1395         }
1396
1397         arr = (ast_value*)ai->array;
1398         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1399             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1400             return false;
1401         }
1402
1403         cgen = idx->expression.codegen;
1404         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1405             return false;
1406
1407         cgen = arr->setter->expression.codegen;
1408         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1409             return false;
1410
1411         cgen = self->source->expression.codegen;
1412         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1413             return false;
1414
1415         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1416         if (!call)
1417             return false;
1418         ir_call_param(call, iridx);
1419         ir_call_param(call, right);
1420         self->expression.outr = right;
1421     }
1422     else
1423     {
1424         /* regular code */
1425
1426         cgen = self->dest->expression.codegen;
1427         /* lvalue! */
1428         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1429             return false;
1430         self->expression.outl = left;
1431
1432         cgen = self->source->expression.codegen;
1433         /* rvalue! */
1434         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1435             return false;
1436
1437         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1438             return false;
1439         self->expression.outr = right;
1440     }
1441
1442     /* Theoretically, an assinment returns its left side as an
1443      * lvalue, if we don't need an lvalue though, we return
1444      * the right side as an rvalue, otherwise we have to
1445      * somehow know whether or not we need to dereference the pointer
1446      * on the left side - that is: OP_LOAD if it was an address.
1447      * Also: in original QC we cannot OP_LOADP *anyway*.
1448      */
1449     *out = (lvalue ? left : right);
1450
1451     return true;
1452 }
1453
1454 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1455 {
1456     ast_expression_codegen *cgen;
1457     ir_value *left, *right;
1458
1459     /* A binary operation cannot yield an l-value */
1460     if (lvalue) {
1461         asterror(ast_ctx(self), "not an l-value (binop)");
1462         return false;
1463     }
1464
1465     if (self->expression.outr) {
1466         *out = self->expression.outr;
1467         return true;
1468     }
1469
1470     cgen = self->left->expression.codegen;
1471     /* lvalue! */
1472     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1473         return false;
1474
1475     cgen = self->right->expression.codegen;
1476     /* rvalue! */
1477     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1478         return false;
1479
1480     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1481                                  self->op, left, right);
1482     if (!*out)
1483         return false;
1484     self->expression.outr = *out;
1485
1486     return true;
1487 }
1488
1489 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1490 {
1491     ast_expression_codegen *cgen;
1492     ir_value *leftl, *leftr, *right, *bin;
1493
1494     if (lvalue && self->expression.outl) {
1495         *out = self->expression.outl;
1496         return true;
1497     }
1498
1499     if (!lvalue && self->expression.outr) {
1500         *out = self->expression.outr;
1501         return true;
1502     }
1503
1504     /* for a binstore we need both an lvalue and an rvalue for the left side */
1505     /* rvalue of destination! */
1506     cgen = self->dest->expression.codegen;
1507     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1508         return false;
1509
1510     /* source as rvalue only */
1511     cgen = self->source->expression.codegen;
1512     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1513         return false;
1514
1515     /* now the binary */
1516     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1517                                 self->opbin, leftr, right);
1518     self->expression.outr = bin;
1519
1520     /* now store them */
1521     cgen = self->dest->expression.codegen;
1522     /* lvalue of destination */
1523     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1524         return false;
1525     self->expression.outl = leftl;
1526
1527     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1528         return false;
1529     self->expression.outr = bin;
1530
1531     /* Theoretically, an assinment returns its left side as an
1532      * lvalue, if we don't need an lvalue though, we return
1533      * the right side as an rvalue, otherwise we have to
1534      * somehow know whether or not we need to dereference the pointer
1535      * on the left side - that is: OP_LOAD if it was an address.
1536      * Also: in original QC we cannot OP_LOADP *anyway*.
1537      */
1538     *out = (lvalue ? leftl : bin);
1539
1540     return true;
1541 }
1542
1543 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1544 {
1545     ast_expression_codegen *cgen;
1546     ir_value *operand;
1547
1548     /* An unary operation cannot yield an l-value */
1549     if (lvalue) {
1550         asterror(ast_ctx(self), "not an l-value (binop)");
1551         return false;
1552     }
1553
1554     if (self->expression.outr) {
1555         *out = self->expression.outr;
1556         return true;
1557     }
1558
1559     cgen = self->operand->expression.codegen;
1560     /* lvalue! */
1561     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1562         return false;
1563
1564     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1565                                  self->op, operand);
1566     if (!*out)
1567         return false;
1568     self->expression.outr = *out;
1569
1570     return true;
1571 }
1572
1573 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1574 {
1575     ast_expression_codegen *cgen;
1576     ir_value *operand;
1577
1578     /* In the context of a return operation, we don't actually return
1579      * anything...
1580      */
1581     if (lvalue) {
1582         asterror(ast_ctx(self), "return-expression is not an l-value");
1583         return false;
1584     }
1585
1586     if (self->expression.outr) {
1587         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1588         return false;
1589     }
1590     self->expression.outr = (ir_value*)1;
1591
1592     if (self->operand) {
1593         cgen = self->operand->expression.codegen;
1594         /* lvalue! */
1595         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1596             return false;
1597
1598         if (!ir_block_create_return(func->curblock, operand))
1599             return false;
1600     } else {
1601         if (!ir_block_create_return(func->curblock, NULL))
1602             return false;
1603     }
1604
1605     return true;
1606 }
1607
1608 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1609 {
1610     ast_expression_codegen *cgen;
1611     ir_value *ent, *field;
1612
1613     /* This function needs to take the 'lvalue' flag into account!
1614      * As lvalue we provide a field-pointer, as rvalue we provide the
1615      * value in a temp.
1616      */
1617
1618     if (lvalue && self->expression.outl) {
1619         *out = self->expression.outl;
1620         return true;
1621     }
1622
1623     if (!lvalue && self->expression.outr) {
1624         *out = self->expression.outr;
1625         return true;
1626     }
1627
1628     cgen = self->entity->expression.codegen;
1629     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1630         return false;
1631
1632     cgen = self->field->expression.codegen;
1633     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1634         return false;
1635
1636     if (lvalue) {
1637         /* address! */
1638         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1639                                             ent, field);
1640     } else {
1641         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1642                                              ent, field, self->expression.vtype);
1643     }
1644     if (!*out) {
1645         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1646                  (lvalue ? "ADDRESS" : "FIELD"),
1647                  type_name[self->expression.vtype]);
1648         return false;
1649     }
1650
1651     if (lvalue)
1652         self->expression.outl = *out;
1653     else
1654         self->expression.outr = *out;
1655
1656     /* Hm that should be it... */
1657     return true;
1658 }
1659
1660 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1661 {
1662     ast_expression_codegen *cgen;
1663     ir_value *vec;
1664
1665     /* in QC this is always an lvalue */
1666     (void)lvalue;
1667     if (self->expression.outl) {
1668         *out = self->expression.outl;
1669         return true;
1670     }
1671
1672     cgen = self->owner->expression.codegen;
1673     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1674         return false;
1675
1676     if (vec->vtype != TYPE_VECTOR &&
1677         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1678     {
1679         return false;
1680     }
1681
1682     *out = ir_value_vector_member(vec, self->field);
1683     self->expression.outl = *out;
1684
1685     return (*out != NULL);
1686 }
1687
1688 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1689 {
1690     ast_value *arr;
1691     ast_value *idx;
1692
1693     if (!lvalue && self->expression.outr) {
1694         *out = self->expression.outr;
1695     }
1696     if (lvalue && self->expression.outl) {
1697         *out = self->expression.outl;
1698     }
1699
1700     if (!ast_istype(self->array, ast_value)) {
1701         asterror(ast_ctx(self), "array indexing this way is not supported");
1702         /* note this would actually be pointer indexing because the left side is
1703          * not an actual array but (hopefully) an indexable expression.
1704          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1705          * support this path will be filled.
1706          */
1707         return false;
1708     }
1709
1710     arr = (ast_value*)self->array;
1711     idx = (ast_value*)self->index;
1712
1713     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1714         /* Time to use accessor functions */
1715         ast_expression_codegen *cgen;
1716         ir_value               *iridx, *funval;
1717         ir_instr               *call;
1718
1719         if (lvalue) {
1720             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1721             return false;
1722         }
1723
1724         if (!arr->getter) {
1725             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1726             return false;
1727         }
1728
1729         cgen = self->index->expression.codegen;
1730         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1731             return false;
1732
1733         cgen = arr->getter->expression.codegen;
1734         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1735             return false;
1736
1737         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1738         if (!call)
1739             return false;
1740         ir_call_param(call, iridx);
1741
1742         *out = ir_call_value(call);
1743         self->expression.outr = *out;
1744         return true;
1745     }
1746
1747     if (idx->expression.vtype == TYPE_FLOAT)
1748         *out = arr->ir_values[(int)idx->constval.vfloat];
1749     else if (idx->expression.vtype == TYPE_INTEGER)
1750         *out = arr->ir_values[idx->constval.vint];
1751     else {
1752         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1753         return false;
1754     }
1755     return true;
1756 }
1757
1758 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1759 {
1760     ast_expression_codegen *cgen;
1761
1762     ir_value *condval;
1763     ir_value *dummy;
1764
1765     ir_block *cond = func->curblock;
1766     ir_block *ontrue;
1767     ir_block *onfalse;
1768     ir_block *ontrue_endblock = NULL;
1769     ir_block *onfalse_endblock = NULL;
1770     ir_block *merge;
1771
1772     /* We don't output any value, thus also don't care about r/lvalue */
1773     (void)out;
1774     (void)lvalue;
1775
1776     if (self->expression.outr) {
1777         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1778         return false;
1779     }
1780     self->expression.outr = (ir_value*)1;
1781
1782     /* generate the condition */
1783     func->curblock = cond;
1784     cgen = self->cond->expression.codegen;
1785     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1786         return false;
1787
1788     /* on-true path */
1789
1790     if (self->on_true) {
1791         /* create on-true block */
1792         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1793         if (!ontrue)
1794             return false;
1795
1796         /* enter the block */
1797         func->curblock = ontrue;
1798
1799         /* generate */
1800         cgen = self->on_true->expression.codegen;
1801         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1802             return false;
1803
1804         /* we now need to work from the current endpoint */
1805         ontrue_endblock = func->curblock;
1806     } else
1807         ontrue = NULL;
1808
1809     /* on-false path */
1810     if (self->on_false) {
1811         /* create on-false block */
1812         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1813         if (!onfalse)
1814             return false;
1815
1816         /* enter the block */
1817         func->curblock = onfalse;
1818
1819         /* generate */
1820         cgen = self->on_false->expression.codegen;
1821         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1822             return false;
1823
1824         /* we now need to work from the current endpoint */
1825         onfalse_endblock = func->curblock;
1826     } else
1827         onfalse = NULL;
1828
1829     /* Merge block were they all merge in to */
1830     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1831     if (!merge)
1832         return false;
1833
1834     /* add jumps ot the merge block */
1835     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1836         return false;
1837     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1838         return false;
1839
1840     /* we create the if here, that way all blocks are ordered :)
1841      */
1842     if (!ir_block_create_if(cond, condval,
1843                             (ontrue  ? ontrue  : merge),
1844                             (onfalse ? onfalse : merge)))
1845     {
1846         return false;
1847     }
1848
1849     /* Now enter the merge block */
1850     func->curblock = merge;
1851
1852     return true;
1853 }
1854
1855 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1856 {
1857     ast_expression_codegen *cgen;
1858
1859     ir_value *condval;
1860     ir_value *trueval, *falseval;
1861     ir_instr *phi;
1862
1863     ir_block *cond = func->curblock;
1864     ir_block *ontrue;
1865     ir_block *onfalse;
1866     ir_block *merge;
1867
1868     /* Ternary can never create an lvalue... */
1869     if (lvalue)
1870         return false;
1871
1872     /* In theory it shouldn't be possible to pass through a node twice, but
1873      * in case we add any kind of optimization pass for the AST itself, it
1874      * may still happen, thus we remember a created ir_value and simply return one
1875      * if it already exists.
1876      */
1877     if (self->phi_out) {
1878         *out = self->phi_out;
1879         return true;
1880     }
1881
1882     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1883
1884     /* generate the condition */
1885     func->curblock = cond;
1886     cgen = self->cond->expression.codegen;
1887     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1888         return false;
1889
1890     /* create on-true block */
1891     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1892     if (!ontrue)
1893         return false;
1894     else
1895     {
1896         /* enter the block */
1897         func->curblock = ontrue;
1898
1899         /* generate */
1900         cgen = self->on_true->expression.codegen;
1901         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1902             return false;
1903     }
1904
1905     /* create on-false block */
1906     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1907     if (!onfalse)
1908         return false;
1909     else
1910     {
1911         /* enter the block */
1912         func->curblock = onfalse;
1913
1914         /* generate */
1915         cgen = self->on_false->expression.codegen;
1916         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1917             return false;
1918     }
1919
1920     /* create merge block */
1921     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1922     if (!merge)
1923         return false;
1924     /* jump to merge block */
1925     if (!ir_block_create_jump(ontrue, merge))
1926         return false;
1927     if (!ir_block_create_jump(onfalse, merge))
1928         return false;
1929
1930     /* create if instruction */
1931     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1932         return false;
1933
1934     /* Now enter the merge block */
1935     func->curblock = merge;
1936
1937     /* Here, now, we need a PHI node
1938      * but first some sanity checking...
1939      */
1940     if (trueval->vtype != falseval->vtype) {
1941         /* error("ternary with different types on the two sides"); */
1942         return false;
1943     }
1944
1945     /* create PHI */
1946     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1947     if (!phi)
1948         return false;
1949     ir_phi_add(phi, ontrue,  trueval);
1950     ir_phi_add(phi, onfalse, falseval);
1951
1952     self->phi_out = ir_phi_value(phi);
1953     *out = self->phi_out;
1954
1955     return true;
1956 }
1957
1958 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1959 {
1960     ast_expression_codegen *cgen;
1961
1962     ir_value *dummy      = NULL;
1963     ir_value *precond    = NULL;
1964     ir_value *postcond   = NULL;
1965
1966     /* Since we insert some jumps "late" so we have blocks
1967      * ordered "nicely", we need to keep track of the actual end-blocks
1968      * of expressions to add the jumps to.
1969      */
1970     ir_block *bbody      = NULL, *end_bbody      = NULL;
1971     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1972     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1973     ir_block *bincrement = NULL, *end_bincrement = NULL;
1974     ir_block *bout       = NULL, *bin            = NULL;
1975
1976     /* let's at least move the outgoing block to the end */
1977     size_t    bout_id;
1978
1979     /* 'break' and 'continue' need to be able to find the right blocks */
1980     ir_block *bcontinue     = NULL;
1981     ir_block *bbreak        = NULL;
1982
1983     ir_block *old_bcontinue = NULL;
1984     ir_block *old_bbreak    = NULL;
1985
1986     ir_block *tmpblock      = NULL;
1987
1988     (void)lvalue;
1989     (void)out;
1990
1991     if (self->expression.outr) {
1992         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
1993         return false;
1994     }
1995     self->expression.outr = (ir_value*)1;
1996
1997     /* NOTE:
1998      * Should we ever need some kind of block ordering, better make this function
1999      * move blocks around than write a block ordering algorithm later... after all
2000      * the ast and ir should work together, not against each other.
2001      */
2002
2003     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2004      * anyway if for example it contains a ternary.
2005      */
2006     if (self->initexpr)
2007     {
2008         cgen = self->initexpr->expression.codegen;
2009         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2010             return false;
2011     }
2012
2013     /* Store the block from which we enter this chaos */
2014     bin = func->curblock;
2015
2016     /* The pre-loop condition needs its own block since we
2017      * need to be able to jump to the start of that expression.
2018      */
2019     if (self->precond)
2020     {
2021         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2022         if (!bprecond)
2023             return false;
2024
2025         /* the pre-loop-condition the least important place to 'continue' at */
2026         bcontinue = bprecond;
2027
2028         /* enter */
2029         func->curblock = bprecond;
2030
2031         /* generate */
2032         cgen = self->precond->expression.codegen;
2033         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2034             return false;
2035
2036         end_bprecond = func->curblock;
2037     } else {
2038         bprecond = end_bprecond = NULL;
2039     }
2040
2041     /* Now the next blocks won't be ordered nicely, but we need to
2042      * generate them this early for 'break' and 'continue'.
2043      */
2044     if (self->increment) {
2045         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2046         if (!bincrement)
2047             return false;
2048         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2049     } else {
2050         bincrement = end_bincrement = NULL;
2051     }
2052
2053     if (self->postcond) {
2054         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2055         if (!bpostcond)
2056             return false;
2057         bcontinue = bpostcond; /* postcond comes before the increment */
2058     } else {
2059         bpostcond = end_bpostcond = NULL;
2060     }
2061
2062     bout_id = vec_size(func->ir_func->blocks);
2063     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2064     if (!bout)
2065         return false;
2066     bbreak = bout;
2067
2068     /* The loop body... */
2069     if (self->body)
2070     {
2071         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2072         if (!bbody)
2073             return false;
2074
2075         /* enter */
2076         func->curblock = bbody;
2077
2078         old_bbreak          = func->breakblock;
2079         old_bcontinue       = func->continueblock;
2080         func->breakblock    = bbreak;
2081         func->continueblock = bcontinue;
2082
2083         /* generate */
2084         cgen = self->body->expression.codegen;
2085         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2086             return false;
2087
2088         end_bbody = func->curblock;
2089         func->breakblock    = old_bbreak;
2090         func->continueblock = old_bcontinue;
2091     }
2092
2093     /* post-loop-condition */
2094     if (self->postcond)
2095     {
2096         /* enter */
2097         func->curblock = bpostcond;
2098
2099         /* generate */
2100         cgen = self->postcond->expression.codegen;
2101         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2102             return false;
2103
2104         end_bpostcond = func->curblock;
2105     }
2106
2107     /* The incrementor */
2108     if (self->increment)
2109     {
2110         /* enter */
2111         func->curblock = bincrement;
2112
2113         /* generate */
2114         cgen = self->increment->expression.codegen;
2115         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2116             return false;
2117
2118         end_bincrement = func->curblock;
2119     }
2120
2121     /* In any case now, we continue from the outgoing block */
2122     func->curblock = bout;
2123
2124     /* Now all blocks are in place */
2125     /* From 'bin' we jump to whatever comes first */
2126     if      (bprecond)   tmpblock = bprecond;
2127     else if (bbody)      tmpblock = bbody;
2128     else if (bpostcond)  tmpblock = bpostcond;
2129     else                 tmpblock = bout;
2130     if (!ir_block_create_jump(bin, tmpblock))
2131         return false;
2132
2133     /* From precond */
2134     if (bprecond)
2135     {
2136         ir_block *ontrue, *onfalse;
2137         if      (bbody)      ontrue = bbody;
2138         else if (bincrement) ontrue = bincrement;
2139         else if (bpostcond)  ontrue = bpostcond;
2140         else                 ontrue = bprecond;
2141         onfalse = bout;
2142         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2143             return false;
2144     }
2145
2146     /* from body */
2147     if (bbody)
2148     {
2149         if      (bincrement) tmpblock = bincrement;
2150         else if (bpostcond)  tmpblock = bpostcond;
2151         else if (bprecond)   tmpblock = bprecond;
2152         else                 tmpblock = bout;
2153         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2154             return false;
2155     }
2156
2157     /* from increment */
2158     if (bincrement)
2159     {
2160         if      (bpostcond)  tmpblock = bpostcond;
2161         else if (bprecond)   tmpblock = bprecond;
2162         else if (bbody)      tmpblock = bbody;
2163         else                 tmpblock = bout;
2164         if (!ir_block_create_jump(end_bincrement, tmpblock))
2165             return false;
2166     }
2167
2168     /* from postcond */
2169     if (bpostcond)
2170     {
2171         ir_block *ontrue, *onfalse;
2172         if      (bprecond)   ontrue = bprecond;
2173         else if (bbody)      ontrue = bbody;
2174         else if (bincrement) ontrue = bincrement;
2175         else                 ontrue = bpostcond;
2176         onfalse = bout;
2177         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2178             return false;
2179     }
2180
2181     /* Move 'bout' to the end */
2182     vec_remove(func->ir_func->blocks, bout_id, 1);
2183     vec_push(func->ir_func->blocks, bout);
2184
2185     return true;
2186 }
2187
2188 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2189 {
2190     ast_expression_codegen *cgen;
2191     ir_value              **params;
2192     ir_instr               *callinstr;
2193     size_t i;
2194
2195     ir_value *funval = NULL;
2196
2197     /* return values are never lvalues */
2198     if (lvalue) {
2199         asterror(ast_ctx(self), "not an l-value (function call)");
2200         return false;
2201     }
2202
2203     if (self->expression.outr) {
2204         *out = self->expression.outr;
2205         return true;
2206     }
2207
2208     cgen = self->func->expression.codegen;
2209     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2210         return false;
2211     if (!funval)
2212         return false;
2213
2214     params = NULL;
2215
2216     /* parameters */
2217     for (i = 0; i < vec_size(self->params); ++i)
2218     {
2219         ir_value *param;
2220         ast_expression *expr = self->params[i];
2221
2222         cgen = expr->expression.codegen;
2223         if (!(*cgen)(expr, func, false, &param))
2224             goto error;
2225         if (!param)
2226             goto error;
2227         vec_push(params, param);
2228     }
2229
2230     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2231     if (!callinstr)
2232         goto error;
2233
2234     for (i = 0; i < vec_size(params); ++i) {
2235         ir_call_param(callinstr, params[i]);
2236     }
2237
2238     *out = ir_call_value(callinstr);
2239     self->expression.outr = *out;
2240
2241     vec_free(params);
2242     return true;
2243 error:
2244     vec_free(params);
2245     return false;
2246 }