]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
10c177ed09b59629c24b8d2b2d11f520cb140aef
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* error handling */
39 static void asterror(lex_ctx ctx, const char *msg, ...)
40 {
41     va_list ap;
42     va_start(ap, msg);
43     con_cvprintmsg((void*)&ctx, LVL_ERROR, "error", msg, ap);
44     va_end(ap);
45 }
46
47 /* It must not be possible to get here. */
48 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
49 {
50     con_err("ast node missing destroy()\n");
51     abort();
52 }
53
54 /* Initialize main ast node aprts */
55 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
56 {
57     self->node.context = ctx;
58     self->node.destroy = &_ast_node_destroy;
59     self->node.keep    = false;
60     self->node.nodetype = nodetype;
61 }
62
63 /* General expression initialization */
64 static void ast_expression_init(ast_expression *self,
65                                 ast_expression_codegen *codegen)
66 {
67     self->expression.codegen  = codegen;
68     self->expression.vtype    = TYPE_VOID;
69     self->expression.next     = NULL;
70     self->expression.outl     = NULL;
71     self->expression.outr     = NULL;
72     self->expression.variadic = false;
73     MEM_VECTOR_INIT(&self->expression, params);
74 }
75
76 static void ast_expression_delete(ast_expression *self)
77 {
78     size_t i;
79     if (self->expression.next)
80         ast_delete(self->expression.next);
81     for (i = 0; i < self->expression.params_count; ++i) {
82         ast_delete(self->expression.params[i]);
83     }
84     MEM_VECTOR_CLEAR(&self->expression, params);
85 }
86
87 static void ast_expression_delete_full(ast_expression *self)
88 {
89     ast_expression_delete(self);
90     mem_d(self);
91 }
92
93 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
94
95 ast_value* ast_value_copy(const ast_value *self)
96 {
97     size_t i;
98     const ast_expression_common *fromex;
99     ast_expression_common *selfex;
100     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
101     if (self->expression.next) {
102         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
103         if (!cp->expression.next) {
104             ast_value_delete(cp);
105             return NULL;
106         }
107     }
108     fromex   = &self->expression;
109     selfex = &cp->expression;
110     selfex->variadic = fromex->variadic;
111     for (i = 0; i < fromex->params_count; ++i) {
112         ast_value *v = ast_value_copy(fromex->params[i]);
113         if (!v || !ast_expression_common_params_add(selfex, v)) {
114             ast_value_delete(cp);
115             return NULL;
116         }
117     }
118     return cp;
119 }
120
121 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
122 {
123     size_t i;
124     const ast_expression_common *fromex;
125     ast_expression_common *selfex;
126     self->expression.vtype = other->expression.vtype;
127     if (other->expression.next) {
128         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
129         if (!self->expression.next)
130             return false;
131     }
132     fromex   = &other->expression;
133     selfex = &self->expression;
134     selfex->variadic = fromex->variadic;
135     for (i = 0; i < fromex->params_count; ++i) {
136         ast_value *v = ast_value_copy(fromex->params[i]);
137         if (!v || !ast_expression_common_params_add(selfex, v))
138             return false;
139     }
140     return true;
141 }
142
143 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
144 {
145     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
146     ast_expression_init(self, NULL);
147     self->expression.codegen = NULL;
148     self->expression.next    = NULL;
149     self->expression.vtype   = vtype;
150     return self;
151 }
152
153 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
154 {
155     size_t i;
156     const ast_expression_common *fromex;
157     ast_expression_common *selfex;
158
159     if (!ex)
160         return NULL;
161     else
162     {
163         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
164         ast_expression_init(self, NULL);
165
166         fromex   = &ex->expression;
167         selfex = &self->expression;
168
169         /* This may never be codegen()d */
170         selfex->codegen = NULL;
171
172         selfex->vtype = fromex->vtype;
173         if (fromex->next)
174         {
175             selfex->next = ast_type_copy(ctx, fromex->next);
176             if (!selfex->next) {
177                 ast_expression_delete_full(self);
178                 return NULL;
179             }
180         }
181         else
182             selfex->next = NULL;
183
184         selfex->variadic = fromex->variadic;
185         for (i = 0; i < fromex->params_count; ++i) {
186             ast_value *v = ast_value_copy(fromex->params[i]);
187             if (!v || !ast_expression_common_params_add(selfex, v)) {
188                 ast_expression_delete_full(self);
189                 return NULL;
190             }
191         }
192
193         return self;
194     }
195 }
196
197 bool ast_compare_type(ast_expression *a, ast_expression *b)
198 {
199     if (a->expression.vtype != b->expression.vtype)
200         return false;
201     if (!a->expression.next != !b->expression.next)
202         return false;
203     if (a->expression.params_count != b->expression.params_count)
204         return false;
205     if (a->expression.variadic != b->expression.variadic)
206         return false;
207     if (a->expression.params_count) {
208         size_t i;
209         for (i = 0; i < a->expression.params_count; ++i) {
210             if (!ast_compare_type((ast_expression*)a->expression.params[i],
211                                   (ast_expression*)b->expression.params[i]))
212                 return false;
213         }
214     }
215     if (a->expression.next)
216         return ast_compare_type(a->expression.next, b->expression.next);
217     return true;
218 }
219
220 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
221 {
222     const char *typestr;
223     size_t typelen;
224     size_t i;
225
226     if (!e) {
227         if (pos + 6 >= bufsize)
228             goto full;
229         strcpy(buf + pos, "(null)");
230         return pos + 6;
231     }
232
233     if (pos + 1 >= bufsize)
234         goto full;
235
236     switch (e->expression.vtype) {
237         case TYPE_VARIANT:
238             strcpy(buf + pos, "(variant)");
239             return pos + 9;
240
241         case TYPE_FIELD:
242             buf[pos++] = '.';
243             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
244
245         case TYPE_POINTER:
246             if (pos + 3 >= bufsize)
247                 goto full;
248             buf[pos++] = '*';
249             buf[pos++] = '(';
250             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251             if (pos + 1 >= bufsize)
252                 goto full;
253             buf[pos++] = ')';
254             return pos;
255
256         case TYPE_FUNCTION:
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 2 >= bufsize)
259                 goto full;
260             if (e->expression.params_count == 0) {
261                 buf[pos++] = '(';
262                 buf[pos++] = ')';
263                 return pos;
264             }
265             buf[pos++] = '(';
266             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
267             for (i = 1; i < e->expression.params_count; ++i) {
268                 if (pos + 2 >= bufsize)
269                     goto full;
270                 buf[pos++] = ',';
271                 buf[pos++] = ' ';
272                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
273             }
274             if (pos + 1 >= bufsize)
275                 goto full;
276             buf[pos++] = ')';
277             return pos;
278
279         case TYPE_ARRAY:
280             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = '[';
284             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
285             if (pos + 1 >= bufsize)
286                 goto full;
287             buf[pos++] = ']';
288             return pos;
289
290         default:
291             typestr = type_name[e->expression.vtype];
292             typelen = strlen(typestr);
293             if (pos + typelen >= bufsize)
294                 goto full;
295             strcpy(buf + pos, typestr);
296             return pos + typelen;
297     }
298
299 full:
300     buf[bufsize-3] = '.';
301     buf[bufsize-2] = '.';
302     buf[bufsize-1] = '.';
303     return bufsize;
304 }
305
306 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
307 {
308     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
309     buf[pos] = 0;
310 }
311
312 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
313 {
314     ast_instantiate(ast_value, ctx, ast_value_delete);
315     ast_expression_init((ast_expression*)self,
316                         (ast_expression_codegen*)&ast_value_codegen);
317     self->expression.node.keep = true; /* keep */
318
319     self->name = name ? util_strdup(name) : NULL;
320     self->expression.vtype = t;
321     self->expression.next  = NULL;
322     self->isconst = false;
323     self->uses    = 0;
324     memset(&self->constval, 0, sizeof(self->constval));
325
326     self->ir_v           = NULL;
327     self->ir_values      = NULL;
328     self->ir_value_count = 0;
329
330     self->setter = NULL;
331     self->getter = NULL;
332
333     return self;
334 }
335
336 void ast_value_delete(ast_value* self)
337 {
338     if (self->name)
339         mem_d((void*)self->name);
340     if (self->isconst) {
341         switch (self->expression.vtype)
342         {
343         case TYPE_STRING:
344             mem_d((void*)self->constval.vstring);
345             break;
346         case TYPE_FUNCTION:
347             /* unlink us from the function node */
348             self->constval.vfunc->vtype = NULL;
349             break;
350         /* NOTE: delete function? currently collected in
351          * the parser structure
352          */
353         default:
354             break;
355         }
356     }
357     if (self->ir_values)
358         mem_d(self->ir_values);
359     ast_expression_delete((ast_expression*)self);
360     mem_d(self);
361 }
362
363 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
364 {
365     return ast_expression_common_params_add(&self->expression, p);
366 }
367
368 bool ast_value_set_name(ast_value *self, const char *name)
369 {
370     if (self->name)
371         mem_d((void*)self->name);
372     self->name = util_strdup(name);
373     return !!self->name;
374 }
375
376 ast_binary* ast_binary_new(lex_ctx ctx, int op,
377                            ast_expression* left, ast_expression* right)
378 {
379     ast_instantiate(ast_binary, ctx, ast_binary_delete);
380     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
381
382     self->op = op;
383     self->left = left;
384     self->right = right;
385
386     if (op >= INSTR_EQ_F && op <= INSTR_GT)
387         self->expression.vtype = TYPE_FLOAT;
388     else if (op == INSTR_AND || op == INSTR_OR ||
389              op == INSTR_BITAND || op == INSTR_BITOR)
390         self->expression.vtype = TYPE_FLOAT;
391     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
392         self->expression.vtype = TYPE_VECTOR;
393     else if (op == INSTR_MUL_V)
394         self->expression.vtype = TYPE_FLOAT;
395     else
396         self->expression.vtype = left->expression.vtype;
397
398     return self;
399 }
400
401 void ast_binary_delete(ast_binary *self)
402 {
403     ast_unref(self->left);
404     ast_unref(self->right);
405     ast_expression_delete((ast_expression*)self);
406     mem_d(self);
407 }
408
409 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
410                                ast_expression* left, ast_expression* right)
411 {
412     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
413     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
414
415     self->opstore = storop;
416     self->opbin   = op;
417     self->dest    = left;
418     self->source  = right;
419
420     self->expression.vtype = left->expression.vtype;
421     if (left->expression.next) {
422         self->expression.next = ast_type_copy(ctx, left);
423         if (!self->expression.next) {
424             ast_delete(self);
425             return NULL;
426         }
427     }
428     else
429         self->expression.next = NULL;
430
431     return self;
432 }
433
434 void ast_binstore_delete(ast_binstore *self)
435 {
436     ast_unref(self->dest);
437     ast_unref(self->source);
438     ast_expression_delete((ast_expression*)self);
439     mem_d(self);
440 }
441
442 ast_unary* ast_unary_new(lex_ctx ctx, int op,
443                          ast_expression *expr)
444 {
445     ast_instantiate(ast_unary, ctx, ast_unary_delete);
446     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
447
448     self->op = op;
449     self->operand = expr;
450
451     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
452         self->expression.vtype = TYPE_FLOAT;
453     } else
454         asterror(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
455
456     return self;
457 }
458
459 void ast_unary_delete(ast_unary *self)
460 {
461     ast_unref(self->operand);
462     ast_expression_delete((ast_expression*)self);
463     mem_d(self);
464 }
465
466 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
467 {
468     ast_instantiate(ast_return, ctx, ast_return_delete);
469     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
470
471     self->operand = expr;
472
473     return self;
474 }
475
476 void ast_return_delete(ast_return *self)
477 {
478     if (self->operand)
479         ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
485 {
486     if (field->expression.vtype != TYPE_FIELD) {
487         asterror(ctx, "ast_entfield_new with expression not of type field");
488         return NULL;
489     }
490     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
491 }
492
493 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
494 {
495     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
496
497     if (!outtype) {
498         mem_d(self);
499         /* Error: field has no type... */
500         return NULL;
501     }
502
503     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
504
505     self->entity = entity;
506     self->field  = field;
507
508     if (!ast_type_adopt(self, outtype)) {
509         ast_entfield_delete(self);
510         return NULL;
511     }
512
513     return self;
514 }
515
516 void ast_entfield_delete(ast_entfield *self)
517 {
518     ast_unref(self->entity);
519     ast_unref(self->field);
520     ast_expression_delete((ast_expression*)self);
521     mem_d(self);
522 }
523
524 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
525 {
526     ast_instantiate(ast_member, ctx, ast_member_delete);
527     if (field >= 3) {
528         mem_d(self);
529         return NULL;
530     }
531
532     if (owner->expression.vtype != TYPE_VECTOR &&
533         owner->expression.vtype != TYPE_FIELD) {
534         asterror(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
535         mem_d(self);
536         return NULL;
537     }
538
539     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
540     self->expression.node.keep = true; /* keep */
541
542     if (owner->expression.vtype == TYPE_VECTOR) {
543         self->expression.vtype = TYPE_FLOAT;
544         self->expression.next  = NULL;
545     } else {
546         self->expression.vtype = TYPE_FIELD;
547         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
548     }
549
550     self->owner = owner;
551     self->field = field;
552
553     return self;
554 }
555
556 void ast_member_delete(ast_member *self)
557 {
558     /* The owner is always an ast_value, which has .keep=true,
559      * also: ast_members are usually deleted after the owner, thus
560      * this will cause invalid access
561     ast_unref(self->owner);
562      * once we allow (expression).x to access a vector-member, we need
563      * to change this: preferably by creating an alternate ast node for this
564      * purpose that is not garbage-collected.
565     */
566     ast_expression_delete((ast_expression*)self);
567     mem_d(self);
568 }
569
570 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
571 {
572     ast_expression *outtype;
573     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
574
575     outtype = array->expression.next;
576     if (!outtype) {
577         mem_d(self);
578         /* Error: field has no type... */
579         return NULL;
580     }
581
582     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
583
584     self->array = array;
585     self->index = index;
586
587     if (!ast_type_adopt(self, outtype)) {
588         ast_array_index_delete(self);
589         return NULL;
590     }
591     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
592         if (self->expression.vtype != TYPE_ARRAY) {
593             asterror(ast_ctx(self), "array_index node on type");
594             ast_array_index_delete(self);
595             return NULL;
596         }
597         self->array = outtype;
598         self->expression.vtype = TYPE_FIELD;
599     }
600
601     return self;
602 }
603
604 void ast_array_index_delete(ast_array_index *self)
605 {
606     ast_unref(self->array);
607     ast_unref(self->index);
608     ast_expression_delete((ast_expression*)self);
609     mem_d(self);
610 }
611
612 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
613 {
614     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
615     if (!ontrue && !onfalse) {
616         /* because it is invalid */
617         mem_d(self);
618         return NULL;
619     }
620     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
621
622     self->cond     = cond;
623     self->on_true  = ontrue;
624     self->on_false = onfalse;
625
626     return self;
627 }
628
629 void ast_ifthen_delete(ast_ifthen *self)
630 {
631     ast_unref(self->cond);
632     if (self->on_true)
633         ast_unref(self->on_true);
634     if (self->on_false)
635         ast_unref(self->on_false);
636     ast_expression_delete((ast_expression*)self);
637     mem_d(self);
638 }
639
640 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
641 {
642     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
643     /* This time NEITHER must be NULL */
644     if (!ontrue || !onfalse) {
645         mem_d(self);
646         return NULL;
647     }
648     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
649
650     self->cond     = cond;
651     self->on_true  = ontrue;
652     self->on_false = onfalse;
653     self->phi_out  = NULL;
654
655     return self;
656 }
657
658 void ast_ternary_delete(ast_ternary *self)
659 {
660     ast_unref(self->cond);
661     ast_unref(self->on_true);
662     ast_unref(self->on_false);
663     ast_expression_delete((ast_expression*)self);
664     mem_d(self);
665 }
666
667 ast_loop* ast_loop_new(lex_ctx ctx,
668                        ast_expression *initexpr,
669                        ast_expression *precond,
670                        ast_expression *postcond,
671                        ast_expression *increment,
672                        ast_expression *body)
673 {
674     ast_instantiate(ast_loop, ctx, ast_loop_delete);
675     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
676
677     self->initexpr  = initexpr;
678     self->precond   = precond;
679     self->postcond  = postcond;
680     self->increment = increment;
681     self->body      = body;
682
683     return self;
684 }
685
686 void ast_loop_delete(ast_loop *self)
687 {
688     if (self->initexpr)
689         ast_unref(self->initexpr);
690     if (self->precond)
691         ast_unref(self->precond);
692     if (self->postcond)
693         ast_unref(self->postcond);
694     if (self->increment)
695         ast_unref(self->increment);
696     if (self->body)
697         ast_unref(self->body);
698     ast_expression_delete((ast_expression*)self);
699     mem_d(self);
700 }
701
702 ast_call* ast_call_new(lex_ctx ctx,
703                        ast_expression *funcexpr)
704 {
705     ast_instantiate(ast_call, ctx, ast_call_delete);
706     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
707
708     MEM_VECTOR_INIT(self, params);
709
710     self->func = funcexpr;
711
712     self->expression.vtype = funcexpr->expression.next->expression.vtype;
713     if (funcexpr->expression.next->expression.next)
714         self->expression.next = ast_type_copy(ctx, funcexpr->expression.next->expression.next);
715
716     return self;
717 }
718 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
719
720 void ast_call_delete(ast_call *self)
721 {
722     size_t i;
723     for (i = 0; i < self->params_count; ++i)
724         ast_unref(self->params[i]);
725     MEM_VECTOR_CLEAR(self, params);
726
727     if (self->func)
728         ast_unref(self->func);
729
730     ast_expression_delete((ast_expression*)self);
731     mem_d(self);
732 }
733
734 bool ast_call_check_types(ast_call *self)
735 {
736     size_t i;
737     bool   retval = true;
738     const  ast_expression *func = self->func;
739     size_t count = self->params_count;
740     if (count > func->expression.params_count)
741         count = func->expression.params_count;
742
743     for (i = 0; i < count; ++i) {
744         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
745             asterror(ast_ctx(self), "invalid type for parameter %u in function call",
746                      (unsigned int)(i+1));
747             /* we don't immediately return */
748             retval = false;
749         }
750     }
751     return retval;
752 }
753
754 ast_store* ast_store_new(lex_ctx ctx, int op,
755                          ast_expression *dest, ast_expression *source)
756 {
757     ast_instantiate(ast_store, ctx, ast_store_delete);
758     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
759
760     self->op = op;
761     self->dest = dest;
762     self->source = source;
763
764     self->expression.vtype = dest->expression.vtype;
765     if (dest->expression.next) {
766         self->expression.next = ast_type_copy(ctx, dest);
767         if (!self->expression.next) {
768             ast_delete(self);
769             return NULL;
770         }
771     }
772     else
773         self->expression.next = NULL;
774
775     return self;
776 }
777
778 void ast_store_delete(ast_store *self)
779 {
780     ast_unref(self->dest);
781     ast_unref(self->source);
782     ast_expression_delete((ast_expression*)self);
783     mem_d(self);
784 }
785
786 ast_block* ast_block_new(lex_ctx ctx)
787 {
788     ast_instantiate(ast_block, ctx, ast_block_delete);
789     ast_expression_init((ast_expression*)self,
790                         (ast_expression_codegen*)&ast_block_codegen);
791
792     MEM_VECTOR_INIT(self, locals);
793     MEM_VECTOR_INIT(self, exprs);
794     MEM_VECTOR_INIT(self, collect);
795
796     return self;
797 }
798 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
799 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
800 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, collect)
801
802 bool ast_block_collect(ast_block *self, ast_expression *expr)
803 {
804     if (!ast_block_collect_add(self, expr))
805         return false;
806     expr->expression.node.keep = true;
807     return true;
808 }
809
810 void ast_block_delete(ast_block *self)
811 {
812     size_t i;
813     for (i = 0; i < self->exprs_count; ++i)
814         ast_unref(self->exprs[i]);
815     MEM_VECTOR_CLEAR(self, exprs);
816     for (i = 0; i < self->locals_count; ++i)
817         ast_delete(self->locals[i]);
818     MEM_VECTOR_CLEAR(self, locals);
819     for (i = 0; i < self->collect_count; ++i)
820         ast_delete(self->collect[i]);
821     MEM_VECTOR_CLEAR(self, collect);
822     ast_expression_delete((ast_expression*)self);
823     mem_d(self);
824 }
825
826 bool ast_block_set_type(ast_block *self, ast_expression *from)
827 {
828     if (self->expression.next)
829         ast_delete(self->expression.next);
830     self->expression.vtype = from->expression.vtype;
831     if (from->expression.next) {
832         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
833         if (!self->expression.next)
834             return false;
835     }
836     else
837         self->expression.next = NULL;
838     return true;
839 }
840
841 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
842 {
843     ast_instantiate(ast_function, ctx, ast_function_delete);
844
845     if (!vtype ||
846         vtype->isconst ||
847         vtype->expression.vtype != TYPE_FUNCTION)
848     {
849         mem_d(self);
850         return NULL;
851     }
852
853     self->vtype = vtype;
854     self->name = name ? util_strdup(name) : NULL;
855     MEM_VECTOR_INIT(self, blocks);
856
857     self->labelcount = 0;
858     self->builtin = 0;
859
860     self->ir_func = NULL;
861     self->curblock = NULL;
862
863     self->breakblock    = NULL;
864     self->continueblock = NULL;
865
866     vtype->isconst = true;
867     vtype->constval.vfunc = self;
868
869     return self;
870 }
871
872 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
873
874 void ast_function_delete(ast_function *self)
875 {
876     size_t i;
877     if (self->name)
878         mem_d((void*)self->name);
879     if (self->vtype) {
880         /* ast_value_delete(self->vtype); */
881         self->vtype->isconst = false;
882         self->vtype->constval.vfunc = NULL;
883         /* We use unref - if it was stored in a global table it is supposed
884          * to be deleted from *there*
885          */
886         ast_unref(self->vtype);
887     }
888     for (i = 0; i < self->blocks_count; ++i)
889         ast_delete(self->blocks[i]);
890     MEM_VECTOR_CLEAR(self, blocks);
891     mem_d(self);
892 }
893
894 const char* ast_function_label(ast_function *self, const char *prefix)
895 {
896     size_t id;
897     size_t len;
898     char  *from;
899
900     if (!opts_dump)
901         return NULL;
902
903     id  = (self->labelcount++);
904     len = strlen(prefix);
905
906     from = self->labelbuf + sizeof(self->labelbuf)-1;
907     *from-- = 0;
908     do {
909         unsigned int digit = id % 10;
910         *from = digit + '0';
911         id /= 10;
912     } while (id);
913     memcpy(from - len, prefix, len);
914     return from - len;
915 }
916
917 /*********************************************************************/
918 /* AST codegen part
919  * by convention you must never pass NULL to the 'ir_value **out'
920  * parameter. If you really don't care about the output, pass a dummy.
921  * But I can't imagine a pituation where the output is truly unnecessary.
922  */
923
924 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
925 {
926     /* NOTE: This is the codegen for a variable used in an expression.
927      * It is not the codegen to generate the value. For this purpose,
928      * ast_local_codegen and ast_global_codegen are to be used before this
929      * is executed. ast_function_codegen should take care of its locals,
930      * and the ast-user should take care of ast_global_codegen to be used
931      * on all the globals.
932      */
933     if (!self->ir_v) {
934         char typename[1024];
935         ast_type_to_string((ast_expression*)self, typename, sizeof(typename));
936         asterror(ast_ctx(self), "ast_value used before generated %s %s", typename, self->name);
937         return false;
938     }
939     *out = self->ir_v;
940     return true;
941 }
942
943 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
944 {
945     ir_value *v = NULL;
946
947     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
948     {
949         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
950         if (!func)
951             return false;
952         func->context = ast_ctx(self);
953         func->value->context = ast_ctx(self);
954
955         self->constval.vfunc->ir_func = func;
956         self->ir_v = func->value;
957         /* The function is filled later on ast_function_codegen... */
958         return true;
959     }
960
961     if (isfield && self->expression.vtype == TYPE_FIELD) {
962         ast_expression *fieldtype = self->expression.next;
963
964         if (self->isconst) {
965             asterror(ast_ctx(self), "TODO: constant field pointers with value");
966             goto error;
967         }
968
969         if (fieldtype->expression.vtype == TYPE_ARRAY) {
970             size_t ai;
971             char   *name;
972             size_t  namelen;
973
974             ast_expression_common *elemtype;
975             int                    vtype;
976             ast_value             *array = (ast_value*)fieldtype;
977
978             if (!ast_istype(fieldtype, ast_value)) {
979                 asterror(ast_ctx(self), "internal error: ast_value required");
980                 return false;
981             }
982
983             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
984             if (!array->expression.count || array->expression.count > opts_max_array_size)
985                 asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
986
987             elemtype = &array->expression.next->expression;
988             vtype = elemtype->vtype;
989
990             v = ir_builder_create_field(ir, self->name, vtype);
991             if (!v) {
992                 asterror(ast_ctx(self), "ir_builder_create_global failed");
993                 return false;
994             }
995             if (vtype == TYPE_FIELD)
996                 v->fieldtype = elemtype->next->expression.vtype;
997             v->context = ast_ctx(self);
998             array->ir_v = self->ir_v = v;
999
1000             namelen = strlen(self->name);
1001             name    = (char*)mem_a(namelen + 16);
1002             strcpy(name, self->name);
1003
1004             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1005             array->ir_values[0] = v;
1006             for (ai = 1; ai < array->expression.count; ++ai) {
1007                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1008                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1009                 if (!array->ir_values[ai]) {
1010                     mem_d(name);
1011                     asterror(ast_ctx(self), "ir_builder_create_global failed");
1012                     return false;
1013                 }
1014                 if (vtype == TYPE_FIELD)
1015                     array->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1016                 array->ir_values[ai]->context = ast_ctx(self);
1017             }
1018             mem_d(name);
1019         }
1020         else
1021         {
1022             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1023             if (!v)
1024                 return false;
1025             v->context = ast_ctx(self);
1026             self->ir_v = v;
1027         }
1028         return true;
1029     }
1030
1031     if (self->expression.vtype == TYPE_ARRAY) {
1032         size_t ai;
1033         char   *name;
1034         size_t  namelen;
1035
1036         ast_expression_common *elemtype = &self->expression.next->expression;
1037         int vtype = elemtype->vtype;
1038
1039         /* same as with field arrays */
1040         if (!self->expression.count || self->expression.count > opts_max_array_size)
1041             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1042
1043         v = ir_builder_create_global(ir, self->name, vtype);
1044         if (!v) {
1045             asterror(ast_ctx(self), "ir_builder_create_global failed");
1046             return false;
1047         }
1048         if (vtype == TYPE_FIELD)
1049             v->fieldtype = elemtype->next->expression.vtype;
1050         v->context = ast_ctx(self);
1051
1052         namelen = strlen(self->name);
1053         name    = (char*)mem_a(namelen + 16);
1054         strcpy(name, self->name);
1055
1056         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1057         self->ir_values[0] = v;
1058         for (ai = 1; ai < self->expression.count; ++ai) {
1059             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1060             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1061             if (!self->ir_values[ai]) {
1062                 mem_d(name);
1063                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1064                 return false;
1065             }
1066             if (vtype == TYPE_FIELD)
1067                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1068             self->ir_values[ai]->context = ast_ctx(self);
1069         }
1070         mem_d(name);
1071     }
1072     else
1073     {
1074         /* Arrays don't do this since there's no "array" value which spans across the
1075          * whole thing.
1076          */
1077         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1078         if (!v) {
1079             asterror(ast_ctx(self), "ir_builder_create_global failed");
1080             return false;
1081         }
1082         if (self->expression.vtype == TYPE_FIELD)
1083             v->fieldtype = self->expression.next->expression.vtype;
1084         v->context = ast_ctx(self);
1085     }
1086
1087     if (self->isconst) {
1088         switch (self->expression.vtype)
1089         {
1090             case TYPE_FLOAT:
1091                 if (!ir_value_set_float(v, self->constval.vfloat))
1092                     goto error;
1093                 break;
1094             case TYPE_VECTOR:
1095                 if (!ir_value_set_vector(v, self->constval.vvec))
1096                     goto error;
1097                 break;
1098             case TYPE_STRING:
1099                 if (!ir_value_set_string(v, self->constval.vstring))
1100                     goto error;
1101                 break;
1102             case TYPE_ARRAY:
1103                 asterror(ast_ctx(self), "TODO: global constant array");
1104                 break;
1105             case TYPE_FUNCTION:
1106                 asterror(ast_ctx(self), "global of type function not properly generated");
1107                 goto error;
1108                 /* Cannot generate an IR value for a function,
1109                  * need a pointer pointing to a function rather.
1110                  */
1111             default:
1112                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1113                 break;
1114         }
1115     }
1116
1117     /* link us to the ir_value */
1118     self->ir_v = v;
1119     return true;
1120
1121 error: /* clean up */
1122     ir_value_delete(v);
1123     return false;
1124 }
1125
1126 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1127 {
1128     ir_value *v = NULL;
1129     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
1130     {
1131         /* Do we allow local functions? I think not...
1132          * this is NOT a function pointer atm.
1133          */
1134         return false;
1135     }
1136
1137     if (self->expression.vtype == TYPE_ARRAY) {
1138         size_t ai;
1139         char   *name;
1140         size_t  namelen;
1141
1142         ast_expression_common *elemtype = &self->expression.next->expression;
1143         int vtype = elemtype->vtype;
1144
1145         if (param) {
1146             asterror(ast_ctx(self), "array-parameters are not supported");
1147             return false;
1148         }
1149
1150         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1151         if (!self->expression.count || self->expression.count > opts_max_array_size) {
1152             asterror(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1153         }
1154
1155         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1156         if (!self->ir_values) {
1157             asterror(ast_ctx(self), "failed to allocate array values");
1158             return false;
1159         }
1160
1161         v = ir_function_create_local(func, self->name, vtype, param);
1162         if (!v) {
1163             asterror(ast_ctx(self), "ir_function_create_local failed");
1164             return false;
1165         }
1166         if (vtype == TYPE_FIELD)
1167             v->fieldtype = elemtype->next->expression.vtype;
1168         v->context = ast_ctx(self);
1169
1170         namelen = strlen(self->name);
1171         name    = (char*)mem_a(namelen + 16);
1172         strcpy(name, self->name);
1173
1174         self->ir_values[0] = v;
1175         for (ai = 1; ai < self->expression.count; ++ai) {
1176             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1177             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1178             if (!self->ir_values[ai]) {
1179                 asterror(ast_ctx(self), "ir_builder_create_global failed");
1180                 return false;
1181             }
1182             if (vtype == TYPE_FIELD)
1183                 self->ir_values[ai]->fieldtype = elemtype->next->expression.vtype;
1184             self->ir_values[ai]->context = ast_ctx(self);
1185         }
1186     }
1187     else
1188     {
1189         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1190         if (!v)
1191             return false;
1192         if (self->expression.vtype == TYPE_FIELD)
1193             v->fieldtype = self->expression.next->expression.vtype;
1194         v->context = ast_ctx(self);
1195     }
1196
1197     /* A constant local... hmmm...
1198      * I suppose the IR will have to deal with this
1199      */
1200     if (self->isconst) {
1201         switch (self->expression.vtype)
1202         {
1203             case TYPE_FLOAT:
1204                 if (!ir_value_set_float(v, self->constval.vfloat))
1205                     goto error;
1206                 break;
1207             case TYPE_VECTOR:
1208                 if (!ir_value_set_vector(v, self->constval.vvec))
1209                     goto error;
1210                 break;
1211             case TYPE_STRING:
1212                 if (!ir_value_set_string(v, self->constval.vstring))
1213                     goto error;
1214                 break;
1215             default:
1216                 asterror(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1217                 break;
1218         }
1219     }
1220
1221     /* link us to the ir_value */
1222     self->ir_v = v;
1223
1224     if (self->setter) {
1225         if (!ast_global_codegen(self->setter, func->owner, false) ||
1226             !ast_function_codegen(self->setter->constval.vfunc, func->owner) ||
1227             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1228             return false;
1229     }
1230     if (self->getter) {
1231         if (!ast_global_codegen(self->getter, func->owner, false) ||
1232             !ast_function_codegen(self->getter->constval.vfunc, func->owner) ||
1233             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1234             return false;
1235     }
1236     return true;
1237
1238 error: /* clean up */
1239     ir_value_delete(v);
1240     return false;
1241 }
1242
1243 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1244 {
1245     ir_function *irf;
1246     ir_value    *dummy;
1247     ast_expression_common *ec;
1248     size_t    i;
1249
1250     irf = self->ir_func;
1251     if (!irf) {
1252         asterror(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1253         return false;
1254     }
1255
1256     /* fill the parameter list */
1257     ec = &self->vtype->expression;
1258     for (i = 0; i < ec->params_count; ++i)
1259     {
1260         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
1261             return false;
1262         if (!self->builtin) {
1263             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1264                 return false;
1265         }
1266     }
1267
1268     if (self->builtin) {
1269         irf->builtin = self->builtin;
1270         return true;
1271     }
1272
1273     if (!self->blocks_count) {
1274         asterror(ast_ctx(self), "function `%s` has no body", self->name);
1275         return false;
1276     }
1277
1278     self->curblock = ir_function_create_block(irf, "entry");
1279     if (!self->curblock) {
1280         asterror(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1281         return false;
1282     }
1283
1284     for (i = 0; i < self->blocks_count; ++i) {
1285         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1286         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1287             return false;
1288     }
1289
1290     /* TODO: check return types */
1291     if (!self->curblock->is_return)
1292     {
1293         return ir_block_create_return(self->curblock, NULL);
1294         /* From now on the parser has to handle this situation */
1295 #if 0
1296         if (!self->vtype->expression.next ||
1297             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1298         {
1299             return ir_block_create_return(self->curblock, NULL);
1300         }
1301         else
1302         {
1303             /* error("missing return"); */
1304             asterror(ast_ctx(self), "function `%s` missing return value", self->name);
1305             return false;
1306         }
1307 #endif
1308     }
1309     return true;
1310 }
1311
1312 /* Note, you will not see ast_block_codegen generate ir_blocks.
1313  * To the AST and the IR, blocks are 2 different things.
1314  * In the AST it represents a block of code, usually enclosed in
1315  * curly braces {...}.
1316  * While in the IR it represents a block in terms of control-flow.
1317  */
1318 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1319 {
1320     size_t i;
1321
1322     /* We don't use this
1323      * Note: an ast-representation using the comma-operator
1324      * of the form: (a, b, c) = x should not assign to c...
1325      */
1326     if (lvalue) {
1327         asterror(ast_ctx(self), "not an l-value (code-block)");
1328         return false;
1329     }
1330
1331     if (self->expression.outr) {
1332         *out = self->expression.outr;
1333         return true;
1334     }
1335
1336     /* output is NULL at first, we'll have each expression
1337      * assign to out output, thus, a comma-operator represention
1338      * using an ast_block will return the last generated value,
1339      * so: (b, c) + a  executed both b and c, and returns c,
1340      * which is then added to a.
1341      */
1342     *out = NULL;
1343
1344     /* generate locals */
1345     for (i = 0; i < self->locals_count; ++i)
1346     {
1347         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1348             if (opts_debug)
1349                 asterror(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1350             return false;
1351         }
1352     }
1353
1354     for (i = 0; i < self->exprs_count; ++i)
1355     {
1356         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
1357         if (!(*gen)(self->exprs[i], func, false, out))
1358             return false;
1359     }
1360
1361     self->expression.outr = *out;
1362
1363     return true;
1364 }
1365
1366 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1367 {
1368     ast_expression_codegen *cgen;
1369     ir_value *left, *right;
1370
1371     ast_value       *arr;
1372     ast_value       *idx;
1373     ast_array_index *ai = NULL;
1374
1375     if (lvalue && self->expression.outl) {
1376         *out = self->expression.outl;
1377         return true;
1378     }
1379
1380     if (!lvalue && self->expression.outr) {
1381         *out = self->expression.outr;
1382         return true;
1383     }
1384
1385     if (ast_istype(self->dest, ast_array_index))
1386     {
1387
1388         ai = (ast_array_index*)self->dest;
1389         idx = (ast_value*)ai->index;
1390
1391         if (ast_istype(ai->index, ast_value) && idx->isconst)
1392             ai = NULL;
1393     }
1394
1395     if (ai) {
1396         /* we need to call the setter */
1397         ir_value  *iridx, *funval;
1398         ir_instr  *call;
1399
1400         if (lvalue) {
1401             asterror(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1402             return false;
1403         }
1404
1405         arr = (ast_value*)ai->array;
1406         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1407             asterror(ast_ctx(self), "value has no setter (%s)", arr->name);
1408             return false;
1409         }
1410
1411         cgen = idx->expression.codegen;
1412         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1413             return false;
1414
1415         cgen = arr->setter->expression.codegen;
1416         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1417             return false;
1418
1419         cgen = self->source->expression.codegen;
1420         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1421             return false;
1422
1423         call = ir_block_create_call(func->curblock, ast_function_label(func, "store"), funval);
1424         if (!call)
1425             return false;
1426         if (!ir_call_param(call, iridx))
1427             return false;
1428         if (!ir_call_param(call, right))
1429             return false;
1430         self->expression.outr = right;
1431     }
1432     else
1433     {
1434         /* regular code */
1435
1436         cgen = self->dest->expression.codegen;
1437         /* lvalue! */
1438         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1439             return false;
1440         self->expression.outl = left;
1441
1442         cgen = self->source->expression.codegen;
1443         /* rvalue! */
1444         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1445             return false;
1446
1447         if (!ir_block_create_store_op(func->curblock, self->op, left, right))
1448             return false;
1449         self->expression.outr = right;
1450     }
1451
1452     /* Theoretically, an assinment returns its left side as an
1453      * lvalue, if we don't need an lvalue though, we return
1454      * the right side as an rvalue, otherwise we have to
1455      * somehow know whether or not we need to dereference the pointer
1456      * on the left side - that is: OP_LOAD if it was an address.
1457      * Also: in original QC we cannot OP_LOADP *anyway*.
1458      */
1459     *out = (lvalue ? left : right);
1460
1461     return true;
1462 }
1463
1464 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1465 {
1466     ast_expression_codegen *cgen;
1467     ir_value *left, *right;
1468
1469     /* A binary operation cannot yield an l-value */
1470     if (lvalue) {
1471         asterror(ast_ctx(self), "not an l-value (binop)");
1472         return false;
1473     }
1474
1475     if (self->expression.outr) {
1476         *out = self->expression.outr;
1477         return true;
1478     }
1479
1480     cgen = self->left->expression.codegen;
1481     /* lvalue! */
1482     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1483         return false;
1484
1485     cgen = self->right->expression.codegen;
1486     /* rvalue! */
1487     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1488         return false;
1489
1490     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
1491                                  self->op, left, right);
1492     if (!*out)
1493         return false;
1494     self->expression.outr = *out;
1495
1496     return true;
1497 }
1498
1499 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1500 {
1501     ast_expression_codegen *cgen;
1502     ir_value *leftl, *leftr, *right, *bin;
1503
1504     if (lvalue && self->expression.outl) {
1505         *out = self->expression.outl;
1506         return true;
1507     }
1508
1509     if (!lvalue && self->expression.outr) {
1510         *out = self->expression.outr;
1511         return true;
1512     }
1513
1514     /* for a binstore we need both an lvalue and an rvalue for the left side */
1515     /* rvalue of destination! */
1516     cgen = self->dest->expression.codegen;
1517     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1518         return false;
1519
1520     /* source as rvalue only */
1521     cgen = self->source->expression.codegen;
1522     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1523         return false;
1524
1525     /* now the binary */
1526     bin = ir_block_create_binop(func->curblock, ast_function_label(func, "binst"),
1527                                 self->opbin, leftr, right);
1528     self->expression.outr = bin;
1529
1530     /* now store them */
1531     cgen = self->dest->expression.codegen;
1532     /* lvalue of destination */
1533     if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1534         return false;
1535     self->expression.outl = leftl;
1536
1537     if (!ir_block_create_store_op(func->curblock, self->opstore, leftl, bin))
1538         return false;
1539     self->expression.outr = bin;
1540
1541     /* Theoretically, an assinment returns its left side as an
1542      * lvalue, if we don't need an lvalue though, we return
1543      * the right side as an rvalue, otherwise we have to
1544      * somehow know whether or not we need to dereference the pointer
1545      * on the left side - that is: OP_LOAD if it was an address.
1546      * Also: in original QC we cannot OP_LOADP *anyway*.
1547      */
1548     *out = (lvalue ? leftl : bin);
1549
1550     return true;
1551 }
1552
1553 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1554 {
1555     ast_expression_codegen *cgen;
1556     ir_value *operand;
1557
1558     /* An unary operation cannot yield an l-value */
1559     if (lvalue) {
1560         asterror(ast_ctx(self), "not an l-value (binop)");
1561         return false;
1562     }
1563
1564     if (self->expression.outr) {
1565         *out = self->expression.outr;
1566         return true;
1567     }
1568
1569     cgen = self->operand->expression.codegen;
1570     /* lvalue! */
1571     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1572         return false;
1573
1574     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
1575                                  self->op, operand);
1576     if (!*out)
1577         return false;
1578     self->expression.outr = *out;
1579
1580     return true;
1581 }
1582
1583 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1584 {
1585     ast_expression_codegen *cgen;
1586     ir_value *operand;
1587
1588     /* In the context of a return operation, we don't actually return
1589      * anything...
1590      */
1591     if (lvalue) {
1592         asterror(ast_ctx(self), "return-expression is not an l-value");
1593         return false;
1594     }
1595
1596     if (self->expression.outr) {
1597         asterror(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1598         return false;
1599     }
1600     self->expression.outr = (ir_value*)1;
1601
1602     if (self->operand) {
1603         cgen = self->operand->expression.codegen;
1604         /* lvalue! */
1605         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1606             return false;
1607
1608         if (!ir_block_create_return(func->curblock, operand))
1609             return false;
1610     } else {
1611         if (!ir_block_create_return(func->curblock, NULL))
1612             return false;
1613     }
1614
1615     return true;
1616 }
1617
1618 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1619 {
1620     ast_expression_codegen *cgen;
1621     ir_value *ent, *field;
1622
1623     /* This function needs to take the 'lvalue' flag into account!
1624      * As lvalue we provide a field-pointer, as rvalue we provide the
1625      * value in a temp.
1626      */
1627
1628     if (lvalue && self->expression.outl) {
1629         *out = self->expression.outl;
1630         return true;
1631     }
1632
1633     if (!lvalue && self->expression.outr) {
1634         *out = self->expression.outr;
1635         return true;
1636     }
1637
1638     cgen = self->entity->expression.codegen;
1639     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
1640         return false;
1641
1642     cgen = self->field->expression.codegen;
1643     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
1644         return false;
1645
1646     if (lvalue) {
1647         /* address! */
1648         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
1649                                             ent, field);
1650     } else {
1651         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
1652                                              ent, field, self->expression.vtype);
1653     }
1654     if (!*out) {
1655         asterror(ast_ctx(self), "failed to create %s instruction (output type %s)",
1656                  (lvalue ? "ADDRESS" : "FIELD"),
1657                  type_name[self->expression.vtype]);
1658         return false;
1659     }
1660
1661     if (lvalue)
1662         self->expression.outl = *out;
1663     else
1664         self->expression.outr = *out;
1665
1666     /* Hm that should be it... */
1667     return true;
1668 }
1669
1670 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
1671 {
1672     ast_expression_codegen *cgen;
1673     ir_value *vec;
1674
1675     /* in QC this is always an lvalue */
1676     (void)lvalue;
1677     if (self->expression.outl) {
1678         *out = self->expression.outl;
1679         return true;
1680     }
1681
1682     cgen = self->owner->expression.codegen;
1683     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
1684         return false;
1685
1686     if (vec->vtype != TYPE_VECTOR &&
1687         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
1688     {
1689         return false;
1690     }
1691
1692     *out = ir_value_vector_member(vec, self->field);
1693     self->expression.outl = *out;
1694
1695     return (*out != NULL);
1696 }
1697
1698 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
1699 {
1700     ast_value *arr;
1701     ast_value *idx;
1702
1703     if (!lvalue && self->expression.outr) {
1704         *out = self->expression.outr;
1705     }
1706     if (lvalue && self->expression.outl) {
1707         *out = self->expression.outl;
1708     }
1709
1710     if (!ast_istype(self->array, ast_value)) {
1711         asterror(ast_ctx(self), "array indexing this way is not supported");
1712         /* note this would actually be pointer indexing because the left side is
1713          * not an actual array but (hopefully) an indexable expression.
1714          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
1715          * support this path will be filled.
1716          */
1717         return false;
1718     }
1719
1720     arr = (ast_value*)self->array;
1721     idx = (ast_value*)self->index;
1722
1723     if (!ast_istype(self->index, ast_value) || !idx->isconst) {
1724         /* Time to use accessor functions */
1725         ast_expression_codegen *cgen;
1726         ir_value               *iridx, *funval;
1727         ir_instr               *call;
1728
1729         if (lvalue) {
1730             asterror(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
1731             return false;
1732         }
1733
1734         if (!arr->getter) {
1735             asterror(ast_ctx(self), "value has no getter, don't know how to index it");
1736             return false;
1737         }
1738
1739         cgen = self->index->expression.codegen;
1740         if (!(*cgen)((ast_expression*)(self->index), func, true, &iridx))
1741             return false;
1742
1743         cgen = arr->getter->expression.codegen;
1744         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
1745             return false;
1746
1747         call = ir_block_create_call(func->curblock, ast_function_label(func, "fetch"), funval);
1748         if (!call)
1749             return false;
1750         if (!ir_call_param(call, iridx))
1751             return false;
1752
1753         *out = ir_call_value(call);
1754         self->expression.outr = *out;
1755         return true;
1756     }
1757
1758     if (idx->expression.vtype == TYPE_FLOAT)
1759         *out = arr->ir_values[(int)idx->constval.vfloat];
1760     else if (idx->expression.vtype == TYPE_INTEGER)
1761         *out = arr->ir_values[idx->constval.vint];
1762     else {
1763         asterror(ast_ctx(self), "array indexing here needs an integer constant");
1764         return false;
1765     }
1766     return true;
1767 }
1768
1769 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
1770 {
1771     ast_expression_codegen *cgen;
1772
1773     ir_value *condval;
1774     ir_value *dummy;
1775
1776     ir_block *cond = func->curblock;
1777     ir_block *ontrue;
1778     ir_block *onfalse;
1779     ir_block *ontrue_endblock = NULL;
1780     ir_block *onfalse_endblock = NULL;
1781     ir_block *merge;
1782
1783     /* We don't output any value, thus also don't care about r/lvalue */
1784     (void)out;
1785     (void)lvalue;
1786
1787     if (self->expression.outr) {
1788         asterror(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
1789         return false;
1790     }
1791     self->expression.outr = (ir_value*)1;
1792
1793     /* generate the condition */
1794     func->curblock = cond;
1795     cgen = self->cond->expression.codegen;
1796     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1797         return false;
1798
1799     /* on-true path */
1800
1801     if (self->on_true) {
1802         /* create on-true block */
1803         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
1804         if (!ontrue)
1805             return false;
1806
1807         /* enter the block */
1808         func->curblock = ontrue;
1809
1810         /* generate */
1811         cgen = self->on_true->expression.codegen;
1812         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1813             return false;
1814
1815         /* we now need to work from the current endpoint */
1816         ontrue_endblock = func->curblock;
1817     } else
1818         ontrue = NULL;
1819
1820     /* on-false path */
1821     if (self->on_false) {
1822         /* create on-false block */
1823         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1824         if (!onfalse)
1825             return false;
1826
1827         /* enter the block */
1828         func->curblock = onfalse;
1829
1830         /* generate */
1831         cgen = self->on_false->expression.codegen;
1832         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1833             return false;
1834
1835         /* we now need to work from the current endpoint */
1836         onfalse_endblock = func->curblock;
1837     } else
1838         onfalse = NULL;
1839
1840     /* Merge block were they all merge in to */
1841     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1842     if (!merge)
1843         return false;
1844
1845     /* add jumps ot the merge block */
1846     if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, merge))
1847         return false;
1848     if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, merge))
1849         return false;
1850
1851     /* we create the if here, that way all blocks are ordered :)
1852      */
1853     if (!ir_block_create_if(cond, condval,
1854                             (ontrue  ? ontrue  : merge),
1855                             (onfalse ? onfalse : merge)))
1856     {
1857         return false;
1858     }
1859
1860     /* Now enter the merge block */
1861     func->curblock = merge;
1862
1863     return true;
1864 }
1865
1866 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1867 {
1868     ast_expression_codegen *cgen;
1869
1870     ir_value *condval;
1871     ir_value *trueval, *falseval;
1872     ir_instr *phi;
1873
1874     ir_block *cond = func->curblock;
1875     ir_block *ontrue;
1876     ir_block *onfalse;
1877     ir_block *merge;
1878
1879     /* Ternary can never create an lvalue... */
1880     if (lvalue)
1881         return false;
1882
1883     /* In theory it shouldn't be possible to pass through a node twice, but
1884      * in case we add any kind of optimization pass for the AST itself, it
1885      * may still happen, thus we remember a created ir_value and simply return one
1886      * if it already exists.
1887      */
1888     if (self->phi_out) {
1889         *out = self->phi_out;
1890         return true;
1891     }
1892
1893     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1894
1895     /* generate the condition */
1896     func->curblock = cond;
1897     cgen = self->cond->expression.codegen;
1898     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1899         return false;
1900
1901     /* create on-true block */
1902     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1903     if (!ontrue)
1904         return false;
1905     else
1906     {
1907         /* enter the block */
1908         func->curblock = ontrue;
1909
1910         /* generate */
1911         cgen = self->on_true->expression.codegen;
1912         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1913             return false;
1914     }
1915
1916     /* create on-false block */
1917     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1918     if (!onfalse)
1919         return false;
1920     else
1921     {
1922         /* enter the block */
1923         func->curblock = onfalse;
1924
1925         /* generate */
1926         cgen = self->on_false->expression.codegen;
1927         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1928             return false;
1929     }
1930
1931     /* create merge block */
1932     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1933     if (!merge)
1934         return false;
1935     /* jump to merge block */
1936     if (!ir_block_create_jump(ontrue, merge))
1937         return false;
1938     if (!ir_block_create_jump(onfalse, merge))
1939         return false;
1940
1941     /* create if instruction */
1942     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1943         return false;
1944
1945     /* Now enter the merge block */
1946     func->curblock = merge;
1947
1948     /* Here, now, we need a PHI node
1949      * but first some sanity checking...
1950      */
1951     if (trueval->vtype != falseval->vtype) {
1952         /* error("ternary with different types on the two sides"); */
1953         return false;
1954     }
1955
1956     /* create PHI */
1957     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1958     if (!phi ||
1959         !ir_phi_add(phi, ontrue,  trueval) ||
1960         !ir_phi_add(phi, onfalse, falseval))
1961     {
1962         return false;
1963     }
1964
1965     self->phi_out = ir_phi_value(phi);
1966     *out = self->phi_out;
1967
1968     return true;
1969 }
1970
1971 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1972 {
1973     ast_expression_codegen *cgen;
1974
1975     ir_value *dummy      = NULL;
1976     ir_value *precond    = NULL;
1977     ir_value *postcond   = NULL;
1978
1979     /* Since we insert some jumps "late" so we have blocks
1980      * ordered "nicely", we need to keep track of the actual end-blocks
1981      * of expressions to add the jumps to.
1982      */
1983     ir_block *bbody      = NULL, *end_bbody      = NULL;
1984     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1985     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1986     ir_block *bincrement = NULL, *end_bincrement = NULL;
1987     ir_block *bout       = NULL, *bin            = NULL;
1988
1989     /* let's at least move the outgoing block to the end */
1990     size_t    bout_id;
1991
1992     /* 'break' and 'continue' need to be able to find the right blocks */
1993     ir_block *bcontinue     = NULL;
1994     ir_block *bbreak        = NULL;
1995
1996     ir_block *old_bcontinue = NULL;
1997     ir_block *old_bbreak    = NULL;
1998
1999     ir_block *tmpblock      = NULL;
2000
2001     (void)lvalue;
2002     (void)out;
2003
2004     if (self->expression.outr) {
2005         asterror(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2006         return false;
2007     }
2008     self->expression.outr = (ir_value*)1;
2009
2010     /* NOTE:
2011      * Should we ever need some kind of block ordering, better make this function
2012      * move blocks around than write a block ordering algorithm later... after all
2013      * the ast and ir should work together, not against each other.
2014      */
2015
2016     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2017      * anyway if for example it contains a ternary.
2018      */
2019     if (self->initexpr)
2020     {
2021         cgen = self->initexpr->expression.codegen;
2022         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2023             return false;
2024     }
2025
2026     /* Store the block from which we enter this chaos */
2027     bin = func->curblock;
2028
2029     /* The pre-loop condition needs its own block since we
2030      * need to be able to jump to the start of that expression.
2031      */
2032     if (self->precond)
2033     {
2034         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
2035         if (!bprecond)
2036             return false;
2037
2038         /* the pre-loop-condition the least important place to 'continue' at */
2039         bcontinue = bprecond;
2040
2041         /* enter */
2042         func->curblock = bprecond;
2043
2044         /* generate */
2045         cgen = self->precond->expression.codegen;
2046         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2047             return false;
2048
2049         end_bprecond = func->curblock;
2050     } else {
2051         bprecond = end_bprecond = NULL;
2052     }
2053
2054     /* Now the next blocks won't be ordered nicely, but we need to
2055      * generate them this early for 'break' and 'continue'.
2056      */
2057     if (self->increment) {
2058         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
2059         if (!bincrement)
2060             return false;
2061         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2062     } else {
2063         bincrement = end_bincrement = NULL;
2064     }
2065
2066     if (self->postcond) {
2067         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
2068         if (!bpostcond)
2069             return false;
2070         bcontinue = bpostcond; /* postcond comes before the increment */
2071     } else {
2072         bpostcond = end_bpostcond = NULL;
2073     }
2074
2075     bout_id = func->ir_func->blocks_count;
2076     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
2077     if (!bout)
2078         return false;
2079     bbreak = bout;
2080
2081     /* The loop body... */
2082     if (self->body)
2083     {
2084         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
2085         if (!bbody)
2086             return false;
2087
2088         /* enter */
2089         func->curblock = bbody;
2090
2091         old_bbreak          = func->breakblock;
2092         old_bcontinue       = func->continueblock;
2093         func->breakblock    = bbreak;
2094         func->continueblock = bcontinue;
2095
2096         /* generate */
2097         cgen = self->body->expression.codegen;
2098         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2099             return false;
2100
2101         end_bbody = func->curblock;
2102         func->breakblock    = old_bbreak;
2103         func->continueblock = old_bcontinue;
2104     }
2105
2106     /* post-loop-condition */
2107     if (self->postcond)
2108     {
2109         /* enter */
2110         func->curblock = bpostcond;
2111
2112         /* generate */
2113         cgen = self->postcond->expression.codegen;
2114         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2115             return false;
2116
2117         end_bpostcond = func->curblock;
2118     }
2119
2120     /* The incrementor */
2121     if (self->increment)
2122     {
2123         /* enter */
2124         func->curblock = bincrement;
2125
2126         /* generate */
2127         cgen = self->increment->expression.codegen;
2128         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2129             return false;
2130
2131         end_bincrement = func->curblock;
2132     }
2133
2134     /* In any case now, we continue from the outgoing block */
2135     func->curblock = bout;
2136
2137     /* Now all blocks are in place */
2138     /* From 'bin' we jump to whatever comes first */
2139     if      (bprecond)   tmpblock = bprecond;
2140     else if (bbody)      tmpblock = bbody;
2141     else if (bpostcond)  tmpblock = bpostcond;
2142     else                 tmpblock = bout;
2143     if (!ir_block_create_jump(bin, tmpblock))
2144         return false;
2145
2146     /* From precond */
2147     if (bprecond)
2148     {
2149         ir_block *ontrue, *onfalse;
2150         if      (bbody)      ontrue = bbody;
2151         else if (bincrement) ontrue = bincrement;
2152         else if (bpostcond)  ontrue = bpostcond;
2153         else                 ontrue = bprecond;
2154         onfalse = bout;
2155         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
2156             return false;
2157     }
2158
2159     /* from body */
2160     if (bbody)
2161     {
2162         if      (bincrement) tmpblock = bincrement;
2163         else if (bpostcond)  tmpblock = bpostcond;
2164         else if (bprecond)   tmpblock = bprecond;
2165         else                 tmpblock = bout;
2166         if (!end_bbody->final && !ir_block_create_jump(end_bbody, tmpblock))
2167             return false;
2168     }
2169
2170     /* from increment */
2171     if (bincrement)
2172     {
2173         if      (bpostcond)  tmpblock = bpostcond;
2174         else if (bprecond)   tmpblock = bprecond;
2175         else if (bbody)      tmpblock = bbody;
2176         else                 tmpblock = bout;
2177         if (!ir_block_create_jump(end_bincrement, tmpblock))
2178             return false;
2179     }
2180
2181     /* from postcond */
2182     if (bpostcond)
2183     {
2184         ir_block *ontrue, *onfalse;
2185         if      (bprecond)   ontrue = bprecond;
2186         else if (bbody)      ontrue = bbody;
2187         else if (bincrement) ontrue = bincrement;
2188         else                 ontrue = bpostcond;
2189         onfalse = bout;
2190         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
2191             return false;
2192     }
2193
2194     /* Move 'bout' to the end */
2195     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
2196         !ir_function_blocks_add(func->ir_func, bout))
2197     {
2198         ir_block_delete(bout);
2199         return false;
2200     }
2201
2202     return true;
2203 }
2204
2205 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2206 {
2207     ast_expression_codegen *cgen;
2208     ir_value_vector         params;
2209     ir_instr               *callinstr;
2210     size_t i;
2211
2212     ir_value *funval = NULL;
2213
2214     /* return values are never lvalues */
2215     if (lvalue) {
2216         asterror(ast_ctx(self), "not an l-value (function call)");
2217         return false;
2218     }
2219
2220     if (self->expression.outr) {
2221         *out = self->expression.outr;
2222         return true;
2223     }
2224
2225     cgen = self->func->expression.codegen;
2226     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2227         return false;
2228     if (!funval)
2229         return false;
2230
2231     MEM_VECTOR_INIT(&params, v);
2232
2233     /* parameters */
2234     for (i = 0; i < self->params_count; ++i)
2235     {
2236         ir_value *param;
2237         ast_expression *expr = self->params[i];
2238
2239         cgen = expr->expression.codegen;
2240         if (!(*cgen)(expr, func, false, &param))
2241             goto error;
2242         if (!param)
2243             goto error;
2244         if (!ir_value_vector_v_add(&params, param))
2245             goto error;
2246     }
2247
2248     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
2249     if (!callinstr)
2250         goto error;
2251
2252     for (i = 0; i < params.v_count; ++i) {
2253         if (!ir_call_param(callinstr, params.v[i]))
2254             goto error;
2255     }
2256
2257     *out = ir_call_value(callinstr);
2258     self->expression.outr = *out;
2259
2260     MEM_VECTOR_CLEAR(&params, v);
2261     return true;
2262 error:
2263     MEM_VECTOR_CLEAR(&params, v);
2264     return false;
2265 }