]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Make the varargs counter more stable, it'll now work with a function pointer with...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler 
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include "gmqcc.h"
29 #include "ast.h"
30
31 #define ast_instantiate(T, ctx, destroyfn)                          \
32     T* self = (T*)mem_a(sizeof(T));                                 \
33     if (!self) {                                                    \
34         return NULL;                                                \
35     }                                                               \
36     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
37     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
38
39
40 /* It must not be possible to get here. */
41 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
42 {
43     (void)self;
44     con_err("ast node missing destroy()\n");
45     abort();
46 }
47
48 /* Initialize main ast node aprts */
49 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
50 {
51     self->node.context = ctx;
52     self->node.destroy = &_ast_node_destroy;
53     self->node.keep    = false;
54     self->node.nodetype = nodetype;
55     self->node.side_effects = false;
56 }
57
58 /* weight and side effects */
59 static void _ast_propagate_effects(ast_node *self, ast_node *other)
60 {
61     if (ast_side_effects(other))
62         ast_side_effects(self) = true;
63 }
64 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
65
66 /* General expression initialization */
67 static void ast_expression_init(ast_expression *self,
68                                 ast_expression_codegen *codegen)
69 {
70     self->expression.codegen  = codegen;
71     self->expression.vtype    = TYPE_VOID;
72     self->expression.next     = NULL;
73     self->expression.outl     = NULL;
74     self->expression.outr     = NULL;
75     self->expression.params   = NULL;
76     self->expression.count    = 0;
77     self->expression.flags    = 0;
78     self->expression.varparam = NULL;
79 }
80
81 static void ast_expression_delete(ast_expression *self)
82 {
83     size_t i;
84     if (self->expression.next)
85         ast_delete(self->expression.next);
86     for (i = 0; i < vec_size(self->expression.params); ++i) {
87         ast_delete(self->expression.params[i]);
88     }
89     vec_free(self->expression.params);
90 }
91
92 static void ast_expression_delete_full(ast_expression *self)
93 {
94     ast_expression_delete(self);
95     mem_d(self);
96 }
97
98 ast_value* ast_value_copy(const ast_value *self)
99 {
100     size_t i;
101     const ast_expression_common *fromex;
102     ast_expression_common *selfex;
103     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
104     if (self->expression.next) {
105         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
106         if (!cp->expression.next) {
107             ast_value_delete(cp);
108             return NULL;
109         }
110     }
111     fromex   = &self->expression;
112     selfex = &cp->expression;
113     selfex->count    = fromex->count;
114     selfex->flags    = fromex->flags;
115     for (i = 0; i < vec_size(fromex->params); ++i) {
116         ast_value *v = ast_value_copy(fromex->params[i]);
117         if (!v) {
118             ast_value_delete(cp);
119             return NULL;
120         }
121         vec_push(selfex->params, v);
122     }
123     return cp;
124 }
125
126 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
127 {
128     size_t i;
129     const ast_expression_common *fromex;
130     ast_expression_common *selfex;
131     self->expression.vtype = other->expression.vtype;
132     if (other->expression.next) {
133         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
134         if (!self->expression.next)
135             return false;
136     }
137     fromex   = &other->expression;
138     selfex = &self->expression;
139     selfex->count    = fromex->count;
140     selfex->flags    = fromex->flags;
141     for (i = 0; i < vec_size(fromex->params); ++i) {
142         ast_value *v = ast_value_copy(fromex->params[i]);
143         if (!v)
144             return false;
145         vec_push(selfex->params, v);
146     }
147     return true;
148 }
149
150 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
151 {
152     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
153     ast_expression_init(self, NULL);
154     self->expression.codegen = NULL;
155     self->expression.next    = NULL;
156     self->expression.vtype   = vtype;
157     return self;
158 }
159
160 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
161 {
162     size_t i;
163     const ast_expression_common *fromex;
164     ast_expression_common *selfex;
165
166     if (!ex)
167         return NULL;
168     else
169     {
170         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
171         ast_expression_init(self, NULL);
172
173         fromex   = &ex->expression;
174         selfex = &self->expression;
175
176         /* This may never be codegen()d */
177         selfex->codegen = NULL;
178
179         selfex->vtype = fromex->vtype;
180         if (fromex->next)
181         {
182             selfex->next = ast_type_copy(ctx, fromex->next);
183             if (!selfex->next) {
184                 ast_expression_delete_full(self);
185                 return NULL;
186             }
187         }
188         else
189             selfex->next = NULL;
190
191         selfex->count    = fromex->count;
192         selfex->flags    = fromex->flags;
193         for (i = 0; i < vec_size(fromex->params); ++i) {
194             ast_value *v = ast_value_copy(fromex->params[i]);
195             if (!v) {
196                 ast_expression_delete_full(self);
197                 return NULL;
198             }
199             vec_push(selfex->params, v);
200         }
201
202         return self;
203     }
204 }
205
206 bool ast_compare_type(ast_expression *a, ast_expression *b)
207 {
208     if (a->expression.vtype == TYPE_NIL ||
209         b->expression.vtype == TYPE_NIL)
210         return true;
211     if (a->expression.vtype != b->expression.vtype)
212         return false;
213     if (!a->expression.next != !b->expression.next)
214         return false;
215     if (vec_size(a->expression.params) != vec_size(b->expression.params))
216         return false;
217     if ((a->expression.flags & AST_FLAG_TYPE_MASK) !=
218         (b->expression.flags & AST_FLAG_TYPE_MASK) )
219     {
220         return false;
221     }
222     if (vec_size(a->expression.params)) {
223         size_t i;
224         for (i = 0; i < vec_size(a->expression.params); ++i) {
225             if (!ast_compare_type((ast_expression*)a->expression.params[i],
226                                   (ast_expression*)b->expression.params[i]))
227                 return false;
228         }
229     }
230     if (a->expression.next)
231         return ast_compare_type(a->expression.next, b->expression.next);
232     return true;
233 }
234
235 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
236 {
237     const char *typestr;
238     size_t typelen;
239     size_t i;
240
241     if (!e) {
242         if (pos + 6 >= bufsize)
243             goto full;
244         strcpy(buf + pos, "(null)");
245         return pos + 6;
246     }
247
248     if (pos + 1 >= bufsize)
249         goto full;
250
251     switch (e->expression.vtype) {
252         case TYPE_VARIANT:
253             strcpy(buf + pos, "(variant)");
254             return pos + 9;
255
256         case TYPE_FIELD:
257             buf[pos++] = '.';
258             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259
260         case TYPE_POINTER:
261             if (pos + 3 >= bufsize)
262                 goto full;
263             buf[pos++] = '*';
264             buf[pos++] = '(';
265             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
266             if (pos + 1 >= bufsize)
267                 goto full;
268             buf[pos++] = ')';
269             return pos;
270
271         case TYPE_FUNCTION:
272             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
273             if (pos + 2 >= bufsize)
274                 goto full;
275             if (!vec_size(e->expression.params)) {
276                 buf[pos++] = '(';
277                 buf[pos++] = ')';
278                 return pos;
279             }
280             buf[pos++] = '(';
281             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
282             for (i = 1; i < vec_size(e->expression.params); ++i) {
283                 if (pos + 2 >= bufsize)
284                     goto full;
285                 buf[pos++] = ',';
286                 buf[pos++] = ' ';
287                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
288             }
289             if (pos + 1 >= bufsize)
290                 goto full;
291             buf[pos++] = ')';
292             return pos;
293
294         case TYPE_ARRAY:
295             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
296             if (pos + 1 >= bufsize)
297                 goto full;
298             buf[pos++] = '[';
299             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
300             if (pos + 1 >= bufsize)
301                 goto full;
302             buf[pos++] = ']';
303             return pos;
304
305         default:
306             typestr = type_name[e->expression.vtype];
307             typelen = strlen(typestr);
308             if (pos + typelen >= bufsize)
309                 goto full;
310             strcpy(buf + pos, typestr);
311             return pos + typelen;
312     }
313
314 full:
315     buf[bufsize-3] = '.';
316     buf[bufsize-2] = '.';
317     buf[bufsize-1] = '.';
318     return bufsize;
319 }
320
321 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
322 {
323     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
324     buf[pos] = 0;
325 }
326
327 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
328 {
329     ast_instantiate(ast_value, ctx, ast_value_delete);
330     ast_expression_init((ast_expression*)self,
331                         (ast_expression_codegen*)&ast_value_codegen);
332     self->expression.node.keep = true; /* keep */
333
334     self->name = name ? util_strdup(name) : NULL;
335     self->expression.vtype = t;
336     self->expression.next  = NULL;
337     self->isfield  = false;
338     self->cvq      = CV_NONE;
339     self->hasvalue = false;
340     self->uses    = 0;
341     memset(&self->constval, 0, sizeof(self->constval));
342
343     self->ir_v           = NULL;
344     self->ir_values      = NULL;
345     self->ir_value_count = 0;
346
347     self->setter = NULL;
348     self->getter = NULL;
349     self->desc   = NULL;
350
351     self->argcounter  = NULL;
352
353     return self;
354 }
355
356 void ast_value_delete(ast_value* self)
357 {
358     if (self->name)
359         mem_d((void*)self->name);
360     if (self->argcounter)
361         mem_d((void*)self->argcounter);
362     if (self->hasvalue) {
363         switch (self->expression.vtype)
364         {
365         case TYPE_STRING:
366             mem_d((void*)self->constval.vstring);
367             break;
368         case TYPE_FUNCTION:
369             /* unlink us from the function node */
370             self->constval.vfunc->vtype = NULL;
371             break;
372         /* NOTE: delete function? currently collected in
373          * the parser structure
374          */
375         default:
376             break;
377         }
378     }
379     if (self->ir_values)
380         mem_d(self->ir_values);
381
382     if (self->desc)
383         mem_d(self->desc);
384
385     ast_expression_delete((ast_expression*)self);
386     mem_d(self);
387 }
388
389 void ast_value_params_add(ast_value *self, ast_value *p)
390 {
391     vec_push(self->expression.params, p);
392 }
393
394 bool ast_value_set_name(ast_value *self, const char *name)
395 {
396     if (self->name)
397         mem_d((void*)self->name);
398     self->name = util_strdup(name);
399     return !!self->name;
400 }
401
402 ast_binary* ast_binary_new(lex_ctx ctx, int op,
403                            ast_expression* left, ast_expression* right)
404 {
405     ast_instantiate(ast_binary, ctx, ast_binary_delete);
406     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
407
408     self->op = op;
409     self->left = left;
410     self->right = right;
411
412     ast_propagate_effects(self, left);
413     ast_propagate_effects(self, right);
414
415     if (op >= INSTR_EQ_F && op <= INSTR_GT)
416         self->expression.vtype = TYPE_FLOAT;
417     else if (op == INSTR_AND || op == INSTR_OR) {
418         if (OPTS_FLAG(PERL_LOGIC))
419             ast_type_adopt(self, right);
420         else
421             self->expression.vtype = TYPE_FLOAT;
422     }
423     else if (op == INSTR_BITAND || op == INSTR_BITOR)
424         self->expression.vtype = TYPE_FLOAT;
425     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
426         self->expression.vtype = TYPE_VECTOR;
427     else if (op == INSTR_MUL_V)
428         self->expression.vtype = TYPE_FLOAT;
429     else
430         self->expression.vtype = left->expression.vtype;
431
432     return self;
433 }
434
435 void ast_binary_delete(ast_binary *self)
436 {
437     ast_unref(self->left);
438     ast_unref(self->right);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
444                                ast_expression* left, ast_expression* right)
445 {
446     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
448
449     ast_side_effects(self) = true;
450
451     self->opstore = storop;
452     self->opbin   = op;
453     self->dest    = left;
454     self->source  = right;
455
456     self->keep_dest = false;
457
458     if (!ast_type_adopt(self, left)) {
459         ast_delete(self);
460         return NULL;
461     }
462
463     return self;
464 }
465
466 void ast_binstore_delete(ast_binstore *self)
467 {
468     if (!self->keep_dest)
469         ast_unref(self->dest);
470     ast_unref(self->source);
471     ast_expression_delete((ast_expression*)self);
472     mem_d(self);
473 }
474
475 ast_unary* ast_unary_new(lex_ctx ctx, int op,
476                          ast_expression *expr)
477 {
478     ast_instantiate(ast_unary, ctx, ast_unary_delete);
479     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
480
481     self->op = op;
482     self->operand = expr;
483
484     ast_propagate_effects(self, expr);
485
486     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
487         self->expression.vtype = TYPE_FLOAT;
488     } else
489         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
490
491     return self;
492 }
493
494 void ast_unary_delete(ast_unary *self)
495 {
496     if (self->operand) ast_unref(self->operand);
497     ast_expression_delete((ast_expression*)self);
498     mem_d(self);
499 }
500
501 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
502 {
503     ast_instantiate(ast_return, ctx, ast_return_delete);
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
505
506     self->operand = expr;
507
508     if (expr)
509         ast_propagate_effects(self, expr);
510
511     return self;
512 }
513
514 void ast_return_delete(ast_return *self)
515 {
516     if (self->operand)
517         ast_unref(self->operand);
518     ast_expression_delete((ast_expression*)self);
519     mem_d(self);
520 }
521
522 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
523 {
524     if (field->expression.vtype != TYPE_FIELD) {
525         compile_error(ctx, "ast_entfield_new with expression not of type field");
526         return NULL;
527     }
528     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
529 }
530
531 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
532 {
533     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
534
535     if (!outtype) {
536         mem_d(self);
537         /* Error: field has no type... */
538         return NULL;
539     }
540
541     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
542
543     self->entity = entity;
544     self->field  = field;
545     ast_propagate_effects(self, entity);
546     ast_propagate_effects(self, field);
547
548     if (!ast_type_adopt(self, outtype)) {
549         ast_entfield_delete(self);
550         return NULL;
551     }
552
553     return self;
554 }
555
556 void ast_entfield_delete(ast_entfield *self)
557 {
558     ast_unref(self->entity);
559     ast_unref(self->field);
560     ast_expression_delete((ast_expression*)self);
561     mem_d(self);
562 }
563
564 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
565 {
566     ast_instantiate(ast_member, ctx, ast_member_delete);
567     if (field >= 3) {
568         mem_d(self);
569         return NULL;
570     }
571
572     if (owner->expression.vtype != TYPE_VECTOR &&
573         owner->expression.vtype != TYPE_FIELD) {
574         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
575         mem_d(self);
576         return NULL;
577     }
578
579     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
580     self->expression.node.keep = true; /* keep */
581
582     if (owner->expression.vtype == TYPE_VECTOR) {
583         self->expression.vtype = TYPE_FLOAT;
584         self->expression.next  = NULL;
585     } else {
586         self->expression.vtype = TYPE_FIELD;
587         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
588     }
589
590     self->rvalue = false;
591     self->owner  = owner;
592     ast_propagate_effects(self, owner);
593
594     self->field = field;
595     if (name)
596         self->name = util_strdup(name);
597     else
598         self->name = NULL;
599
600     return self;
601 }
602
603 void ast_member_delete(ast_member *self)
604 {
605     /* The owner is always an ast_value, which has .keep=true,
606      * also: ast_members are usually deleted after the owner, thus
607      * this will cause invalid access
608     ast_unref(self->owner);
609      * once we allow (expression).x to access a vector-member, we need
610      * to change this: preferably by creating an alternate ast node for this
611      * purpose that is not garbage-collected.
612     */
613     ast_expression_delete((ast_expression*)self);
614     mem_d(self);
615 }
616
617 bool ast_member_set_name(ast_member *self, const char *name)
618 {
619     if (self->name)
620         mem_d((void*)self->name);
621     self->name = util_strdup(name);
622     return !!self->name;
623 }
624
625 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
626 {
627     ast_expression *outtype;
628     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
629
630     outtype = array->expression.next;
631     if (!outtype) {
632         mem_d(self);
633         /* Error: field has no type... */
634         return NULL;
635     }
636
637     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
638
639     self->array = array;
640     self->index = index;
641     ast_propagate_effects(self, array);
642     ast_propagate_effects(self, index);
643
644     if (!ast_type_adopt(self, outtype)) {
645         ast_array_index_delete(self);
646         return NULL;
647     }
648     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
649         if (self->expression.vtype != TYPE_ARRAY) {
650             compile_error(ast_ctx(self), "array_index node on type");
651             ast_array_index_delete(self);
652             return NULL;
653         }
654         self->array = outtype;
655         self->expression.vtype = TYPE_FIELD;
656     }
657
658     return self;
659 }
660
661 void ast_array_index_delete(ast_array_index *self)
662 {
663     ast_unref(self->array);
664     ast_unref(self->index);
665     ast_expression_delete((ast_expression*)self);
666     mem_d(self);
667 }
668
669 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
670 {
671     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
672     if (!ontrue && !onfalse) {
673         /* because it is invalid */
674         mem_d(self);
675         return NULL;
676     }
677     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
678
679     self->cond     = cond;
680     self->on_true  = ontrue;
681     self->on_false = onfalse;
682     ast_propagate_effects(self, cond);
683     if (ontrue)
684         ast_propagate_effects(self, ontrue);
685     if (onfalse)
686         ast_propagate_effects(self, onfalse);
687
688     return self;
689 }
690
691 void ast_ifthen_delete(ast_ifthen *self)
692 {
693     ast_unref(self->cond);
694     if (self->on_true)
695         ast_unref(self->on_true);
696     if (self->on_false)
697         ast_unref(self->on_false);
698     ast_expression_delete((ast_expression*)self);
699     mem_d(self);
700 }
701
702 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
703 {
704     ast_expression *exprtype = ontrue;
705     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
706     /* This time NEITHER must be NULL */
707     if (!ontrue || !onfalse) {
708         mem_d(self);
709         return NULL;
710     }
711     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
712
713     self->cond     = cond;
714     self->on_true  = ontrue;
715     self->on_false = onfalse;
716     ast_propagate_effects(self, cond);
717     ast_propagate_effects(self, ontrue);
718     ast_propagate_effects(self, onfalse);
719
720     if (ontrue->expression.vtype == TYPE_NIL)
721         exprtype = onfalse;
722     if (!ast_type_adopt(self, exprtype)) {
723         ast_ternary_delete(self);
724         return NULL;
725     }
726
727     return self;
728 }
729
730 void ast_ternary_delete(ast_ternary *self)
731 {
732     /* the if()s are only there because computed-gotos can set them
733      * to NULL
734      */
735     if (self->cond)     ast_unref(self->cond);
736     if (self->on_true)  ast_unref(self->on_true);
737     if (self->on_false) ast_unref(self->on_false);
738     ast_expression_delete((ast_expression*)self);
739     mem_d(self);
740 }
741
742 ast_loop* ast_loop_new(lex_ctx ctx,
743                        ast_expression *initexpr,
744                        ast_expression *precond, bool pre_not,
745                        ast_expression *postcond, bool post_not,
746                        ast_expression *increment,
747                        ast_expression *body)
748 {
749     ast_instantiate(ast_loop, ctx, ast_loop_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
751
752     self->initexpr  = initexpr;
753     self->precond   = precond;
754     self->postcond  = postcond;
755     self->increment = increment;
756     self->body      = body;
757
758     self->pre_not   = pre_not;
759     self->post_not  = post_not;
760
761     if (initexpr)
762         ast_propagate_effects(self, initexpr);
763     if (precond)
764         ast_propagate_effects(self, precond);
765     if (postcond)
766         ast_propagate_effects(self, postcond);
767     if (increment)
768         ast_propagate_effects(self, increment);
769     if (body)
770         ast_propagate_effects(self, body);
771
772     return self;
773 }
774
775 void ast_loop_delete(ast_loop *self)
776 {
777     if (self->initexpr)
778         ast_unref(self->initexpr);
779     if (self->precond)
780         ast_unref(self->precond);
781     if (self->postcond)
782         ast_unref(self->postcond);
783     if (self->increment)
784         ast_unref(self->increment);
785     if (self->body)
786         ast_unref(self->body);
787     ast_expression_delete((ast_expression*)self);
788     mem_d(self);
789 }
790
791 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont, unsigned int levels)
792 {
793     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
794     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
795
796     self->is_continue = iscont;
797     self->levels      = levels;
798
799     return self;
800 }
801
802 void ast_breakcont_delete(ast_breakcont *self)
803 {
804     ast_expression_delete((ast_expression*)self);
805     mem_d(self);
806 }
807
808 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
809 {
810     ast_instantiate(ast_switch, ctx, ast_switch_delete);
811     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
812
813     self->operand = op;
814     self->cases   = NULL;
815
816     ast_propagate_effects(self, op);
817
818     return self;
819 }
820
821 void ast_switch_delete(ast_switch *self)
822 {
823     size_t i;
824     ast_unref(self->operand);
825
826     for (i = 0; i < vec_size(self->cases); ++i) {
827         if (self->cases[i].value)
828             ast_unref(self->cases[i].value);
829         ast_unref(self->cases[i].code);
830     }
831     vec_free(self->cases);
832
833     ast_expression_delete((ast_expression*)self);
834     mem_d(self);
835 }
836
837 ast_label* ast_label_new(lex_ctx ctx, const char *name, bool undefined)
838 {
839     ast_instantiate(ast_label, ctx, ast_label_delete);
840     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
841
842     self->expression.vtype = TYPE_NOEXPR;
843
844     self->name      = util_strdup(name);
845     self->irblock   = NULL;
846     self->gotos     = NULL;
847     self->undefined = undefined;
848
849     return self;
850 }
851
852 void ast_label_delete(ast_label *self)
853 {
854     mem_d((void*)self->name);
855     vec_free(self->gotos);
856     ast_expression_delete((ast_expression*)self);
857     mem_d(self);
858 }
859
860 void ast_label_register_goto(ast_label *self, ast_goto *g)
861 {
862     vec_push(self->gotos, g);
863 }
864
865 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
866 {
867     ast_instantiate(ast_goto, ctx, ast_goto_delete);
868     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
869
870     self->name    = util_strdup(name);
871     self->target  = NULL;
872     self->irblock_from = NULL;
873
874     return self;
875 }
876
877 void ast_goto_delete(ast_goto *self)
878 {
879     mem_d((void*)self->name);
880     ast_expression_delete((ast_expression*)self);
881     mem_d(self);
882 }
883
884 void ast_goto_set_label(ast_goto *self, ast_label *label)
885 {
886     self->target = label;
887 }
888
889 ast_call* ast_call_new(lex_ctx ctx,
890                        ast_expression *funcexpr)
891 {
892     ast_instantiate(ast_call, ctx, ast_call_delete);
893     if (!funcexpr->expression.next) {
894         compile_error(ctx, "not a function");
895         mem_d(self);
896         return NULL;
897     }
898     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
899
900     ast_side_effects(self) = true;
901
902     self->params   = NULL;
903     self->func     = funcexpr;
904     self->va_count = NULL;
905
906     ast_type_adopt(self, funcexpr->expression.next);
907
908     return self;
909 }
910
911 void ast_call_delete(ast_call *self)
912 {
913     size_t i;
914     for (i = 0; i < vec_size(self->params); ++i)
915         ast_unref(self->params[i]);
916     vec_free(self->params);
917
918     if (self->func)
919         ast_unref(self->func);
920
921     if (self->va_count)
922         ast_unref(self->va_count);
923
924     ast_expression_delete((ast_expression*)self);
925     mem_d(self);
926 }
927
928 bool ast_call_check_types(ast_call *self)
929 {
930     char texp[1024];
931     char tgot[1024];
932     size_t i;
933     bool   retval = true;
934     const  ast_expression *func = self->func;
935     size_t count = vec_size(self->params);
936     if (count > vec_size(func->expression.params))
937         count = vec_size(func->expression.params);
938
939     for (i = 0; i < count; ++i) {
940         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i])))
941         {
942             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
943             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
944             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
945                      (unsigned int)(i+1), texp, tgot);
946             /* we don't immediately return */
947             retval = false;
948         }
949     }
950     count = vec_size(self->params);
951     if (count > vec_size(func->expression.params) && func->expression.varparam) {
952         for (; i < count; ++i) {
953             if (!ast_compare_type(self->params[i], func->expression.varparam))
954             {
955                 ast_type_to_string(self->params[i], tgot, sizeof(tgot));
956                 ast_type_to_string(func->expression.varparam, texp, sizeof(texp));
957                 compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
958                          (unsigned int)(i+1), texp, tgot);
959                 /* we don't immediately return */
960                 retval = false;
961             }
962         }
963     }
964     return retval;
965 }
966
967 ast_store* ast_store_new(lex_ctx ctx, int op,
968                          ast_expression *dest, ast_expression *source)
969 {
970     ast_instantiate(ast_store, ctx, ast_store_delete);
971     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
972
973     ast_side_effects(self) = true;
974
975     self->op = op;
976     self->dest = dest;
977     self->source = source;
978
979     if (!ast_type_adopt(self, dest)) {
980         ast_delete(self);
981         return NULL;
982     }
983
984     return self;
985 }
986
987 void ast_store_delete(ast_store *self)
988 {
989     ast_unref(self->dest);
990     ast_unref(self->source);
991     ast_expression_delete((ast_expression*)self);
992     mem_d(self);
993 }
994
995 ast_block* ast_block_new(lex_ctx ctx)
996 {
997     ast_instantiate(ast_block, ctx, ast_block_delete);
998     ast_expression_init((ast_expression*)self,
999                         (ast_expression_codegen*)&ast_block_codegen);
1000
1001     self->locals  = NULL;
1002     self->exprs   = NULL;
1003     self->collect = NULL;
1004
1005     return self;
1006 }
1007
1008 bool ast_block_add_expr(ast_block *self, ast_expression *e)
1009 {
1010     ast_propagate_effects(self, e);
1011     vec_push(self->exprs, e);
1012     if (self->expression.next) {
1013         ast_delete(self->expression.next);
1014         self->expression.next = NULL;
1015     }
1016     if (!ast_type_adopt(self, e)) {
1017         compile_error(ast_ctx(self), "internal error: failed to adopt type");
1018         return false;
1019     }
1020     return true;
1021 }
1022
1023 void ast_block_collect(ast_block *self, ast_expression *expr)
1024 {
1025     vec_push(self->collect, expr);
1026     expr->expression.node.keep = true;
1027 }
1028
1029 void ast_block_delete(ast_block *self)
1030 {
1031     size_t i;
1032     for (i = 0; i < vec_size(self->exprs); ++i)
1033         ast_unref(self->exprs[i]);
1034     vec_free(self->exprs);
1035     for (i = 0; i < vec_size(self->locals); ++i)
1036         ast_delete(self->locals[i]);
1037     vec_free(self->locals);
1038     for (i = 0; i < vec_size(self->collect); ++i)
1039         ast_delete(self->collect[i]);
1040     vec_free(self->collect);
1041     ast_expression_delete((ast_expression*)self);
1042     mem_d(self);
1043 }
1044
1045 bool ast_block_set_type(ast_block *self, ast_expression *from)
1046 {
1047     if (self->expression.next)
1048         ast_delete(self->expression.next);
1049     if (!ast_type_adopt(self, from))
1050         return false;
1051     return true;
1052 }
1053
1054 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1055 {
1056     ast_instantiate(ast_function, ctx, ast_function_delete);
1057
1058     if (!vtype ||
1059         vtype->hasvalue ||
1060         vtype->expression.vtype != TYPE_FUNCTION)
1061     {
1062         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1063                  (int)!vtype,
1064                  (int)vtype->hasvalue,
1065                  vtype->expression.vtype);
1066         mem_d(self);
1067         return NULL;
1068     }
1069
1070     self->vtype  = vtype;
1071     self->name   = name ? util_strdup(name) : NULL;
1072     self->blocks = NULL;
1073
1074     self->labelcount = 0;
1075     self->builtin = 0;
1076
1077     self->ir_func = NULL;
1078     self->curblock = NULL;
1079
1080     self->breakblocks    = NULL;
1081     self->continueblocks = NULL;
1082
1083     vtype->hasvalue = true;
1084     vtype->constval.vfunc = self;
1085
1086     self->varargs     = NULL;
1087     self->argc        = NULL;
1088     self->fixedparams = NULL;
1089
1090     return self;
1091 }
1092
1093 void ast_function_delete(ast_function *self)
1094 {
1095     size_t i;
1096     if (self->name)
1097         mem_d((void*)self->name);
1098     if (self->vtype) {
1099         /* ast_value_delete(self->vtype); */
1100         self->vtype->hasvalue = false;
1101         self->vtype->constval.vfunc = NULL;
1102         /* We use unref - if it was stored in a global table it is supposed
1103          * to be deleted from *there*
1104          */
1105         ast_unref(self->vtype);
1106     }
1107     for (i = 0; i < vec_size(self->blocks); ++i)
1108         ast_delete(self->blocks[i]);
1109     vec_free(self->blocks);
1110     vec_free(self->breakblocks);
1111     vec_free(self->continueblocks);
1112     if (self->varargs)
1113         ast_delete(self->varargs);
1114     if (self->argc)
1115         ast_delete(self->argc);
1116     if (self->fixedparams)
1117         ast_unref(self->fixedparams);
1118     mem_d(self);
1119 }
1120
1121 const char* ast_function_label(ast_function *self, const char *prefix)
1122 {
1123     size_t id;
1124     size_t len;
1125     char  *from;
1126
1127     if (!opts.dump && !opts.dumpfin && !opts.debug)
1128         return NULL;
1129
1130     id  = (self->labelcount++);
1131     len = strlen(prefix);
1132
1133     from = self->labelbuf + sizeof(self->labelbuf)-1;
1134     *from-- = 0;
1135     do {
1136         *from-- = (id%10) + '0';
1137         id /= 10;
1138     } while (id);
1139     ++from;
1140     memcpy(from - len, prefix, len);
1141     return from - len;
1142 }
1143
1144 /*********************************************************************/
1145 /* AST codegen part
1146  * by convention you must never pass NULL to the 'ir_value **out'
1147  * parameter. If you really don't care about the output, pass a dummy.
1148  * But I can't imagine a pituation where the output is truly unnecessary.
1149  */
1150
1151 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1152 {
1153     if (out->vtype == TYPE_FIELD)
1154         out->fieldtype = self->next->expression.vtype;
1155     if (out->vtype == TYPE_FUNCTION)
1156         out->outtype = self->next->expression.vtype;
1157 }
1158
1159 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1160
1161 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1162 {
1163     (void)func;
1164     (void)lvalue;
1165     if (self->expression.vtype == TYPE_NIL) {
1166         *out = func->ir_func->owner->nil;
1167         return true;
1168     }
1169     /* NOTE: This is the codegen for a variable used in an expression.
1170      * It is not the codegen to generate the value. For this purpose,
1171      * ast_local_codegen and ast_global_codegen are to be used before this
1172      * is executed. ast_function_codegen should take care of its locals,
1173      * and the ast-user should take care of ast_global_codegen to be used
1174      * on all the globals.
1175      */
1176     if (!self->ir_v) {
1177         char tname[1024]; /* typename is reserved in C++ */
1178         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1179         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1180         return false;
1181     }
1182     *out = self->ir_v;
1183     return true;
1184 }
1185
1186 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1187 {
1188     ir_value *v = NULL;
1189
1190     if (self->expression.vtype == TYPE_NIL) {
1191         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1192         return false;
1193     }
1194
1195     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1196     {
1197         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1198         if (!func)
1199             return false;
1200         func->context = ast_ctx(self);
1201         func->value->context = ast_ctx(self);
1202
1203         self->constval.vfunc->ir_func = func;
1204         self->ir_v = func->value;
1205         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1206             self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1207         /* The function is filled later on ast_function_codegen... */
1208         return true;
1209     }
1210
1211     if (isfield && self->expression.vtype == TYPE_FIELD) {
1212         ast_expression *fieldtype = self->expression.next;
1213
1214         if (self->hasvalue) {
1215             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1216             goto error;
1217         }
1218
1219         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1220             size_t ai;
1221             char   *name;
1222             size_t  namelen;
1223
1224             ast_expression_common *elemtype;
1225             int                    vtype;
1226             ast_value             *array = (ast_value*)fieldtype;
1227
1228             if (!ast_istype(fieldtype, ast_value)) {
1229                 compile_error(ast_ctx(self), "internal error: ast_value required");
1230                 return false;
1231             }
1232
1233             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1234             if (!array->expression.count || array->expression.count > opts.max_array_size)
1235                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1236
1237             elemtype = &array->expression.next->expression;
1238             vtype = elemtype->vtype;
1239
1240             v = ir_builder_create_field(ir, self->name, vtype);
1241             if (!v) {
1242                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1243                 return false;
1244             }
1245             v->context = ast_ctx(self);
1246             v->unique_life = true;
1247             v->locked      = true;
1248             array->ir_v = self->ir_v = v;
1249             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1250                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1251
1252             namelen = strlen(self->name);
1253             name    = (char*)mem_a(namelen + 16);
1254             strcpy(name, self->name);
1255
1256             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1257             array->ir_values[0] = v;
1258             for (ai = 1; ai < array->expression.count; ++ai) {
1259                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1260                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1261                 if (!array->ir_values[ai]) {
1262                     mem_d(name);
1263                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1264                     return false;
1265                 }
1266                 array->ir_values[ai]->context = ast_ctx(self);
1267                 array->ir_values[ai]->unique_life = true;
1268                 array->ir_values[ai]->locked      = true;
1269                 if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1270                     self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1271             }
1272             mem_d(name);
1273         }
1274         else
1275         {
1276             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1277             if (!v)
1278                 return false;
1279             v->context = ast_ctx(self);
1280             self->ir_v = v;
1281             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1282                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1283         }
1284         return true;
1285     }
1286
1287     if (self->expression.vtype == TYPE_ARRAY) {
1288         size_t ai;
1289         char   *name;
1290         size_t  namelen;
1291
1292         ast_expression_common *elemtype = &self->expression.next->expression;
1293         int vtype = elemtype->vtype;
1294
1295         /* same as with field arrays */
1296         if (!self->expression.count || self->expression.count > opts.max_array_size)
1297             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1298
1299         v = ir_builder_create_global(ir, self->name, vtype);
1300         if (!v) {
1301             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1302             return false;
1303         }
1304         v->context = ast_ctx(self);
1305         v->unique_life = true;
1306         v->locked      = true;
1307         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1308             v->flags |= IR_FLAG_INCLUDE_DEF;
1309
1310         namelen = strlen(self->name);
1311         name    = (char*)mem_a(namelen + 16);
1312         strcpy(name, self->name);
1313
1314         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1315         self->ir_values[0] = v;
1316         for (ai = 1; ai < self->expression.count; ++ai) {
1317             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1318             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1319             if (!self->ir_values[ai]) {
1320                 mem_d(name);
1321                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1322                 return false;
1323             }
1324             self->ir_values[ai]->context = ast_ctx(self);
1325             self->ir_values[ai]->unique_life = true;
1326             self->ir_values[ai]->locked      = true;
1327             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1328                 self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1329         }
1330         mem_d(name);
1331     }
1332     else
1333     {
1334         /* Arrays don't do this since there's no "array" value which spans across the
1335          * whole thing.
1336          */
1337         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1338         if (!v) {
1339             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1340             return false;
1341         }
1342         codegen_output_type(self, v);
1343         v->context = ast_ctx(self);
1344     }
1345
1346     if (self->hasvalue) {
1347         switch (self->expression.vtype)
1348         {
1349             case TYPE_FLOAT:
1350                 if (!ir_value_set_float(v, self->constval.vfloat))
1351                     goto error;
1352                 break;
1353             case TYPE_VECTOR:
1354                 if (!ir_value_set_vector(v, self->constval.vvec))
1355                     goto error;
1356                 break;
1357             case TYPE_STRING:
1358                 if (!ir_value_set_string(v, self->constval.vstring))
1359                     goto error;
1360                 break;
1361             case TYPE_ARRAY:
1362                 compile_error(ast_ctx(self), "TODO: global constant array");
1363                 break;
1364             case TYPE_FUNCTION:
1365                 compile_error(ast_ctx(self), "global of type function not properly generated");
1366                 goto error;
1367                 /* Cannot generate an IR value for a function,
1368                  * need a pointer pointing to a function rather.
1369                  */
1370             case TYPE_FIELD:
1371                 if (!self->constval.vfield) {
1372                     compile_error(ast_ctx(self), "field constant without vfield set");
1373                     goto error;
1374                 }
1375                 if (!self->constval.vfield->ir_v) {
1376                     compile_error(ast_ctx(self), "field constant generated before its field");
1377                     goto error;
1378                 }
1379                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1380                     goto error;
1381                 break;
1382             default:
1383                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1384                 break;
1385         }
1386     }
1387
1388     /* link us to the ir_value */
1389     v->cvq = self->cvq;
1390     self->ir_v = v;
1391     if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1392         self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1393     return true;
1394
1395 error: /* clean up */
1396     ir_value_delete(v);
1397     return false;
1398 }
1399
1400 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1401 {
1402     ir_value *v = NULL;
1403
1404     if (self->expression.vtype == TYPE_NIL) {
1405         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1406         return false;
1407     }
1408
1409     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1410     {
1411         /* Do we allow local functions? I think not...
1412          * this is NOT a function pointer atm.
1413          */
1414         return false;
1415     }
1416
1417     if (self->expression.vtype == TYPE_ARRAY) {
1418         size_t ai;
1419         char   *name;
1420         size_t  namelen;
1421
1422         ast_expression_common *elemtype = &self->expression.next->expression;
1423         int vtype = elemtype->vtype;
1424
1425         func->flags |= IR_FLAG_HAS_ARRAYS;
1426
1427         if (param && !(self->expression.flags & AST_FLAG_IS_VARARG)) {
1428             compile_error(ast_ctx(self), "array-parameters are not supported");
1429             return false;
1430         }
1431
1432         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1433         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1434             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1435         }
1436
1437         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1438         if (!self->ir_values) {
1439             compile_error(ast_ctx(self), "failed to allocate array values");
1440             return false;
1441         }
1442
1443         v = ir_function_create_local(func, self->name, vtype, param);
1444         if (!v) {
1445             compile_error(ast_ctx(self), "ir_function_create_local failed");
1446             return false;
1447         }
1448         v->context = ast_ctx(self);
1449         v->unique_life = true;
1450         v->locked      = true;
1451
1452         namelen = strlen(self->name);
1453         name    = (char*)mem_a(namelen + 16);
1454         strcpy(name, self->name);
1455
1456         self->ir_values[0] = v;
1457         for (ai = 1; ai < self->expression.count; ++ai) {
1458             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1459             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1460             if (!self->ir_values[ai]) {
1461                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1462                 return false;
1463             }
1464             self->ir_values[ai]->context = ast_ctx(self);
1465             self->ir_values[ai]->unique_life = true;
1466             self->ir_values[ai]->locked      = true;
1467         }
1468     }
1469     else
1470     {
1471         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1472         if (!v)
1473             return false;
1474         codegen_output_type(self, v);
1475         v->context = ast_ctx(self);
1476     }
1477
1478     /* A constant local... hmmm...
1479      * I suppose the IR will have to deal with this
1480      */
1481     if (self->hasvalue) {
1482         switch (self->expression.vtype)
1483         {
1484             case TYPE_FLOAT:
1485                 if (!ir_value_set_float(v, self->constval.vfloat))
1486                     goto error;
1487                 break;
1488             case TYPE_VECTOR:
1489                 if (!ir_value_set_vector(v, self->constval.vvec))
1490                     goto error;
1491                 break;
1492             case TYPE_STRING:
1493                 if (!ir_value_set_string(v, self->constval.vstring))
1494                     goto error;
1495                 break;
1496             default:
1497                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1498                 break;
1499         }
1500     }
1501
1502     /* link us to the ir_value */
1503     v->cvq = self->cvq;
1504     self->ir_v = v;
1505
1506     if (!ast_generate_accessors(self, func->owner))
1507         return false;
1508     return true;
1509
1510 error: /* clean up */
1511     ir_value_delete(v);
1512     return false;
1513 }
1514
1515 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1516 {
1517     size_t i;
1518     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1519     if (!self->setter || !self->getter)
1520         return true;
1521     for (i = 0; i < self->expression.count; ++i) {
1522         if (!self->ir_values) {
1523             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1524             return false;
1525         }
1526         if (!self->ir_values[i]) {
1527             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1528             return false;
1529         }
1530         if (self->ir_values[i]->life) {
1531             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1532             return false;
1533         }
1534     }
1535
1536     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1537     if (self->setter) {
1538         if (!ast_global_codegen  (self->setter, ir, false) ||
1539             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1540             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1541         {
1542             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1543             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1544             return false;
1545         }
1546     }
1547     if (self->getter) {
1548         if (!ast_global_codegen  (self->getter, ir, false) ||
1549             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1550             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1551         {
1552             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1553             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1554             return false;
1555         }
1556     }
1557     for (i = 0; i < self->expression.count; ++i) {
1558         vec_free(self->ir_values[i]->life);
1559     }
1560     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1561     return true;
1562 }
1563
1564 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1565 {
1566     ir_function *irf;
1567     ir_value    *dummy;
1568     ast_expression_common  *ec;
1569     ast_expression_codegen *cgen;
1570     size_t    i;
1571
1572     (void)ir;
1573
1574     irf = self->ir_func;
1575     if (!irf) {
1576         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1577         return false;
1578     }
1579
1580     /* fill the parameter list */
1581     ec = &self->vtype->expression;
1582     for (i = 0; i < vec_size(ec->params); ++i)
1583     {
1584         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1585             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1586         else
1587             vec_push(irf->params, ec->params[i]->expression.vtype);
1588         if (!self->builtin) {
1589             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1590                 return false;
1591         }
1592     }
1593
1594     if (self->varargs) {
1595         if (!ast_local_codegen(self->varargs, self->ir_func, true))
1596             return false;
1597         irf->max_varargs = self->varargs->expression.count;
1598     }
1599
1600     if (self->builtin) {
1601         irf->builtin = self->builtin;
1602         return true;
1603     }
1604
1605     if (!vec_size(self->blocks)) {
1606         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1607         return false;
1608     }
1609
1610     irf->first = self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1611     if (!self->curblock) {
1612         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1613         return false;
1614     }
1615
1616     if (self->argc) {
1617         ir_value *va_count;
1618         ir_value *fixed;
1619         ir_value *sub;
1620         if (!ast_local_codegen(self->argc, self->ir_func, true))
1621             return false;
1622         cgen = self->argc->expression.codegen;
1623         if (!(*cgen)((ast_expression*)(self->argc), self, false, &va_count))
1624             return false;
1625         cgen = self->fixedparams->expression.codegen;
1626         if (!(*cgen)((ast_expression*)(self->fixedparams), self, false, &fixed))
1627             return false;
1628         sub = ir_block_create_binop(self->curblock, ast_ctx(self),
1629                                     ast_function_label(self, "va_count"), INSTR_SUB_F,
1630                                     ir_builder_get_va_count(ir), fixed);
1631         if (!sub)
1632             return false;
1633         if (!ir_block_create_store_op(self->curblock, ast_ctx(self), INSTR_STORE_F,
1634                                       va_count, sub))
1635         {
1636             return false;
1637         }
1638     }
1639
1640     for (i = 0; i < vec_size(self->blocks); ++i) {
1641         cgen = self->blocks[i]->expression.codegen;
1642         if (!(*cgen)((ast_expression*)self->blocks[i], self, false, &dummy))
1643             return false;
1644     }
1645
1646     /* TODO: check return types */
1647     if (!self->curblock->final)
1648     {
1649         if (!self->vtype->expression.next ||
1650             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1651         {
1652             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1653         }
1654         else if (vec_size(self->curblock->entries) || self->curblock == irf->first)
1655         {
1656             /* error("missing return"); */
1657             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1658                                 "control reaches end of non-void function (`%s`) via %s",
1659                                 self->name, self->curblock->label))
1660             {
1661                 return false;
1662             }
1663             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1664         }
1665     }
1666     return true;
1667 }
1668
1669 /* Note, you will not see ast_block_codegen generate ir_blocks.
1670  * To the AST and the IR, blocks are 2 different things.
1671  * In the AST it represents a block of code, usually enclosed in
1672  * curly braces {...}.
1673  * While in the IR it represents a block in terms of control-flow.
1674  */
1675 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1676 {
1677     size_t i;
1678
1679     /* We don't use this
1680      * Note: an ast-representation using the comma-operator
1681      * of the form: (a, b, c) = x should not assign to c...
1682      */
1683     if (lvalue) {
1684         compile_error(ast_ctx(self), "not an l-value (code-block)");
1685         return false;
1686     }
1687
1688     if (self->expression.outr) {
1689         *out = self->expression.outr;
1690         return true;
1691     }
1692
1693     /* output is NULL at first, we'll have each expression
1694      * assign to out output, thus, a comma-operator represention
1695      * using an ast_block will return the last generated value,
1696      * so: (b, c) + a  executed both b and c, and returns c,
1697      * which is then added to a.
1698      */
1699     *out = NULL;
1700
1701     /* generate locals */
1702     for (i = 0; i < vec_size(self->locals); ++i)
1703     {
1704         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1705             if (opts.debug)
1706                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1707             return false;
1708         }
1709     }
1710
1711     for (i = 0; i < vec_size(self->exprs); ++i)
1712     {
1713         ast_expression_codegen *gen;
1714         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1715             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1716                 return false;
1717             continue;
1718         }
1719         gen = self->exprs[i]->expression.codegen;
1720         if (!(*gen)(self->exprs[i], func, false, out))
1721             return false;
1722     }
1723
1724     self->expression.outr = *out;
1725
1726     return true;
1727 }
1728
1729 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1730 {
1731     ast_expression_codegen *cgen;
1732     ir_value *left  = NULL;
1733     ir_value *right = NULL;
1734
1735     ast_value       *arr;
1736     ast_value       *idx = 0;
1737     ast_array_index *ai = NULL;
1738
1739     if (lvalue && self->expression.outl) {
1740         *out = self->expression.outl;
1741         return true;
1742     }
1743
1744     if (!lvalue && self->expression.outr) {
1745         *out = self->expression.outr;
1746         return true;
1747     }
1748
1749     if (ast_istype(self->dest, ast_array_index))
1750     {
1751
1752         ai = (ast_array_index*)self->dest;
1753         idx = (ast_value*)ai->index;
1754
1755         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1756             ai = NULL;
1757     }
1758
1759     if (ai) {
1760         /* we need to call the setter */
1761         ir_value  *iridx, *funval;
1762         ir_instr  *call;
1763
1764         if (lvalue) {
1765             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1766             return false;
1767         }
1768
1769         arr = (ast_value*)ai->array;
1770         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1771             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1772             return false;
1773         }
1774
1775         cgen = idx->expression.codegen;
1776         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1777             return false;
1778
1779         cgen = arr->setter->expression.codegen;
1780         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1781             return false;
1782
1783         cgen = self->source->expression.codegen;
1784         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1785             return false;
1786
1787         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1788         if (!call)
1789             return false;
1790         ir_call_param(call, iridx);
1791         ir_call_param(call, right);
1792         self->expression.outr = right;
1793     }
1794     else
1795     {
1796         /* regular code */
1797
1798         cgen = self->dest->expression.codegen;
1799         /* lvalue! */
1800         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1801             return false;
1802         self->expression.outl = left;
1803
1804         cgen = self->source->expression.codegen;
1805         /* rvalue! */
1806         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1807             return false;
1808
1809         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1810             return false;
1811         self->expression.outr = right;
1812     }
1813
1814     /* Theoretically, an assinment returns its left side as an
1815      * lvalue, if we don't need an lvalue though, we return
1816      * the right side as an rvalue, otherwise we have to
1817      * somehow know whether or not we need to dereference the pointer
1818      * on the left side - that is: OP_LOAD if it was an address.
1819      * Also: in original QC we cannot OP_LOADP *anyway*.
1820      */
1821     *out = (lvalue ? left : right);
1822
1823     return true;
1824 }
1825
1826 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1827 {
1828     ast_expression_codegen *cgen;
1829     ir_value *left, *right;
1830
1831     /* A binary operation cannot yield an l-value */
1832     if (lvalue) {
1833         compile_error(ast_ctx(self), "not an l-value (binop)");
1834         return false;
1835     }
1836
1837     if (self->expression.outr) {
1838         *out = self->expression.outr;
1839         return true;
1840     }
1841
1842     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1843         (self->op == INSTR_AND || self->op == INSTR_OR))
1844     {
1845         /* short circuit evaluation */
1846         ir_block *other, *merge;
1847         ir_block *from_left, *from_right;
1848         ir_instr *phi;
1849         size_t    merge_id;
1850
1851         /* prepare end-block */
1852         merge_id = vec_size(func->ir_func->blocks);
1853         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1854
1855         /* generate the left expression */
1856         cgen = self->left->expression.codegen;
1857         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1858             return false;
1859         /* remember the block */
1860         from_left = func->curblock;
1861
1862         /* create a new block for the right expression */
1863         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1864         if (self->op == INSTR_AND) {
1865             /* on AND: left==true -> other */
1866             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1867                 return false;
1868         } else {
1869             /* on OR: left==false -> other */
1870             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1871                 return false;
1872         }
1873         /* use the likely flag */
1874         vec_last(func->curblock->instr)->likely = true;
1875
1876         /* enter the right-expression's block */
1877         func->curblock = other;
1878         /* generate */
1879         cgen = self->right->expression.codegen;
1880         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1881             return false;
1882         /* remember block */
1883         from_right = func->curblock;
1884
1885         /* jump to the merge block */
1886         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1887             return false;
1888
1889         vec_remove(func->ir_func->blocks, merge_id, 1);
1890         vec_push(func->ir_func->blocks, merge);
1891
1892         func->curblock = merge;
1893         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1894                                   ast_function_label(func, "sce_value"),
1895                                   self->expression.vtype);
1896         ir_phi_add(phi, from_left, left);
1897         ir_phi_add(phi, from_right, right);
1898         *out = ir_phi_value(phi);
1899         if (!*out)
1900             return false;
1901
1902         if (!OPTS_FLAG(PERL_LOGIC)) {
1903             /* cast-to-bool */
1904             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1905                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1906                                              ast_function_label(func, "sce_bool_v"),
1907                                              INSTR_NOT_V, *out);
1908                 if (!*out)
1909                     return false;
1910                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1911                                              ast_function_label(func, "sce_bool"),
1912                                              INSTR_NOT_F, *out);
1913                 if (!*out)
1914                     return false;
1915             }
1916             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1917                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1918                                              ast_function_label(func, "sce_bool_s"),
1919                                              INSTR_NOT_S, *out);
1920                 if (!*out)
1921                     return false;
1922                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1923                                              ast_function_label(func, "sce_bool"),
1924                                              INSTR_NOT_F, *out);
1925                 if (!*out)
1926                     return false;
1927             }
1928             else {
1929                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1930                                              ast_function_label(func, "sce_bool"),
1931                                              INSTR_AND, *out, *out);
1932                 if (!*out)
1933                     return false;
1934             }
1935         }
1936
1937         self->expression.outr = *out;
1938         codegen_output_type(self, *out);
1939         return true;
1940     }
1941
1942     cgen = self->left->expression.codegen;
1943     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1944         return false;
1945
1946     cgen = self->right->expression.codegen;
1947     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1948         return false;
1949
1950     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1951                                  self->op, left, right);
1952     if (!*out)
1953         return false;
1954     self->expression.outr = *out;
1955     codegen_output_type(self, *out);
1956
1957     return true;
1958 }
1959
1960 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1961 {
1962     ast_expression_codegen *cgen;
1963     ir_value *leftl = NULL, *leftr, *right, *bin;
1964
1965     ast_value       *arr;
1966     ast_value       *idx = 0;
1967     ast_array_index *ai = NULL;
1968     ir_value        *iridx = NULL;
1969
1970     if (lvalue && self->expression.outl) {
1971         *out = self->expression.outl;
1972         return true;
1973     }
1974
1975     if (!lvalue && self->expression.outr) {
1976         *out = self->expression.outr;
1977         return true;
1978     }
1979
1980     if (ast_istype(self->dest, ast_array_index))
1981     {
1982
1983         ai = (ast_array_index*)self->dest;
1984         idx = (ast_value*)ai->index;
1985
1986         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1987             ai = NULL;
1988     }
1989
1990     /* for a binstore we need both an lvalue and an rvalue for the left side */
1991     /* rvalue of destination! */
1992     if (ai) {
1993         cgen = idx->expression.codegen;
1994         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1995             return false;
1996     }
1997     cgen = self->dest->expression.codegen;
1998     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1999         return false;
2000
2001     /* source as rvalue only */
2002     cgen = self->source->expression.codegen;
2003     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
2004         return false;
2005
2006     /* now the binary */
2007     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
2008                                 self->opbin, leftr, right);
2009     self->expression.outr = bin;
2010
2011
2012     if (ai) {
2013         /* we need to call the setter */
2014         ir_value  *funval;
2015         ir_instr  *call;
2016
2017         if (lvalue) {
2018             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
2019             return false;
2020         }
2021
2022         arr = (ast_value*)ai->array;
2023         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
2024             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
2025             return false;
2026         }
2027
2028         cgen = arr->setter->expression.codegen;
2029         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
2030             return false;
2031
2032         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
2033         if (!call)
2034             return false;
2035         ir_call_param(call, iridx);
2036         ir_call_param(call, bin);
2037         self->expression.outr = bin;
2038     } else {
2039         /* now store them */
2040         cgen = self->dest->expression.codegen;
2041         /* lvalue of destination */
2042         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
2043             return false;
2044         self->expression.outl = leftl;
2045
2046         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
2047             return false;
2048         self->expression.outr = bin;
2049     }
2050
2051     /* Theoretically, an assinment returns its left side as an
2052      * lvalue, if we don't need an lvalue though, we return
2053      * the right side as an rvalue, otherwise we have to
2054      * somehow know whether or not we need to dereference the pointer
2055      * on the left side - that is: OP_LOAD if it was an address.
2056      * Also: in original QC we cannot OP_LOADP *anyway*.
2057      */
2058     *out = (lvalue ? leftl : bin);
2059
2060     return true;
2061 }
2062
2063 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
2064 {
2065     ast_expression_codegen *cgen;
2066     ir_value *operand;
2067
2068     /* An unary operation cannot yield an l-value */
2069     if (lvalue) {
2070         compile_error(ast_ctx(self), "not an l-value (binop)");
2071         return false;
2072     }
2073
2074     if (self->expression.outr) {
2075         *out = self->expression.outr;
2076         return true;
2077     }
2078
2079     cgen = self->operand->expression.codegen;
2080     /* lvalue! */
2081     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2082         return false;
2083
2084     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2085                                  self->op, operand);
2086     if (!*out)
2087         return false;
2088     self->expression.outr = *out;
2089
2090     return true;
2091 }
2092
2093 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2094 {
2095     ast_expression_codegen *cgen;
2096     ir_value *operand;
2097
2098     *out = NULL;
2099
2100     /* In the context of a return operation, we don't actually return
2101      * anything...
2102      */
2103     if (lvalue) {
2104         compile_error(ast_ctx(self), "return-expression is not an l-value");
2105         return false;
2106     }
2107
2108     if (self->expression.outr) {
2109         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2110         return false;
2111     }
2112     self->expression.outr = (ir_value*)1;
2113
2114     if (self->operand) {
2115         cgen = self->operand->expression.codegen;
2116         /* lvalue! */
2117         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2118             return false;
2119
2120         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2121             return false;
2122     } else {
2123         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2124             return false;
2125     }
2126
2127     return true;
2128 }
2129
2130 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2131 {
2132     ast_expression_codegen *cgen;
2133     ir_value *ent, *field;
2134
2135     /* This function needs to take the 'lvalue' flag into account!
2136      * As lvalue we provide a field-pointer, as rvalue we provide the
2137      * value in a temp.
2138      */
2139
2140     if (lvalue && self->expression.outl) {
2141         *out = self->expression.outl;
2142         return true;
2143     }
2144
2145     if (!lvalue && self->expression.outr) {
2146         *out = self->expression.outr;
2147         return true;
2148     }
2149
2150     cgen = self->entity->expression.codegen;
2151     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2152         return false;
2153
2154     cgen = self->field->expression.codegen;
2155     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2156         return false;
2157
2158     if (lvalue) {
2159         /* address! */
2160         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2161                                             ent, field);
2162     } else {
2163         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2164                                              ent, field, self->expression.vtype);
2165         /* Done AFTER error checking: 
2166         codegen_output_type(self, *out);
2167         */
2168     }
2169     if (!*out) {
2170         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2171                  (lvalue ? "ADDRESS" : "FIELD"),
2172                  type_name[self->expression.vtype]);
2173         return false;
2174     }
2175     if (!lvalue)
2176         codegen_output_type(self, *out);
2177
2178     if (lvalue)
2179         self->expression.outl = *out;
2180     else
2181         self->expression.outr = *out;
2182
2183     /* Hm that should be it... */
2184     return true;
2185 }
2186
2187 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2188 {
2189     ast_expression_codegen *cgen;
2190     ir_value *vec;
2191
2192     /* in QC this is always an lvalue */
2193     if (lvalue && self->rvalue) {
2194         compile_error(ast_ctx(self), "not an l-value (member access)");
2195         return false;
2196     }
2197     if (self->expression.outl) {
2198         *out = self->expression.outl;
2199         return true;
2200     }
2201
2202     cgen = self->owner->expression.codegen;
2203     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2204         return false;
2205
2206     if (vec->vtype != TYPE_VECTOR &&
2207         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2208     {
2209         return false;
2210     }
2211
2212     *out = ir_value_vector_member(vec, self->field);
2213     self->expression.outl = *out;
2214
2215     return (*out != NULL);
2216 }
2217
2218 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2219 {
2220     ast_value *arr;
2221     ast_value *idx;
2222
2223     if (!lvalue && self->expression.outr) {
2224         *out = self->expression.outr;
2225     }
2226     if (lvalue && self->expression.outl) {
2227         *out = self->expression.outl;
2228     }
2229
2230     if (!ast_istype(self->array, ast_value)) {
2231         compile_error(ast_ctx(self), "array indexing this way is not supported");
2232         /* note this would actually be pointer indexing because the left side is
2233          * not an actual array but (hopefully) an indexable expression.
2234          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2235          * support this path will be filled.
2236          */
2237         return false;
2238     }
2239
2240     arr = (ast_value*)self->array;
2241     idx = (ast_value*)self->index;
2242
2243     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2244         /* Time to use accessor functions */
2245         ast_expression_codegen *cgen;
2246         ir_value               *iridx, *funval;
2247         ir_instr               *call;
2248
2249         if (lvalue) {
2250             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2251             return false;
2252         }
2253
2254         if (!arr->getter) {
2255             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2256             return false;
2257         }
2258
2259         cgen = self->index->expression.codegen;
2260         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2261             return false;
2262
2263         cgen = arr->getter->expression.codegen;
2264         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2265             return false;
2266
2267         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2268         if (!call)
2269             return false;
2270         ir_call_param(call, iridx);
2271
2272         *out = ir_call_value(call);
2273         self->expression.outr = *out;
2274         (*out)->vtype = self->expression.vtype;
2275         codegen_output_type(self, *out);
2276         return true;
2277     }
2278
2279     if (idx->expression.vtype == TYPE_FLOAT) {
2280         unsigned int arridx = idx->constval.vfloat;
2281         if (arridx >= self->array->expression.count)
2282         {
2283             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2284             return false;
2285         }
2286         *out = arr->ir_values[arridx];
2287     }
2288     else if (idx->expression.vtype == TYPE_INTEGER) {
2289         unsigned int arridx = idx->constval.vint;
2290         if (arridx >= self->array->expression.count)
2291         {
2292             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2293             return false;
2294         }
2295         *out = arr->ir_values[arridx];
2296     }
2297     else {
2298         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2299         return false;
2300     }
2301     (*out)->vtype = self->expression.vtype;
2302     codegen_output_type(self, *out);
2303     return true;
2304 }
2305
2306 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2307 {
2308     ast_expression_codegen *cgen;
2309
2310     ir_value *condval;
2311     ir_value *dummy;
2312
2313     ir_block *cond;
2314     ir_block *ontrue;
2315     ir_block *onfalse;
2316     ir_block *ontrue_endblock = NULL;
2317     ir_block *onfalse_endblock = NULL;
2318     ir_block *merge = NULL;
2319
2320     /* We don't output any value, thus also don't care about r/lvalue */
2321     (void)out;
2322     (void)lvalue;
2323
2324     if (self->expression.outr) {
2325         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2326         return false;
2327     }
2328     self->expression.outr = (ir_value*)1;
2329
2330     /* generate the condition */
2331     cgen = self->cond->expression.codegen;
2332     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2333         return false;
2334     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2335     cond = func->curblock;
2336
2337     /* on-true path */
2338
2339     if (self->on_true) {
2340         /* create on-true block */
2341         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2342         if (!ontrue)
2343             return false;
2344
2345         /* enter the block */
2346         func->curblock = ontrue;
2347
2348         /* generate */
2349         cgen = self->on_true->expression.codegen;
2350         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2351             return false;
2352
2353         /* we now need to work from the current endpoint */
2354         ontrue_endblock = func->curblock;
2355     } else
2356         ontrue = NULL;
2357
2358     /* on-false path */
2359     if (self->on_false) {
2360         /* create on-false block */
2361         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2362         if (!onfalse)
2363             return false;
2364
2365         /* enter the block */
2366         func->curblock = onfalse;
2367
2368         /* generate */
2369         cgen = self->on_false->expression.codegen;
2370         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2371             return false;
2372
2373         /* we now need to work from the current endpoint */
2374         onfalse_endblock = func->curblock;
2375     } else
2376         onfalse = NULL;
2377
2378     /* Merge block were they all merge in to */
2379     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2380     {
2381         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2382         if (!merge)
2383             return false;
2384         /* add jumps ot the merge block */
2385         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2386             return false;
2387         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2388             return false;
2389
2390         /* Now enter the merge block */
2391         func->curblock = merge;
2392     }
2393
2394     /* we create the if here, that way all blocks are ordered :)
2395      */
2396     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2397                             (ontrue  ? ontrue  : merge),
2398                             (onfalse ? onfalse : merge)))
2399     {
2400         return false;
2401     }
2402
2403     return true;
2404 }
2405
2406 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2407 {
2408     ast_expression_codegen *cgen;
2409
2410     ir_value *condval;
2411     ir_value *trueval, *falseval;
2412     ir_instr *phi;
2413
2414     ir_block *cond = func->curblock;
2415     ir_block *cond_out = NULL;
2416     ir_block *ontrue, *ontrue_out = NULL;
2417     ir_block *onfalse, *onfalse_out = NULL;
2418     ir_block *merge;
2419
2420     /* Ternary can never create an lvalue... */
2421     if (lvalue)
2422         return false;
2423
2424     /* In theory it shouldn't be possible to pass through a node twice, but
2425      * in case we add any kind of optimization pass for the AST itself, it
2426      * may still happen, thus we remember a created ir_value and simply return one
2427      * if it already exists.
2428      */
2429     if (self->expression.outr) {
2430         *out = self->expression.outr;
2431         return true;
2432     }
2433
2434     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2435
2436     /* generate the condition */
2437     func->curblock = cond;
2438     cgen = self->cond->expression.codegen;
2439     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2440         return false;
2441     cond_out = func->curblock;
2442
2443     /* create on-true block */
2444     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2445     if (!ontrue)
2446         return false;
2447     else
2448     {
2449         /* enter the block */
2450         func->curblock = ontrue;
2451
2452         /* generate */
2453         cgen = self->on_true->expression.codegen;
2454         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2455             return false;
2456
2457         ontrue_out = func->curblock;
2458     }
2459
2460     /* create on-false block */
2461     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2462     if (!onfalse)
2463         return false;
2464     else
2465     {
2466         /* enter the block */
2467         func->curblock = onfalse;
2468
2469         /* generate */
2470         cgen = self->on_false->expression.codegen;
2471         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2472             return false;
2473
2474         onfalse_out = func->curblock;
2475     }
2476
2477     /* create merge block */
2478     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2479     if (!merge)
2480         return false;
2481     /* jump to merge block */
2482     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2483         return false;
2484     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2485         return false;
2486
2487     /* create if instruction */
2488     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2489         return false;
2490
2491     /* Now enter the merge block */
2492     func->curblock = merge;
2493
2494     /* Here, now, we need a PHI node
2495      * but first some sanity checking...
2496      */
2497     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2498         /* error("ternary with different types on the two sides"); */
2499         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2500         return false;
2501     }
2502
2503     /* create PHI */
2504     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2505     if (!phi) {
2506         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2507         return false;
2508     }
2509     ir_phi_add(phi, ontrue_out,  trueval);
2510     ir_phi_add(phi, onfalse_out, falseval);
2511
2512     self->expression.outr = ir_phi_value(phi);
2513     *out = self->expression.outr;
2514
2515     codegen_output_type(self, *out);
2516
2517     return true;
2518 }
2519
2520 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2521 {
2522     ast_expression_codegen *cgen;
2523
2524     ir_value *dummy      = NULL;
2525     ir_value *precond    = NULL;
2526     ir_value *postcond   = NULL;
2527
2528     /* Since we insert some jumps "late" so we have blocks
2529      * ordered "nicely", we need to keep track of the actual end-blocks
2530      * of expressions to add the jumps to.
2531      */
2532     ir_block *bbody      = NULL, *end_bbody      = NULL;
2533     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2534     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2535     ir_block *bincrement = NULL, *end_bincrement = NULL;
2536     ir_block *bout       = NULL, *bin            = NULL;
2537
2538     /* let's at least move the outgoing block to the end */
2539     size_t    bout_id;
2540
2541     /* 'break' and 'continue' need to be able to find the right blocks */
2542     ir_block *bcontinue     = NULL;
2543     ir_block *bbreak        = NULL;
2544
2545     ir_block *tmpblock      = NULL;
2546
2547     (void)lvalue;
2548     (void)out;
2549
2550     if (self->expression.outr) {
2551         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2552         return false;
2553     }
2554     self->expression.outr = (ir_value*)1;
2555
2556     /* NOTE:
2557      * Should we ever need some kind of block ordering, better make this function
2558      * move blocks around than write a block ordering algorithm later... after all
2559      * the ast and ir should work together, not against each other.
2560      */
2561
2562     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2563      * anyway if for example it contains a ternary.
2564      */
2565     if (self->initexpr)
2566     {
2567         cgen = self->initexpr->expression.codegen;
2568         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2569             return false;
2570     }
2571
2572     /* Store the block from which we enter this chaos */
2573     bin = func->curblock;
2574
2575     /* The pre-loop condition needs its own block since we
2576      * need to be able to jump to the start of that expression.
2577      */
2578     if (self->precond)
2579     {
2580         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2581         if (!bprecond)
2582             return false;
2583
2584         /* the pre-loop-condition the least important place to 'continue' at */
2585         bcontinue = bprecond;
2586
2587         /* enter */
2588         func->curblock = bprecond;
2589
2590         /* generate */
2591         cgen = self->precond->expression.codegen;
2592         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2593             return false;
2594
2595         end_bprecond = func->curblock;
2596     } else {
2597         bprecond = end_bprecond = NULL;
2598     }
2599
2600     /* Now the next blocks won't be ordered nicely, but we need to
2601      * generate them this early for 'break' and 'continue'.
2602      */
2603     if (self->increment) {
2604         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2605         if (!bincrement)
2606             return false;
2607         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2608     } else {
2609         bincrement = end_bincrement = NULL;
2610     }
2611
2612     if (self->postcond) {
2613         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2614         if (!bpostcond)
2615             return false;
2616         bcontinue = bpostcond; /* postcond comes before the increment */
2617     } else {
2618         bpostcond = end_bpostcond = NULL;
2619     }
2620
2621     bout_id = vec_size(func->ir_func->blocks);
2622     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2623     if (!bout)
2624         return false;
2625     bbreak = bout;
2626
2627     /* The loop body... */
2628     /* if (self->body) */
2629     {
2630         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2631         if (!bbody)
2632             return false;
2633
2634         /* enter */
2635         func->curblock = bbody;
2636
2637         vec_push(func->breakblocks,    bbreak);
2638         if (bcontinue)
2639             vec_push(func->continueblocks, bcontinue);
2640         else
2641             vec_push(func->continueblocks, bbody);
2642
2643         /* generate */
2644         if (self->body) {
2645             cgen = self->body->expression.codegen;
2646             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2647                 return false;
2648         }
2649
2650         end_bbody = func->curblock;
2651         vec_pop(func->breakblocks);
2652         vec_pop(func->continueblocks);
2653     }
2654
2655     /* post-loop-condition */
2656     if (self->postcond)
2657     {
2658         /* enter */
2659         func->curblock = bpostcond;
2660
2661         /* generate */
2662         cgen = self->postcond->expression.codegen;
2663         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2664             return false;
2665
2666         end_bpostcond = func->curblock;
2667     }
2668
2669     /* The incrementor */
2670     if (self->increment)
2671     {
2672         /* enter */
2673         func->curblock = bincrement;
2674
2675         /* generate */
2676         cgen = self->increment->expression.codegen;
2677         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2678             return false;
2679
2680         end_bincrement = func->curblock;
2681     }
2682
2683     /* In any case now, we continue from the outgoing block */
2684     func->curblock = bout;
2685
2686     /* Now all blocks are in place */
2687     /* From 'bin' we jump to whatever comes first */
2688     if      (bprecond)   tmpblock = bprecond;
2689     else if (bbody)      tmpblock = bbody;
2690     else if (bpostcond)  tmpblock = bpostcond;
2691     else                 tmpblock = bout;
2692     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2693         return false;
2694
2695     /* From precond */
2696     if (bprecond)
2697     {
2698         ir_block *ontrue, *onfalse;
2699         if      (bbody)      ontrue = bbody;
2700         else if (bincrement) ontrue = bincrement;
2701         else if (bpostcond)  ontrue = bpostcond;
2702         else                 ontrue = bprecond;
2703         onfalse = bout;
2704         if (self->pre_not) {
2705             tmpblock = ontrue;
2706             ontrue   = onfalse;
2707             onfalse  = tmpblock;
2708         }
2709         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2710             return false;
2711     }
2712
2713     /* from body */
2714     if (bbody)
2715     {
2716         if      (bincrement) tmpblock = bincrement;
2717         else if (bpostcond)  tmpblock = bpostcond;
2718         else if (bprecond)   tmpblock = bprecond;
2719         else                 tmpblock = bbody;
2720         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2721             return false;
2722     }
2723
2724     /* from increment */
2725     if (bincrement)
2726     {
2727         if      (bpostcond)  tmpblock = bpostcond;
2728         else if (bprecond)   tmpblock = bprecond;
2729         else if (bbody)      tmpblock = bbody;
2730         else                 tmpblock = bout;
2731         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2732             return false;
2733     }
2734
2735     /* from postcond */
2736     if (bpostcond)
2737     {
2738         ir_block *ontrue, *onfalse;
2739         if      (bprecond)   ontrue = bprecond;
2740         else if (bbody)      ontrue = bbody;
2741         else if (bincrement) ontrue = bincrement;
2742         else                 ontrue = bpostcond;
2743         onfalse = bout;
2744         if (self->post_not) {
2745             tmpblock = ontrue;
2746             ontrue   = onfalse;
2747             onfalse  = tmpblock;
2748         }
2749         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2750             return false;
2751     }
2752
2753     /* Move 'bout' to the end */
2754     vec_remove(func->ir_func->blocks, bout_id, 1);
2755     vec_push(func->ir_func->blocks, bout);
2756
2757     return true;
2758 }
2759
2760 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2761 {
2762     ir_block *target;
2763
2764     *out = NULL;
2765
2766     if (lvalue) {
2767         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2768         return false;
2769     }
2770
2771     if (self->expression.outr) {
2772         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2773         return false;
2774     }
2775     self->expression.outr = (ir_value*)1;
2776
2777     if (self->is_continue)
2778         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
2779     else
2780         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
2781
2782     if (!target) {
2783         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2784         return false;
2785     }
2786
2787     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2788         return false;
2789     return true;
2790 }
2791
2792 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2793 {
2794     ast_expression_codegen *cgen;
2795
2796     ast_switch_case *def_case     = NULL;
2797     ir_block        *def_bfall    = NULL;
2798     ir_block        *def_bfall_to = NULL;
2799     bool set_def_bfall_to = false;
2800
2801     ir_value *dummy     = NULL;
2802     ir_value *irop      = NULL;
2803     ir_block *bout      = NULL;
2804     ir_block *bfall     = NULL;
2805     size_t    bout_id;
2806     size_t    c;
2807
2808     char      typestr[1024];
2809     uint16_t  cmpinstr;
2810
2811     if (lvalue) {
2812         compile_error(ast_ctx(self), "switch expression is not an l-value");
2813         return false;
2814     }
2815
2816     if (self->expression.outr) {
2817         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2818         return false;
2819     }
2820     self->expression.outr = (ir_value*)1;
2821
2822     (void)lvalue;
2823     (void)out;
2824
2825     cgen = self->operand->expression.codegen;
2826     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2827         return false;
2828
2829     if (!vec_size(self->cases))
2830         return true;
2831
2832     cmpinstr = type_eq_instr[irop->vtype];
2833     if (cmpinstr >= AINSTR_END) {
2834         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2835         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2836         return false;
2837     }
2838
2839     bout_id = vec_size(func->ir_func->blocks);
2840     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2841     if (!bout)
2842         return false;
2843
2844     /* setup the break block */
2845     vec_push(func->breakblocks, bout);
2846
2847     /* Now create all cases */
2848     for (c = 0; c < vec_size(self->cases); ++c) {
2849         ir_value *cond, *val;
2850         ir_block *bcase, *bnot;
2851         size_t bnot_id;
2852
2853         ast_switch_case *swcase = &self->cases[c];
2854
2855         if (swcase->value) {
2856             /* A regular case */
2857             /* generate the condition operand */
2858             cgen = swcase->value->expression.codegen;
2859             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2860                 return false;
2861             /* generate the condition */
2862             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2863             if (!cond)
2864                 return false;
2865
2866             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2867             bnot_id = vec_size(func->ir_func->blocks);
2868             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2869             if (!bcase || !bnot)
2870                 return false;
2871             if (set_def_bfall_to) {
2872                 set_def_bfall_to = false;
2873                 def_bfall_to = bcase;
2874             }
2875             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2876                 return false;
2877
2878             /* Make the previous case-end fall through */
2879             if (bfall && !bfall->final) {
2880                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2881                     return false;
2882             }
2883
2884             /* enter the case */
2885             func->curblock = bcase;
2886             cgen = swcase->code->expression.codegen;
2887             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2888                 return false;
2889
2890             /* remember this block to fall through from */
2891             bfall = func->curblock;
2892
2893             /* enter the else and move it down */
2894             func->curblock = bnot;
2895             vec_remove(func->ir_func->blocks, bnot_id, 1);
2896             vec_push(func->ir_func->blocks, bnot);
2897         } else {
2898             /* The default case */
2899             /* Remember where to fall through from: */
2900             def_bfall = bfall;
2901             bfall     = NULL;
2902             /* remember which case it was */
2903             def_case  = swcase;
2904             /* And the next case will be remembered */
2905             set_def_bfall_to = true;
2906         }
2907     }
2908
2909     /* Jump from the last bnot to bout */
2910     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2911         /*
2912         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2913         */
2914         return false;
2915     }
2916
2917     /* If there was a default case, put it down here */
2918     if (def_case) {
2919         ir_block *bcase;
2920
2921         /* No need to create an extra block */
2922         bcase = func->curblock;
2923
2924         /* Insert the fallthrough jump */
2925         if (def_bfall && !def_bfall->final) {
2926             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2927                 return false;
2928         }
2929
2930         /* Now generate the default code */
2931         cgen = def_case->code->expression.codegen;
2932         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2933             return false;
2934
2935         /* see if we need to fall through */
2936         if (def_bfall_to && !func->curblock->final)
2937         {
2938             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2939                 return false;
2940         }
2941     }
2942
2943     /* Jump from the last bnot to bout */
2944     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2945         return false;
2946     /* enter the outgoing block */
2947     func->curblock = bout;
2948
2949     /* restore the break block */
2950     vec_pop(func->breakblocks);
2951
2952     /* Move 'bout' to the end, it's nicer */
2953     vec_remove(func->ir_func->blocks, bout_id, 1);
2954     vec_push(func->ir_func->blocks, bout);
2955
2956     return true;
2957 }
2958
2959 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2960 {
2961     size_t i;
2962     ir_value *dummy;
2963
2964     if (self->undefined) {
2965         compile_error(ast_ctx(self), "internal error: ast_label never defined");
2966         return false;
2967     }
2968
2969     *out = NULL;
2970     if (lvalue) {
2971         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2972         return false;
2973     }
2974
2975     /* simply create a new block and jump to it */
2976     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2977     if (!self->irblock) {
2978         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2979         return false;
2980     }
2981     if (!func->curblock->final) {
2982         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2983             return false;
2984     }
2985
2986     /* enter the new block */
2987     func->curblock = self->irblock;
2988
2989     /* Generate all the leftover gotos */
2990     for (i = 0; i < vec_size(self->gotos); ++i) {
2991         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2992             return false;
2993     }
2994
2995     return true;
2996 }
2997
2998 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2999 {
3000     *out = NULL;
3001     if (lvalue) {
3002         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
3003         return false;
3004     }
3005
3006     if (self->target->irblock) {
3007         if (self->irblock_from) {
3008             /* we already tried once, this is the callback */
3009             self->irblock_from->final = false;
3010             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
3011                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3012                 return false;
3013             }
3014         }
3015         else
3016         {
3017             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
3018                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
3019                 return false;
3020             }
3021         }
3022     }
3023     else
3024     {
3025         /* the target has not yet been created...
3026          * close this block in a sneaky way:
3027          */
3028         func->curblock->final = true;
3029         self->irblock_from = func->curblock;
3030         ast_label_register_goto(self->target, self);
3031     }
3032
3033     return true;
3034 }
3035
3036 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
3037 {
3038     ast_expression_codegen *cgen;
3039     ir_value              **params;
3040     ir_instr               *callinstr;
3041     size_t i;
3042
3043     ir_value *funval = NULL;
3044
3045     /* return values are never lvalues */
3046     if (lvalue) {
3047         compile_error(ast_ctx(self), "not an l-value (function call)");
3048         return false;
3049     }
3050
3051     if (self->expression.outr) {
3052         *out = self->expression.outr;
3053         return true;
3054     }
3055
3056     cgen = self->func->expression.codegen;
3057     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
3058         return false;
3059     if (!funval)
3060         return false;
3061
3062     params = NULL;
3063
3064     /* parameters */
3065     for (i = 0; i < vec_size(self->params); ++i)
3066     {
3067         ir_value *param;
3068         ast_expression *expr = self->params[i];
3069
3070         cgen = expr->expression.codegen;
3071         if (!(*cgen)(expr, func, false, &param))
3072             goto error;
3073         if (!param)
3074             goto error;
3075         vec_push(params, param);
3076     }
3077
3078     /* varargs counter */
3079     if (self->va_count) {
3080         ir_value   *va_count;
3081         ir_builder *builder = func->curblock->owner->owner;
3082         cgen = self->va_count->expression.codegen;
3083         if (!(*cgen)((ast_expression*)(self->va_count), func, false, &va_count))
3084             return false;
3085         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), INSTR_STORE_F,
3086                                       ir_builder_get_va_count(builder), va_count))
3087         {
3088             return false;
3089         }
3090     }
3091
3092     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
3093                                      ast_function_label(func, "call"),
3094                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
3095     if (!callinstr)
3096         goto error;
3097
3098     for (i = 0; i < vec_size(params); ++i) {
3099         ir_call_param(callinstr, params[i]);
3100     }
3101
3102     *out = ir_call_value(callinstr);
3103     self->expression.outr = *out;
3104
3105     codegen_output_type(self, *out);
3106
3107     vec_free(params);
3108     return true;
3109 error:
3110     vec_free(params);
3111     return false;
3112 }