]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
0b61fe0653afbf5b6b6701ff714d0ee98899656c
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51     self->node.nodetype = nodetype;
52 }
53
54 /* General expression initialization */
55 static void ast_expression_init(ast_expression *self,
56                                 ast_expression_codegen *codegen)
57 {
58     self->expression.codegen = codegen;
59     self->expression.vtype   = TYPE_VOID;
60     self->expression.next    = NULL;
61     MEM_VECTOR_INIT(&self->expression, params);
62 }
63
64 static void ast_expression_delete(ast_expression *self)
65 {
66     size_t i;
67     if (self->expression.next)
68         ast_delete(self->expression.next);
69     for (i = 0; i < self->expression.params_count; ++i) {
70         ast_delete(self->expression.params[i]);
71     }
72     MEM_VECTOR_CLEAR(&self->expression, params);
73 }
74
75 static void ast_expression_delete_full(ast_expression *self)
76 {
77     ast_expression_delete(self);
78     mem_d(self);
79 }
80
81 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
82
83 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
84 static ast_value* ast_value_copy(const ast_value *self)
85 {
86     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
87     if (self->expression.next) {
88         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
89         if (!cp->expression.next) {
90             ast_value_delete(cp);
91             return NULL;
92         }
93     }
94     return cp;
95 }
96
97 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
98 {
99     size_t i;
100     const ast_expression_common *fromex;
101     ast_expression_common *selfex;
102
103     if (!ex)
104         return NULL;
105     else
106     {
107         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
108
109         fromex   = &ex->expression;
110         selfex = &self->expression;
111
112         /* This may never be codegen()d */
113         selfex->codegen = NULL;
114
115         selfex->vtype = fromex->vtype;
116         if (fromex->next)
117         {
118             selfex->next = ast_type_copy(ctx, fromex->next);
119             if (!selfex->next) {
120                 ast_expression_delete_full(self);
121                 return NULL;
122             }
123         }
124         else
125             selfex->next = NULL;
126
127         for (i = 0; i < fromex->params_count; ++i) {
128             ast_value *v = ast_value_copy(fromex->params[i]);
129             if (!v || !ast_expression_common_params_add(selfex, v)) {
130                 ast_expression_delete_full(self);
131                 return NULL;
132             }
133         }
134
135         return self;
136     }
137 }
138
139 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
140 {
141     ast_instantiate(ast_value, ctx, ast_value_delete);
142     ast_expression_init((ast_expression*)self,
143                         (ast_expression_codegen*)&ast_value_codegen);
144     self->expression.node.keep = true; /* keep */
145
146     self->name = name ? util_strdup(name) : NULL;
147     self->expression.vtype = t;
148     self->expression.next  = NULL;
149     self->isconst = false;
150     memset(&self->constval, 0, sizeof(self->constval));
151
152     self->ir_v    = NULL;
153
154     return self;
155 }
156
157 void ast_value_delete(ast_value* self)
158 {
159     if (self->name)
160         mem_d((void*)self->name);
161     if (self->isconst) {
162         switch (self->expression.vtype)
163         {
164         case TYPE_STRING:
165             mem_d((void*)self->constval.vstring);
166             break;
167         case TYPE_FUNCTION:
168             /* unlink us from the function node */
169             self->constval.vfunc->vtype = NULL;
170             break;
171         /* NOTE: delete function? currently collected in
172          * the parser structure
173          */
174         default:
175             break;
176         }
177     }
178     ast_expression_delete((ast_expression*)self);
179     mem_d(self);
180 }
181
182 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
183 {
184     return ast_expression_common_params_add(&self->expression, p);
185 }
186
187 bool ast_value_set_name(ast_value *self, const char *name)
188 {
189     if (self->name)
190         mem_d((void*)self->name);
191     self->name = util_strdup(name);
192     return !!self->name;
193 }
194
195 ast_binary* ast_binary_new(lex_ctx ctx, int op,
196                            ast_expression* left, ast_expression* right)
197 {
198     ast_instantiate(ast_binary, ctx, ast_binary_delete);
199     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
200
201     self->op = op;
202     self->left = left;
203     self->right = right;
204
205     return self;
206 }
207
208 void ast_binary_delete(ast_binary *self)
209 {
210     ast_unref(self->left);
211     ast_unref(self->right);
212     ast_expression_delete((ast_expression*)self);
213     mem_d(self);
214 }
215
216 ast_unary* ast_unary_new(lex_ctx ctx, int op,
217                          ast_expression *expr)
218 {
219     ast_instantiate(ast_unary, ctx, ast_unary_delete);
220     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
221
222     self->op = op;
223     self->operand = expr;
224
225     return self;
226 }
227
228 void ast_unary_delete(ast_unary *self)
229 {
230     ast_unref(self->operand);
231     ast_expression_delete((ast_expression*)self);
232     mem_d(self);
233 }
234
235 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
236 {
237     ast_instantiate(ast_return, ctx, ast_return_delete);
238     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
239
240     self->operand = expr;
241
242     return self;
243 }
244
245 void ast_return_delete(ast_return *self)
246 {
247     ast_unref(self->operand);
248     ast_expression_delete((ast_expression*)self);
249     mem_d(self);
250 }
251
252 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
253 {
254     const ast_expression *outtype;
255
256     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
257
258     if (field->expression.vtype != TYPE_FIELD) {
259         mem_d(self);
260         return NULL;
261     }
262
263     outtype = field->expression.next;
264     if (!outtype) {
265         mem_d(self);
266         /* Error: field has no type... */
267         return NULL;
268     }
269
270     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
271
272     self->expression.vtype = outtype->expression.vtype;
273     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
274
275     self->entity = entity;
276     self->field  = field;
277
278     return self;
279 }
280
281 void ast_entfield_delete(ast_entfield *self)
282 {
283     ast_unref(self->entity);
284     ast_unref(self->field);
285     ast_expression_delete((ast_expression*)self);
286     mem_d(self);
287 }
288
289 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
290 {
291     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
292     if (!ontrue && !onfalse) {
293         /* because it is invalid */
294         mem_d(self);
295         return NULL;
296     }
297     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
298
299     self->cond     = cond;
300     self->on_true  = ontrue;
301     self->on_false = onfalse;
302
303     return self;
304 }
305
306 void ast_ifthen_delete(ast_ifthen *self)
307 {
308     ast_unref(self->cond);
309     if (self->on_true)
310         ast_unref(self->on_true);
311     if (self->on_false)
312         ast_unref(self->on_false);
313     ast_expression_delete((ast_expression*)self);
314     mem_d(self);
315 }
316
317 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
318 {
319     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
320     /* This time NEITHER must be NULL */
321     if (!ontrue || !onfalse) {
322         mem_d(self);
323         return NULL;
324     }
325     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
326
327     self->cond     = cond;
328     self->on_true  = ontrue;
329     self->on_false = onfalse;
330     self->phi_out  = NULL;
331
332     return self;
333 }
334
335 void ast_ternary_delete(ast_ternary *self)
336 {
337     ast_unref(self->cond);
338     ast_unref(self->on_true);
339     ast_unref(self->on_false);
340     ast_expression_delete((ast_expression*)self);
341     mem_d(self);
342 }
343
344 ast_loop* ast_loop_new(lex_ctx ctx,
345                        ast_expression *initexpr,
346                        ast_expression *precond,
347                        ast_expression *postcond,
348                        ast_expression *increment,
349                        ast_expression *body)
350 {
351     ast_instantiate(ast_loop, ctx, ast_loop_delete);
352     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
353
354     self->initexpr  = initexpr;
355     self->precond   = precond;
356     self->postcond  = postcond;
357     self->increment = increment;
358     self->body      = body;
359
360     return self;
361 }
362
363 void ast_loop_delete(ast_loop *self)
364 {
365     if (self->initexpr)
366         ast_unref(self->initexpr);
367     if (self->precond)
368         ast_unref(self->precond);
369     if (self->postcond)
370         ast_unref(self->postcond);
371     if (self->increment)
372         ast_unref(self->increment);
373     if (self->body)
374         ast_unref(self->body);
375     ast_expression_delete((ast_expression*)self);
376     mem_d(self);
377 }
378
379 ast_call* ast_call_new(lex_ctx ctx,
380                        ast_expression *funcexpr)
381 {
382     ast_instantiate(ast_call, ctx, ast_call_delete);
383     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
384
385     MEM_VECTOR_INIT(self, params);
386
387     self->func = funcexpr;
388
389     return self;
390 }
391 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
392
393 void ast_call_delete(ast_call *self)
394 {
395     size_t i;
396     for (i = 0; i < self->params_count; ++i)
397         ast_unref(self->params[i]);
398     MEM_VECTOR_CLEAR(self, params);
399
400     if (self->func)
401         ast_unref(self->func);
402
403     ast_expression_delete((ast_expression*)self);
404     mem_d(self);
405 }
406
407 ast_store* ast_store_new(lex_ctx ctx, int op,
408                          ast_expression *dest, ast_expression *source)
409 {
410     ast_instantiate(ast_store, ctx, ast_store_delete);
411     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
412
413     self->op = op;
414     self->dest = dest;
415     self->source = source;
416
417     return self;
418 }
419
420 void ast_store_delete(ast_store *self)
421 {
422     ast_unref(self->dest);
423     ast_unref(self->source);
424     ast_expression_delete((ast_expression*)self);
425     mem_d(self);
426 }
427
428 ast_block* ast_block_new(lex_ctx ctx)
429 {
430     ast_instantiate(ast_block, ctx, ast_block_delete);
431     ast_expression_init((ast_expression*)self,
432                         (ast_expression_codegen*)&ast_block_codegen);
433
434     MEM_VECTOR_INIT(self, locals);
435     MEM_VECTOR_INIT(self, exprs);
436
437     return self;
438 }
439 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
440 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
441
442 void ast_block_delete(ast_block *self)
443 {
444     size_t i;
445     for (i = 0; i < self->exprs_count; ++i)
446         ast_unref(self->exprs[i]);
447     MEM_VECTOR_CLEAR(self, exprs);
448     for (i = 0; i < self->locals_count; ++i)
449         ast_delete(self->locals[i]);
450     MEM_VECTOR_CLEAR(self, locals);
451     ast_expression_delete((ast_expression*)self);
452     mem_d(self);
453 }
454
455 bool ast_block_set_type(ast_block *self, ast_expression *from)
456 {
457     if (self->expression.next)
458         ast_delete(self->expression.next);
459     self->expression.vtype = from->expression.vtype;
460     if (from->expression.next) {
461         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
462         if (!self->expression.next)
463             return false;
464     }
465     return true;
466 }
467
468 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
469 {
470     ast_instantiate(ast_function, ctx, ast_function_delete);
471
472     if (!vtype ||
473         vtype->isconst ||
474         vtype->expression.vtype != TYPE_FUNCTION)
475     {
476         mem_d(self);
477         return NULL;
478     }
479
480     self->vtype = vtype;
481     self->name = name ? util_strdup(name) : NULL;
482     MEM_VECTOR_INIT(self, blocks);
483
484     self->labelcount = 0;
485     self->builtin = 0;
486
487     self->ir_func = NULL;
488     self->curblock = NULL;
489
490     self->breakblock    = NULL;
491     self->continueblock = NULL;
492
493     vtype->isconst = true;
494     vtype->constval.vfunc = self;
495
496     return self;
497 }
498
499 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
500
501 void ast_function_delete(ast_function *self)
502 {
503     size_t i;
504     if (self->name)
505         mem_d((void*)self->name);
506     if (self->vtype) {
507         /* ast_value_delete(self->vtype); */
508         self->vtype->isconst = false;
509         self->vtype->constval.vfunc = NULL;
510         /* We use unref - if it was stored in a global table it is supposed
511          * to be deleted from *there*
512          */
513         ast_unref(self->vtype);
514     }
515     for (i = 0; i < self->blocks_count; ++i)
516         ast_delete(self->blocks[i]);
517     MEM_VECTOR_CLEAR(self, blocks);
518     mem_d(self);
519 }
520
521 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
522 {
523     unsigned int base = 10;
524 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
525 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
526     if (size < 1)
527         return;
528     checknul();
529     if (!num)
530         addch('0');
531     else {
532         while (num)
533         {
534             int digit = num % base;
535             num /= base;
536             addch('0' + digit);
537         }
538     }
539
540     *buf = 0;
541 #undef addch
542 #undef checknul
543 }
544
545 const char* ast_function_label(ast_function *self, const char *prefix)
546 {
547     size_t id = (self->labelcount++);
548     size_t len = strlen(prefix);
549     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
550     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
551     return self->labelbuf;
552 }
553
554 /*********************************************************************/
555 /* AST codegen part
556  * by convention you must never pass NULL to the 'ir_value **out'
557  * parameter. If you really don't care about the output, pass a dummy.
558  * But I can't imagine a pituation where the output is truly unnecessary.
559  */
560
561 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
562 {
563     /* NOTE: This is the codegen for a variable used in an expression.
564      * It is not the codegen to generate the value. For this purpose,
565      * ast_local_codegen and ast_global_codegen are to be used before this
566      * is executed. ast_function_codegen should take care of its locals,
567      * and the ast-user should take care of ast_global_codegen to be used
568      * on all the globals.
569      */
570     if (!self->ir_v) {
571         printf("ast_value used before generated (%s)\n", self->name);
572         return false;
573     }
574     *out = self->ir_v;
575     return true;
576 }
577
578 bool ast_global_codegen(ast_value *self, ir_builder *ir)
579 {
580     ir_value *v = NULL;
581     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
582     {
583         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
584         if (!func)
585             return false;
586
587         self->constval.vfunc->ir_func = func;
588         self->ir_v = func->value;
589         /* The function is filled later on ast_function_codegen... */
590         return true;
591     }
592
593     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
594     if (!v)
595         return false;
596
597     if (self->isconst) {
598         switch (self->expression.vtype)
599         {
600             case TYPE_FLOAT:
601                 if (!ir_value_set_float(v, self->constval.vfloat))
602                     goto error;
603                 break;
604             case TYPE_VECTOR:
605                 if (!ir_value_set_vector(v, self->constval.vvec))
606                     goto error;
607                 break;
608             case TYPE_STRING:
609                 if (!ir_value_set_string(v, self->constval.vstring))
610                     goto error;
611                 break;
612             case TYPE_FUNCTION:
613                 printf("global of type function not properly generated\n");
614                 goto error;
615                 /* Cannot generate an IR value for a function,
616                  * need a pointer pointing to a function rather.
617                  */
618             default:
619                 printf("TODO: global constant type %i\n", self->expression.vtype);
620                 break;
621         }
622     }
623
624     /* link us to the ir_value */
625     self->ir_v = v;
626     return true;
627
628 error: /* clean up */
629     ir_value_delete(v);
630     return false;
631 }
632
633 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
634 {
635     ir_value *v = NULL;
636     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
637     {
638         /* Do we allow local functions? I think not...
639          * this is NOT a function pointer atm.
640          */
641         return false;
642     }
643
644     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
645     if (!v)
646         return false;
647
648     /* A constant local... hmmm...
649      * I suppose the IR will have to deal with this
650      */
651     if (self->isconst) {
652         switch (self->expression.vtype)
653         {
654             case TYPE_FLOAT:
655                 if (!ir_value_set_float(v, self->constval.vfloat))
656                     goto error;
657                 break;
658             case TYPE_VECTOR:
659                 if (!ir_value_set_vector(v, self->constval.vvec))
660                     goto error;
661                 break;
662             case TYPE_STRING:
663                 if (!ir_value_set_string(v, self->constval.vstring))
664                     goto error;
665                 break;
666             default:
667                 printf("TODO: global constant type %i\n", self->expression.vtype);
668                 break;
669         }
670     }
671
672     /* link us to the ir_value */
673     self->ir_v = v;
674     return true;
675
676 error: /* clean up */
677     ir_value_delete(v);
678     return false;
679 }
680
681 bool ast_function_codegen(ast_function *self, ir_builder *ir)
682 {
683     ir_function *irf;
684     ir_value    *dummy;
685     ast_expression_common *ec;
686     size_t    i;
687
688     irf = self->ir_func;
689     if (!irf) {
690         printf("ast_function's related ast_value was not generated yet\n");
691         return false;
692     }
693
694     /* fill the parameter list */
695     ec = &self->vtype->expression;
696     for (i = 0; i < ec->params_count; ++i)
697     {
698         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
699             return false;
700         if (!self->builtin) {
701             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
702                 return false;
703         }
704     }
705
706     if (self->builtin) {
707         irf->builtin = self->builtin;
708         return true;
709     }
710
711     self->curblock = ir_function_create_block(irf, "entry");
712     if (!self->curblock)
713         return false;
714
715     for (i = 0; i < self->blocks_count; ++i) {
716         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
717         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
718             return false;
719     }
720
721     /* TODO: check return types */
722     if (!self->curblock->is_return)
723     {
724         if (!self->vtype->expression.next ||
725             self->vtype->expression.next->expression.vtype == TYPE_VOID)
726         {
727             return ir_block_create_return(self->curblock, NULL);
728         }
729         else
730         {
731             /* error("missing return"); */
732             return false;
733         }
734     }
735     return true;
736 }
737
738 /* Note, you will not see ast_block_codegen generate ir_blocks.
739  * To the AST and the IR, blocks are 2 different things.
740  * In the AST it represents a block of code, usually enclosed in
741  * curly braces {...}.
742  * While in the IR it represents a block in terms of control-flow.
743  */
744 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
745 {
746     size_t i;
747
748     /* We don't use this
749      * Note: an ast-representation using the comma-operator
750      * of the form: (a, b, c) = x should not assign to c...
751      */
752     (void)lvalue;
753
754     /* output is NULL at first, we'll have each expression
755      * assign to out output, thus, a comma-operator represention
756      * using an ast_block will return the last generated value,
757      * so: (b, c) + a  executed both b and c, and returns c,
758      * which is then added to a.
759      */
760     *out = NULL;
761
762     /* generate locals */
763     for (i = 0; i < self->locals_count; ++i)
764     {
765         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
766             return false;
767     }
768
769     for (i = 0; i < self->exprs_count; ++i)
770     {
771         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
772         if (!(*gen)(self->exprs[i], func, false, out))
773             return false;
774     }
775
776     return true;
777 }
778
779 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
780 {
781     ast_expression_codegen *cgen;
782     ir_value *left, *right;
783
784     cgen = self->dest->expression.codegen;
785     /* lvalue! */
786     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
787         return false;
788
789     cgen = self->source->expression.codegen;
790     /* rvalue! */
791     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
792         return false;
793
794     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
795         return false;
796
797     /* Theoretically, an assinment returns its left side as an
798      * lvalue, if we don't need an lvalue though, we return
799      * the right side as an rvalue, otherwise we have to
800      * somehow know whether or not we need to dereference the pointer
801      * on the left side - that is: OP_LOAD if it was an address.
802      * Also: in original QC we cannot OP_LOADP *anyway*.
803      */
804     *out = (lvalue ? left : right);
805
806     return true;
807 }
808
809 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
810 {
811     ast_expression_codegen *cgen;
812     ir_value *left, *right;
813
814     /* In the context of a binary operation, we can disregard
815      * the lvalue flag.
816      */
817      (void)lvalue;
818
819     cgen = self->left->expression.codegen;
820     /* lvalue! */
821     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
822         return false;
823
824     cgen = self->right->expression.codegen;
825     /* rvalue! */
826     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
827         return false;
828
829     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
830                                  self->op, left, right);
831     if (!*out)
832         return false;
833
834     return true;
835 }
836
837 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
838 {
839     ast_expression_codegen *cgen;
840     ir_value *operand;
841
842     /* In the context of a unary operation, we can disregard
843      * the lvalue flag.
844      */
845     (void)lvalue;
846
847     cgen = self->operand->expression.codegen;
848     /* lvalue! */
849     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
850         return false;
851
852     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
853                                  self->op, operand);
854     if (!*out)
855         return false;
856
857     return true;
858 }
859
860 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
861 {
862     ast_expression_codegen *cgen;
863     ir_value *operand;
864
865     /* In the context of a return operation, we can disregard
866      * the lvalue flag.
867      */
868     (void)lvalue;
869
870     cgen = self->operand->expression.codegen;
871     /* lvalue! */
872     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
873         return false;
874
875     if (!ir_block_create_return(func->curblock, operand))
876         return false;
877
878     return true;
879 }
880
881 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
882 {
883     ast_expression_codegen *cgen;
884     ir_value *ent, *field;
885
886     /* This function needs to take the 'lvalue' flag into account!
887      * As lvalue we provide a field-pointer, as rvalue we provide the
888      * value in a temp.
889      */
890
891     cgen = self->entity->expression.codegen;
892     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
893         return false;
894
895     cgen = self->field->expression.codegen;
896     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
897         return false;
898
899     if (lvalue) {
900         /* address! */
901         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
902                                             ent, field);
903     } else {
904         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
905                                              ent, field, self->expression.vtype);
906     }
907     if (!*out)
908         return false;
909
910     /* Hm that should be it... */
911     return true;
912 }
913
914 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
915 {
916     ast_expression_codegen *cgen;
917
918     ir_value *condval;
919     ir_value *dummy;
920
921     ir_block *cond = func->curblock;
922     ir_block *ontrue;
923     ir_block *onfalse;
924     ir_block *merge;
925
926     /* We don't output any value, thus also don't care about r/lvalue */
927     (void)out;
928     (void)lvalue;
929
930     /* generate the condition */
931     func->curblock = cond;
932     cgen = self->cond->expression.codegen;
933     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
934         return false;
935
936     /* on-true path */
937
938     if (self->on_true) {
939         /* create on-true block */
940         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
941         if (!ontrue)
942             return false;
943
944         /* enter the block */
945         func->curblock = ontrue;
946
947         /* generate */
948         cgen = self->on_true->expression.codegen;
949         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
950             return false;
951     } else
952         ontrue = NULL;
953
954     /* on-false path */
955     if (self->on_false) {
956         /* create on-false block */
957         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
958         if (!onfalse)
959             return false;
960
961         /* enter the block */
962         func->curblock = onfalse;
963
964         /* generate */
965         cgen = self->on_false->expression.codegen;
966         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
967             return false;
968     } else
969         onfalse = NULL;
970
971     /* Merge block were they all merge in to */
972     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
973     if (!merge)
974         return false;
975
976     /* add jumps ot the merge block */
977     if (ontrue && !ir_block_create_jump(ontrue, merge))
978         return false;
979     if (onfalse && !ir_block_create_jump(onfalse, merge))
980         return false;
981
982     /* we create the if here, that way all blocks are ordered :)
983      */
984     if (!ir_block_create_if(cond, condval,
985                             (ontrue  ? ontrue  : merge),
986                             (onfalse ? onfalse : merge)))
987     {
988         return false;
989     }
990
991     /* Now enter the merge block */
992     func->curblock = merge;
993
994     return true;
995 }
996
997 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
998 {
999     ast_expression_codegen *cgen;
1000
1001     ir_value *condval;
1002     ir_value *trueval, *falseval;
1003     ir_instr *phi;
1004
1005     ir_block *cond = func->curblock;
1006     ir_block *ontrue;
1007     ir_block *onfalse;
1008     ir_block *merge;
1009
1010     /* In theory it shouldn't be possible to pass through a node twice, but
1011      * in case we add any kind of optimization pass for the AST itself, it
1012      * may still happen, thus we remember a created ir_value and simply return one
1013      * if it already exists.
1014      */
1015     if (self->phi_out) {
1016         *out = self->phi_out;
1017         return true;
1018     }
1019
1020     /* Ternary can never create an lvalue... */
1021     if (lvalue)
1022         return false;
1023
1024     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1025
1026     /* generate the condition */
1027     func->curblock = cond;
1028     cgen = self->cond->expression.codegen;
1029     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1030         return false;
1031
1032     /* create on-true block */
1033     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1034     if (!ontrue)
1035         return false;
1036     else
1037     {
1038         /* enter the block */
1039         func->curblock = ontrue;
1040
1041         /* generate */
1042         cgen = self->on_true->expression.codegen;
1043         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1044             return false;
1045     }
1046
1047     /* create on-false block */
1048     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1049     if (!onfalse)
1050         return false;
1051     else
1052     {
1053         /* enter the block */
1054         func->curblock = onfalse;
1055
1056         /* generate */
1057         cgen = self->on_false->expression.codegen;
1058         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1059             return false;
1060     }
1061
1062     /* create merge block */
1063     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1064     if (!merge)
1065         return false;
1066     /* jump to merge block */
1067     if (!ir_block_create_jump(ontrue, merge))
1068         return false;
1069     if (!ir_block_create_jump(onfalse, merge))
1070         return false;
1071
1072     /* create if instruction */
1073     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1074         return false;
1075
1076     /* Now enter the merge block */
1077     func->curblock = merge;
1078
1079     /* Here, now, we need a PHI node
1080      * but first some sanity checking...
1081      */
1082     if (trueval->vtype != falseval->vtype) {
1083         /* error("ternary with different types on the two sides"); */
1084         return false;
1085     }
1086
1087     /* create PHI */
1088     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1089     if (!phi ||
1090         !ir_phi_add(phi, ontrue,  trueval) ||
1091         !ir_phi_add(phi, onfalse, falseval))
1092     {
1093         return false;
1094     }
1095
1096     self->phi_out = ir_phi_value(phi);
1097     *out = self->phi_out;
1098
1099     return true;
1100 }
1101
1102 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1103 {
1104     ast_expression_codegen *cgen;
1105
1106     ir_value *dummy      = NULL;
1107     ir_value *precond    = NULL;
1108     ir_value *postcond   = NULL;
1109
1110     /* Since we insert some jumps "late" so we have blocks
1111      * ordered "nicely", we need to keep track of the actual end-blocks
1112      * of expressions to add the jumps to.
1113      */
1114     ir_block *bbody      = NULL, *end_bbody      = NULL;
1115     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1116     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1117     ir_block *bincrement = NULL, *end_bincrement = NULL;
1118     ir_block *bout       = NULL, *bin            = NULL;
1119
1120     /* let's at least move the outgoing block to the end */
1121     size_t    bout_id;
1122
1123     /* 'break' and 'continue' need to be able to find the right blocks */
1124     ir_block *bcontinue     = NULL;
1125     ir_block *bbreak        = NULL;
1126
1127     ir_block *old_bcontinue = NULL;
1128     ir_block *old_bbreak    = NULL;
1129
1130     ir_block *tmpblock      = NULL;
1131
1132     (void)lvalue;
1133     (void)out;
1134
1135     /* NOTE:
1136      * Should we ever need some kind of block ordering, better make this function
1137      * move blocks around than write a block ordering algorithm later... after all
1138      * the ast and ir should work together, not against each other.
1139      */
1140
1141     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1142      * anyway if for example it contains a ternary.
1143      */
1144     if (self->initexpr)
1145     {
1146         cgen = self->initexpr->expression.codegen;
1147         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1148             return false;
1149     }
1150
1151     /* Store the block from which we enter this chaos */
1152     bin = func->curblock;
1153
1154     /* The pre-loop condition needs its own block since we
1155      * need to be able to jump to the start of that expression.
1156      */
1157     if (self->precond)
1158     {
1159         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1160         if (!bprecond)
1161             return false;
1162
1163         /* the pre-loop-condition the least important place to 'continue' at */
1164         bcontinue = bprecond;
1165
1166         /* enter */
1167         func->curblock = bprecond;
1168
1169         /* generate */
1170         cgen = self->precond->expression.codegen;
1171         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1172             return false;
1173
1174         end_bprecond = func->curblock;
1175     } else {
1176         bprecond = end_bprecond = NULL;
1177     }
1178
1179     /* Now the next blocks won't be ordered nicely, but we need to
1180      * generate them this early for 'break' and 'continue'.
1181      */
1182     if (self->increment) {
1183         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1184         if (!bincrement)
1185             return false;
1186         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1187     } else {
1188         bincrement = end_bincrement = NULL;
1189     }
1190
1191     if (self->postcond) {
1192         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1193         if (!bpostcond)
1194             return false;
1195         bcontinue = bpostcond; /* postcond comes before the increment */
1196     } else {
1197         bpostcond = end_bpostcond = NULL;
1198     }
1199
1200     bout_id = func->ir_func->blocks_count;
1201     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1202     if (!bout)
1203         return false;
1204     bbreak = bout;
1205
1206     /* The loop body... */
1207     if (self->body)
1208     {
1209         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1210         if (!bbody)
1211             return false;
1212
1213         /* enter */
1214         func->curblock = bbody;
1215
1216         old_bbreak          = func->breakblock;
1217         old_bcontinue       = func->continueblock;
1218         func->breakblock    = bbreak;
1219         func->continueblock = bcontinue;
1220
1221         /* generate */
1222         cgen = self->body->expression.codegen;
1223         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1224             return false;
1225
1226         end_bbody = func->curblock;
1227         func->breakblock    = old_bbreak;
1228         func->continueblock = old_bcontinue;
1229     }
1230
1231     /* post-loop-condition */
1232     if (self->postcond)
1233     {
1234         /* enter */
1235         func->curblock = bpostcond;
1236
1237         /* generate */
1238         cgen = self->postcond->expression.codegen;
1239         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1240             return false;
1241
1242         end_bpostcond = func->curblock;
1243     }
1244
1245     /* The incrementor */
1246     if (self->increment)
1247     {
1248         /* enter */
1249         func->curblock = bincrement;
1250
1251         /* generate */
1252         cgen = self->increment->expression.codegen;
1253         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1254             return false;
1255
1256         end_bincrement = func->curblock;
1257     }
1258
1259     /* In any case now, we continue from the outgoing block */
1260     func->curblock = bout;
1261
1262     /* Now all blocks are in place */
1263     /* From 'bin' we jump to whatever comes first */
1264     if      (bprecond)   tmpblock = bprecond;
1265     else if (bbody)      tmpblock = bbody;
1266     else if (bpostcond)  tmpblock = bpostcond;
1267     else                 tmpblock = bout;
1268     if (!ir_block_create_jump(bin, tmpblock))
1269         return false;
1270
1271     /* From precond */
1272     if (bprecond)
1273     {
1274         ir_block *ontrue, *onfalse;
1275         if      (bbody)      ontrue = bbody;
1276         else if (bincrement) ontrue = bincrement;
1277         else if (bpostcond)  ontrue = bpostcond;
1278         else                 ontrue = bprecond;
1279         onfalse = bout;
1280         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1281             return false;
1282     }
1283
1284     /* from body */
1285     if (bbody)
1286     {
1287         if      (bincrement) tmpblock = bincrement;
1288         else if (bpostcond)  tmpblock = bpostcond;
1289         else if (bprecond)   tmpblock = bprecond;
1290         else                 tmpblock = bout;
1291         if (!ir_block_create_jump(end_bbody, tmpblock))
1292             return false;
1293     }
1294
1295     /* from increment */
1296     if (bincrement)
1297     {
1298         if      (bpostcond)  tmpblock = bpostcond;
1299         else if (bprecond)   tmpblock = bprecond;
1300         else if (bbody)      tmpblock = bbody;
1301         else                 tmpblock = bout;
1302         if (!ir_block_create_jump(end_bincrement, tmpblock))
1303             return false;
1304     }
1305
1306     /* from postcond */
1307     if (bpostcond)
1308     {
1309         ir_block *ontrue, *onfalse;
1310         if      (bprecond)   ontrue = bprecond;
1311         else if (bbody)      ontrue = bbody;
1312         else if (bincrement) ontrue = bincrement;
1313         else                 ontrue = bpostcond;
1314         onfalse = bout;
1315         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1316             return false;
1317     }
1318
1319     /* Move 'bout' to the end */
1320     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1321         !ir_function_blocks_add(func->ir_func, bout))
1322     {
1323         ir_block_delete(bout);
1324         return false;
1325     }
1326
1327     return true;
1328 }
1329
1330 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1331 {
1332     ast_expression_codegen *cgen;
1333     ir_value_vector         params;
1334     ir_instr               *callinstr;
1335     size_t i;
1336
1337     ir_value *funval = NULL;
1338
1339     /* return values are never rvalues */
1340     (void)lvalue;
1341
1342     cgen = self->func->expression.codegen;
1343     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1344         return false;
1345     if (!funval)
1346         return false;
1347
1348     MEM_VECTOR_INIT(&params, v);
1349
1350     /* parameters */
1351     for (i = 0; i < self->params_count; ++i)
1352     {
1353         ir_value *param;
1354         ast_expression *expr = self->params[i];
1355
1356         cgen = expr->expression.codegen;
1357         if (!(*cgen)(expr, func, false, &param))
1358             goto error;
1359         if (!param)
1360             goto error;
1361         if (!ir_value_vector_v_add(&params, param))
1362             goto error;
1363     }
1364
1365     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1366     if (!callinstr)
1367         goto error;
1368
1369     for (i = 0; i < params.v_count; ++i) {
1370         if (!ir_call_param(callinstr, params.v[i]))
1371             goto error;
1372     }
1373
1374     *out = ir_call_value(callinstr);
1375
1376     MEM_VECTOR_CLEAR(&params, v);
1377     return true;
1378 error:
1379     MEM_VECTOR_CLEAR(&params, v);
1380     return false;
1381 }