]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
Make compiler and virtual-machine compile as C++ code, also removed gmqcc_voidptr...
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38
39 /* It must not be possible to get here. */
40 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 {
42     (void)self;
43     con_err("ast node missing destroy()\n");
44     abort();
45 }
46
47 /* Initialize main ast node aprts */
48 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
49 {
50     self->node.context = ctx;
51     self->node.destroy = &_ast_node_destroy;
52     self->node.keep    = false;
53     self->node.nodetype = nodetype;
54     self->node.side_effects = false;
55 }
56
57 /* weight and side effects */
58 static void _ast_propagate_effects(ast_node *self, ast_node *other)
59 {
60     if (ast_side_effects(other))
61         ast_side_effects(self) = true;
62 }
63 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
64
65 /* General expression initialization */
66 static void ast_expression_init(ast_expression *self,
67                                 ast_expression_codegen *codegen)
68 {
69     self->expression.codegen  = codegen;
70     self->expression.vtype    = TYPE_VOID;
71     self->expression.next     = NULL;
72     self->expression.outl     = NULL;
73     self->expression.outr     = NULL;
74     self->expression.params   = NULL;
75     self->expression.count    = 0;
76     self->expression.flags    = 0;
77 }
78
79 static void ast_expression_delete(ast_expression *self)
80 {
81     size_t i;
82     if (self->expression.next)
83         ast_delete(self->expression.next);
84     for (i = 0; i < vec_size(self->expression.params); ++i) {
85         ast_delete(self->expression.params[i]);
86     }
87     vec_free(self->expression.params);
88 }
89
90 static void ast_expression_delete_full(ast_expression *self)
91 {
92     ast_expression_delete(self);
93     mem_d(self);
94 }
95
96 ast_value* ast_value_copy(const ast_value *self)
97 {
98     size_t i;
99     const ast_expression_common *fromex;
100     ast_expression_common *selfex;
101     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
102     if (self->expression.next) {
103         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
104         if (!cp->expression.next) {
105             ast_value_delete(cp);
106             return NULL;
107         }
108     }
109     fromex   = &self->expression;
110     selfex = &cp->expression;
111     selfex->count    = fromex->count;
112     selfex->flags    = fromex->flags;
113     for (i = 0; i < vec_size(fromex->params); ++i) {
114         ast_value *v = ast_value_copy(fromex->params[i]);
115         if (!v) {
116             ast_value_delete(cp);
117             return NULL;
118         }
119         vec_push(selfex->params, v);
120     }
121     return cp;
122 }
123
124 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
125 {
126     size_t i;
127     const ast_expression_common *fromex;
128     ast_expression_common *selfex;
129     self->expression.vtype = other->expression.vtype;
130     if (other->expression.next) {
131         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
132         if (!self->expression.next)
133             return false;
134     }
135     fromex   = &other->expression;
136     selfex = &self->expression;
137     selfex->count    = fromex->count;
138     selfex->flags    = fromex->flags;
139     for (i = 0; i < vec_size(fromex->params); ++i) {
140         ast_value *v = ast_value_copy(fromex->params[i]);
141         if (!v)
142             return false;
143         vec_push(selfex->params, v);
144     }
145     return true;
146 }
147
148 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
149 {
150     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
151     ast_expression_init(self, NULL);
152     self->expression.codegen = NULL;
153     self->expression.next    = NULL;
154     self->expression.vtype   = vtype;
155     return self;
156 }
157
158 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
159 {
160     size_t i;
161     const ast_expression_common *fromex;
162     ast_expression_common *selfex;
163
164     if (!ex)
165         return NULL;
166     else
167     {
168         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
169         ast_expression_init(self, NULL);
170
171         fromex   = &ex->expression;
172         selfex = &self->expression;
173
174         /* This may never be codegen()d */
175         selfex->codegen = NULL;
176
177         selfex->vtype = fromex->vtype;
178         if (fromex->next)
179         {
180             selfex->next = ast_type_copy(ctx, fromex->next);
181             if (!selfex->next) {
182                 ast_expression_delete_full(self);
183                 return NULL;
184             }
185         }
186         else
187             selfex->next = NULL;
188
189         selfex->count    = fromex->count;
190         selfex->flags    = fromex->flags;
191         for (i = 0; i < vec_size(fromex->params); ++i) {
192             ast_value *v = ast_value_copy(fromex->params[i]);
193             if (!v) {
194                 ast_expression_delete_full(self);
195                 return NULL;
196             }
197             vec_push(selfex->params, v);
198         }
199
200         return self;
201     }
202 }
203
204 bool ast_compare_type(ast_expression *a, ast_expression *b)
205 {
206     if (a->expression.vtype != b->expression.vtype)
207         return false;
208     if (!a->expression.next != !b->expression.next)
209         return false;
210     if (vec_size(a->expression.params) != vec_size(b->expression.params))
211         return false;
212     if (a->expression.flags != b->expression.flags)
213         return false;
214     if (vec_size(a->expression.params)) {
215         size_t i;
216         for (i = 0; i < vec_size(a->expression.params); ++i) {
217             if (!ast_compare_type((ast_expression*)a->expression.params[i],
218                                   (ast_expression*)b->expression.params[i]))
219                 return false;
220         }
221     }
222     if (a->expression.next)
223         return ast_compare_type(a->expression.next, b->expression.next);
224     return true;
225 }
226
227 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
228 {
229     const char *typestr;
230     size_t typelen;
231     size_t i;
232
233     if (!e) {
234         if (pos + 6 >= bufsize)
235             goto full;
236         strcpy(buf + pos, "(null)");
237         return pos + 6;
238     }
239
240     if (pos + 1 >= bufsize)
241         goto full;
242
243     switch (e->expression.vtype) {
244         case TYPE_VARIANT:
245             strcpy(buf + pos, "(variant)");
246             return pos + 9;
247
248         case TYPE_FIELD:
249             buf[pos++] = '.';
250             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
251
252         case TYPE_POINTER:
253             if (pos + 3 >= bufsize)
254                 goto full;
255             buf[pos++] = '*';
256             buf[pos++] = '(';
257             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
258             if (pos + 1 >= bufsize)
259                 goto full;
260             buf[pos++] = ')';
261             return pos;
262
263         case TYPE_FUNCTION:
264             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
265             if (pos + 2 >= bufsize)
266                 goto full;
267             if (!vec_size(e->expression.params)) {
268                 buf[pos++] = '(';
269                 buf[pos++] = ')';
270                 return pos;
271             }
272             buf[pos++] = '(';
273             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
274             for (i = 1; i < vec_size(e->expression.params); ++i) {
275                 if (pos + 2 >= bufsize)
276                     goto full;
277                 buf[pos++] = ',';
278                 buf[pos++] = ' ';
279                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
280             }
281             if (pos + 1 >= bufsize)
282                 goto full;
283             buf[pos++] = ')';
284             return pos;
285
286         case TYPE_ARRAY:
287             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
288             if (pos + 1 >= bufsize)
289                 goto full;
290             buf[pos++] = '[';
291             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
292             if (pos + 1 >= bufsize)
293                 goto full;
294             buf[pos++] = ']';
295             return pos;
296
297         default:
298             typestr = type_name[e->expression.vtype];
299             typelen = strlen(typestr);
300             if (pos + typelen >= bufsize)
301                 goto full;
302             strcpy(buf + pos, typestr);
303             return pos + typelen;
304     }
305
306 full:
307     buf[bufsize-3] = '.';
308     buf[bufsize-2] = '.';
309     buf[bufsize-1] = '.';
310     return bufsize;
311 }
312
313 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
314 {
315     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
316     buf[pos] = 0;
317 }
318
319 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
320 {
321     ast_instantiate(ast_value, ctx, ast_value_delete);
322     ast_expression_init((ast_expression*)self,
323                         (ast_expression_codegen*)&ast_value_codegen);
324     self->expression.node.keep = true; /* keep */
325
326     self->name = name ? util_strdup(name) : NULL;
327     self->expression.vtype = t;
328     self->expression.next  = NULL;
329     self->isfield  = false;
330     self->cvq      = CV_NONE;
331     self->hasvalue = false;
332     self->uses    = 0;
333     memset(&self->constval, 0, sizeof(self->constval));
334
335     self->ir_v           = NULL;
336     self->ir_values      = NULL;
337     self->ir_value_count = 0;
338
339     self->setter = NULL;
340     self->getter = NULL;
341
342     return self;
343 }
344
345 void ast_value_delete(ast_value* self)
346 {
347     if (self->name)
348         mem_d((void*)self->name);
349     if (self->hasvalue) {
350         switch (self->expression.vtype)
351         {
352         case TYPE_STRING:
353             mem_d((void*)self->constval.vstring);
354             break;
355         case TYPE_FUNCTION:
356             /* unlink us from the function node */
357             self->constval.vfunc->vtype = NULL;
358             break;
359         /* NOTE: delete function? currently collected in
360          * the parser structure
361          */
362         default:
363             break;
364         }
365     }
366     if (self->ir_values)
367         mem_d(self->ir_values);
368     ast_expression_delete((ast_expression*)self);
369     mem_d(self);
370 }
371
372 void ast_value_params_add(ast_value *self, ast_value *p)
373 {
374     vec_push(self->expression.params, p);
375 }
376
377 bool ast_value_set_name(ast_value *self, const char *name)
378 {
379     if (self->name)
380         mem_d((void*)self->name);
381     self->name = util_strdup(name);
382     return !!self->name;
383 }
384
385 ast_binary* ast_binary_new(lex_ctx ctx, int op,
386                            ast_expression* left, ast_expression* right)
387 {
388     ast_instantiate(ast_binary, ctx, ast_binary_delete);
389     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
390
391     self->op = op;
392     self->left = left;
393     self->right = right;
394
395     ast_propagate_effects(self, left);
396     ast_propagate_effects(self, right);
397
398     if (op >= INSTR_EQ_F && op <= INSTR_GT)
399         self->expression.vtype = TYPE_FLOAT;
400     else if (op == INSTR_AND || op == INSTR_OR) {
401         if (OPTS_FLAG(PERL_LOGIC))
402             ast_type_adopt(self, right);
403         else
404             self->expression.vtype = TYPE_FLOAT;
405     }
406     else if (op == INSTR_BITAND || op == INSTR_BITOR)
407         self->expression.vtype = TYPE_FLOAT;
408     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
409         self->expression.vtype = TYPE_VECTOR;
410     else if (op == INSTR_MUL_V)
411         self->expression.vtype = TYPE_FLOAT;
412     else
413         self->expression.vtype = left->expression.vtype;
414
415     return self;
416 }
417
418 void ast_binary_delete(ast_binary *self)
419 {
420     ast_unref(self->left);
421     ast_unref(self->right);
422     ast_expression_delete((ast_expression*)self);
423     mem_d(self);
424 }
425
426 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
427                                ast_expression* left, ast_expression* right)
428 {
429     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
430     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
431
432     ast_side_effects(self) = true;
433
434     self->opstore = storop;
435     self->opbin   = op;
436     self->dest    = left;
437     self->source  = right;
438
439     self->keep_dest = false;
440
441     if (!ast_type_adopt(self, left)) {
442         ast_delete(self);
443         return NULL;
444     }
445
446     return self;
447 }
448
449 void ast_binstore_delete(ast_binstore *self)
450 {
451     if (!self->keep_dest)
452         ast_unref(self->dest);
453     ast_unref(self->source);
454     ast_expression_delete((ast_expression*)self);
455     mem_d(self);
456 }
457
458 ast_unary* ast_unary_new(lex_ctx ctx, int op,
459                          ast_expression *expr)
460 {
461     ast_instantiate(ast_unary, ctx, ast_unary_delete);
462     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
463
464     self->op = op;
465     self->operand = expr;
466
467     ast_propagate_effects(self, expr);
468
469     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
470         self->expression.vtype = TYPE_FLOAT;
471     } else
472         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
473
474     return self;
475 }
476
477 void ast_unary_delete(ast_unary *self)
478 {
479     if (self->operand) ast_unref(self->operand);
480     ast_expression_delete((ast_expression*)self);
481     mem_d(self);
482 }
483
484 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
485 {
486     ast_instantiate(ast_return, ctx, ast_return_delete);
487     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
488
489     self->operand = expr;
490
491     if (expr)
492         ast_propagate_effects(self, expr);
493
494     return self;
495 }
496
497 void ast_return_delete(ast_return *self)
498 {
499     if (self->operand)
500         ast_unref(self->operand);
501     ast_expression_delete((ast_expression*)self);
502     mem_d(self);
503 }
504
505 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
506 {
507     if (field->expression.vtype != TYPE_FIELD) {
508         compile_error(ctx, "ast_entfield_new with expression not of type field");
509         return NULL;
510     }
511     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
512 }
513
514 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
515 {
516     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
517
518     if (!outtype) {
519         mem_d(self);
520         /* Error: field has no type... */
521         return NULL;
522     }
523
524     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
525
526     self->entity = entity;
527     self->field  = field;
528     ast_propagate_effects(self, entity);
529     ast_propagate_effects(self, field);
530
531     if (!ast_type_adopt(self, outtype)) {
532         ast_entfield_delete(self);
533         return NULL;
534     }
535
536     return self;
537 }
538
539 void ast_entfield_delete(ast_entfield *self)
540 {
541     ast_unref(self->entity);
542     ast_unref(self->field);
543     ast_expression_delete((ast_expression*)self);
544     mem_d(self);
545 }
546
547 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
548 {
549     ast_instantiate(ast_member, ctx, ast_member_delete);
550     if (field >= 3) {
551         mem_d(self);
552         return NULL;
553     }
554
555     if (owner->expression.vtype != TYPE_VECTOR &&
556         owner->expression.vtype != TYPE_FIELD) {
557         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
558         mem_d(self);
559         return NULL;
560     }
561
562     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
563     self->expression.node.keep = true; /* keep */
564
565     if (owner->expression.vtype == TYPE_VECTOR) {
566         self->expression.vtype = TYPE_FLOAT;
567         self->expression.next  = NULL;
568     } else {
569         self->expression.vtype = TYPE_FIELD;
570         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
571     }
572
573     self->owner = owner;
574     ast_propagate_effects(self, owner);
575
576     self->field = field;
577     if (name)
578         self->name = util_strdup(name);
579     else
580         self->name = NULL;
581
582     return self;
583 }
584
585 void ast_member_delete(ast_member *self)
586 {
587     /* The owner is always an ast_value, which has .keep=true,
588      * also: ast_members are usually deleted after the owner, thus
589      * this will cause invalid access
590     ast_unref(self->owner);
591      * once we allow (expression).x to access a vector-member, we need
592      * to change this: preferably by creating an alternate ast node for this
593      * purpose that is not garbage-collected.
594     */
595     ast_expression_delete((ast_expression*)self);
596     mem_d(self);
597 }
598
599 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
600 {
601     ast_expression *outtype;
602     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
603
604     outtype = array->expression.next;
605     if (!outtype) {
606         mem_d(self);
607         /* Error: field has no type... */
608         return NULL;
609     }
610
611     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
612
613     self->array = array;
614     self->index = index;
615     ast_propagate_effects(self, array);
616     ast_propagate_effects(self, index);
617
618     if (!ast_type_adopt(self, outtype)) {
619         ast_array_index_delete(self);
620         return NULL;
621     }
622     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
623         if (self->expression.vtype != TYPE_ARRAY) {
624             compile_error(ast_ctx(self), "array_index node on type");
625             ast_array_index_delete(self);
626             return NULL;
627         }
628         self->array = outtype;
629         self->expression.vtype = TYPE_FIELD;
630     }
631
632     return self;
633 }
634
635 void ast_array_index_delete(ast_array_index *self)
636 {
637     ast_unref(self->array);
638     ast_unref(self->index);
639     ast_expression_delete((ast_expression*)self);
640     mem_d(self);
641 }
642
643 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
644 {
645     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
646     if (!ontrue && !onfalse) {
647         /* because it is invalid */
648         mem_d(self);
649         return NULL;
650     }
651     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
652
653     self->cond     = cond;
654     self->on_true  = ontrue;
655     self->on_false = onfalse;
656     ast_propagate_effects(self, cond);
657     if (ontrue)
658         ast_propagate_effects(self, ontrue);
659     if (onfalse)
660         ast_propagate_effects(self, onfalse);
661
662     return self;
663 }
664
665 void ast_ifthen_delete(ast_ifthen *self)
666 {
667     ast_unref(self->cond);
668     if (self->on_true)
669         ast_unref(self->on_true);
670     if (self->on_false)
671         ast_unref(self->on_false);
672     ast_expression_delete((ast_expression*)self);
673     mem_d(self);
674 }
675
676 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
677 {
678     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
679     /* This time NEITHER must be NULL */
680     if (!ontrue || !onfalse) {
681         mem_d(self);
682         return NULL;
683     }
684     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
685
686     self->cond     = cond;
687     self->on_true  = ontrue;
688     self->on_false = onfalse;
689     ast_propagate_effects(self, cond);
690     ast_propagate_effects(self, ontrue);
691     ast_propagate_effects(self, onfalse);
692
693     if (!ast_type_adopt(self, ontrue)) {
694         ast_ternary_delete(self);
695         return NULL;
696     }
697
698     return self;
699 }
700
701 void ast_ternary_delete(ast_ternary *self)
702 {
703     ast_unref(self->cond);
704     ast_unref(self->on_true);
705     ast_unref(self->on_false);
706     ast_expression_delete((ast_expression*)self);
707     mem_d(self);
708 }
709
710 ast_loop* ast_loop_new(lex_ctx ctx,
711                        ast_expression *initexpr,
712                        ast_expression *precond, bool pre_not,
713                        ast_expression *postcond, bool post_not,
714                        ast_expression *increment,
715                        ast_expression *body)
716 {
717     ast_instantiate(ast_loop, ctx, ast_loop_delete);
718     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
719
720     self->initexpr  = initexpr;
721     self->precond   = precond;
722     self->postcond  = postcond;
723     self->increment = increment;
724     self->body      = body;
725
726     self->pre_not   = pre_not;
727     self->post_not  = post_not;
728
729     if (initexpr)
730         ast_propagate_effects(self, initexpr);
731     if (precond)
732         ast_propagate_effects(self, precond);
733     if (postcond)
734         ast_propagate_effects(self, postcond);
735     if (increment)
736         ast_propagate_effects(self, increment);
737     if (body)
738         ast_propagate_effects(self, body);
739
740     return self;
741 }
742
743 void ast_loop_delete(ast_loop *self)
744 {
745     if (self->initexpr)
746         ast_unref(self->initexpr);
747     if (self->precond)
748         ast_unref(self->precond);
749     if (self->postcond)
750         ast_unref(self->postcond);
751     if (self->increment)
752         ast_unref(self->increment);
753     if (self->body)
754         ast_unref(self->body);
755     ast_expression_delete((ast_expression*)self);
756     mem_d(self);
757 }
758
759 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont)
760 {
761     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
762     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
763
764     self->is_continue = iscont;
765
766     return self;
767 }
768
769 void ast_breakcont_delete(ast_breakcont *self)
770 {
771     ast_expression_delete((ast_expression*)self);
772     mem_d(self);
773 }
774
775 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
776 {
777     ast_instantiate(ast_switch, ctx, ast_switch_delete);
778     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
779
780     self->operand = op;
781     self->cases   = NULL;
782
783     ast_propagate_effects(self, op);
784
785     return self;
786 }
787
788 void ast_switch_delete(ast_switch *self)
789 {
790     size_t i;
791     ast_unref(self->operand);
792
793     for (i = 0; i < vec_size(self->cases); ++i) {
794         if (self->cases[i].value)
795             ast_unref(self->cases[i].value);
796         ast_unref(self->cases[i].code);
797     }
798     vec_free(self->cases);
799
800     ast_expression_delete((ast_expression*)self);
801     mem_d(self);
802 }
803
804 ast_label* ast_label_new(lex_ctx ctx, const char *name)
805 {
806     ast_instantiate(ast_label, ctx, ast_label_delete);
807     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
808
809     self->name    = util_strdup(name);
810     self->irblock = NULL;
811     self->gotos   = NULL;
812
813     return self;
814 }
815
816 void ast_label_delete(ast_label *self)
817 {
818     mem_d((void*)self->name);
819     vec_free(self->gotos);
820     ast_expression_delete((ast_expression*)self);
821     mem_d(self);
822 }
823
824 void ast_label_register_goto(ast_label *self, ast_goto *g)
825 {
826     vec_push(self->gotos, g);
827 }
828
829 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
830 {
831     ast_instantiate(ast_goto, ctx, ast_goto_delete);
832     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
833
834     self->name    = util_strdup(name);
835     self->target  = NULL;
836     self->irblock_from = NULL;
837
838     return self;
839 }
840
841 void ast_goto_delete(ast_goto *self)
842 {
843     mem_d((void*)self->name);
844     ast_expression_delete((ast_expression*)self);
845     mem_d(self);
846 }
847
848 void ast_goto_set_label(ast_goto *self, ast_label *label)
849 {
850     self->target = label;
851 }
852
853 ast_call* ast_call_new(lex_ctx ctx,
854                        ast_expression *funcexpr)
855 {
856     ast_instantiate(ast_call, ctx, ast_call_delete);
857     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
858
859     ast_side_effects(self) = true;
860
861     self->params = NULL;
862     self->func   = funcexpr;
863
864     ast_type_adopt(self, funcexpr->expression.next);
865
866     return self;
867 }
868
869 void ast_call_delete(ast_call *self)
870 {
871     size_t i;
872     for (i = 0; i < vec_size(self->params); ++i)
873         ast_unref(self->params[i]);
874     vec_free(self->params);
875
876     if (self->func)
877         ast_unref(self->func);
878
879     ast_expression_delete((ast_expression*)self);
880     mem_d(self);
881 }
882
883 bool ast_call_check_types(ast_call *self)
884 {
885     size_t i;
886     bool   retval = true;
887     const  ast_expression *func = self->func;
888     size_t count = vec_size(self->params);
889     if (count > vec_size(func->expression.params))
890         count = vec_size(func->expression.params);
891
892     for (i = 0; i < count; ++i) {
893         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i]))) {
894             char texp[1024];
895             char tgot[1024];
896             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
897             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
898             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
899                      (unsigned int)(i+1), texp, tgot);
900             /* we don't immediately return */
901             retval = false;
902         }
903     }
904     return retval;
905 }
906
907 ast_store* ast_store_new(lex_ctx ctx, int op,
908                          ast_expression *dest, ast_expression *source)
909 {
910     ast_instantiate(ast_store, ctx, ast_store_delete);
911     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
912
913     ast_side_effects(self) = true;
914
915     self->op = op;
916     self->dest = dest;
917     self->source = source;
918
919     if (!ast_type_adopt(self, dest)) {
920         ast_delete(self);
921         return NULL;
922     }
923
924     return self;
925 }
926
927 void ast_store_delete(ast_store *self)
928 {
929     ast_unref(self->dest);
930     ast_unref(self->source);
931     ast_expression_delete((ast_expression*)self);
932     mem_d(self);
933 }
934
935 ast_block* ast_block_new(lex_ctx ctx)
936 {
937     ast_instantiate(ast_block, ctx, ast_block_delete);
938     ast_expression_init((ast_expression*)self,
939                         (ast_expression_codegen*)&ast_block_codegen);
940
941     self->locals  = NULL;
942     self->exprs   = NULL;
943     self->collect = NULL;
944
945     return self;
946 }
947
948 bool ast_block_add_expr(ast_block *self, ast_expression *e)
949 {
950     ast_propagate_effects(self, e);
951     vec_push(self->exprs, e);
952     if (self->expression.next) {
953         ast_delete(self->expression.next);
954         self->expression.next = NULL;
955     }
956     if (!ast_type_adopt(self, e)) {
957         compile_error(ast_ctx(self), "internal error: failed to adopt type");
958         return false;
959     }
960     return true;
961 }
962
963 void ast_block_collect(ast_block *self, ast_expression *expr)
964 {
965     vec_push(self->collect, expr);
966     expr->expression.node.keep = true;
967 }
968
969 void ast_block_delete(ast_block *self)
970 {
971     size_t i;
972     for (i = 0; i < vec_size(self->exprs); ++i)
973         ast_unref(self->exprs[i]);
974     vec_free(self->exprs);
975     for (i = 0; i < vec_size(self->locals); ++i)
976         ast_delete(self->locals[i]);
977     vec_free(self->locals);
978     for (i = 0; i < vec_size(self->collect); ++i)
979         ast_delete(self->collect[i]);
980     vec_free(self->collect);
981     ast_expression_delete((ast_expression*)self);
982     mem_d(self);
983 }
984
985 bool ast_block_set_type(ast_block *self, ast_expression *from)
986 {
987     if (self->expression.next)
988         ast_delete(self->expression.next);
989     if (!ast_type_adopt(self, from))
990         return false;
991     return true;
992 }
993
994 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
995 {
996     ast_instantiate(ast_function, ctx, ast_function_delete);
997
998     if (!vtype ||
999         vtype->hasvalue ||
1000         vtype->expression.vtype != TYPE_FUNCTION)
1001     {
1002         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1003                  (int)!vtype,
1004                  (int)vtype->hasvalue,
1005                  vtype->expression.vtype);
1006         mem_d(self);
1007         return NULL;
1008     }
1009
1010     self->vtype  = vtype;
1011     self->name   = name ? util_strdup(name) : NULL;
1012     self->blocks = NULL;
1013
1014     self->labelcount = 0;
1015     self->builtin = 0;
1016
1017     self->ir_func = NULL;
1018     self->curblock = NULL;
1019
1020     self->breakblock    = NULL;
1021     self->continueblock = NULL;
1022
1023     vtype->hasvalue = true;
1024     vtype->constval.vfunc = self;
1025
1026     return self;
1027 }
1028
1029 void ast_function_delete(ast_function *self)
1030 {
1031     size_t i;
1032     if (self->name)
1033         mem_d((void*)self->name);
1034     if (self->vtype) {
1035         /* ast_value_delete(self->vtype); */
1036         self->vtype->hasvalue = false;
1037         self->vtype->constval.vfunc = NULL;
1038         /* We use unref - if it was stored in a global table it is supposed
1039          * to be deleted from *there*
1040          */
1041         ast_unref(self->vtype);
1042     }
1043     for (i = 0; i < vec_size(self->blocks); ++i)
1044         ast_delete(self->blocks[i]);
1045     vec_free(self->blocks);
1046     mem_d(self);
1047 }
1048
1049 const char* ast_function_label(ast_function *self, const char *prefix)
1050 {
1051     size_t id;
1052     size_t len;
1053     char  *from;
1054
1055     if (!opts.dump && !opts.dumpfin && !opts.debug)
1056         return NULL;
1057
1058     id  = (self->labelcount++);
1059     len = strlen(prefix);
1060
1061     from = self->labelbuf + sizeof(self->labelbuf)-1;
1062     *from-- = 0;
1063     do {
1064         *from-- = (id%10) + '0';
1065         id /= 10;
1066     } while (id);
1067     ++from;
1068     memcpy(from - len, prefix, len);
1069     return from - len;
1070 }
1071
1072 /*********************************************************************/
1073 /* AST codegen part
1074  * by convention you must never pass NULL to the 'ir_value **out'
1075  * parameter. If you really don't care about the output, pass a dummy.
1076  * But I can't imagine a pituation where the output is truly unnecessary.
1077  */
1078
1079 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1080 {
1081     if (out->vtype == TYPE_FIELD)
1082         out->fieldtype = self->next->expression.vtype;
1083     if (out->vtype == TYPE_FUNCTION)
1084         out->outtype = self->next->expression.vtype;
1085 }
1086
1087 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1088
1089 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1090 {
1091     (void)func;
1092     (void)lvalue;
1093     /* NOTE: This is the codegen for a variable used in an expression.
1094      * It is not the codegen to generate the value. For this purpose,
1095      * ast_local_codegen and ast_global_codegen are to be used before this
1096      * is executed. ast_function_codegen should take care of its locals,
1097      * and the ast-user should take care of ast_global_codegen to be used
1098      * on all the globals.
1099      */
1100     if (!self->ir_v) {
1101         char tname[1024]; /* typename is reserved in C++ */
1102         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1103         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1104         return false;
1105     }
1106     *out = self->ir_v;
1107     return true;
1108 }
1109
1110 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1111 {
1112     ir_value *v = NULL;
1113
1114     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1115     {
1116         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1117         if (!func)
1118             return false;
1119         func->context = ast_ctx(self);
1120         func->value->context = ast_ctx(self);
1121
1122         self->constval.vfunc->ir_func = func;
1123         self->ir_v = func->value;
1124         /* The function is filled later on ast_function_codegen... */
1125         return true;
1126     }
1127
1128     if (isfield && self->expression.vtype == TYPE_FIELD) {
1129         ast_expression *fieldtype = self->expression.next;
1130
1131         if (self->hasvalue) {
1132             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1133             goto error;
1134         }
1135
1136         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1137             size_t ai;
1138             char   *name;
1139             size_t  namelen;
1140
1141             ast_expression_common *elemtype;
1142             int                    vtype;
1143             ast_value             *array = (ast_value*)fieldtype;
1144
1145             if (!ast_istype(fieldtype, ast_value)) {
1146                 compile_error(ast_ctx(self), "internal error: ast_value required");
1147                 return false;
1148             }
1149
1150             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1151             if (!array->expression.count || array->expression.count > opts.max_array_size)
1152                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1153
1154             elemtype = &array->expression.next->expression;
1155             vtype = elemtype->vtype;
1156
1157             v = ir_builder_create_field(ir, self->name, vtype);
1158             if (!v) {
1159                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1160                 return false;
1161             }
1162             v->context = ast_ctx(self);
1163             v->unique_life = true;
1164             array->ir_v = self->ir_v = v;
1165
1166             namelen = strlen(self->name);
1167             name    = (char*)mem_a(namelen + 16);
1168             strcpy(name, self->name);
1169
1170             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1171             array->ir_values[0] = v;
1172             for (ai = 1; ai < array->expression.count; ++ai) {
1173                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1174                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1175                 if (!array->ir_values[ai]) {
1176                     mem_d(name);
1177                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1178                     return false;
1179                 }
1180                 array->ir_values[ai]->context = ast_ctx(self);
1181                 array->ir_values[ai]->unique_life = true;
1182             }
1183             mem_d(name);
1184         }
1185         else
1186         {
1187             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1188             if (!v)
1189                 return false;
1190             v->context = ast_ctx(self);
1191             self->ir_v = v;
1192         }
1193         return true;
1194     }
1195
1196     if (self->expression.vtype == TYPE_ARRAY) {
1197         size_t ai;
1198         char   *name;
1199         size_t  namelen;
1200
1201         ast_expression_common *elemtype = &self->expression.next->expression;
1202         int vtype = elemtype->vtype;
1203
1204         /* same as with field arrays */
1205         if (!self->expression.count || self->expression.count > opts.max_array_size)
1206             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1207
1208         v = ir_builder_create_global(ir, self->name, vtype);
1209         if (!v) {
1210             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1211             return false;
1212         }
1213         v->context = ast_ctx(self);
1214         v->unique_life = true;
1215
1216         namelen = strlen(self->name);
1217         name    = (char*)mem_a(namelen + 16);
1218         strcpy(name, self->name);
1219
1220         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1221         self->ir_values[0] = v;
1222         for (ai = 1; ai < self->expression.count; ++ai) {
1223             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1224             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1225             if (!self->ir_values[ai]) {
1226                 mem_d(name);
1227                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1228                 return false;
1229             }
1230             self->ir_values[ai]->context = ast_ctx(self);
1231             self->ir_values[ai]->unique_life = true;
1232         }
1233         mem_d(name);
1234     }
1235     else
1236     {
1237         /* Arrays don't do this since there's no "array" value which spans across the
1238          * whole thing.
1239          */
1240         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1241         if (!v) {
1242             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1243             return false;
1244         }
1245         codegen_output_type(self, v);
1246         v->context = ast_ctx(self);
1247     }
1248
1249     if (self->hasvalue) {
1250         switch (self->expression.vtype)
1251         {
1252             case TYPE_FLOAT:
1253                 if (!ir_value_set_float(v, self->constval.vfloat))
1254                     goto error;
1255                 break;
1256             case TYPE_VECTOR:
1257                 if (!ir_value_set_vector(v, self->constval.vvec))
1258                     goto error;
1259                 break;
1260             case TYPE_STRING:
1261                 if (!ir_value_set_string(v, self->constval.vstring))
1262                     goto error;
1263                 break;
1264             case TYPE_ARRAY:
1265                 compile_error(ast_ctx(self), "TODO: global constant array");
1266                 break;
1267             case TYPE_FUNCTION:
1268                 compile_error(ast_ctx(self), "global of type function not properly generated");
1269                 goto error;
1270                 /* Cannot generate an IR value for a function,
1271                  * need a pointer pointing to a function rather.
1272                  */
1273             case TYPE_FIELD:
1274                 if (!self->constval.vfield) {
1275                     compile_error(ast_ctx(self), "field constant without vfield set");
1276                     goto error;
1277                 }
1278                 if (!self->constval.vfield->ir_v) {
1279                     compile_error(ast_ctx(self), "field constant generated before its field");
1280                     goto error;
1281                 }
1282                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1283                     goto error;
1284                 break;
1285             default:
1286                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1287                 break;
1288         }
1289     }
1290
1291     /* link us to the ir_value */
1292     v->cvq = self->cvq;
1293     self->ir_v = v;
1294     return true;
1295
1296 error: /* clean up */
1297     ir_value_delete(v);
1298     return false;
1299 }
1300
1301 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1302 {
1303     ir_value *v = NULL;
1304     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1305     {
1306         /* Do we allow local functions? I think not...
1307          * this is NOT a function pointer atm.
1308          */
1309         return false;
1310     }
1311
1312     if (self->expression.vtype == TYPE_ARRAY) {
1313         size_t ai;
1314         char   *name;
1315         size_t  namelen;
1316
1317         ast_expression_common *elemtype = &self->expression.next->expression;
1318         int vtype = elemtype->vtype;
1319
1320         if (param) {
1321             compile_error(ast_ctx(self), "array-parameters are not supported");
1322             return false;
1323         }
1324
1325         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1326         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1327             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1328         }
1329
1330         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1331         if (!self->ir_values) {
1332             compile_error(ast_ctx(self), "failed to allocate array values");
1333             return false;
1334         }
1335
1336         v = ir_function_create_local(func, self->name, vtype, param);
1337         if (!v) {
1338             compile_error(ast_ctx(self), "ir_function_create_local failed");
1339             return false;
1340         }
1341         v->context = ast_ctx(self);
1342         v->unique_life = true;
1343
1344         namelen = strlen(self->name);
1345         name    = (char*)mem_a(namelen + 16);
1346         strcpy(name, self->name);
1347
1348         self->ir_values[0] = v;
1349         for (ai = 1; ai < self->expression.count; ++ai) {
1350             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1351             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1352             if (!self->ir_values[ai]) {
1353                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1354                 return false;
1355             }
1356             self->ir_values[ai]->context = ast_ctx(self);
1357             self->ir_values[ai]->unique_life = true;
1358         }
1359     }
1360     else
1361     {
1362         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1363         if (!v)
1364             return false;
1365         codegen_output_type(self, v);
1366         v->context = ast_ctx(self);
1367     }
1368
1369     /* A constant local... hmmm...
1370      * I suppose the IR will have to deal with this
1371      */
1372     if (self->hasvalue) {
1373         switch (self->expression.vtype)
1374         {
1375             case TYPE_FLOAT:
1376                 if (!ir_value_set_float(v, self->constval.vfloat))
1377                     goto error;
1378                 break;
1379             case TYPE_VECTOR:
1380                 if (!ir_value_set_vector(v, self->constval.vvec))
1381                     goto error;
1382                 break;
1383             case TYPE_STRING:
1384                 if (!ir_value_set_string(v, self->constval.vstring))
1385                     goto error;
1386                 break;
1387             default:
1388                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1389                 break;
1390         }
1391     }
1392
1393     /* link us to the ir_value */
1394     v->cvq = self->cvq;
1395     self->ir_v = v;
1396
1397     if (!ast_generate_accessors(self, func->owner))
1398         return false;
1399     return true;
1400
1401 error: /* clean up */
1402     ir_value_delete(v);
1403     return false;
1404 }
1405
1406 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1407 {
1408     size_t i;
1409     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1410     if (!self->setter || !self->getter)
1411         return true;
1412     for (i = 0; i < self->expression.count; ++i) {
1413         if (!self->ir_values) {
1414             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1415             return false;
1416         }
1417         if (!self->ir_values[i]) {
1418             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1419             return false;
1420         }
1421         if (self->ir_values[i]->life) {
1422             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1423             return false;
1424         }
1425     }
1426
1427     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1428     if (self->setter) {
1429         if (!ast_global_codegen  (self->setter, ir, false) ||
1430             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1431             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1432         {
1433             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1434             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1435             return false;
1436         }
1437     }
1438     if (self->getter) {
1439         if (!ast_global_codegen  (self->getter, ir, false) ||
1440             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1441             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1442         {
1443             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1444             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1445             return false;
1446         }
1447     }
1448     for (i = 0; i < self->expression.count; ++i) {
1449         vec_free(self->ir_values[i]->life);
1450     }
1451     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1452     return true;
1453 }
1454
1455 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1456 {
1457     ir_function *irf;
1458     ir_value    *dummy;
1459     ast_expression_common *ec;
1460     size_t    i;
1461
1462     (void)ir;
1463
1464     irf = self->ir_func;
1465     if (!irf) {
1466         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1467         return false;
1468     }
1469
1470     /* fill the parameter list */
1471     ec = &self->vtype->expression;
1472     for (i = 0; i < vec_size(ec->params); ++i)
1473     {
1474         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1475             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1476         else
1477             vec_push(irf->params, ec->params[i]->expression.vtype);
1478         if (!self->builtin) {
1479             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1480                 return false;
1481         }
1482     }
1483
1484     if (self->builtin) {
1485         irf->builtin = self->builtin;
1486         return true;
1487     }
1488
1489     if (!vec_size(self->blocks)) {
1490         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1491         return false;
1492     }
1493
1494     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1495     if (!self->curblock) {
1496         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1497         return false;
1498     }
1499
1500     for (i = 0; i < vec_size(self->blocks); ++i) {
1501         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1502         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1503             return false;
1504     }
1505
1506     /* TODO: check return types */
1507     if (!self->curblock->final)
1508     {
1509         if (!self->vtype->expression.next ||
1510             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1511         {
1512             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1513         }
1514         else if (vec_size(self->curblock->entries))
1515         {
1516             /* error("missing return"); */
1517             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1518                                 "control reaches end of non-void function (`%s`) via %s",
1519                                 self->name, self->curblock->label))
1520             {
1521                 return false;
1522             }
1523             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1524         }
1525     }
1526     return true;
1527 }
1528
1529 /* Note, you will not see ast_block_codegen generate ir_blocks.
1530  * To the AST and the IR, blocks are 2 different things.
1531  * In the AST it represents a block of code, usually enclosed in
1532  * curly braces {...}.
1533  * While in the IR it represents a block in terms of control-flow.
1534  */
1535 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1536 {
1537     size_t i;
1538
1539     /* We don't use this
1540      * Note: an ast-representation using the comma-operator
1541      * of the form: (a, b, c) = x should not assign to c...
1542      */
1543     if (lvalue) {
1544         compile_error(ast_ctx(self), "not an l-value (code-block)");
1545         return false;
1546     }
1547
1548     if (self->expression.outr) {
1549         *out = self->expression.outr;
1550         return true;
1551     }
1552
1553     /* output is NULL at first, we'll have each expression
1554      * assign to out output, thus, a comma-operator represention
1555      * using an ast_block will return the last generated value,
1556      * so: (b, c) + a  executed both b and c, and returns c,
1557      * which is then added to a.
1558      */
1559     *out = NULL;
1560
1561     /* generate locals */
1562     for (i = 0; i < vec_size(self->locals); ++i)
1563     {
1564         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1565             if (opts.debug)
1566                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1567             return false;
1568         }
1569     }
1570
1571     for (i = 0; i < vec_size(self->exprs); ++i)
1572     {
1573         ast_expression_codegen *gen;
1574         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1575             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1576                 return false;
1577             continue;
1578         }
1579         gen = self->exprs[i]->expression.codegen;
1580         if (!(*gen)(self->exprs[i], func, false, out))
1581             return false;
1582     }
1583
1584     self->expression.outr = *out;
1585
1586     return true;
1587 }
1588
1589 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1590 {
1591     ast_expression_codegen *cgen;
1592     ir_value *left  = NULL;
1593     ir_value *right = NULL;
1594
1595     ast_value       *arr;
1596     ast_value       *idx = 0;
1597     ast_array_index *ai = NULL;
1598
1599     if (lvalue && self->expression.outl) {
1600         *out = self->expression.outl;
1601         return true;
1602     }
1603
1604     if (!lvalue && self->expression.outr) {
1605         *out = self->expression.outr;
1606         return true;
1607     }
1608
1609     if (ast_istype(self->dest, ast_array_index))
1610     {
1611
1612         ai = (ast_array_index*)self->dest;
1613         idx = (ast_value*)ai->index;
1614
1615         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1616             ai = NULL;
1617     }
1618
1619     if (ai) {
1620         /* we need to call the setter */
1621         ir_value  *iridx, *funval;
1622         ir_instr  *call;
1623
1624         if (lvalue) {
1625             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1626             return false;
1627         }
1628
1629         arr = (ast_value*)ai->array;
1630         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1631             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1632             return false;
1633         }
1634
1635         cgen = idx->expression.codegen;
1636         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1637             return false;
1638
1639         cgen = arr->setter->expression.codegen;
1640         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1641             return false;
1642
1643         cgen = self->source->expression.codegen;
1644         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1645             return false;
1646
1647         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1648         if (!call)
1649             return false;
1650         ir_call_param(call, iridx);
1651         ir_call_param(call, right);
1652         self->expression.outr = right;
1653     }
1654     else
1655     {
1656         /* regular code */
1657
1658         cgen = self->dest->expression.codegen;
1659         /* lvalue! */
1660         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1661             return false;
1662         self->expression.outl = left;
1663
1664         cgen = self->source->expression.codegen;
1665         /* rvalue! */
1666         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1667             return false;
1668
1669         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1670             return false;
1671         self->expression.outr = right;
1672     }
1673
1674     /* Theoretically, an assinment returns its left side as an
1675      * lvalue, if we don't need an lvalue though, we return
1676      * the right side as an rvalue, otherwise we have to
1677      * somehow know whether or not we need to dereference the pointer
1678      * on the left side - that is: OP_LOAD if it was an address.
1679      * Also: in original QC we cannot OP_LOADP *anyway*.
1680      */
1681     *out = (lvalue ? left : right);
1682
1683     return true;
1684 }
1685
1686 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1687 {
1688     ast_expression_codegen *cgen;
1689     ir_value *left, *right;
1690
1691     /* A binary operation cannot yield an l-value */
1692     if (lvalue) {
1693         compile_error(ast_ctx(self), "not an l-value (binop)");
1694         return false;
1695     }
1696
1697     if (self->expression.outr) {
1698         *out = self->expression.outr;
1699         return true;
1700     }
1701
1702     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1703         (self->op == INSTR_AND || self->op == INSTR_OR))
1704     {
1705         /* short circuit evaluation */
1706         ir_block *other, *merge;
1707         ir_block *from_left, *from_right;
1708         ir_instr *phi;
1709         size_t    merge_id;
1710
1711         /* prepare end-block */
1712         merge_id = vec_size(func->ir_func->blocks);
1713         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1714
1715         /* generate the left expression */
1716         cgen = self->left->expression.codegen;
1717         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1718             return false;
1719         /* remember the block */
1720         from_left = func->curblock;
1721
1722         /* create a new block for the right expression */
1723         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1724         if (self->op == INSTR_AND) {
1725             /* on AND: left==true -> other */
1726             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1727                 return false;
1728         } else {
1729             /* on OR: left==false -> other */
1730             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1731                 return false;
1732         }
1733         /* use the likely flag */
1734         vec_last(func->curblock->instr)->likely = true;
1735
1736         /* enter the right-expression's block */
1737         func->curblock = other;
1738         /* generate */
1739         cgen = self->right->expression.codegen;
1740         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1741             return false;
1742         /* remember block */
1743         from_right = func->curblock;
1744
1745         /* jump to the merge block */
1746         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1747             return false;
1748
1749         vec_remove(func->ir_func->blocks, merge_id, 1);
1750         vec_push(func->ir_func->blocks, merge);
1751
1752         func->curblock = merge;
1753         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1754                                   ast_function_label(func, "sce_value"),
1755                                   self->expression.vtype);
1756         ir_phi_add(phi, from_left, left);
1757         ir_phi_add(phi, from_right, right);
1758         *out = ir_phi_value(phi);
1759         if (!*out)
1760             return false;
1761
1762         if (!OPTS_FLAG(PERL_LOGIC)) {
1763             /* cast-to-bool */
1764             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1765                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1766                                              ast_function_label(func, "sce_bool_v"),
1767                                              INSTR_NOT_V, *out);
1768                 if (!*out)
1769                     return false;
1770                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1771                                              ast_function_label(func, "sce_bool"),
1772                                              INSTR_NOT_F, *out);
1773                 if (!*out)
1774                     return false;
1775             }
1776             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1777                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1778                                              ast_function_label(func, "sce_bool_s"),
1779                                              INSTR_NOT_S, *out);
1780                 if (!*out)
1781                     return false;
1782                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1783                                              ast_function_label(func, "sce_bool"),
1784                                              INSTR_NOT_F, *out);
1785                 if (!*out)
1786                     return false;
1787             }
1788             else {
1789                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1790                                              ast_function_label(func, "sce_bool"),
1791                                              INSTR_AND, *out, *out);
1792                 if (!*out)
1793                     return false;
1794             }
1795         }
1796
1797         self->expression.outr = *out;
1798         return true;
1799     }
1800
1801     cgen = self->left->expression.codegen;
1802     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1803         return false;
1804
1805     cgen = self->right->expression.codegen;
1806     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1807         return false;
1808
1809     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1810                                  self->op, left, right);
1811     if (!*out)
1812         return false;
1813     self->expression.outr = *out;
1814
1815     return true;
1816 }
1817
1818 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1819 {
1820     ast_expression_codegen *cgen;
1821     ir_value *leftl = NULL, *leftr, *right, *bin;
1822
1823     ast_value       *arr;
1824     ast_value       *idx = 0;
1825     ast_array_index *ai = NULL;
1826     ir_value        *iridx = NULL;
1827
1828     if (lvalue && self->expression.outl) {
1829         *out = self->expression.outl;
1830         return true;
1831     }
1832
1833     if (!lvalue && self->expression.outr) {
1834         *out = self->expression.outr;
1835         return true;
1836     }
1837
1838     if (ast_istype(self->dest, ast_array_index))
1839     {
1840
1841         ai = (ast_array_index*)self->dest;
1842         idx = (ast_value*)ai->index;
1843
1844         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1845             ai = NULL;
1846     }
1847
1848     /* for a binstore we need both an lvalue and an rvalue for the left side */
1849     /* rvalue of destination! */
1850     if (ai) {
1851         cgen = idx->expression.codegen;
1852         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1853             return false;
1854     }
1855     cgen = self->dest->expression.codegen;
1856     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1857         return false;
1858
1859     /* source as rvalue only */
1860     cgen = self->source->expression.codegen;
1861     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1862         return false;
1863
1864     /* now the binary */
1865     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1866                                 self->opbin, leftr, right);
1867     self->expression.outr = bin;
1868
1869
1870     if (ai) {
1871         /* we need to call the setter */
1872         ir_value  *funval;
1873         ir_instr  *call;
1874
1875         if (lvalue) {
1876             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1877             return false;
1878         }
1879
1880         arr = (ast_value*)ai->array;
1881         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1882             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1883             return false;
1884         }
1885
1886         cgen = arr->setter->expression.codegen;
1887         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1888             return false;
1889
1890         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1891         if (!call)
1892             return false;
1893         ir_call_param(call, iridx);
1894         ir_call_param(call, bin);
1895         self->expression.outr = bin;
1896     } else {
1897         /* now store them */
1898         cgen = self->dest->expression.codegen;
1899         /* lvalue of destination */
1900         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1901             return false;
1902         self->expression.outl = leftl;
1903
1904         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1905             return false;
1906         self->expression.outr = bin;
1907     }
1908
1909     /* Theoretically, an assinment returns its left side as an
1910      * lvalue, if we don't need an lvalue though, we return
1911      * the right side as an rvalue, otherwise we have to
1912      * somehow know whether or not we need to dereference the pointer
1913      * on the left side - that is: OP_LOAD if it was an address.
1914      * Also: in original QC we cannot OP_LOADP *anyway*.
1915      */
1916     *out = (lvalue ? leftl : bin);
1917
1918     return true;
1919 }
1920
1921 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
1922 {
1923     ast_expression_codegen *cgen;
1924     ir_value *operand;
1925
1926     /* An unary operation cannot yield an l-value */
1927     if (lvalue) {
1928         compile_error(ast_ctx(self), "not an l-value (binop)");
1929         return false;
1930     }
1931
1932     if (self->expression.outr) {
1933         *out = self->expression.outr;
1934         return true;
1935     }
1936
1937     cgen = self->operand->expression.codegen;
1938     /* lvalue! */
1939     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1940         return false;
1941
1942     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
1943                                  self->op, operand);
1944     if (!*out)
1945         return false;
1946     self->expression.outr = *out;
1947
1948     return true;
1949 }
1950
1951 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
1952 {
1953     ast_expression_codegen *cgen;
1954     ir_value *operand;
1955
1956     *out = NULL;
1957
1958     /* In the context of a return operation, we don't actually return
1959      * anything...
1960      */
1961     if (lvalue) {
1962         compile_error(ast_ctx(self), "return-expression is not an l-value");
1963         return false;
1964     }
1965
1966     if (self->expression.outr) {
1967         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
1968         return false;
1969     }
1970     self->expression.outr = (ir_value*)1;
1971
1972     if (self->operand) {
1973         cgen = self->operand->expression.codegen;
1974         /* lvalue! */
1975         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
1976             return false;
1977
1978         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
1979             return false;
1980     } else {
1981         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
1982             return false;
1983     }
1984
1985     return true;
1986 }
1987
1988 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
1989 {
1990     ast_expression_codegen *cgen;
1991     ir_value *ent, *field;
1992
1993     /* This function needs to take the 'lvalue' flag into account!
1994      * As lvalue we provide a field-pointer, as rvalue we provide the
1995      * value in a temp.
1996      */
1997
1998     if (lvalue && self->expression.outl) {
1999         *out = self->expression.outl;
2000         return true;
2001     }
2002
2003     if (!lvalue && self->expression.outr) {
2004         *out = self->expression.outr;
2005         return true;
2006     }
2007
2008     cgen = self->entity->expression.codegen;
2009     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2010         return false;
2011
2012     cgen = self->field->expression.codegen;
2013     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2014         return false;
2015
2016     if (lvalue) {
2017         /* address! */
2018         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2019                                             ent, field);
2020     } else {
2021         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2022                                              ent, field, self->expression.vtype);
2023         /* Done AFTER error checking: 
2024         codegen_output_type(self, *out);
2025         */
2026     }
2027     if (!*out) {
2028         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2029                  (lvalue ? "ADDRESS" : "FIELD"),
2030                  type_name[self->expression.vtype]);
2031         return false;
2032     }
2033     if (!lvalue)
2034         codegen_output_type(self, *out);
2035
2036     if (lvalue)
2037         self->expression.outl = *out;
2038     else
2039         self->expression.outr = *out;
2040
2041     /* Hm that should be it... */
2042     return true;
2043 }
2044
2045 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2046 {
2047     ast_expression_codegen *cgen;
2048     ir_value *vec;
2049
2050     /* in QC this is always an lvalue */
2051     (void)lvalue;
2052     if (self->expression.outl) {
2053         *out = self->expression.outl;
2054         return true;
2055     }
2056
2057     cgen = self->owner->expression.codegen;
2058     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
2059         return false;
2060
2061     if (vec->vtype != TYPE_VECTOR &&
2062         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2063     {
2064         return false;
2065     }
2066
2067     *out = ir_value_vector_member(vec, self->field);
2068     self->expression.outl = *out;
2069
2070     return (*out != NULL);
2071 }
2072
2073 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2074 {
2075     ast_value *arr;
2076     ast_value *idx;
2077
2078     if (!lvalue && self->expression.outr) {
2079         *out = self->expression.outr;
2080     }
2081     if (lvalue && self->expression.outl) {
2082         *out = self->expression.outl;
2083     }
2084
2085     if (!ast_istype(self->array, ast_value)) {
2086         compile_error(ast_ctx(self), "array indexing this way is not supported");
2087         /* note this would actually be pointer indexing because the left side is
2088          * not an actual array but (hopefully) an indexable expression.
2089          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2090          * support this path will be filled.
2091          */
2092         return false;
2093     }
2094
2095     arr = (ast_value*)self->array;
2096     idx = (ast_value*)self->index;
2097
2098     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2099         /* Time to use accessor functions */
2100         ast_expression_codegen *cgen;
2101         ir_value               *iridx, *funval;
2102         ir_instr               *call;
2103
2104         if (lvalue) {
2105             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2106             return false;
2107         }
2108
2109         if (!arr->getter) {
2110             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2111             return false;
2112         }
2113
2114         cgen = self->index->expression.codegen;
2115         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2116             return false;
2117
2118         cgen = arr->getter->expression.codegen;
2119         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2120             return false;
2121
2122         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2123         if (!call)
2124             return false;
2125         ir_call_param(call, iridx);
2126
2127         *out = ir_call_value(call);
2128         self->expression.outr = *out;
2129         return true;
2130     }
2131
2132     if (idx->expression.vtype == TYPE_FLOAT) {
2133         unsigned int arridx = idx->constval.vfloat;
2134         if (arridx >= self->array->expression.count)
2135         {
2136             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2137             return false;
2138         }
2139         *out = arr->ir_values[arridx];
2140     }
2141     else if (idx->expression.vtype == TYPE_INTEGER) {
2142         unsigned int arridx = idx->constval.vint;
2143         if (arridx >= self->array->expression.count)
2144         {
2145             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2146             return false;
2147         }
2148         *out = arr->ir_values[arridx];
2149     }
2150     else {
2151         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2152         return false;
2153     }
2154     return true;
2155 }
2156
2157 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2158 {
2159     ast_expression_codegen *cgen;
2160
2161     ir_value *condval;
2162     ir_value *dummy;
2163
2164     ir_block *cond;
2165     ir_block *ontrue;
2166     ir_block *onfalse;
2167     ir_block *ontrue_endblock = NULL;
2168     ir_block *onfalse_endblock = NULL;
2169     ir_block *merge = NULL;
2170
2171     /* We don't output any value, thus also don't care about r/lvalue */
2172     (void)out;
2173     (void)lvalue;
2174
2175     if (self->expression.outr) {
2176         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2177         return false;
2178     }
2179     self->expression.outr = (ir_value*)1;
2180
2181     /* generate the condition */
2182     cgen = self->cond->expression.codegen;
2183     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2184         return false;
2185     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2186     cond = func->curblock;
2187
2188     /* on-true path */
2189
2190     if (self->on_true) {
2191         /* create on-true block */
2192         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2193         if (!ontrue)
2194             return false;
2195
2196         /* enter the block */
2197         func->curblock = ontrue;
2198
2199         /* generate */
2200         cgen = self->on_true->expression.codegen;
2201         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2202             return false;
2203
2204         /* we now need to work from the current endpoint */
2205         ontrue_endblock = func->curblock;
2206     } else
2207         ontrue = NULL;
2208
2209     /* on-false path */
2210     if (self->on_false) {
2211         /* create on-false block */
2212         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2213         if (!onfalse)
2214             return false;
2215
2216         /* enter the block */
2217         func->curblock = onfalse;
2218
2219         /* generate */
2220         cgen = self->on_false->expression.codegen;
2221         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2222             return false;
2223
2224         /* we now need to work from the current endpoint */
2225         onfalse_endblock = func->curblock;
2226     } else
2227         onfalse = NULL;
2228
2229     /* Merge block were they all merge in to */
2230     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2231     {
2232         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2233         if (!merge)
2234             return false;
2235         /* add jumps ot the merge block */
2236         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2237             return false;
2238         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2239             return false;
2240
2241         /* Now enter the merge block */
2242         func->curblock = merge;
2243     }
2244
2245     /* we create the if here, that way all blocks are ordered :)
2246      */
2247     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2248                             (ontrue  ? ontrue  : merge),
2249                             (onfalse ? onfalse : merge)))
2250     {
2251         return false;
2252     }
2253
2254     return true;
2255 }
2256
2257 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2258 {
2259     ast_expression_codegen *cgen;
2260
2261     ir_value *condval;
2262     ir_value *trueval, *falseval;
2263     ir_instr *phi;
2264
2265     ir_block *cond = func->curblock;
2266     ir_block *cond_out = NULL;
2267     ir_block *ontrue, *ontrue_out = NULL;
2268     ir_block *onfalse, *onfalse_out = NULL;
2269     ir_block *merge;
2270
2271     /* Ternary can never create an lvalue... */
2272     if (lvalue)
2273         return false;
2274
2275     /* In theory it shouldn't be possible to pass through a node twice, but
2276      * in case we add any kind of optimization pass for the AST itself, it
2277      * may still happen, thus we remember a created ir_value and simply return one
2278      * if it already exists.
2279      */
2280     if (self->expression.outr) {
2281         *out = self->expression.outr;
2282         return true;
2283     }
2284
2285     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2286
2287     /* generate the condition */
2288     func->curblock = cond;
2289     cgen = self->cond->expression.codegen;
2290     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2291         return false;
2292     cond_out = func->curblock;
2293
2294     /* create on-true block */
2295     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2296     if (!ontrue)
2297         return false;
2298     else
2299     {
2300         /* enter the block */
2301         func->curblock = ontrue;
2302
2303         /* generate */
2304         cgen = self->on_true->expression.codegen;
2305         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2306             return false;
2307
2308         ontrue_out = func->curblock;
2309     }
2310
2311     /* create on-false block */
2312     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2313     if (!onfalse)
2314         return false;
2315     else
2316     {
2317         /* enter the block */
2318         func->curblock = onfalse;
2319
2320         /* generate */
2321         cgen = self->on_false->expression.codegen;
2322         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2323             return false;
2324
2325         onfalse_out = func->curblock;
2326     }
2327
2328     /* create merge block */
2329     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2330     if (!merge)
2331         return false;
2332     /* jump to merge block */
2333     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2334         return false;
2335     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2336         return false;
2337
2338     /* create if instruction */
2339     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2340         return false;
2341
2342     /* Now enter the merge block */
2343     func->curblock = merge;
2344
2345     /* Here, now, we need a PHI node
2346      * but first some sanity checking...
2347      */
2348     if (trueval->vtype != falseval->vtype) {
2349         /* error("ternary with different types on the two sides"); */
2350         return false;
2351     }
2352
2353     /* create PHI */
2354     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), trueval->vtype);
2355     if (!phi)
2356         return false;
2357     ir_phi_add(phi, ontrue_out,  trueval);
2358     ir_phi_add(phi, onfalse_out, falseval);
2359
2360     self->expression.outr = ir_phi_value(phi);
2361     *out = self->expression.outr;
2362
2363     codegen_output_type(self, *out);
2364
2365     return true;
2366 }
2367
2368 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2369 {
2370     ast_expression_codegen *cgen;
2371
2372     ir_value *dummy      = NULL;
2373     ir_value *precond    = NULL;
2374     ir_value *postcond   = NULL;
2375
2376     /* Since we insert some jumps "late" so we have blocks
2377      * ordered "nicely", we need to keep track of the actual end-blocks
2378      * of expressions to add the jumps to.
2379      */
2380     ir_block *bbody      = NULL, *end_bbody      = NULL;
2381     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2382     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2383     ir_block *bincrement = NULL, *end_bincrement = NULL;
2384     ir_block *bout       = NULL, *bin            = NULL;
2385
2386     /* let's at least move the outgoing block to the end */
2387     size_t    bout_id;
2388
2389     /* 'break' and 'continue' need to be able to find the right blocks */
2390     ir_block *bcontinue     = NULL;
2391     ir_block *bbreak        = NULL;
2392
2393     ir_block *old_bcontinue = NULL;
2394     ir_block *old_bbreak    = NULL;
2395
2396     ir_block *tmpblock      = NULL;
2397
2398     (void)lvalue;
2399     (void)out;
2400
2401     if (self->expression.outr) {
2402         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2403         return false;
2404     }
2405     self->expression.outr = (ir_value*)1;
2406
2407     /* NOTE:
2408      * Should we ever need some kind of block ordering, better make this function
2409      * move blocks around than write a block ordering algorithm later... after all
2410      * the ast and ir should work together, not against each other.
2411      */
2412
2413     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2414      * anyway if for example it contains a ternary.
2415      */
2416     if (self->initexpr)
2417     {
2418         cgen = self->initexpr->expression.codegen;
2419         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2420             return false;
2421     }
2422
2423     /* Store the block from which we enter this chaos */
2424     bin = func->curblock;
2425
2426     /* The pre-loop condition needs its own block since we
2427      * need to be able to jump to the start of that expression.
2428      */
2429     if (self->precond)
2430     {
2431         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2432         if (!bprecond)
2433             return false;
2434
2435         /* the pre-loop-condition the least important place to 'continue' at */
2436         bcontinue = bprecond;
2437
2438         /* enter */
2439         func->curblock = bprecond;
2440
2441         /* generate */
2442         cgen = self->precond->expression.codegen;
2443         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2444             return false;
2445
2446         end_bprecond = func->curblock;
2447     } else {
2448         bprecond = end_bprecond = NULL;
2449     }
2450
2451     /* Now the next blocks won't be ordered nicely, but we need to
2452      * generate them this early for 'break' and 'continue'.
2453      */
2454     if (self->increment) {
2455         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2456         if (!bincrement)
2457             return false;
2458         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2459     } else {
2460         bincrement = end_bincrement = NULL;
2461     }
2462
2463     if (self->postcond) {
2464         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2465         if (!bpostcond)
2466             return false;
2467         bcontinue = bpostcond; /* postcond comes before the increment */
2468     } else {
2469         bpostcond = end_bpostcond = NULL;
2470     }
2471
2472     bout_id = vec_size(func->ir_func->blocks);
2473     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2474     if (!bout)
2475         return false;
2476     bbreak = bout;
2477
2478     /* The loop body... */
2479     /* if (self->body) */
2480     {
2481         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2482         if (!bbody)
2483             return false;
2484
2485         /* enter */
2486         func->curblock = bbody;
2487
2488         old_bbreak          = func->breakblock;
2489         old_bcontinue       = func->continueblock;
2490         func->breakblock    = bbreak;
2491         func->continueblock = bcontinue;
2492         if (!func->continueblock)
2493             func->continueblock = bbody;
2494
2495         /* generate */
2496         if (self->body) {
2497             cgen = self->body->expression.codegen;
2498             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2499                 return false;
2500         }
2501
2502         end_bbody = func->curblock;
2503         func->breakblock    = old_bbreak;
2504         func->continueblock = old_bcontinue;
2505     }
2506
2507     /* post-loop-condition */
2508     if (self->postcond)
2509     {
2510         /* enter */
2511         func->curblock = bpostcond;
2512
2513         /* generate */
2514         cgen = self->postcond->expression.codegen;
2515         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2516             return false;
2517
2518         end_bpostcond = func->curblock;
2519     }
2520
2521     /* The incrementor */
2522     if (self->increment)
2523     {
2524         /* enter */
2525         func->curblock = bincrement;
2526
2527         /* generate */
2528         cgen = self->increment->expression.codegen;
2529         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2530             return false;
2531
2532         end_bincrement = func->curblock;
2533     }
2534
2535     /* In any case now, we continue from the outgoing block */
2536     func->curblock = bout;
2537
2538     /* Now all blocks are in place */
2539     /* From 'bin' we jump to whatever comes first */
2540     if      (bprecond)   tmpblock = bprecond;
2541     else if (bbody)      tmpblock = bbody;
2542     else if (bpostcond)  tmpblock = bpostcond;
2543     else                 tmpblock = bout;
2544     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2545         return false;
2546
2547     /* From precond */
2548     if (bprecond)
2549     {
2550         ir_block *ontrue, *onfalse;
2551         if      (bbody)      ontrue = bbody;
2552         else if (bincrement) ontrue = bincrement;
2553         else if (bpostcond)  ontrue = bpostcond;
2554         else                 ontrue = bprecond;
2555         onfalse = bout;
2556         if (self->pre_not) {
2557             tmpblock = ontrue;
2558             ontrue   = onfalse;
2559             onfalse  = tmpblock;
2560         }
2561         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2562             return false;
2563     }
2564
2565     /* from body */
2566     if (bbody)
2567     {
2568         if      (bincrement) tmpblock = bincrement;
2569         else if (bpostcond)  tmpblock = bpostcond;
2570         else if (bprecond)   tmpblock = bprecond;
2571         else                 tmpblock = bbody;
2572         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2573             return false;
2574     }
2575
2576     /* from increment */
2577     if (bincrement)
2578     {
2579         if      (bpostcond)  tmpblock = bpostcond;
2580         else if (bprecond)   tmpblock = bprecond;
2581         else if (bbody)      tmpblock = bbody;
2582         else                 tmpblock = bout;
2583         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2584             return false;
2585     }
2586
2587     /* from postcond */
2588     if (bpostcond)
2589     {
2590         ir_block *ontrue, *onfalse;
2591         if      (bprecond)   ontrue = bprecond;
2592         else if (bbody)      ontrue = bbody;
2593         else if (bincrement) ontrue = bincrement;
2594         else                 ontrue = bpostcond;
2595         onfalse = bout;
2596         if (self->post_not) {
2597             tmpblock = ontrue;
2598             ontrue   = onfalse;
2599             onfalse  = tmpblock;
2600         }
2601         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2602             return false;
2603     }
2604
2605     /* Move 'bout' to the end */
2606     vec_remove(func->ir_func->blocks, bout_id, 1);
2607     vec_push(func->ir_func->blocks, bout);
2608
2609     return true;
2610 }
2611
2612 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2613 {
2614     ir_block *target;
2615
2616     *out = NULL;
2617
2618     if (lvalue) {
2619         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2620         return false;
2621     }
2622
2623     if (self->expression.outr) {
2624         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2625         return false;
2626     }
2627     self->expression.outr = (ir_value*)1;
2628
2629     if (self->is_continue)
2630         target = func->continueblock;
2631     else
2632         target = func->breakblock;
2633
2634     if (!target) {
2635         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2636         return false;
2637     }
2638
2639     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2640         return false;
2641     return true;
2642 }
2643
2644 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2645 {
2646     ast_expression_codegen *cgen;
2647
2648     ast_switch_case *def_case     = NULL;
2649     ir_block        *def_bfall    = NULL;
2650     ir_block        *def_bfall_to = NULL;
2651     bool set_def_bfall_to = false;
2652
2653     ir_value *dummy     = NULL;
2654     ir_value *irop      = NULL;
2655     ir_block *old_break = NULL;
2656     ir_block *bout      = NULL;
2657     ir_block *bfall     = NULL;
2658     size_t    bout_id;
2659     size_t    c;
2660
2661     char      typestr[1024];
2662     uint16_t  cmpinstr;
2663
2664     if (lvalue) {
2665         compile_error(ast_ctx(self), "switch expression is not an l-value");
2666         return false;
2667     }
2668
2669     if (self->expression.outr) {
2670         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2671         return false;
2672     }
2673     self->expression.outr = (ir_value*)1;
2674
2675     (void)lvalue;
2676     (void)out;
2677
2678     cgen = self->operand->expression.codegen;
2679     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2680         return false;
2681
2682     if (!vec_size(self->cases))
2683         return true;
2684
2685     cmpinstr = type_eq_instr[irop->vtype];
2686     if (cmpinstr >= AINSTR_END) {
2687         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2688         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2689         return false;
2690     }
2691
2692     bout_id = vec_size(func->ir_func->blocks);
2693     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2694     if (!bout)
2695         return false;
2696
2697     /* setup the break block */
2698     old_break        = func->breakblock;
2699     func->breakblock = bout;
2700
2701     /* Now create all cases */
2702     for (c = 0; c < vec_size(self->cases); ++c) {
2703         ir_value *cond, *val;
2704         ir_block *bcase, *bnot;
2705         size_t bnot_id;
2706
2707         ast_switch_case *swcase = &self->cases[c];
2708
2709         if (swcase->value) {
2710             /* A regular case */
2711             /* generate the condition operand */
2712             cgen = swcase->value->expression.codegen;
2713             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2714                 return false;
2715             /* generate the condition */
2716             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2717             if (!cond)
2718                 return false;
2719
2720             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2721             bnot_id = vec_size(func->ir_func->blocks);
2722             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2723             if (!bcase || !bnot)
2724                 return false;
2725             if (set_def_bfall_to) {
2726                 set_def_bfall_to = false;
2727                 def_bfall_to = bcase;
2728             }
2729             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2730                 return false;
2731
2732             /* Make the previous case-end fall through */
2733             if (bfall && !bfall->final) {
2734                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2735                     return false;
2736             }
2737
2738             /* enter the case */
2739             func->curblock = bcase;
2740             cgen = swcase->code->expression.codegen;
2741             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2742                 return false;
2743
2744             /* remember this block to fall through from */
2745             bfall = func->curblock;
2746
2747             /* enter the else and move it down */
2748             func->curblock = bnot;
2749             vec_remove(func->ir_func->blocks, bnot_id, 1);
2750             vec_push(func->ir_func->blocks, bnot);
2751         } else {
2752             /* The default case */
2753             /* Remember where to fall through from: */
2754             def_bfall = bfall;
2755             bfall     = NULL;
2756             /* remember which case it was */
2757             def_case  = swcase;
2758             /* And the next case will be remembered */
2759             set_def_bfall_to = true;
2760         }
2761     }
2762
2763     /* Jump from the last bnot to bout */
2764     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2765         /*
2766         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2767         */
2768         return false;
2769     }
2770
2771     /* If there was a default case, put it down here */
2772     if (def_case) {
2773         ir_block *bcase;
2774
2775         /* No need to create an extra block */
2776         bcase = func->curblock;
2777
2778         /* Insert the fallthrough jump */
2779         if (def_bfall && !def_bfall->final) {
2780             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2781                 return false;
2782         }
2783
2784         /* Now generate the default code */
2785         cgen = def_case->code->expression.codegen;
2786         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2787             return false;
2788
2789         /* see if we need to fall through */
2790         if (def_bfall_to && !func->curblock->final)
2791         {
2792             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2793                 return false;
2794         }
2795     }
2796
2797     /* Jump from the last bnot to bout */
2798     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2799         return false;
2800     /* enter the outgoing block */
2801     func->curblock = bout;
2802
2803     /* restore the break block */
2804     func->breakblock = old_break;
2805
2806     /* Move 'bout' to the end, it's nicer */
2807     vec_remove(func->ir_func->blocks, bout_id, 1);
2808     vec_push(func->ir_func->blocks, bout);
2809
2810     return true;
2811 }
2812
2813 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2814 {
2815     size_t i;
2816     ir_value *dummy;
2817
2818     *out = NULL;
2819     if (lvalue) {
2820         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2821         return false;
2822     }
2823
2824     /* simply create a new block and jump to it */
2825     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2826     if (!self->irblock) {
2827         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2828         return false;
2829     }
2830     if (!func->curblock->final) {
2831         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2832             return false;
2833     }
2834
2835     /* enter the new block */
2836     func->curblock = self->irblock;
2837
2838     /* Generate all the leftover gotos */
2839     for (i = 0; i < vec_size(self->gotos); ++i) {
2840         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2841             return false;
2842     }
2843
2844     return true;
2845 }
2846
2847 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2848 {
2849     *out = NULL;
2850     if (lvalue) {
2851         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2852         return false;
2853     }
2854
2855     if (self->target->irblock) {
2856         if (self->irblock_from) {
2857             /* we already tried once, this is the callback */
2858             self->irblock_from->final = false;
2859             if (!ir_block_create_jump(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2860                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2861                 return false;
2862             }
2863         }
2864         else
2865         {
2866             if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->target->irblock)) {
2867                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2868                 return false;
2869             }
2870         }
2871     }
2872     else
2873     {
2874         /* the target has not yet been created...
2875          * close this block in a sneaky way:
2876          */
2877         func->curblock->final = true;
2878         self->irblock_from = func->curblock;
2879         ast_label_register_goto(self->target, self);
2880     }
2881
2882     return true;
2883 }
2884
2885 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2886 {
2887     ast_expression_codegen *cgen;
2888     ir_value              **params;
2889     ir_instr               *callinstr;
2890     size_t i;
2891
2892     ir_value *funval = NULL;
2893
2894     /* return values are never lvalues */
2895     if (lvalue) {
2896         compile_error(ast_ctx(self), "not an l-value (function call)");
2897         return false;
2898     }
2899
2900     if (self->expression.outr) {
2901         *out = self->expression.outr;
2902         return true;
2903     }
2904
2905     cgen = self->func->expression.codegen;
2906     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
2907         return false;
2908     if (!funval)
2909         return false;
2910
2911     params = NULL;
2912
2913     /* parameters */
2914     for (i = 0; i < vec_size(self->params); ++i)
2915     {
2916         ir_value *param;
2917         ast_expression *expr = self->params[i];
2918
2919         cgen = expr->expression.codegen;
2920         if (!(*cgen)(expr, func, false, &param))
2921             goto error;
2922         if (!param)
2923             goto error;
2924         vec_push(params, param);
2925     }
2926
2927     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
2928                                      ast_function_label(func, "call"),
2929                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
2930     if (!callinstr)
2931         goto error;
2932
2933     for (i = 0; i < vec_size(params); ++i) {
2934         ir_call_param(callinstr, params[i]);
2935     }
2936
2937     *out = ir_call_value(callinstr);
2938     self->expression.outr = *out;
2939
2940     codegen_output_type(self, *out);
2941
2942     vec_free(params);
2943     return true;
2944 error:
2945     vec_free(params);
2946     return false;
2947 }