2 Copyright (C) 1999-2006 Id Software, Inc. and contributors.
3 For a list of contributors, see the accompanying CONTRIBUTORS file.
5 This file is part of GtkRadiant.
7 GtkRadiant is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 GtkRadiant is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GtkRadiant; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26 #include "math/line.h"
29 inline double plane3_distance_to_point( const Plane3& plane, const DoubleVector3& point ){
30 return vector3_dot( point, plane.normal() ) - plane.dist();
33 inline double plane3_distance_to_point( const Plane3& plane, const Vector3& point ){
34 return vector3_dot( point, plane.normal() ) - plane.dist();
37 /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection.
38 inline DoubleVector3 line_intersect_plane( const DoubleLine& line, const Plane3& plane ){
39 return line.origin + vector3_scaled(
41 -plane3_distance_to_point( plane, line.origin )
42 / vector3_dot( line.direction, plane.normal() )
46 inline bool float_is_largest_absolute( double axis, double other ){
47 return fabs( axis ) > fabs( other );
50 /// \brief Returns the index of the component of \p v that has the largest absolute value.
51 inline int vector3_largest_absolute_component_index( const DoubleVector3& v ){
52 return ( float_is_largest_absolute( v[1], v[0] ) )
53 ? ( float_is_largest_absolute( v[1], v[2] ) )
56 : ( float_is_largest_absolute( v[0], v[2] ) )
61 /// \brief Returns the infinite line that is the intersection of \p plane and \p other.
62 inline DoubleLine plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){
64 line.direction = vector3_cross( plane.normal(), other.normal() );
65 switch ( vector3_largest_absolute_component_index( line.direction ) )
69 line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x();
70 line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x();
73 line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y();
75 line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y();
78 line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z();
79 line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z();
90 /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
91 void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){
92 double max = -infinity;
94 for ( int i = 0 ; i < 3; i++ )
96 double d = fabs( plane.normal()[i] );
103 globalErrorStream() << "invalid plane\n";
107 DoubleVector3 vup = g_vector3_identity;
120 vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) );
121 vector3_normalise( vup );
123 DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() );
125 DoubleVector3 vright = vector3_cross( vup, plane.normal() );
127 vector3_scale( vup, infinity );
128 vector3_scale( vright, infinity );
130 // project a really big axis aligned box onto the plane
132 DoubleLine r1, r2, r3, r4;
133 r1.origin = vector3_added( vector3_subtracted( org, vright ), vup );
134 r1.direction = vector3_normalised( vright );
135 winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) );
136 r2.origin = vector3_added( vector3_added( org, vright ), vup );
137 r2.direction = vector3_normalised( vector3_negated( vup ) );
138 winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) );
139 r3.origin = vector3_subtracted( vector3_added( org, vright ), vup );
140 r3.direction = vector3_normalised( vector3_negated( vright ) );
141 winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) );
142 r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup );
143 r4.direction = vector3_normalised( vup );
144 winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) );
148 inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){
149 if ( distance > epsilon ) {
152 if ( distance < -epsilon ) {
158 /// \brief Returns true if
159 /// !flipped && winding is completely BACK or ON
160 /// or flipped && winding is completely FRONT or ON
161 bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){
162 const int test = ( flipped ) ? ePlaneBack : ePlaneFront;
163 for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
165 if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) {
172 /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
173 bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){
174 return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false );
177 brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){
179 for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
181 ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )];
187 #define DEBUG_EPSILON ON_EPSILON
188 const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON;
190 #define WINDING_DEBUG 0
192 /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped.
193 /// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.
194 /// If \p winding is completely in back of the plane, \p clipped will be empty.
195 /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
196 void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){
197 PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON );
198 PlaneClassification nextClassification;
200 for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification )
202 nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON );
203 const FixedWindingVertex& vertex = winding[i];
205 // if first vertex of edge is ON
206 if ( classification == ePlaneOn ) {
207 // append first vertex to output winding
208 if ( nextClassification == ePlaneBack ) {
209 // this edge lies on the clip plane
210 clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
214 clipped.push_back( vertex );
219 // if first vertex of edge is FRONT
220 if ( classification == ePlaneFront ) {
221 // add first vertex to output winding
222 clipped.push_back( vertex );
224 // if second vertex of edge is ON
225 if ( nextClassification == ePlaneOn ) {
228 // else if second vertex of edge is same as first
229 else if ( nextClassification == classification ) {
232 // else if first vertex of edge is FRONT and there are only two edges
233 else if ( classification == ePlaneFront && winding.size() == 2 ) {
236 // else first vertex is FRONT and second is BACK or vice versa
239 // append intersection point of line and plane to output winding
240 DoubleVector3 mid( line_intersect_plane( vertex.edge, clipPlane ) );
242 if ( classification == ePlaneFront ) {
243 // this edge lies on the clip plane
244 clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
248 clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) );
254 std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){
255 for ( std::size_t i = 0; i < winding.numpoints; ++i )
257 ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" );
258 if ( winding[i].adjacent == face ) {
262 return c_brush_maxFaces;
265 std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){
266 ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" );
268 double dist_best = 0;
269 std::size_t index_best = c_brush_maxFaces;
271 Ray edge( ray_for_points( winding[index].vertex, winding[other].vertex ) );
273 for ( std::size_t i = 0; i < winding.numpoints; ++i )
275 if ( i == index || i == other ) {
279 double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex );
281 if ( dist_squared > dist_best ) {
282 dist_best = dist_squared;
289 std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){
290 return Winding_Opposite( winding, index, Winding_next( winding, index ) );
293 /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
294 void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){
295 double area2 = 0, x_sum = 0, y_sum = 0;
296 const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() );
297 const indexremap_t remap = indexremap_for_projectionaxis( axis );
298 for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j )
300 const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
302 x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai;
303 y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai;
306 centroid[remap.x] = static_cast<float>( x_sum / ( 3 * area2 ) );
307 centroid[remap.y] = static_cast<float>( y_sum / ( 3 * area2 ) );
309 Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) );
310 ray.origin[remap.x] = centroid[remap.x];
311 ray.origin[remap.y] = centroid[remap.y];
312 ray.direction[remap.z] = 1;
313 centroid[remap.z] = static_cast<float>( ray_distance_to_plane( ray, plane ) );