]> git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
d7684090887af261cb8869c0c23caa5a3374d8a3
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012
3  *     Wolfgang Bumiller
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9  * of the Software, and to permit persons to whom the Software is furnished to do
10  * so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include "gmqcc.h"
28 #include "ast.h"
29
30 #define ast_instantiate(T, ctx, destroyfn)                          \
31     T* self = (T*)mem_a(sizeof(T));                                 \
32     if (!self) {                                                    \
33         return NULL;                                                \
34     }                                                               \
35     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
36     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
37
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
40 {
41     fprintf(stderr, "ast node missing destroy()\n");
42     abort();
43 }
44
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
47 {
48     self->node.context = ctx;
49     self->node.destroy = &_ast_node_destroy;
50     self->node.keep    = false;
51     self->node.nodetype = nodetype;
52 }
53
54 /* General expression initialization */
55 static void ast_expression_init(ast_expression *self,
56                                 ast_expression_codegen *codegen)
57 {
58     self->expression.codegen = codegen;
59     self->expression.vtype   = TYPE_VOID;
60     self->expression.next    = NULL;
61     MEM_VECTOR_INIT(&self->expression, params);
62 }
63
64 static void ast_expression_delete(ast_expression *self)
65 {
66     size_t i;
67     if (self->expression.next)
68         ast_delete(self->expression.next);
69     for (i = 0; i < self->expression.params_count; ++i) {
70         ast_delete(self->expression.params[i]);
71     }
72     MEM_VECTOR_CLEAR(&self->expression, params);
73 }
74
75 static void ast_expression_delete_full(ast_expression *self)
76 {
77     ast_expression_delete(self);
78     mem_d(self);
79 }
80
81 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
82
83 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
84 static ast_value* ast_value_copy(const ast_value *self)
85 {
86     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
87     if (self->expression.next) {
88         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
89         if (!cp->expression.next) {
90             ast_value_delete(cp);
91             return NULL;
92         }
93     }
94     return cp;
95 }
96
97 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
98 {
99     size_t i;
100     const ast_expression_common *fromex;
101     ast_expression_common *selfex;
102
103     if (!ex)
104         return NULL;
105     else
106     {
107         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
108
109         fromex   = &ex->expression;
110         selfex = &self->expression;
111
112         /* This may never be codegen()d */
113         selfex->codegen = NULL;
114
115         selfex->vtype = fromex->vtype;
116         if (fromex->next)
117         {
118             selfex->next = ast_type_copy(ctx, fromex->next);
119             if (!selfex->next) {
120                 ast_expression_delete_full(self);
121                 return NULL;
122             }
123         }
124         else
125             selfex->next = NULL;
126
127         for (i = 0; i < fromex->params_count; ++i) {
128             ast_value *v = ast_value_copy(fromex->params[i]);
129             if (!v || !ast_expression_common_params_add(selfex, v)) {
130                 ast_expression_delete_full(self);
131                 return NULL;
132             }
133         }
134
135         return self;
136     }
137 }
138
139 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
140 {
141     ast_instantiate(ast_value, ctx, ast_value_delete);
142     ast_expression_init((ast_expression*)self,
143                         (ast_expression_codegen*)&ast_value_codegen);
144     self->expression.node.keep = true; /* keep */
145
146     self->name = name ? util_strdup(name) : NULL;
147     self->expression.vtype = t;
148     self->expression.next  = NULL;
149     self->isconst = false;
150     memset(&self->constval, 0, sizeof(self->constval));
151
152     self->ir_v    = NULL;
153
154     return self;
155 }
156
157 void ast_value_delete(ast_value* self)
158 {
159     if (self->name)
160         mem_d((void*)self->name);
161     if (self->isconst) {
162         switch (self->expression.vtype)
163         {
164         case TYPE_STRING:
165             mem_d((void*)self->constval.vstring);
166             break;
167         case TYPE_FUNCTION:
168             /* unlink us from the function node */
169             self->constval.vfunc->vtype = NULL;
170             break;
171         /* NOTE: delete function? currently collected in
172          * the parser structure
173          */
174         default:
175             break;
176         }
177     }
178     ast_expression_delete((ast_expression*)self);
179     mem_d(self);
180 }
181
182 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
183 {
184     return ast_expression_common_params_add(&self->expression, p);
185 }
186
187 bool ast_value_set_name(ast_value *self, const char *name)
188 {
189     if (self->name)
190         mem_d((void*)self->name);
191     self->name = util_strdup(name);
192     return !!self->name;
193 }
194
195 ast_binary* ast_binary_new(lex_ctx ctx, int op,
196                            ast_expression* left, ast_expression* right)
197 {
198     ast_instantiate(ast_binary, ctx, ast_binary_delete);
199     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
200
201     self->op = op;
202     self->left = left;
203     self->right = right;
204
205     return self;
206 }
207
208 void ast_binary_delete(ast_binary *self)
209 {
210     ast_unref(self->left);
211     ast_unref(self->right);
212     ast_expression_delete((ast_expression*)self);
213     mem_d(self);
214 }
215
216 ast_unary* ast_unary_new(lex_ctx ctx, int op,
217                          ast_expression *expr)
218 {
219     ast_instantiate(ast_unary, ctx, ast_unary_delete);
220     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
221
222     self->op = op;
223     self->operand = expr;
224
225     return self;
226 }
227
228 void ast_unary_delete(ast_unary *self)
229 {
230     ast_unref(self->operand);
231     ast_expression_delete((ast_expression*)self);
232     mem_d(self);
233 }
234
235 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
236 {
237     ast_instantiate(ast_return, ctx, ast_return_delete);
238     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
239
240     self->operand = expr;
241
242     return self;
243 }
244
245 void ast_return_delete(ast_return *self)
246 {
247     ast_unref(self->operand);
248     ast_expression_delete((ast_expression*)self);
249     mem_d(self);
250 }
251
252 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
253 {
254     const ast_expression *outtype;
255
256     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
257
258     if (field->expression.vtype != TYPE_FIELD) {
259         mem_d(self);
260         return NULL;
261     }
262
263     outtype = field->expression.next;
264     if (!outtype) {
265         mem_d(self);
266         /* Error: field has no type... */
267         return NULL;
268     }
269
270     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
271
272     self->expression.vtype = outtype->expression.vtype;
273     self->expression.next  = ast_type_copy(ctx, outtype->expression.next);
274
275     self->entity = entity;
276     self->field  = field;
277
278     return self;
279 }
280
281 void ast_entfield_delete(ast_entfield *self)
282 {
283     ast_unref(self->entity);
284     ast_unref(self->field);
285     ast_expression_delete((ast_expression*)self);
286     mem_d(self);
287 }
288
289 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
290 {
291     ast_instantiate(ast_member, ctx, ast_member_delete);
292     if (field >= 3) {
293         mem_d(self);
294         return NULL;
295     }
296
297     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
298
299     self->expression.vtype = TYPE_FLOAT;
300     self->expression.next  = NULL;
301
302     self->owner = owner;
303     self->field = field;
304
305     return self;
306 }
307
308 void ast_member_delete(ast_member *self)
309 {
310     ast_unref(self->owner);
311     ast_expression_delete((ast_expression*)self);
312     mem_d(self);
313 }
314
315 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
316 {
317     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
318     if (!ontrue && !onfalse) {
319         /* because it is invalid */
320         mem_d(self);
321         return NULL;
322     }
323     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
324
325     self->cond     = cond;
326     self->on_true  = ontrue;
327     self->on_false = onfalse;
328
329     return self;
330 }
331
332 void ast_ifthen_delete(ast_ifthen *self)
333 {
334     ast_unref(self->cond);
335     if (self->on_true)
336         ast_unref(self->on_true);
337     if (self->on_false)
338         ast_unref(self->on_false);
339     ast_expression_delete((ast_expression*)self);
340     mem_d(self);
341 }
342
343 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
344 {
345     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
346     /* This time NEITHER must be NULL */
347     if (!ontrue || !onfalse) {
348         mem_d(self);
349         return NULL;
350     }
351     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
352
353     self->cond     = cond;
354     self->on_true  = ontrue;
355     self->on_false = onfalse;
356     self->phi_out  = NULL;
357
358     return self;
359 }
360
361 void ast_ternary_delete(ast_ternary *self)
362 {
363     ast_unref(self->cond);
364     ast_unref(self->on_true);
365     ast_unref(self->on_false);
366     ast_expression_delete((ast_expression*)self);
367     mem_d(self);
368 }
369
370 ast_loop* ast_loop_new(lex_ctx ctx,
371                        ast_expression *initexpr,
372                        ast_expression *precond,
373                        ast_expression *postcond,
374                        ast_expression *increment,
375                        ast_expression *body)
376 {
377     ast_instantiate(ast_loop, ctx, ast_loop_delete);
378     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
379
380     self->initexpr  = initexpr;
381     self->precond   = precond;
382     self->postcond  = postcond;
383     self->increment = increment;
384     self->body      = body;
385
386     return self;
387 }
388
389 void ast_loop_delete(ast_loop *self)
390 {
391     if (self->initexpr)
392         ast_unref(self->initexpr);
393     if (self->precond)
394         ast_unref(self->precond);
395     if (self->postcond)
396         ast_unref(self->postcond);
397     if (self->increment)
398         ast_unref(self->increment);
399     if (self->body)
400         ast_unref(self->body);
401     ast_expression_delete((ast_expression*)self);
402     mem_d(self);
403 }
404
405 ast_call* ast_call_new(lex_ctx ctx,
406                        ast_expression *funcexpr)
407 {
408     ast_instantiate(ast_call, ctx, ast_call_delete);
409     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
410
411     MEM_VECTOR_INIT(self, params);
412
413     self->func = funcexpr;
414
415     return self;
416 }
417 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
418
419 void ast_call_delete(ast_call *self)
420 {
421     size_t i;
422     for (i = 0; i < self->params_count; ++i)
423         ast_unref(self->params[i]);
424     MEM_VECTOR_CLEAR(self, params);
425
426     if (self->func)
427         ast_unref(self->func);
428
429     ast_expression_delete((ast_expression*)self);
430     mem_d(self);
431 }
432
433 ast_store* ast_store_new(lex_ctx ctx, int op,
434                          ast_expression *dest, ast_expression *source)
435 {
436     ast_instantiate(ast_store, ctx, ast_store_delete);
437     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
438
439     self->op = op;
440     self->dest = dest;
441     self->source = source;
442
443     return self;
444 }
445
446 void ast_store_delete(ast_store *self)
447 {
448     ast_unref(self->dest);
449     ast_unref(self->source);
450     ast_expression_delete((ast_expression*)self);
451     mem_d(self);
452 }
453
454 ast_block* ast_block_new(lex_ctx ctx)
455 {
456     ast_instantiate(ast_block, ctx, ast_block_delete);
457     ast_expression_init((ast_expression*)self,
458                         (ast_expression_codegen*)&ast_block_codegen);
459
460     MEM_VECTOR_INIT(self, locals);
461     MEM_VECTOR_INIT(self, exprs);
462
463     return self;
464 }
465 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
466 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
467
468 void ast_block_delete(ast_block *self)
469 {
470     size_t i;
471     for (i = 0; i < self->exprs_count; ++i)
472         ast_unref(self->exprs[i]);
473     MEM_VECTOR_CLEAR(self, exprs);
474     for (i = 0; i < self->locals_count; ++i)
475         ast_delete(self->locals[i]);
476     MEM_VECTOR_CLEAR(self, locals);
477     ast_expression_delete((ast_expression*)self);
478     mem_d(self);
479 }
480
481 bool ast_block_set_type(ast_block *self, ast_expression *from)
482 {
483     if (self->expression.next)
484         ast_delete(self->expression.next);
485     self->expression.vtype = from->expression.vtype;
486     if (from->expression.next) {
487         self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
488         if (!self->expression.next)
489             return false;
490     }
491     return true;
492 }
493
494 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
495 {
496     ast_instantiate(ast_function, ctx, ast_function_delete);
497
498     if (!vtype ||
499         vtype->isconst ||
500         vtype->expression.vtype != TYPE_FUNCTION)
501     {
502         mem_d(self);
503         return NULL;
504     }
505
506     self->vtype = vtype;
507     self->name = name ? util_strdup(name) : NULL;
508     MEM_VECTOR_INIT(self, blocks);
509
510     self->labelcount = 0;
511     self->builtin = 0;
512
513     self->ir_func = NULL;
514     self->curblock = NULL;
515
516     self->breakblock    = NULL;
517     self->continueblock = NULL;
518
519     vtype->isconst = true;
520     vtype->constval.vfunc = self;
521
522     return self;
523 }
524
525 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
526
527 void ast_function_delete(ast_function *self)
528 {
529     size_t i;
530     if (self->name)
531         mem_d((void*)self->name);
532     if (self->vtype) {
533         /* ast_value_delete(self->vtype); */
534         self->vtype->isconst = false;
535         self->vtype->constval.vfunc = NULL;
536         /* We use unref - if it was stored in a global table it is supposed
537          * to be deleted from *there*
538          */
539         ast_unref(self->vtype);
540     }
541     for (i = 0; i < self->blocks_count; ++i)
542         ast_delete(self->blocks[i]);
543     MEM_VECTOR_CLEAR(self, blocks);
544     mem_d(self);
545 }
546
547 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
548 {
549     unsigned int base = 10;
550 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
551 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
552     if (size < 1)
553         return;
554     checknul();
555     if (!num)
556         addch('0');
557     else {
558         while (num)
559         {
560             int digit = num % base;
561             num /= base;
562             addch('0' + digit);
563         }
564     }
565
566     *buf = 0;
567 #undef addch
568 #undef checknul
569 }
570
571 const char* ast_function_label(ast_function *self, const char *prefix)
572 {
573     size_t id = (self->labelcount++);
574     size_t len = strlen(prefix);
575     strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
576     ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
577     return self->labelbuf;
578 }
579
580 /*********************************************************************/
581 /* AST codegen part
582  * by convention you must never pass NULL to the 'ir_value **out'
583  * parameter. If you really don't care about the output, pass a dummy.
584  * But I can't imagine a pituation where the output is truly unnecessary.
585  */
586
587 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
588 {
589     /* NOTE: This is the codegen for a variable used in an expression.
590      * It is not the codegen to generate the value. For this purpose,
591      * ast_local_codegen and ast_global_codegen are to be used before this
592      * is executed. ast_function_codegen should take care of its locals,
593      * and the ast-user should take care of ast_global_codegen to be used
594      * on all the globals.
595      */
596     if (!self->ir_v) {
597         printf("ast_value used before generated (%s)\n", self->name);
598         return false;
599     }
600     *out = self->ir_v;
601     return true;
602 }
603
604 bool ast_global_codegen(ast_value *self, ir_builder *ir)
605 {
606     ir_value *v = NULL;
607     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
608     {
609         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
610         if (!func)
611             return false;
612
613         self->constval.vfunc->ir_func = func;
614         self->ir_v = func->value;
615         /* The function is filled later on ast_function_codegen... */
616         return true;
617     }
618
619     if (self->expression.vtype == TYPE_FIELD) {
620         v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
621         if (!v)
622             return false;
623         if (self->isconst) {
624             printf("TODO: constant field pointers with value\n");
625             goto error;
626         }
627         self->ir_v = v;
628         return true;
629     }
630
631     v = ir_builder_create_global(ir, self->name, self->expression.vtype);
632     if (!v)
633         return false;
634
635     if (self->isconst) {
636         switch (self->expression.vtype)
637         {
638             case TYPE_FLOAT:
639                 if (!ir_value_set_float(v, self->constval.vfloat))
640                     goto error;
641                 break;
642             case TYPE_VECTOR:
643                 if (!ir_value_set_vector(v, self->constval.vvec))
644                     goto error;
645                 break;
646             case TYPE_STRING:
647                 if (!ir_value_set_string(v, self->constval.vstring))
648                     goto error;
649                 break;
650             case TYPE_FUNCTION:
651                 printf("global of type function not properly generated\n");
652                 goto error;
653                 /* Cannot generate an IR value for a function,
654                  * need a pointer pointing to a function rather.
655                  */
656             default:
657                 printf("TODO: global constant type %i\n", self->expression.vtype);
658                 break;
659         }
660     }
661
662     /* link us to the ir_value */
663     self->ir_v = v;
664     return true;
665
666 error: /* clean up */
667     ir_value_delete(v);
668     return false;
669 }
670
671 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
672 {
673     ir_value *v = NULL;
674     if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
675     {
676         /* Do we allow local functions? I think not...
677          * this is NOT a function pointer atm.
678          */
679         return false;
680     }
681
682     v = ir_function_create_local(func, self->name, self->expression.vtype, param);
683     if (!v)
684         return false;
685
686     /* A constant local... hmmm...
687      * I suppose the IR will have to deal with this
688      */
689     if (self->isconst) {
690         switch (self->expression.vtype)
691         {
692             case TYPE_FLOAT:
693                 if (!ir_value_set_float(v, self->constval.vfloat))
694                     goto error;
695                 break;
696             case TYPE_VECTOR:
697                 if (!ir_value_set_vector(v, self->constval.vvec))
698                     goto error;
699                 break;
700             case TYPE_STRING:
701                 if (!ir_value_set_string(v, self->constval.vstring))
702                     goto error;
703                 break;
704             default:
705                 printf("TODO: global constant type %i\n", self->expression.vtype);
706                 break;
707         }
708     }
709
710     /* link us to the ir_value */
711     self->ir_v = v;
712     return true;
713
714 error: /* clean up */
715     ir_value_delete(v);
716     return false;
717 }
718
719 bool ast_function_codegen(ast_function *self, ir_builder *ir)
720 {
721     ir_function *irf;
722     ir_value    *dummy;
723     ast_expression_common *ec;
724     size_t    i;
725
726     irf = self->ir_func;
727     if (!irf) {
728         printf("ast_function's related ast_value was not generated yet\n");
729         return false;
730     }
731
732     /* fill the parameter list */
733     ec = &self->vtype->expression;
734     for (i = 0; i < ec->params_count; ++i)
735     {
736         if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
737             return false;
738         if (!self->builtin) {
739             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
740                 return false;
741         }
742     }
743
744     if (self->builtin) {
745         irf->builtin = self->builtin;
746         return true;
747     }
748
749     self->curblock = ir_function_create_block(irf, "entry");
750     if (!self->curblock)
751         return false;
752
753     for (i = 0; i < self->blocks_count; ++i) {
754         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
755         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
756             return false;
757     }
758
759     /* TODO: check return types */
760     if (!self->curblock->is_return)
761     {
762         if (!self->vtype->expression.next ||
763             self->vtype->expression.next->expression.vtype == TYPE_VOID)
764         {
765             return ir_block_create_return(self->curblock, NULL);
766         }
767         else
768         {
769             /* error("missing return"); */
770             return false;
771         }
772     }
773     return true;
774 }
775
776 /* Note, you will not see ast_block_codegen generate ir_blocks.
777  * To the AST and the IR, blocks are 2 different things.
778  * In the AST it represents a block of code, usually enclosed in
779  * curly braces {...}.
780  * While in the IR it represents a block in terms of control-flow.
781  */
782 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
783 {
784     size_t i;
785
786     /* We don't use this
787      * Note: an ast-representation using the comma-operator
788      * of the form: (a, b, c) = x should not assign to c...
789      */
790     (void)lvalue;
791
792     /* output is NULL at first, we'll have each expression
793      * assign to out output, thus, a comma-operator represention
794      * using an ast_block will return the last generated value,
795      * so: (b, c) + a  executed both b and c, and returns c,
796      * which is then added to a.
797      */
798     *out = NULL;
799
800     /* generate locals */
801     for (i = 0; i < self->locals_count; ++i)
802     {
803         if (!ast_local_codegen(self->locals[i], func->ir_func, false))
804             return false;
805     }
806
807     for (i = 0; i < self->exprs_count; ++i)
808     {
809         ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
810         if (!(*gen)(self->exprs[i], func, false, out))
811             return false;
812     }
813
814     return true;
815 }
816
817 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
818 {
819     ast_expression_codegen *cgen;
820     ir_value *left, *right;
821
822     cgen = self->dest->expression.codegen;
823     /* lvalue! */
824     if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
825         return false;
826
827     cgen = self->source->expression.codegen;
828     /* rvalue! */
829     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
830         return false;
831
832     if (!ir_block_create_store_op(func->curblock, self->op, left, right))
833         return false;
834
835     /* Theoretically, an assinment returns its left side as an
836      * lvalue, if we don't need an lvalue though, we return
837      * the right side as an rvalue, otherwise we have to
838      * somehow know whether or not we need to dereference the pointer
839      * on the left side - that is: OP_LOAD if it was an address.
840      * Also: in original QC we cannot OP_LOADP *anyway*.
841      */
842     *out = (lvalue ? left : right);
843
844     return true;
845 }
846
847 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
848 {
849     ast_expression_codegen *cgen;
850     ir_value *left, *right;
851
852     /* In the context of a binary operation, we can disregard
853      * the lvalue flag.
854      */
855      (void)lvalue;
856
857     cgen = self->left->expression.codegen;
858     /* lvalue! */
859     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
860         return false;
861
862     cgen = self->right->expression.codegen;
863     /* rvalue! */
864     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
865         return false;
866
867     *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
868                                  self->op, left, right);
869     if (!*out)
870         return false;
871
872     return true;
873 }
874
875 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
876 {
877     ast_expression_codegen *cgen;
878     ir_value *operand;
879
880     /* In the context of a unary operation, we can disregard
881      * the lvalue flag.
882      */
883     (void)lvalue;
884
885     cgen = self->operand->expression.codegen;
886     /* lvalue! */
887     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
888         return false;
889
890     *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
891                                  self->op, operand);
892     if (!*out)
893         return false;
894
895     return true;
896 }
897
898 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
899 {
900     ast_expression_codegen *cgen;
901     ir_value *operand;
902
903     /* In the context of a return operation, we can disregard
904      * the lvalue flag.
905      */
906     (void)lvalue;
907
908     cgen = self->operand->expression.codegen;
909     /* lvalue! */
910     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
911         return false;
912
913     if (!ir_block_create_return(func->curblock, operand))
914         return false;
915
916     return true;
917 }
918
919 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
920 {
921     ast_expression_codegen *cgen;
922     ir_value *ent, *field;
923
924     /* This function needs to take the 'lvalue' flag into account!
925      * As lvalue we provide a field-pointer, as rvalue we provide the
926      * value in a temp.
927      */
928
929     cgen = self->entity->expression.codegen;
930     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
931         return false;
932
933     cgen = self->field->expression.codegen;
934     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
935         return false;
936
937     if (lvalue) {
938         /* address! */
939         *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
940                                             ent, field);
941     } else {
942         *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
943                                              ent, field, self->expression.vtype);
944     }
945     if (!*out)
946         return false;
947
948     /* Hm that should be it... */
949     return true;
950 }
951
952 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
953 {
954     ast_expression_codegen *cgen;
955     ir_value *vec;
956
957     cgen = self->owner->expression.codegen;
958     if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
959         return false;
960
961     if (vec->vtype != TYPE_VECTOR)
962         return false;
963
964     *out = ir_value_vector_member(vec, self->field);
965
966     return (*out != NULL);
967 }
968
969 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
970 {
971     ast_expression_codegen *cgen;
972
973     ir_value *condval;
974     ir_value *dummy;
975
976     ir_block *cond = func->curblock;
977     ir_block *ontrue;
978     ir_block *onfalse;
979     ir_block *merge;
980
981     /* We don't output any value, thus also don't care about r/lvalue */
982     (void)out;
983     (void)lvalue;
984
985     /* generate the condition */
986     func->curblock = cond;
987     cgen = self->cond->expression.codegen;
988     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
989         return false;
990
991     /* on-true path */
992
993     if (self->on_true) {
994         /* create on-true block */
995         ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
996         if (!ontrue)
997             return false;
998
999         /* enter the block */
1000         func->curblock = ontrue;
1001
1002         /* generate */
1003         cgen = self->on_true->expression.codegen;
1004         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1005             return false;
1006     } else
1007         ontrue = NULL;
1008
1009     /* on-false path */
1010     if (self->on_false) {
1011         /* create on-false block */
1012         onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1013         if (!onfalse)
1014             return false;
1015
1016         /* enter the block */
1017         func->curblock = onfalse;
1018
1019         /* generate */
1020         cgen = self->on_false->expression.codegen;
1021         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1022             return false;
1023     } else
1024         onfalse = NULL;
1025
1026     /* Merge block were they all merge in to */
1027     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1028     if (!merge)
1029         return false;
1030
1031     /* add jumps ot the merge block */
1032     if (ontrue && !ir_block_create_jump(ontrue, merge))
1033         return false;
1034     if (onfalse && !ir_block_create_jump(onfalse, merge))
1035         return false;
1036
1037     /* we create the if here, that way all blocks are ordered :)
1038      */
1039     if (!ir_block_create_if(cond, condval,
1040                             (ontrue  ? ontrue  : merge),
1041                             (onfalse ? onfalse : merge)))
1042     {
1043         return false;
1044     }
1045
1046     /* Now enter the merge block */
1047     func->curblock = merge;
1048
1049     return true;
1050 }
1051
1052 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1053 {
1054     ast_expression_codegen *cgen;
1055
1056     ir_value *condval;
1057     ir_value *trueval, *falseval;
1058     ir_instr *phi;
1059
1060     ir_block *cond = func->curblock;
1061     ir_block *ontrue;
1062     ir_block *onfalse;
1063     ir_block *merge;
1064
1065     /* In theory it shouldn't be possible to pass through a node twice, but
1066      * in case we add any kind of optimization pass for the AST itself, it
1067      * may still happen, thus we remember a created ir_value and simply return one
1068      * if it already exists.
1069      */
1070     if (self->phi_out) {
1071         *out = self->phi_out;
1072         return true;
1073     }
1074
1075     /* Ternary can never create an lvalue... */
1076     if (lvalue)
1077         return false;
1078
1079     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1080
1081     /* generate the condition */
1082     func->curblock = cond;
1083     cgen = self->cond->expression.codegen;
1084     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1085         return false;
1086
1087     /* create on-true block */
1088     ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1089     if (!ontrue)
1090         return false;
1091     else
1092     {
1093         /* enter the block */
1094         func->curblock = ontrue;
1095
1096         /* generate */
1097         cgen = self->on_true->expression.codegen;
1098         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1099             return false;
1100     }
1101
1102     /* create on-false block */
1103     onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1104     if (!onfalse)
1105         return false;
1106     else
1107     {
1108         /* enter the block */
1109         func->curblock = onfalse;
1110
1111         /* generate */
1112         cgen = self->on_false->expression.codegen;
1113         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1114             return false;
1115     }
1116
1117     /* create merge block */
1118     merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1119     if (!merge)
1120         return false;
1121     /* jump to merge block */
1122     if (!ir_block_create_jump(ontrue, merge))
1123         return false;
1124     if (!ir_block_create_jump(onfalse, merge))
1125         return false;
1126
1127     /* create if instruction */
1128     if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1129         return false;
1130
1131     /* Now enter the merge block */
1132     func->curblock = merge;
1133
1134     /* Here, now, we need a PHI node
1135      * but first some sanity checking...
1136      */
1137     if (trueval->vtype != falseval->vtype) {
1138         /* error("ternary with different types on the two sides"); */
1139         return false;
1140     }
1141
1142     /* create PHI */
1143     phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1144     if (!phi ||
1145         !ir_phi_add(phi, ontrue,  trueval) ||
1146         !ir_phi_add(phi, onfalse, falseval))
1147     {
1148         return false;
1149     }
1150
1151     self->phi_out = ir_phi_value(phi);
1152     *out = self->phi_out;
1153
1154     return true;
1155 }
1156
1157 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1158 {
1159     ast_expression_codegen *cgen;
1160
1161     ir_value *dummy      = NULL;
1162     ir_value *precond    = NULL;
1163     ir_value *postcond   = NULL;
1164
1165     /* Since we insert some jumps "late" so we have blocks
1166      * ordered "nicely", we need to keep track of the actual end-blocks
1167      * of expressions to add the jumps to.
1168      */
1169     ir_block *bbody      = NULL, *end_bbody      = NULL;
1170     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
1171     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
1172     ir_block *bincrement = NULL, *end_bincrement = NULL;
1173     ir_block *bout       = NULL, *bin            = NULL;
1174
1175     /* let's at least move the outgoing block to the end */
1176     size_t    bout_id;
1177
1178     /* 'break' and 'continue' need to be able to find the right blocks */
1179     ir_block *bcontinue     = NULL;
1180     ir_block *bbreak        = NULL;
1181
1182     ir_block *old_bcontinue = NULL;
1183     ir_block *old_bbreak    = NULL;
1184
1185     ir_block *tmpblock      = NULL;
1186
1187     (void)lvalue;
1188     (void)out;
1189
1190     /* NOTE:
1191      * Should we ever need some kind of block ordering, better make this function
1192      * move blocks around than write a block ordering algorithm later... after all
1193      * the ast and ir should work together, not against each other.
1194      */
1195
1196     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1197      * anyway if for example it contains a ternary.
1198      */
1199     if (self->initexpr)
1200     {
1201         cgen = self->initexpr->expression.codegen;
1202         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1203             return false;
1204     }
1205
1206     /* Store the block from which we enter this chaos */
1207     bin = func->curblock;
1208
1209     /* The pre-loop condition needs its own block since we
1210      * need to be able to jump to the start of that expression.
1211      */
1212     if (self->precond)
1213     {
1214         bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1215         if (!bprecond)
1216             return false;
1217
1218         /* the pre-loop-condition the least important place to 'continue' at */
1219         bcontinue = bprecond;
1220
1221         /* enter */
1222         func->curblock = bprecond;
1223
1224         /* generate */
1225         cgen = self->precond->expression.codegen;
1226         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1227             return false;
1228
1229         end_bprecond = func->curblock;
1230     } else {
1231         bprecond = end_bprecond = NULL;
1232     }
1233
1234     /* Now the next blocks won't be ordered nicely, but we need to
1235      * generate them this early for 'break' and 'continue'.
1236      */
1237     if (self->increment) {
1238         bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1239         if (!bincrement)
1240             return false;
1241         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1242     } else {
1243         bincrement = end_bincrement = NULL;
1244     }
1245
1246     if (self->postcond) {
1247         bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1248         if (!bpostcond)
1249             return false;
1250         bcontinue = bpostcond; /* postcond comes before the increment */
1251     } else {
1252         bpostcond = end_bpostcond = NULL;
1253     }
1254
1255     bout_id = func->ir_func->blocks_count;
1256     bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1257     if (!bout)
1258         return false;
1259     bbreak = bout;
1260
1261     /* The loop body... */
1262     if (self->body)
1263     {
1264         bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1265         if (!bbody)
1266             return false;
1267
1268         /* enter */
1269         func->curblock = bbody;
1270
1271         old_bbreak          = func->breakblock;
1272         old_bcontinue       = func->continueblock;
1273         func->breakblock    = bbreak;
1274         func->continueblock = bcontinue;
1275
1276         /* generate */
1277         cgen = self->body->expression.codegen;
1278         if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1279             return false;
1280
1281         end_bbody = func->curblock;
1282         func->breakblock    = old_bbreak;
1283         func->continueblock = old_bcontinue;
1284     }
1285
1286     /* post-loop-condition */
1287     if (self->postcond)
1288     {
1289         /* enter */
1290         func->curblock = bpostcond;
1291
1292         /* generate */
1293         cgen = self->postcond->expression.codegen;
1294         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1295             return false;
1296
1297         end_bpostcond = func->curblock;
1298     }
1299
1300     /* The incrementor */
1301     if (self->increment)
1302     {
1303         /* enter */
1304         func->curblock = bincrement;
1305
1306         /* generate */
1307         cgen = self->increment->expression.codegen;
1308         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1309             return false;
1310
1311         end_bincrement = func->curblock;
1312     }
1313
1314     /* In any case now, we continue from the outgoing block */
1315     func->curblock = bout;
1316
1317     /* Now all blocks are in place */
1318     /* From 'bin' we jump to whatever comes first */
1319     if      (bprecond)   tmpblock = bprecond;
1320     else if (bbody)      tmpblock = bbody;
1321     else if (bpostcond)  tmpblock = bpostcond;
1322     else                 tmpblock = bout;
1323     if (!ir_block_create_jump(bin, tmpblock))
1324         return false;
1325
1326     /* From precond */
1327     if (bprecond)
1328     {
1329         ir_block *ontrue, *onfalse;
1330         if      (bbody)      ontrue = bbody;
1331         else if (bincrement) ontrue = bincrement;
1332         else if (bpostcond)  ontrue = bpostcond;
1333         else                 ontrue = bprecond;
1334         onfalse = bout;
1335         if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1336             return false;
1337     }
1338
1339     /* from body */
1340     if (bbody)
1341     {
1342         if      (bincrement) tmpblock = bincrement;
1343         else if (bpostcond)  tmpblock = bpostcond;
1344         else if (bprecond)   tmpblock = bprecond;
1345         else                 tmpblock = bout;
1346         if (!ir_block_create_jump(end_bbody, tmpblock))
1347             return false;
1348     }
1349
1350     /* from increment */
1351     if (bincrement)
1352     {
1353         if      (bpostcond)  tmpblock = bpostcond;
1354         else if (bprecond)   tmpblock = bprecond;
1355         else if (bbody)      tmpblock = bbody;
1356         else                 tmpblock = bout;
1357         if (!ir_block_create_jump(end_bincrement, tmpblock))
1358             return false;
1359     }
1360
1361     /* from postcond */
1362     if (bpostcond)
1363     {
1364         ir_block *ontrue, *onfalse;
1365         if      (bprecond)   ontrue = bprecond;
1366         else if (bbody)      ontrue = bbody;
1367         else if (bincrement) ontrue = bincrement;
1368         else                 ontrue = bpostcond;
1369         onfalse = bout;
1370         if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1371             return false;
1372     }
1373
1374     /* Move 'bout' to the end */
1375     if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1376         !ir_function_blocks_add(func->ir_func, bout))
1377     {
1378         ir_block_delete(bout);
1379         return false;
1380     }
1381
1382     return true;
1383 }
1384
1385 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1386 {
1387     ast_expression_codegen *cgen;
1388     ir_value_vector         params;
1389     ir_instr               *callinstr;
1390     size_t i;
1391
1392     ir_value *funval = NULL;
1393
1394     /* return values are never rvalues */
1395     (void)lvalue;
1396
1397     cgen = self->func->expression.codegen;
1398     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1399         return false;
1400     if (!funval)
1401         return false;
1402
1403     MEM_VECTOR_INIT(&params, v);
1404
1405     /* parameters */
1406     for (i = 0; i < self->params_count; ++i)
1407     {
1408         ir_value *param;
1409         ast_expression *expr = self->params[i];
1410
1411         cgen = expr->expression.codegen;
1412         if (!(*cgen)(expr, func, false, &param))
1413             goto error;
1414         if (!param)
1415             goto error;
1416         if (!ir_value_vector_v_add(&params, param))
1417             goto error;
1418     }
1419
1420     callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1421     if (!callinstr)
1422         goto error;
1423
1424     for (i = 0; i < params.v_count; ++i) {
1425         if (!ir_call_param(callinstr, params.v[i]))
1426             goto error;
1427     }
1428
1429     *out = ir_call_value(callinstr);
1430
1431     MEM_VECTOR_CLEAR(&params, v);
1432     return true;
1433 error:
1434     MEM_VECTOR_CLEAR(&params, v);
1435     return false;
1436 }