5 * Permission is hereby granted, free of charge, to any person obtaining a copy of
6 * this software and associated documentation files (the "Software"), to deal in
7 * the Software without restriction, including without limitation the rights to
8 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
9 * of the Software, and to permit persons to whom the Software is furnished to do
10 * so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in all
13 * copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 #define ast_instantiate(T, ctx, destroyfn) \
31 T* self = (T*)mem_a(sizeof(T)); \
35 ast_node_init((ast_node*)self, ctx, TYPE_##T); \
36 ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
38 /* It must not be possible to get here. */
39 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
41 fprintf(stderr, "ast node missing destroy()\n");
45 /* Initialize main ast node aprts */
46 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
48 self->node.context = ctx;
49 self->node.destroy = &_ast_node_destroy;
50 self->node.keep = false;
51 self->node.nodetype = nodetype;
54 /* General expression initialization */
55 static void ast_expression_init(ast_expression *self,
56 ast_expression_codegen *codegen)
58 self->expression.codegen = codegen;
59 self->expression.vtype = TYPE_VOID;
60 self->expression.next = NULL;
61 MEM_VECTOR_INIT(&self->expression, params);
64 static void ast_expression_delete(ast_expression *self)
67 if (self->expression.next)
68 ast_delete(self->expression.next);
69 for (i = 0; i < self->expression.params_count; ++i) {
70 ast_delete(self->expression.params[i]);
72 MEM_VECTOR_CLEAR(&self->expression, params);
75 static void ast_expression_delete_full(ast_expression *self)
77 ast_expression_delete(self);
81 MEM_VEC_FUNCTIONS(ast_expression_common, ast_value*, params)
83 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex);
84 static ast_value* ast_value_copy(const ast_value *self)
86 ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
87 if (self->expression.next) {
88 cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
89 if (!cp->expression.next) {
97 static ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
100 const ast_expression_common *fromex;
101 ast_expression_common *selfex;
107 ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
109 fromex = &ex->expression;
110 selfex = &self->expression;
112 /* This may never be codegen()d */
113 selfex->codegen = NULL;
115 selfex->vtype = fromex->vtype;
118 selfex->next = ast_type_copy(ctx, fromex->next);
120 ast_expression_delete_full(self);
127 for (i = 0; i < fromex->params_count; ++i) {
128 ast_value *v = ast_value_copy(fromex->params[i]);
129 if (!v || !ast_expression_common_params_add(selfex, v)) {
130 ast_expression_delete_full(self);
139 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
141 ast_instantiate(ast_value, ctx, ast_value_delete);
142 ast_expression_init((ast_expression*)self,
143 (ast_expression_codegen*)&ast_value_codegen);
144 self->expression.node.keep = true; /* keep */
146 self->name = name ? util_strdup(name) : NULL;
147 self->expression.vtype = t;
148 self->expression.next = NULL;
149 self->isconst = false;
150 memset(&self->constval, 0, sizeof(self->constval));
157 void ast_value_delete(ast_value* self)
160 mem_d((void*)self->name);
162 switch (self->expression.vtype)
165 mem_d((void*)self->constval.vstring);
168 /* unlink us from the function node */
169 self->constval.vfunc->vtype = NULL;
171 /* NOTE: delete function? currently collected in
172 * the parser structure
178 ast_expression_delete((ast_expression*)self);
182 bool GMQCC_WARN ast_value_params_add(ast_value *self, ast_value *p)
184 return ast_expression_common_params_add(&self->expression, p);
187 bool ast_value_set_name(ast_value *self, const char *name)
190 mem_d((void*)self->name);
191 self->name = util_strdup(name);
195 ast_binary* ast_binary_new(lex_ctx ctx, int op,
196 ast_expression* left, ast_expression* right)
198 ast_instantiate(ast_binary, ctx, ast_binary_delete);
199 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
208 void ast_binary_delete(ast_binary *self)
210 ast_unref(self->left);
211 ast_unref(self->right);
212 ast_expression_delete((ast_expression*)self);
216 ast_unary* ast_unary_new(lex_ctx ctx, int op,
217 ast_expression *expr)
219 ast_instantiate(ast_unary, ctx, ast_unary_delete);
220 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
223 self->operand = expr;
228 void ast_unary_delete(ast_unary *self)
230 ast_unref(self->operand);
231 ast_expression_delete((ast_expression*)self);
235 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
237 ast_instantiate(ast_return, ctx, ast_return_delete);
238 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
240 self->operand = expr;
245 void ast_return_delete(ast_return *self)
247 ast_unref(self->operand);
248 ast_expression_delete((ast_expression*)self);
252 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
254 const ast_expression *outtype;
256 ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
258 if (field->expression.vtype != TYPE_FIELD) {
263 outtype = field->expression.next;
266 /* Error: field has no type... */
270 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
272 self->expression.vtype = outtype->expression.vtype;
273 self->expression.next = ast_type_copy(ctx, outtype->expression.next);
275 self->entity = entity;
281 void ast_entfield_delete(ast_entfield *self)
283 ast_unref(self->entity);
284 ast_unref(self->field);
285 ast_expression_delete((ast_expression*)self);
289 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field)
291 ast_instantiate(ast_member, ctx, ast_member_delete);
297 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
299 self->expression.vtype = TYPE_FLOAT;
300 self->expression.next = NULL;
308 void ast_member_delete(ast_member *self)
310 ast_unref(self->owner);
311 ast_expression_delete((ast_expression*)self);
315 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
317 ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
318 if (!ontrue && !onfalse) {
319 /* because it is invalid */
323 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
326 self->on_true = ontrue;
327 self->on_false = onfalse;
332 void ast_ifthen_delete(ast_ifthen *self)
334 ast_unref(self->cond);
336 ast_unref(self->on_true);
338 ast_unref(self->on_false);
339 ast_expression_delete((ast_expression*)self);
343 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
345 ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
346 /* This time NEITHER must be NULL */
347 if (!ontrue || !onfalse) {
351 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
354 self->on_true = ontrue;
355 self->on_false = onfalse;
356 self->phi_out = NULL;
361 void ast_ternary_delete(ast_ternary *self)
363 ast_unref(self->cond);
364 ast_unref(self->on_true);
365 ast_unref(self->on_false);
366 ast_expression_delete((ast_expression*)self);
370 ast_loop* ast_loop_new(lex_ctx ctx,
371 ast_expression *initexpr,
372 ast_expression *precond,
373 ast_expression *postcond,
374 ast_expression *increment,
375 ast_expression *body)
377 ast_instantiate(ast_loop, ctx, ast_loop_delete);
378 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
380 self->initexpr = initexpr;
381 self->precond = precond;
382 self->postcond = postcond;
383 self->increment = increment;
389 void ast_loop_delete(ast_loop *self)
392 ast_unref(self->initexpr);
394 ast_unref(self->precond);
396 ast_unref(self->postcond);
398 ast_unref(self->increment);
400 ast_unref(self->body);
401 ast_expression_delete((ast_expression*)self);
405 ast_call* ast_call_new(lex_ctx ctx,
406 ast_expression *funcexpr)
408 ast_instantiate(ast_call, ctx, ast_call_delete);
409 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
411 MEM_VECTOR_INIT(self, params);
413 self->func = funcexpr;
417 MEM_VEC_FUNCTIONS(ast_call, ast_expression*, params)
419 void ast_call_delete(ast_call *self)
422 for (i = 0; i < self->params_count; ++i)
423 ast_unref(self->params[i]);
424 MEM_VECTOR_CLEAR(self, params);
427 ast_unref(self->func);
429 ast_expression_delete((ast_expression*)self);
433 ast_store* ast_store_new(lex_ctx ctx, int op,
434 ast_expression *dest, ast_expression *source)
436 ast_instantiate(ast_store, ctx, ast_store_delete);
437 ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
441 self->source = source;
446 void ast_store_delete(ast_store *self)
448 ast_unref(self->dest);
449 ast_unref(self->source);
450 ast_expression_delete((ast_expression*)self);
454 ast_block* ast_block_new(lex_ctx ctx)
456 ast_instantiate(ast_block, ctx, ast_block_delete);
457 ast_expression_init((ast_expression*)self,
458 (ast_expression_codegen*)&ast_block_codegen);
460 MEM_VECTOR_INIT(self, locals);
461 MEM_VECTOR_INIT(self, exprs);
465 MEM_VEC_FUNCTIONS(ast_block, ast_value*, locals)
466 MEM_VEC_FUNCTIONS(ast_block, ast_expression*, exprs)
468 void ast_block_delete(ast_block *self)
471 for (i = 0; i < self->exprs_count; ++i)
472 ast_unref(self->exprs[i]);
473 MEM_VECTOR_CLEAR(self, exprs);
474 for (i = 0; i < self->locals_count; ++i)
475 ast_delete(self->locals[i]);
476 MEM_VECTOR_CLEAR(self, locals);
477 ast_expression_delete((ast_expression*)self);
481 bool ast_block_set_type(ast_block *self, ast_expression *from)
483 if (self->expression.next)
484 ast_delete(self->expression.next);
485 self->expression.vtype = from->expression.vtype;
486 if (from->expression.next) {
487 self->expression.next = ast_type_copy(self->expression.node.context, from->expression.next);
488 if (!self->expression.next)
494 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
496 ast_instantiate(ast_function, ctx, ast_function_delete);
500 vtype->expression.vtype != TYPE_FUNCTION)
507 self->name = name ? util_strdup(name) : NULL;
508 MEM_VECTOR_INIT(self, blocks);
510 self->labelcount = 0;
513 self->ir_func = NULL;
514 self->curblock = NULL;
516 self->breakblock = NULL;
517 self->continueblock = NULL;
519 vtype->isconst = true;
520 vtype->constval.vfunc = self;
525 MEM_VEC_FUNCTIONS(ast_function, ast_block*, blocks)
527 void ast_function_delete(ast_function *self)
531 mem_d((void*)self->name);
533 /* ast_value_delete(self->vtype); */
534 self->vtype->isconst = false;
535 self->vtype->constval.vfunc = NULL;
536 /* We use unref - if it was stored in a global table it is supposed
537 * to be deleted from *there*
539 ast_unref(self->vtype);
541 for (i = 0; i < self->blocks_count; ++i)
542 ast_delete(self->blocks[i]);
543 MEM_VECTOR_CLEAR(self, blocks);
547 static void ast_util_hexitoa(char *buf, size_t size, unsigned int num)
549 unsigned int base = 10;
550 #define checknul() do { if (size == 1) { *buf = 0; return; } } while (0)
551 #define addch(x) do { *buf++ = (x); --size; checknul(); } while (0)
560 int digit = num % base;
571 const char* ast_function_label(ast_function *self, const char *prefix)
573 size_t id = (self->labelcount++);
574 size_t len = strlen(prefix);
575 strncpy(self->labelbuf, prefix, sizeof(self->labelbuf));
576 ast_util_hexitoa(self->labelbuf + len, sizeof(self->labelbuf)-len, id);
577 return self->labelbuf;
580 /*********************************************************************/
582 * by convention you must never pass NULL to the 'ir_value **out'
583 * parameter. If you really don't care about the output, pass a dummy.
584 * But I can't imagine a pituation where the output is truly unnecessary.
587 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
589 /* NOTE: This is the codegen for a variable used in an expression.
590 * It is not the codegen to generate the value. For this purpose,
591 * ast_local_codegen and ast_global_codegen are to be used before this
592 * is executed. ast_function_codegen should take care of its locals,
593 * and the ast-user should take care of ast_global_codegen to be used
594 * on all the globals.
597 printf("ast_value used before generated (%s)\n", self->name);
604 bool ast_global_codegen(ast_value *self, ir_builder *ir)
607 if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
609 ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
613 self->constval.vfunc->ir_func = func;
614 self->ir_v = func->value;
615 /* The function is filled later on ast_function_codegen... */
619 if (self->expression.vtype == TYPE_FIELD) {
620 v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
624 printf("TODO: constant field pointers with value\n");
631 v = ir_builder_create_global(ir, self->name, self->expression.vtype);
636 switch (self->expression.vtype)
639 if (!ir_value_set_float(v, self->constval.vfloat))
643 if (!ir_value_set_vector(v, self->constval.vvec))
647 if (!ir_value_set_string(v, self->constval.vstring))
651 printf("global of type function not properly generated\n");
653 /* Cannot generate an IR value for a function,
654 * need a pointer pointing to a function rather.
657 printf("TODO: global constant type %i\n", self->expression.vtype);
662 /* link us to the ir_value */
666 error: /* clean up */
671 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
674 if (self->isconst && self->expression.vtype == TYPE_FUNCTION)
676 /* Do we allow local functions? I think not...
677 * this is NOT a function pointer atm.
682 v = ir_function_create_local(func, self->name, self->expression.vtype, param);
686 /* A constant local... hmmm...
687 * I suppose the IR will have to deal with this
690 switch (self->expression.vtype)
693 if (!ir_value_set_float(v, self->constval.vfloat))
697 if (!ir_value_set_vector(v, self->constval.vvec))
701 if (!ir_value_set_string(v, self->constval.vstring))
705 printf("TODO: global constant type %i\n", self->expression.vtype);
710 /* link us to the ir_value */
714 error: /* clean up */
719 bool ast_function_codegen(ast_function *self, ir_builder *ir)
723 ast_expression_common *ec;
728 printf("ast_function's related ast_value was not generated yet\n");
732 /* fill the parameter list */
733 ec = &self->vtype->expression;
734 for (i = 0; i < ec->params_count; ++i)
736 if (!ir_function_params_add(irf, ec->params[i]->expression.vtype))
738 if (!self->builtin) {
739 if (!ast_local_codegen(ec->params[i], self->ir_func, true))
745 irf->builtin = self->builtin;
749 self->curblock = ir_function_create_block(irf, "entry");
753 for (i = 0; i < self->blocks_count; ++i) {
754 ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
755 if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
759 /* TODO: check return types */
760 if (!self->curblock->is_return)
762 if (!self->vtype->expression.next ||
763 self->vtype->expression.next->expression.vtype == TYPE_VOID)
765 return ir_block_create_return(self->curblock, NULL);
769 /* error("missing return"); */
776 /* Note, you will not see ast_block_codegen generate ir_blocks.
777 * To the AST and the IR, blocks are 2 different things.
778 * In the AST it represents a block of code, usually enclosed in
779 * curly braces {...}.
780 * While in the IR it represents a block in terms of control-flow.
782 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
787 * Note: an ast-representation using the comma-operator
788 * of the form: (a, b, c) = x should not assign to c...
792 /* output is NULL at first, we'll have each expression
793 * assign to out output, thus, a comma-operator represention
794 * using an ast_block will return the last generated value,
795 * so: (b, c) + a executed both b and c, and returns c,
796 * which is then added to a.
800 /* generate locals */
801 for (i = 0; i < self->locals_count; ++i)
803 if (!ast_local_codegen(self->locals[i], func->ir_func, false))
807 for (i = 0; i < self->exprs_count; ++i)
809 ast_expression_codegen *gen = self->exprs[i]->expression.codegen;
810 if (!(*gen)(self->exprs[i], func, false, out))
817 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
819 ast_expression_codegen *cgen;
820 ir_value *left, *right;
822 cgen = self->dest->expression.codegen;
824 if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
827 cgen = self->source->expression.codegen;
829 if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
832 if (!ir_block_create_store_op(func->curblock, self->op, left, right))
835 /* Theoretically, an assinment returns its left side as an
836 * lvalue, if we don't need an lvalue though, we return
837 * the right side as an rvalue, otherwise we have to
838 * somehow know whether or not we need to dereference the pointer
839 * on the left side - that is: OP_LOAD if it was an address.
840 * Also: in original QC we cannot OP_LOADP *anyway*.
842 *out = (lvalue ? left : right);
847 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
849 ast_expression_codegen *cgen;
850 ir_value *left, *right;
852 /* In the context of a binary operation, we can disregard
857 cgen = self->left->expression.codegen;
859 if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
862 cgen = self->right->expression.codegen;
864 if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
867 *out = ir_block_create_binop(func->curblock, ast_function_label(func, "bin"),
868 self->op, left, right);
875 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
877 ast_expression_codegen *cgen;
880 /* In the context of a unary operation, we can disregard
885 cgen = self->operand->expression.codegen;
887 if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
890 *out = ir_block_create_unary(func->curblock, ast_function_label(func, "unary"),
898 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
900 ast_expression_codegen *cgen;
903 /* In the context of a return operation, we can disregard
908 cgen = self->operand->expression.codegen;
910 if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
913 if (!ir_block_create_return(func->curblock, operand))
919 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
921 ast_expression_codegen *cgen;
922 ir_value *ent, *field;
924 /* This function needs to take the 'lvalue' flag into account!
925 * As lvalue we provide a field-pointer, as rvalue we provide the
929 cgen = self->entity->expression.codegen;
930 if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
933 cgen = self->field->expression.codegen;
934 if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
939 *out = ir_block_create_fieldaddress(func->curblock, ast_function_label(func, "efa"),
942 *out = ir_block_create_load_from_ent(func->curblock, ast_function_label(func, "efv"),
943 ent, field, self->expression.vtype);
948 /* Hm that should be it... */
952 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
954 ast_expression_codegen *cgen;
957 cgen = self->owner->expression.codegen;
958 if (!(*cgen)((ast_expression*)(self->owner), func, true, &vec))
961 if (vec->vtype != TYPE_VECTOR)
964 *out = ir_value_vector_member(vec, self->field);
966 return (*out != NULL);
969 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
971 ast_expression_codegen *cgen;
976 ir_block *cond = func->curblock;
981 /* We don't output any value, thus also don't care about r/lvalue */
985 /* generate the condition */
986 func->curblock = cond;
987 cgen = self->cond->expression.codegen;
988 if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
994 /* create on-true block */
995 ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "ontrue"));
999 /* enter the block */
1000 func->curblock = ontrue;
1003 cgen = self->on_true->expression.codegen;
1004 if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
1010 if (self->on_false) {
1011 /* create on-false block */
1012 onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "onfalse"));
1016 /* enter the block */
1017 func->curblock = onfalse;
1020 cgen = self->on_false->expression.codegen;
1021 if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
1026 /* Merge block were they all merge in to */
1027 merge = ir_function_create_block(func->ir_func, ast_function_label(func, "endif"));
1031 /* add jumps ot the merge block */
1032 if (ontrue && !ir_block_create_jump(ontrue, merge))
1034 if (onfalse && !ir_block_create_jump(onfalse, merge))
1037 /* we create the if here, that way all blocks are ordered :)
1039 if (!ir_block_create_if(cond, condval,
1040 (ontrue ? ontrue : merge),
1041 (onfalse ? onfalse : merge)))
1046 /* Now enter the merge block */
1047 func->curblock = merge;
1052 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
1054 ast_expression_codegen *cgen;
1057 ir_value *trueval, *falseval;
1060 ir_block *cond = func->curblock;
1065 /* In theory it shouldn't be possible to pass through a node twice, but
1066 * in case we add any kind of optimization pass for the AST itself, it
1067 * may still happen, thus we remember a created ir_value and simply return one
1068 * if it already exists.
1070 if (self->phi_out) {
1071 *out = self->phi_out;
1075 /* Ternary can never create an lvalue... */
1079 /* In the following, contraty to ast_ifthen, we assume both paths exist. */
1081 /* generate the condition */
1082 func->curblock = cond;
1083 cgen = self->cond->expression.codegen;
1084 if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
1087 /* create on-true block */
1088 ontrue = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_T"));
1093 /* enter the block */
1094 func->curblock = ontrue;
1097 cgen = self->on_true->expression.codegen;
1098 if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
1102 /* create on-false block */
1103 onfalse = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_F"));
1108 /* enter the block */
1109 func->curblock = onfalse;
1112 cgen = self->on_false->expression.codegen;
1113 if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
1117 /* create merge block */
1118 merge = ir_function_create_block(func->ir_func, ast_function_label(func, "tern_out"));
1121 /* jump to merge block */
1122 if (!ir_block_create_jump(ontrue, merge))
1124 if (!ir_block_create_jump(onfalse, merge))
1127 /* create if instruction */
1128 if (!ir_block_create_if(cond, condval, ontrue, onfalse))
1131 /* Now enter the merge block */
1132 func->curblock = merge;
1134 /* Here, now, we need a PHI node
1135 * but first some sanity checking...
1137 if (trueval->vtype != falseval->vtype) {
1138 /* error("ternary with different types on the two sides"); */
1143 phi = ir_block_create_phi(merge, ast_function_label(func, "phi"), trueval->vtype);
1145 !ir_phi_add(phi, ontrue, trueval) ||
1146 !ir_phi_add(phi, onfalse, falseval))
1151 self->phi_out = ir_phi_value(phi);
1152 *out = self->phi_out;
1157 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
1159 ast_expression_codegen *cgen;
1161 ir_value *dummy = NULL;
1162 ir_value *precond = NULL;
1163 ir_value *postcond = NULL;
1165 /* Since we insert some jumps "late" so we have blocks
1166 * ordered "nicely", we need to keep track of the actual end-blocks
1167 * of expressions to add the jumps to.
1169 ir_block *bbody = NULL, *end_bbody = NULL;
1170 ir_block *bprecond = NULL, *end_bprecond = NULL;
1171 ir_block *bpostcond = NULL, *end_bpostcond = NULL;
1172 ir_block *bincrement = NULL, *end_bincrement = NULL;
1173 ir_block *bout = NULL, *bin = NULL;
1175 /* let's at least move the outgoing block to the end */
1178 /* 'break' and 'continue' need to be able to find the right blocks */
1179 ir_block *bcontinue = NULL;
1180 ir_block *bbreak = NULL;
1182 ir_block *old_bcontinue = NULL;
1183 ir_block *old_bbreak = NULL;
1185 ir_block *tmpblock = NULL;
1191 * Should we ever need some kind of block ordering, better make this function
1192 * move blocks around than write a block ordering algorithm later... after all
1193 * the ast and ir should work together, not against each other.
1196 /* initexpr doesn't get its own block, it's pointless, it could create more blocks
1197 * anyway if for example it contains a ternary.
1201 cgen = self->initexpr->expression.codegen;
1202 if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
1206 /* Store the block from which we enter this chaos */
1207 bin = func->curblock;
1209 /* The pre-loop condition needs its own block since we
1210 * need to be able to jump to the start of that expression.
1214 bprecond = ir_function_create_block(func->ir_func, ast_function_label(func, "pre_loop_cond"));
1218 /* the pre-loop-condition the least important place to 'continue' at */
1219 bcontinue = bprecond;
1222 func->curblock = bprecond;
1225 cgen = self->precond->expression.codegen;
1226 if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
1229 end_bprecond = func->curblock;
1231 bprecond = end_bprecond = NULL;
1234 /* Now the next blocks won't be ordered nicely, but we need to
1235 * generate them this early for 'break' and 'continue'.
1237 if (self->increment) {
1238 bincrement = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_increment"));
1241 bcontinue = bincrement; /* increment comes before the pre-loop-condition */
1243 bincrement = end_bincrement = NULL;
1246 if (self->postcond) {
1247 bpostcond = ir_function_create_block(func->ir_func, ast_function_label(func, "post_loop_cond"));
1250 bcontinue = bpostcond; /* postcond comes before the increment */
1252 bpostcond = end_bpostcond = NULL;
1255 bout_id = func->ir_func->blocks_count;
1256 bout = ir_function_create_block(func->ir_func, ast_function_label(func, "after_loop"));
1261 /* The loop body... */
1264 bbody = ir_function_create_block(func->ir_func, ast_function_label(func, "loop_body"));
1269 func->curblock = bbody;
1271 old_bbreak = func->breakblock;
1272 old_bcontinue = func->continueblock;
1273 func->breakblock = bbreak;
1274 func->continueblock = bcontinue;
1277 cgen = self->body->expression.codegen;
1278 if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
1281 end_bbody = func->curblock;
1282 func->breakblock = old_bbreak;
1283 func->continueblock = old_bcontinue;
1286 /* post-loop-condition */
1290 func->curblock = bpostcond;
1293 cgen = self->postcond->expression.codegen;
1294 if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
1297 end_bpostcond = func->curblock;
1300 /* The incrementor */
1301 if (self->increment)
1304 func->curblock = bincrement;
1307 cgen = self->increment->expression.codegen;
1308 if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
1311 end_bincrement = func->curblock;
1314 /* In any case now, we continue from the outgoing block */
1315 func->curblock = bout;
1317 /* Now all blocks are in place */
1318 /* From 'bin' we jump to whatever comes first */
1319 if (bprecond) tmpblock = bprecond;
1320 else if (bbody) tmpblock = bbody;
1321 else if (bpostcond) tmpblock = bpostcond;
1322 else tmpblock = bout;
1323 if (!ir_block_create_jump(bin, tmpblock))
1329 ir_block *ontrue, *onfalse;
1330 if (bbody) ontrue = bbody;
1331 else if (bincrement) ontrue = bincrement;
1332 else if (bpostcond) ontrue = bpostcond;
1333 else ontrue = bprecond;
1335 if (!ir_block_create_if(end_bprecond, precond, ontrue, onfalse))
1342 if (bincrement) tmpblock = bincrement;
1343 else if (bpostcond) tmpblock = bpostcond;
1344 else if (bprecond) tmpblock = bprecond;
1345 else tmpblock = bout;
1346 if (!ir_block_create_jump(end_bbody, tmpblock))
1350 /* from increment */
1353 if (bpostcond) tmpblock = bpostcond;
1354 else if (bprecond) tmpblock = bprecond;
1355 else if (bbody) tmpblock = bbody;
1356 else tmpblock = bout;
1357 if (!ir_block_create_jump(end_bincrement, tmpblock))
1364 ir_block *ontrue, *onfalse;
1365 if (bprecond) ontrue = bprecond;
1366 else if (bbody) ontrue = bbody;
1367 else if (bincrement) ontrue = bincrement;
1368 else ontrue = bpostcond;
1370 if (!ir_block_create_if(end_bpostcond, postcond, ontrue, onfalse))
1374 /* Move 'bout' to the end */
1375 if (!ir_function_blocks_remove(func->ir_func, bout_id) ||
1376 !ir_function_blocks_add(func->ir_func, bout))
1378 ir_block_delete(bout);
1385 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
1387 ast_expression_codegen *cgen;
1388 ir_value_vector params;
1389 ir_instr *callinstr;
1392 ir_value *funval = NULL;
1394 /* return values are never rvalues */
1397 cgen = self->func->expression.codegen;
1398 if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
1403 MEM_VECTOR_INIT(¶ms, v);
1406 for (i = 0; i < self->params_count; ++i)
1409 ast_expression *expr = self->params[i];
1411 cgen = expr->expression.codegen;
1412 if (!(*cgen)(expr, func, false, ¶m))
1416 if (!ir_value_vector_v_add(¶ms, param))
1420 callinstr = ir_block_create_call(func->curblock, ast_function_label(func, "call"), funval);
1424 for (i = 0; i < params.v_count; ++i) {
1425 if (!ir_call_param(callinstr, params.v[i]))
1429 *out = ir_call_value(callinstr);
1431 MEM_VECTOR_CLEAR(¶ms, v);
1434 MEM_VECTOR_CLEAR(¶ms, v);