/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ #ifndef _ODE_ODEMATH_H_ #define _ODE_ODEMATH_H_ #include /* * macro to access elements i,j in an NxM matrix A, independent of the * matrix storage convention. */ #define dACCESS33(A,i,j) ((A)[(i)*4+(j)]) /* * Macro to test for valid floating point values */ #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]))) #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3]))) #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]))) #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) )) // Some vector math PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b) { dReal res_0, res_1, res_2; res_0 = a[0] + b[0]; res_1 = a[1] + b[1]; res_2 = a[2] + b[2]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b) { dReal res_0, res_1, res_2; res_0 = a[0] - b[0]; res_1 = a[1] - b[1]; res_2 = a[2] - b[2]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale) { dReal res_0, res_1, res_2; res_0 = a_scale * a[0] + b_scale * b[0]; res_1 = a_scale * a[1] + b_scale * b[1]; res_2 = a_scale * a[2] + b_scale * b[2]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dScaleVector3(dReal *res, dReal nScale) { res[0] *= nScale ; res[1] *= nScale ; res[2] *= nScale ; } PURE_INLINE void dNegateVector3(dReal *res) { res[0] = -res[0]; res[1] = -res[1]; res[2] = -res[2]; } PURE_INLINE void dCopyVector3(dReal *res, const dReal *a) { dReal res_0, res_1, res_2; res_0 = a[0]; res_1 = a[1]; res_2 = a[2]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale) { dReal res_0, res_1, res_2; res_0 = a[0] * nScale; res_1 = a[1] * nScale; res_2 = a[2] * nScale; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a) { dReal res_0, res_1, res_2; res_0 = -a[0]; res_1 = -a[1]; res_2 = -a[2]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dCopyVector4(dReal *res, const dReal *a) { dReal res_0, res_1, res_2, res_3; res_0 = a[0]; res_1 = a[1]; res_2 = a[2]; res_3 = a[3]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3; } PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a) { dCopyVector4(res + 0, a + 0); dCopyVector4(res + 4, a + 4); dCopyVector4(res + 8, a + 8); } PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a) { dCopyVector3(res + 0, a + 0); dCopyVector3(res + 4, a + 4); dCopyVector3(res + 8, a + 8); } PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n) { dReal res_0, res_1, res_2; res_0 = a[n + 0]; res_1 = a[n + 4]; res_2 = a[n + 8]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE dReal dCalcVectorLength3(const dReal *a) { return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); } PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a) { return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]); } PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n) { return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2]; } /* * 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced * step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311. */ PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b) { return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b]; } PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); } PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); } PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); } PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); } PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); } PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); } PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); } /* * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a' * and `b' are spaced step_res, step_a and step_b indexes apart respectively. * dCalcVectorCross3() means dCross3111. */ PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b) { dReal res_0, res_1, res_2; res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b]; res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b]; res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0]; // Only assign after all the calculations are over to avoid incurring memory aliasing res[ 0] = res_0; res[ step_res] = res_1; res[2*step_res] = res_2; } PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); } PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); } PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); } PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); } PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); } PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); } PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); } PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); } PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dCalcVectorCross3(tmp, a, b); dAddVectors3(res, res, tmp); } PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dCalcVectorCross3(tmp, a, b); dSubtractVectors3(res, res, tmp); } /* * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. * A is stored by rows, and has `skip' elements per row. the matrix is * assumed to be already zero, so this does not write zero elements! * if (plus,minus) is (+,-) then a positive version will be written. * if (plus,minus) is (-,+) then a negative version will be written. */ PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip) { const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; res[1] = -a_2; res[2] = +a_1; res[skip+0] = +a_2; res[skip+2] = -a_0; res[2*skip+0] = -a_1; res[2*skip+1] = +a_0; } PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip) { const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2]; res[1] = +a_2; res[2] = -a_1; res[skip+0] = -a_2; res[skip+2] = +a_0; res[2*skip+0] = +a_1; res[2*skip+1] = -a_0; } /* * compute the distance between two 3D-vectors */ PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b) { dReal res; dReal tmp[3]; dSubtractVectors3(tmp, a, b); res = dCalcVectorLength3(tmp); return res; } /* * special case matrix multiplication, with operator selection */ PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b) { dReal res_0, res_1, res_2; res_0 = dCalcVectorDot3(a, b); res_1 = dCalcVectorDot3(a + 4, b); res_2 = dCalcVectorDot3(a + 8, b); // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b) { dReal res_0, res_1, res_2; res_0 = dCalcVectorDot3_41(a, b); res_1 = dCalcVectorDot3_41(a + 1, b); res_2 = dCalcVectorDot3_41(a + 2, b); // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_331(res, b, a); } PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b) { dReal res_0, res_1, res_2; res_0 = dCalcVectorDot3_44(a, b); res_1 = dCalcVectorDot3_44(a + 1, b); res_2 = dCalcVectorDot3_44(a + 2, b); // Only assign after all the calculations are over to avoid incurring memory aliasing res[0] = res_0; res[1] = res_1; res[2] = res_2; } /* Note: NEVER call any of these functions/macros with the same variable for A and C, it is not equivalent to A*=B. */ PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_331(res, a, b); } PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_331(res, a, b); } PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_133(res, a, b); } PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_133(res + 0, a + 0, b); dMultiplyHelper0_133(res + 4, a + 4, b); dMultiplyHelper0_133(res + 8, a + 8, b); } PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper1_133(res + 0, b, a + 0); dMultiplyHelper1_133(res + 4, b, a + 1); dMultiplyHelper1_133(res + 8, b, a + 2); } PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b) { dMultiplyHelper0_331(res + 0, b, a + 0); dMultiplyHelper0_331(res + 4, b, a + 4); dMultiplyHelper0_331(res + 8, b, a + 8); } PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_331(tmp, a, b); dAddVectors3(res, res, tmp); } PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper1_331(tmp, a, b); dAddVectors3(res, res, tmp); } PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_133(tmp, a, b); dAddVectors3(res, res, tmp); } PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_133(tmp, a + 0, b); dAddVectors3(res+ 0, res + 0, tmp); dMultiplyHelper0_133(tmp, a + 4, b); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper0_133(tmp, a + 8, b); dAddVectors3(res + 8, res + 8, tmp); } PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper1_133(tmp, b, a + 0); dAddVectors3(res + 0, res + 0, tmp); dMultiplyHelper1_133(tmp, b, a + 1); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper1_133(tmp, b, a + 2); dAddVectors3(res + 8, res + 8, tmp); } PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b) { dReal tmp[3]; dMultiplyHelper0_331(tmp, b, a + 0); dAddVectors3(res + 0, res + 0, tmp); dMultiplyHelper0_331(tmp, b, a + 4); dAddVectors3(res + 4, res + 4, tmp); dMultiplyHelper0_331(tmp, b, a + 8); dAddVectors3(res + 8, res + 8, tmp); } // Include legacy macros here #include #ifdef __cplusplus extern "C" { #endif /* * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) */ // For DLL export ODE_API int dSafeNormalize3 (dVector3 a); ODE_API int dSafeNormalize4 (dVector4 a); ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec #if defined(__ODE__) int _dSafeNormalize3 (dVector3 a); int _dSafeNormalize4 (dVector4 a); PURE_INLINE void _dNormalize3(dVector3 a) { int bNormalizationResult = _dSafeNormalize3(a); dIVERIFY(bNormalizationResult); } PURE_INLINE void _dNormalize4(dVector4 a) { int bNormalizationResult = _dSafeNormalize4(a); dIVERIFY(bNormalizationResult); } // For internal use #define dSafeNormalize3(a) _dSafeNormalize3(a) #define dSafeNormalize4(a) _dSafeNormalize4(a) #define dNormalize3(a) _dNormalize3(a) #define dNormalize4(a) _dNormalize4(a) #endif // defined(__ODE__) /* * given a unit length "normal" vector n, generate vectors p and q vectors * that are an orthonormal basis for the plane space perpendicular to n. * i.e. this makes p,q such that n,p,q are all perpendicular to each other. * q will equal n x p. if n is not unit length then p will be unit length but * q wont be. */ ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q); /* Makes sure the matrix is a proper rotation */ ODE_API void dOrthogonalizeR(dMatrix3 m); #ifdef __cplusplus } #endif #endif