#include "costs.qh" float pathlib_g_static(entity parent,vector to, float static_cost) { return parent.pathlib_node_g + static_cost; } float pathlib_g_static_water(entity parent,vector to, float static_cost) { if(inwater(to)) return parent.pathlib_node_g + static_cost * pathlib_movecost_waterfactor; else return parent.pathlib_node_g + static_cost; } float pathlib_g_euclidean(entity parent,vector to, float static_cost) { return parent.pathlib_node_g + vlen(parent.origin - to); } float pathlib_g_euclidean_water(entity parent,vector to, float static_cost) { if(inwater(to)) return parent.pathlib_node_g + vlen(parent.origin - to) * pathlib_movecost_waterfactor; else return parent.pathlib_node_g + vlen(parent.origin - to); } /** Manhattan heuristic means we expect to move up, down left or right No diagonal moves expected. (like moving between city blocks) **/ float pathlib_h_manhattan(vector a, vector b) { //h(n) = D * (abs(n.x-goal.x) + abs(n.y-goal.y)) float h = fabs(a.x - b.x); h += fabs(a.y - b.y); h *= pathlib_gridsize; return h; } /** This heuristic consider both straight and diagonal moves to have the same cost. **/ float pathlib_h_diagonal(vector a, vector b) { //h(n) = D * max(abs(n.x-goal.x), abs(n.y-goal.y)) float hx = fabs(a.x - b.x); float hy = fabs(a.y - b.y); float h = pathlib_movecost * max(hx, hy); return h; } /** This heuristic only considers the straight line distance. Usually means a lower H then G, resulting in A* spreading more (and running slower). **/ float pathlib_h_euclidean(vector a, vector b) { return vlen(a - b); } /** This heuristic consider both straight and diagonal moves, but has a separate cost for diagonal moves. **/ float pathlib_h_diagonal2(vector a,vector b) { /* h_diagonal(n) = min(abs(n.x-goal.x), abs(n.y-goal.y)) h_straight(n) = (abs(n.x-goal.x) + abs(n.y-goal.y)) h(n) = D2 * h_diagonal(n) + D * (h_straight(n) - 2*h_diagonal(n))) */ float hx = fabs(a.x - b.x); float hy = fabs(a.y - b.y); float h_diag = min(hx,hy); float h_str = hx + hy; float h = pathlib_movecost_diag * h_diag; h += pathlib_movecost * (h_str - 2 * h_diag); return h; } /** This heuristic consider both straight and diagonal moves, But has a separate cost for diagonal moves. **/ float pathlib_h_diagonal2sdp(vector preprev, vector prev, vector point, vector end) { //h_diagonal(n) = min(abs(n.x-goal.x), abs(n.y-goal.y)) //h_straight(n) = (abs(n.x-goal.x) + abs(n.y-goal.y)) //h(n) = D2 * h_diagonal(n) + D * (h_straight(n) - 2*h_diagonal(n))) float hx = fabs(point.x - end.x); float hy = fabs(point.y - end.y); float hz = fabs(point.z - end.z); float h_diag = min3(hx,hy,hz); float h_str = hx + hy + hz; float h = pathlib_movecost_diag * h_diag; h += pathlib_movecost * (h_str - 2 * h_diag); vector d1 = normalize(preprev - point); vector d2 = normalize(prev - point); float m = vlen(d1 - d2); return h * m; } float pathlib_h_diagonal3(vector a, vector b) { float hx = fabs(a.x - b.x); float hy = fabs(a.y - b.y); float hz = fabs(a.z - b.z); float h_diag = min3(hx,hy,hz); float h_str = hx + hy + hz; float h = pathlib_movecost_diag * h_diag; h += pathlib_movecost * (h_str - 2 * h_diag); return h; }