X-Git-Url: http://git.xonotic.org/?p=xonotic%2Fnetradiant.git;a=blobdiff_plain;f=radiant%2Fbrush_primit.cpp;h=322c3b27cda00be4ebc98cb022ef206cdd7841eb;hp=589ab9b9f43ccf6ac23a6820c215f6624e1b84e4;hb=830125fad042fad35dc029b6eb57c8156ad7e176;hpb=515673c08f8718a237e90c2130a1f5294f966d6a diff --git a/radiant/brush_primit.cpp b/radiant/brush_primit.cpp index 589ab9b9..322c3b27 100644 --- a/radiant/brush_primit.cpp +++ b/radiant/brush_primit.cpp @@ -1,33 +1,32 @@ /* -Copyright (C) 1999-2007 id Software, Inc. and contributors. -For a list of contributors, see the accompanying CONTRIBUTORS file. + Copyright (C) 1999-2007 id Software, Inc. and contributors. + For a list of contributors, see the accompanying CONTRIBUTORS file. -This file is part of GtkRadiant. + This file is part of GtkRadiant. -GtkRadiant is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + GtkRadiant is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -GtkRadiant is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + GtkRadiant is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with GtkRadiant; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ + You should have received a copy of the GNU General Public License + along with GtkRadiant; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ #include "stdafx.h" // compute a determinant using Sarrus rule //++timo "inline" this with a macro // NOTE : the three vec3_t are understood as columns of the matrix -vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) -{ - return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2] - -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1]; +vec_t SarrusDet( vec3_t a, vec3_t b, vec3_t c ){ + return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] + - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; } // in many case we know three points A,B,C in two axis base B1 and B2 @@ -37,23 +36,22 @@ vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) // NOTE: the third coord of the A,B,C point is ignored // NOTE: see the commented out section to fill M and D //++timo TODO: update the other members to use this when possible -void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ) -{ +void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ){ // vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) vec_t det; // vec3_t D[2]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; #if 0 // fill the data vectors - M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0]; - M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=A1[0]; - D[0][1]=B1[0]; - D[0][2]=C1[0]; - D[1][0]=A1[1]; - D[1][1]=B1[1]; - D[1][2]=C1[1]; + M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; + M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = A1[0]; + D[0][1] = B1[0]; + D[0][2] = C1[0]; + D[1][0] = A1[1]; + D[1][1] = B1[1]; + D[1][2] = C1[1]; #endif // solve det = SarrusDet( M[0], M[1], M[2] ); @@ -69,188 +67,185 @@ void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ) // NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! // WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 // rotation by (0,RotY,RotZ) assigns X to normal -void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT ) -{ +void ComputeAxisBase( vec3_t normal,vec3_t texS,vec3_t texT ){ vec_t RotY,RotZ; // do some cleaning - if (fabs(normal[0])<1e-6) - normal[0]=0.0f; - if (fabs(normal[1])<1e-6) - normal[1]=0.0f; - if (fabs(normal[2])<1e-6) - normal[2]=0.0f; - RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0])); - RotZ=atan2(normal[1],normal[0]); + if ( fabs( normal[0] ) < 1e-6 ) { + normal[0] = 0.0f; + } + if ( fabs( normal[1] ) < 1e-6 ) { + normal[1] = 0.0f; + } + if ( fabs( normal[2] ) < 1e-6 ) { + normal[2] = 0.0f; + } + RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); + RotZ = atan2( normal[1],normal[0] ); // rotate (0,1,0) and (0,0,1) to compute texS and texT - texS[0]=-sin(RotZ); - texS[1]=cos(RotZ); - texS[2]=0; + texS[0] = -sin( RotZ ); + texS[1] = cos( RotZ ); + texS[2] = 0; // the texT vector is along -Z ( T texture coorinates axis ) - texT[0]=-sin(RotY)*cos(RotZ); - texT[1]=-sin(RotY)*sin(RotZ); - texT[2]=-cos(RotY); + texT[0] = -sin( RotY ) * cos( RotZ ); + texT[1] = -sin( RotY ) * sin( RotZ ); + texT[2] = -cos( RotY ); } -void FaceToBrushPrimitFace(face_t *f) -{ +void FaceToBrushPrimitFace( face_t *f ){ vec3_t texX,texY; vec3_t proj; // ST of (0,0) (1,0) (0,1) vec_t ST[3][5]; // [ point index ] [ xyz ST ] //++timo not used as long as brushprimit_texdef and texdef are static /* f->brushprimit_texdef.contents=f->texdef.contents; - f->brushprimit_texdef.flags=f->texdef.flags; - f->brushprimit_texdef.value=f->texdef.value; - strcpy(f->brushprimit_texdef.name,f->texdef.name); */ + f->brushprimit_texdef.flags=f->texdef.flags; + f->brushprimit_texdef.value=f->texdef.value; + strcpy(f->brushprimit_texdef.name,f->texdef.name); */ #ifdef DBG_BP - if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f ) - { - Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"); + if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { + Sys_Printf( "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n" ); } // check d_texture - if (!f->d_texture) - { - Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n"); + if ( !f->d_texture ) { + Sys_Printf( "Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n" ); return; } #endif // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); + ComputeAxisBase( f->plane.normal,texX,texY ); // compute projection vector - VectorCopy(f->plane.normal,proj); - VectorScale(proj,f->plane.dist,proj); + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane // use old texture code to compute the ST coords of these points - VectorCopy(proj,ST[0]); - EmitTextureCoordinates(ST[0], f->d_texture, f); - VectorCopy(texX,ST[1]); - VectorAdd(ST[1],proj,ST[1]); - EmitTextureCoordinates(ST[1], f->d_texture, f); - VectorCopy(texY,ST[2]); - VectorAdd(ST[2],proj,ST[2]); - EmitTextureCoordinates(ST[2], f->d_texture, f); + VectorCopy( proj,ST[0] ); + EmitTextureCoordinates( ST[0], f->d_texture, f ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + EmitTextureCoordinates( ST[1], f->d_texture, f ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); + EmitTextureCoordinates( ST[2], f->d_texture, f ); // compute texture matrix - f->brushprimit_texdef.coords[0][2]=ST[0][3]; - f->brushprimit_texdef.coords[1][2]=ST[0][4]; - f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2]; - f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][2] = ST[0][3]; + f->brushprimit_texdef.coords[1][2] = ST[0][4]; + f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; } // compute texture coordinates for the winding points -void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w) -{ +void EmitBrushPrimitTextureCoordinates( face_t * f, winding_t * w ){ vec3_t texX,texY; vec_t x,y; // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); + ComputeAxisBase( f->plane.normal,texX,texY ); // in case the texcoords matrix is empty, build a default one // same behaviour as if scale[0]==0 && scale[1]==0 in old code - if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0) - { + if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { f->brushprimit_texdef.coords[0][0] = 1.0f; f->brushprimit_texdef.coords[1][1] = 1.0f; ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); } int i; - for (i=0 ; inumpoints ; i++) + for ( i = 0 ; i < w->numpoints ; i++ ) { - x=DotProduct(w->points[i],texX); - y=DotProduct(w->points[i],texY); + x = DotProduct( w->points[i],texX ); + y = DotProduct( w->points[i],texY ); #ifdef DBG_BP - if (g_qeglobals.bNeedConvert) - { + if ( g_qeglobals.bNeedConvert ) { // check we compute the same ST as the traditional texture computation used before - vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; - if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 ) - { - if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 ) - Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n"); - else - Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n"); + vec_t S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + vec_t T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + if ( fabs( S - w->points[i][3] ) > 1e-2 || fabs( T - w->points[i][4] ) > 1e-2 ) { + if ( fabs( S - w->points[i][3] ) > 1e-4 || fabs( T - w->points[i][4] ) > 1e-4 ) { + Sys_Printf( "Warning : precision loss in brush -> brush primitive texture computation\n" ); + } + else{ + Sys_Printf( "Warning : brush -> brush primitive texture computation bug detected\n" ); + } } } #endif - w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; + w->points[i][3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + w->points[i][4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; } } // compute a fake shift scale rot representation from the texture matrix // these shift scale rot values are to be understood in the local axis base -void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ) -{ +void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ){ #ifdef DBG_BP // check this matrix is orthogonal - if (fabs(texMat[0][0]*1.0L*texMat[0][1]+texMat[1][0]*1.0L*texMat[1][1])>ZERO_EPSILON) - Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n"); + if ( fabs( texMat[0][0] * 1.0L * texMat[0][1] + texMat[1][0] * 1.0L * texMat[1][1] ) > ZERO_EPSILON ) { + Sys_Printf( "Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n" ); + } #endif - scale[0]=sqrt(texMat[0][0]*1.0L*texMat[0][0]+texMat[1][0]*1.0L*texMat[1][0]); - scale[1]=sqrt(texMat[0][1]*1.0L*texMat[0][1]+texMat[1][1]*1.0L*texMat[1][1]); + scale[0] = sqrt( texMat[0][0] * 1.0L * texMat[0][0] + texMat[1][0] * 1.0L * texMat[1][0] ); + scale[1] = sqrt( texMat[0][1] * 1.0L * texMat[0][1] + texMat[1][1] * 1.0L * texMat[1][1] ); #ifdef DBG_BP - if (scale[0]0) - *rot=90.0f; - else - *rot=-90.0f; + if ( texMat[1][0] > 0 ) { + *rot = 90.0f; + } + else{ + *rot = -90.0f; + } + } + else{ + *rot = RAD2DEG( atan2( texMat[1][0] * 1.0L, texMat[0][0] * 1.0L ) ); } - else - *rot = RAD2DEG( atan2( texMat[1][0]*1.0L, texMat[0][0]*1.0L ) ); shift[0] = -texMat[0][2]; shift[1] = texMat[1][2]; } // compute back the texture matrix from fake shift scale rot // the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) -void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ) -{ - texMat[0][0] = scale[0] *1.0L* cos( DEG2RAD( 1.0L*rot ) ); - texMat[1][0] = scale[0] *1.0L* sin( DEG2RAD( 1.0L*rot ) ); - texMat[0][1] = -scale[1] *1.0L* sin( DEG2RAD( 1.0L*rot ) ); - texMat[1][1] = scale[1] *1.0L* cos( DEG2RAD( 1.0L*rot ) ); +void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ){ + texMat[0][0] = scale[0] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); + texMat[1][0] = scale[0] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); + texMat[0][1] = -scale[1] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); + texMat[1][1] = scale[1] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); texMat[0][2] = -shift[0]; texMat[1][2] = shift[1]; } // convert a texture matrix between two qtexture_t // if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) -void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ) -{ +void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ){ float s1,s2; s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); - texMat2[0][0]=s1*texMat1[0][0]; - texMat2[0][1]=s1*texMat1[0][1]; - texMat2[0][2]=s1*texMat1[0][2]; - texMat2[1][0]=s2*texMat1[1][0]; - texMat2[1][1]=s2*texMat1[1][1]; - texMat2[1][2]=s2*texMat1[1][2]; + texMat2[0][0] = s1 * texMat1[0][0]; + texMat2[0][1] = s1 * texMat1[0][1]; + texMat2[0][2] = s1 * texMat1[0][2]; + texMat2[1][0] = s2 * texMat1[1][0]; + texMat2[1][1] = s2 * texMat1[1][1]; + texMat2[1][2] = s2 * texMat1[1][2]; } -void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ) -{ - ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2); +void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ){ + ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); } // used for texture locking // will move the texture according to a geometric vector -void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) -{ +void ShiftTextureGeometric_BrushPrimit( face_t *f, vec3_t delta ){ vec3_t texS,texT; vec_t tx,ty; vec3_t M[3]; // columns of the matrix .. easier that way @@ -262,15 +257,15 @@ void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) tx = DotProduct( delta, texS ); ty = DotProduct( delta, texT ); // fill the data vectors - M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx; - M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; + M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; + M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; @@ -284,40 +279,41 @@ void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) // shift a texture (texture adjustments) along it's current texture axes // x and y are geometric values, which we must compute as ST increments // this depends on the texture size and the pixel/texel ratio -void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y) -{ - float s,t; - // as a ratio against texture size - // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) - s = (x * 2.0) / (float)f->d_texture->width; - t = (y * 2.0) / (float)f->d_texture->height; - f->brushprimit_texdef.coords[0][2] -= s; - f->brushprimit_texdef.coords[1][2] -= t; +void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ + float s,t; + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + s = ( x * 2.0 ) / (float)f->d_texture->width; + t = ( y * 2.0 ) / (float)f->d_texture->height; + f->brushprimit_texdef.coords[0][2] -= s; + f->brushprimit_texdef.coords[1][2] -= t; } // TTimo: FIXME: I don't like that, it feels broken // (and it's likely that it's not used anymore) // best fitted 2D vector is x.X+y.Y -void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ) -{ +void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ){ double sx,sy; sx = DotProduct( v, X ); sy = DotProduct( v, Y ); - if ( fabs(sy) > fabs(sx) ) - { + if ( fabs( sy ) > fabs( sx ) ) { x = 0; - if ( sy > 0.0 ) + if ( sy > 0.0 ) { y = 1; - else + } + else{ y = -1; + } } else { y = 0; - if ( sx > 0.0 ) + if ( sx > 0.0 ) { x = 1; - else + } + else{ x = -1; + } } } @@ -325,8 +321,7 @@ void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ) // can be improved .. bug #107311 // mins and maxs are the face bounding box //++timo fixme: we use the face info, mins and maxs are irrelevant -void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ) -{ +void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ){ vec3_t BBoxSTMin, BBoxSTMax; winding_t *w; int i,j; @@ -343,16 +338,18 @@ void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeig EmitBrushPrimitTextureCoordinates( f, f->face_winding ); ClearBounds( BBoxSTMin, BBoxSTMax ); w = f->face_winding; - for (i=0 ; inumpoints ; i++) + for ( i = 0 ; i < w->numpoints ; i++ ) { // AddPointToBounds in 2D on (S,T) coordinates - for (j=0 ; j<2 ; j++) + for ( j = 0 ; j < 2 ; j++ ) { - val = w->points[i][j+3]; - if (val < BBoxSTMin[j]) + val = w->points[i][j + 3]; + if ( val < BBoxSTMin[j] ) { BBoxSTMin[j] = val; - if (val > BBoxSTMax[j]) + } + if ( val > BBoxSTMax[j] ) { BBoxSTMax[j] = val; + } } } // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space @@ -370,8 +367,8 @@ void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeig // A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight) // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) // we compute the N transformation so that: A(S',T') = N * A(S,T) - VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/(float)nWidth, 0.0f, BBoxSTMin[0] ); - VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/(float)nHeight, BBoxSTMin[1] ); + VectorSet( N[0], ( BBoxSTMax[0] - BBoxSTMin[0] ) / (float)nWidth, 0.0f, BBoxSTMin[0] ); + VectorSet( N[1], 0.0f, ( BBoxSTMax[1] - BBoxSTMin[1] ) / (float)nHeight, BBoxSTMin[1] ); #endif // the final matrix is the product (Mf stands for Mfit) @@ -388,8 +385,7 @@ void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeig // ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); } -void BrushPrimitFaceToFace(face_t *f) -{ +void BrushPrimitFaceToFace( face_t *f ){ #if 0 // we have parsed brush primitives and need conversion back to standard format // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it @@ -398,22 +394,22 @@ void BrushPrimitFaceToFace(face_t *f) brushprimit_texdef_t aux; ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL ); TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); - face->texdef.scale[0]/=2.0; - face->texdef.scale[1]/=2.0; + face->texdef.scale[0] /= 2.0; + face->texdef.scale[1] /= 2.0; #else // new method by divVerent@alientrap.org: Shift and scale no longer get lost when opening a BP map in texdef mode. vec3_t texX,texY; vec3_t proj; vec_t ST[3][5]; - ComputeAxisBase(f->plane.normal,texX,texY); - VectorCopy(f->plane.normal,proj); - VectorScale(proj,f->plane.dist,proj); - VectorCopy(proj,ST[0]); - VectorCopy(texX,ST[1]); - VectorAdd(ST[1],proj,ST[1]); - VectorCopy(texY,ST[2]); - VectorAdd(ST[2],proj,ST[2]); + ComputeAxisBase( f->plane.normal,texX,texY ); + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); + VectorCopy( proj,ST[0] ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); ST[0][3] = f->brushprimit_texdef.coords[0][2]; ST[0][4] = f->brushprimit_texdef.coords[1][2]; @@ -422,7 +418,7 @@ void BrushPrimitFaceToFace(face_t *f) ST[2][3] = f->brushprimit_texdef.coords[0][1] + ST[0][3]; ST[2][4] = f->brushprimit_texdef.coords[1][1] + ST[0][4]; - Face_TexdefFromTextureCoordinates(ST[0], ST[1], ST[2], f->d_texture, f); + Face_TexdefFromTextureCoordinates( ST[0], ST[1], ST[2], f->d_texture, f ); #endif } @@ -446,52 +442,51 @@ vec3_t txl_vOrigin; vec3_t txl_matrix[3]; vec3_t txl_origin; -void TextureLockTransformation_BrushPrimit(face_t *f) -{ +void TextureLockTransformation_BrushPrimit( face_t *f ){ vec3_t Orig,texS,texT; // axis base of initial plane // used by transformation algo vec3_t temp; int j; - vec3_t vRotate; // rotation vector + vec3_t vRotate; // rotation vector vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane - vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) + vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) vec3_t M[3]; vec_t det; vec3_t D[2]; // compute plane axis base ComputeAxisBase( f->plane.normal, texS, texT ); - VectorSet(Orig, 0.0f, 0.0f, 0.0f); + VectorSet( Orig, 0.0f, 0.0f, 0.0f ); // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) // input: Orig, texS, texT (and the global locking params) // ouput: rOrig, rvecS, rvecT, rNormal - if (txlock_bRotation) { + if ( txlock_bRotation ) { // rotation vector VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); - vRotate[txl_nAxis]=txl_fDeg; - VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig ); - VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS ); - VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT ); + vRotate[txl_nAxis] = txl_fDeg; + VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); + VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); + VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); // compute normal of plane after rotation - VectorRotate ( f->plane.normal, vRotate, rNormal ); + VectorRotate( f->plane.normal, vRotate, rNormal ); } else { - VectorSubtract (Orig, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texS, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texT, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; + VectorSubtract( Orig, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rOrig[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; + VectorSubtract( texS, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rvecS[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; + VectorSubtract( texT, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rvecT[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. - for (j=0 ; j<3 ; j++) - rNormal[j] = DotProduct(f->plane.normal, txl_matrix[j]); + for ( j = 0 ; j < 3 ; j++ ) + rNormal[j] = DotProduct( f->plane.normal, txl_matrix[j] ); } // compute rotated plane axis base @@ -507,12 +502,12 @@ void TextureLockTransformation_BrushPrimit(face_t *f) M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; // fill data vector - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; // solve det = SarrusDet( M[0], M[1], M[2] ); f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; @@ -525,101 +520,93 @@ void TextureLockTransformation_BrushPrimit(face_t *f) // texture locking // called before the points on the face are actually rotated -void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin ) -{ +void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, vec3_t vOrigin ){ // this is a placeholder to call the general texture locking algorithm txlock_bRotation = true; txl_nAxis = nAxis; txl_fDeg = fDeg; - VectorCopy(vOrigin, txl_vOrigin); - TextureLockTransformation_BrushPrimit(f); + VectorCopy( vOrigin, txl_vOrigin ); + TextureLockTransformation_BrushPrimit( f ); } // compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) // this matches the select_matrix algo used in select.cpp // this needs to be called on the face BEFORE any geometric transformation // it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done -void ApplyMatrix_BrushPrimit(face_t *f, vec3_t matrix[3], vec3_t origin) -{ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = false; - VectorCopy(matrix[0], txl_matrix[0]); - VectorCopy(matrix[1], txl_matrix[1]); - VectorCopy(matrix[2], txl_matrix[2]); - VectorCopy(origin, txl_origin); - TextureLockTransformation_BrushPrimit(f); +void ApplyMatrix_BrushPrimit( face_t *f, vec3_t matrix[3], vec3_t origin ){ + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = false; + VectorCopy( matrix[0], txl_matrix[0] ); + VectorCopy( matrix[1], txl_matrix[1] ); + VectorCopy( matrix[2], txl_matrix[2] ); + VectorCopy( origin, txl_origin ); + TextureLockTransformation_BrushPrimit( f ); } // don't do C==A! -void BPMatMul(vec_t A[2][3], vec_t B[2][3], vec_t C[2][3]) -{ - C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0]; - C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0]; - C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1]; - C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1]; - C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2]; - C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2]; +void BPMatMul( vec_t A[2][3], vec_t B[2][3], vec_t C[2][3] ){ + C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; + C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; + C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; + C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; + C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; + C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; } -void BPMatDump(vec_t A[2][3]) -{ - Sys_Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]); +void BPMatDump( vec_t A[2][3] ){ + Sys_Printf( "%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2] ); } -void BPMatRotate(vec_t A[2][3], float theta) -{ - vec_t m[2][3]; - vec_t aux[2][3]; - memset(&m, 0, sizeof(vec_t)*6); - m[0][0] = cos(theta*Q_PI/180.0); - m[0][1] = -sin(theta*Q_PI/180.0); - m[1][0] = -m[0][1]; - m[1][1] = m[0][0]; - BPMatMul(A, m, aux); - BPMatCopy(aux,A); +void BPMatRotate( vec_t A[2][3], float theta ){ + vec_t m[2][3]; + vec_t aux[2][3]; + memset( &m, 0, sizeof( vec_t ) * 6 ); + m[0][0] = cos( theta * Q_PI / 180.0 ); + m[0][1] = -sin( theta * Q_PI / 180.0 ); + m[1][0] = -m[0][1]; + m[1][1] = m[0][0]; + BPMatMul( A, m, aux ); + BPMatCopy( aux,A ); } // get the relative axes of the current texturing -void BrushPrimit_GetRelativeAxes(face_t *f, vec3_t vecS, vec3_t vecT) -{ - vec_t vS[2],vT[2]; - // first we compute them as expressed in plane axis base - // BP matrix has coordinates of plane axis base expressed in geometric axis base - // so we use the line vectors - vS[0] = f->brushprimit_texdef.coords[0][0]; - vS[1] = f->brushprimit_texdef.coords[0][1]; - vT[0] = f->brushprimit_texdef.coords[1][0]; - vT[1] = f->brushprimit_texdef.coords[1][1]; - // now compute those vectors in geometric space - vec3_t texS, texT; // axis base of the plane (geometric) - ComputeAxisBase(f->plane.normal, texS, texT); - // vecS[] = vS[0].texS[] + vS[1].texT[] - // vecT[] = vT[0].texS[] + vT[1].texT[] - vecS[0] = vS[0]*texS[0] + vS[1]*texT[0]; - vecS[1] = vS[0]*texS[1] + vS[1]*texT[1]; - vecS[2] = vS[0]*texS[2] + vS[1]*texT[2]; - vecT[0] = vT[0]*texS[0] + vT[1]*texT[0]; - vecT[1] = vT[0]*texS[1] + vT[1]*texT[1]; - vecT[2] = vT[0]*texS[2] + vT[1]*texT[2]; +void BrushPrimit_GetRelativeAxes( face_t *f, vec3_t vecS, vec3_t vecT ){ + vec_t vS[2],vT[2]; + // first we compute them as expressed in plane axis base + // BP matrix has coordinates of plane axis base expressed in geometric axis base + // so we use the line vectors + vS[0] = f->brushprimit_texdef.coords[0][0]; + vS[1] = f->brushprimit_texdef.coords[0][1]; + vT[0] = f->brushprimit_texdef.coords[1][0]; + vT[1] = f->brushprimit_texdef.coords[1][1]; + // now compute those vectors in geometric space + vec3_t texS, texT; // axis base of the plane (geometric) + ComputeAxisBase( f->plane.normal, texS, texT ); + // vecS[] = vS[0].texS[] + vS[1].texT[] + // vecT[] = vT[0].texS[] + vT[1].texT[] + vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; + vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; + vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; + vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; + vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; + vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; } // GL matrix 4x4 product (3D homogeneous matrix) // NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column] // otherwise it's all good -void GLMatMul(vec_t M[4][4], vec_t A[4], vec_t B[4]) -{ - unsigned short i,j; - for (i=0;i<4;i++) - { - B[i] = 0.0; - for (j=0;j<4;j++) - { - B[i] += M[j][i]*A[j]; - } - } +void GLMatMul( vec_t M[4][4], vec_t A[4], vec_t B[4] ){ + unsigned short i,j; + for ( i = 0; i < 4; i++ ) + { + B[i] = 0.0; + for ( j = 0; j < 4; j++ ) + { + B[i] += M[j][i] * A[j]; + } + } } -qboolean IsBrushPrimitMode() -{ - return(g_qeglobals.m_bBrushPrimitMode); +qboolean IsBrushPrimitMode(){ + return( g_qeglobals.m_bBrushPrimitMode ); }