]> git.xonotic.org Git - xonotic/netradiant.git/blobdiff - radiant/winding.cpp
reformat code! now the code is only ugly on the *inside*
[xonotic/netradiant.git] / radiant / winding.cpp
index 9651af2c2c027dc665fbda6d9f91dfa7ddb721ec..d027f52dba2ab4a41ec968a655c4b27e39221a36 100644 (file)
 #include "math/line.h"
 
 
-inline double plane3_distance_to_point( const Plane3& plane, const DoubleVector3& point ){
-       return vector3_dot( point, plane.normal() ) - plane.dist();
+inline double plane3_distance_to_point(const Plane3 &plane, const DoubleVector3 &point)
+{
+    return vector3_dot(point, plane.normal()) - plane.dist();
 }
 
-inline double plane3_distance_to_point( const Plane3& plane, const Vector3& point ){
-       return vector3_dot( point, plane.normal() ) - plane.dist();
+inline double plane3_distance_to_point(const Plane3 &plane, const Vector3 &point)
+{
+    return vector3_dot(point, plane.normal()) - plane.dist();
 }
 
 /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection.
-inline DoubleVector3 line_intersect_plane( const DoubleLine& line, const Plane3& plane ){
-       return line.origin + vector3_scaled(
-                          line.direction,
-                          -plane3_distance_to_point( plane, line.origin )
-                          / vector3_dot( line.direction, plane.normal() )
-                          );
+inline DoubleVector3 line_intersect_plane(const DoubleLine &line, const Plane3 &plane)
+{
+    return line.origin + vector3_scaled(
+            line.direction,
+            -plane3_distance_to_point(plane, line.origin)
+            / vector3_dot(line.direction, plane.normal())
+    );
 }
 
-inline bool float_is_largest_absolute( double axis, double other ){
-       return fabs( axis ) > fabs( other );
+inline bool float_is_largest_absolute(double axis, double other)
+{
+    return fabs(axis) > fabs(other);
 }
 
 /// \brief Returns the index of the component of \p v that has the largest absolute value.
-inline int vector3_largest_absolute_component_index( const DoubleVector3& v ){
-       return ( float_is_largest_absolute( v[1], v[0] ) )
-                  ? ( float_is_largest_absolute( v[1], v[2] ) )
-                  ? 1
-                  : 2
-                  : ( float_is_largest_absolute( v[0], v[2] ) )
-                  ? 0
-                  : 2;
+inline int vector3_largest_absolute_component_index(const DoubleVector3 &v)
+{
+    return (float_is_largest_absolute(v[1], v[0]))
+           ? (float_is_largest_absolute(v[1], v[2]))
+             ? 1
+             : 2
+           : (float_is_largest_absolute(v[0], v[2]))
+             ? 0
+             : 2;
 }
 
 /// \brief Returns the infinite line that is the intersection of \p plane and \p other.
-inline DoubleLine plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){
-       DoubleLine line;
-       line.direction = vector3_cross( plane.normal(), other.normal() );
-       switch ( vector3_largest_absolute_component_index( line.direction ) )
-       {
-       case 0:
-               line.origin.x() = 0;
-               line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x();
-               line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x();
-               break;
-       case 1:
-               line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y();
-               line.origin.y() = 0;
-               line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y();
-               break;
-       case 2:
-               line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z();
-               line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z();
-               line.origin.z() = 0;
-               break;
-       default:
-               break;
-       }
-
-       return line;
+inline DoubleLine plane3_intersect_plane3(const Plane3 &plane, const Plane3 &other)
+{
+    DoubleLine line;
+    line.direction = vector3_cross(plane.normal(), other.normal());
+    switch (vector3_largest_absolute_component_index(line.direction)) {
+        case 0:
+            line.origin.x() = 0;
+            line.origin.y() =
+                    (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x();
+            line.origin.z() =
+                    (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x();
+            break;
+        case 1:
+            line.origin.x() =
+                    (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y();
+            line.origin.y() = 0;
+            line.origin.z() =
+                    (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y();
+            break;
+        case 2:
+            line.origin.x() =
+                    (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z();
+            line.origin.y() =
+                    (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z();
+            line.origin.z() = 0;
+            break;
+        default:
+            break;
+    }
+
+    return line;
 }
 
 
 /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
-void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){
-       double max = -infinity;
-       int x = -1;
-       for ( int i = 0 ; i < 3; i++ )
-       {
-               double d = fabs( plane.normal()[i] );
-               if ( d > max ) {
-                       x = i;
-                       max = d;
-               }
-       }
-       if ( x == -1 ) {
-               globalErrorStream() << "invalid plane\n";
-               return;
-       }
-
-       DoubleVector3 vup = g_vector3_identity;
-       switch ( x )
-       {
-       case 0:
-       case 1:
-               vup[2] = 1;
-               break;
-       case 2:
-               vup[0] = 1;
-               break;
-       }
-
-
-       vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) );
-       vector3_normalise( vup );
-
-       DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() );
-
-       DoubleVector3 vright = vector3_cross( vup, plane.normal() );
-
-       vector3_scale( vup, infinity );
-       vector3_scale( vright, infinity );
-
-       // project a really big  axis aligned box onto the plane
-
-       DoubleLine r1, r2, r3, r4;
-       r1.origin = vector3_added( vector3_subtracted( org, vright ), vup );
-       r1.direction = vector3_normalised( vright );
-       winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) );
-       r2.origin = vector3_added( vector3_added( org, vright ), vup );
-       r2.direction = vector3_normalised( vector3_negated( vup ) );
-       winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) );
-       r3.origin = vector3_subtracted( vector3_added( org, vright ), vup );
-       r3.direction = vector3_normalised( vector3_negated( vright ) );
-       winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) );
-       r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup );
-       r4.direction = vector3_normalised( vup );
-       winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) );
+void Winding_createInfinite(FixedWinding &winding, const Plane3 &plane, double infinity)
+{
+    double max = -infinity;
+    int x = -1;
+    for (int i = 0; i < 3; i++) {
+        double d = fabs(plane.normal()[i]);
+        if (d > max) {
+            x = i;
+            max = d;
+        }
+    }
+    if (x == -1) {
+        globalErrorStream() << "invalid plane\n";
+        return;
+    }
+
+    DoubleVector3 vup = g_vector3_identity;
+    switch (x) {
+        case 0:
+        case 1:
+            vup[2] = 1;
+            break;
+        case 2:
+            vup[0] = 1;
+            break;
+    }
+
+
+    vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal())));
+    vector3_normalise(vup);
+
+    DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist());
+
+    DoubleVector3 vright = vector3_cross(vup, plane.normal());
+
+    vector3_scale(vup, infinity);
+    vector3_scale(vright, infinity);
+
+    // project a really big  axis aligned box onto the plane
+
+    DoubleLine r1, r2, r3, r4;
+    r1.origin = vector3_added(vector3_subtracted(org, vright), vup);
+    r1.direction = vector3_normalised(vright);
+    winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces));
+    r2.origin = vector3_added(vector3_added(org, vright), vup);
+    r2.direction = vector3_normalised(vector3_negated(vup));
+    winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces));
+    r3.origin = vector3_subtracted(vector3_added(org, vright), vup);
+    r3.direction = vector3_normalised(vector3_negated(vright));
+    winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces));
+    r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup);
+    r4.direction = vector3_normalised(vup);
+    winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces));
 }
 
 
-inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){
-       if ( distance > epsilon ) {
-               return ePlaneFront;
-       }
-       if ( distance < -epsilon ) {
-               return ePlaneBack;
-       }
-       return ePlaneOn;
+inline PlaneClassification Winding_ClassifyDistance(const double distance, const double epsilon)
+{
+    if (distance > epsilon) {
+        return ePlaneFront;
+    }
+    if (distance < -epsilon) {
+        return ePlaneBack;
+    }
+    return ePlaneOn;
 }
 
 /// \brief Returns true if
 /// !flipped && winding is completely BACK or ON
 /// or flipped && winding is completely FRONT or ON
-bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){
-       const int test = ( flipped ) ? ePlaneBack : ePlaneFront;
-       for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
-       {
-               if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) {
-                       return false;
-               }
-       }
-       return true;
+bool Winding_TestPlane(const Winding &winding, const Plane3 &plane, bool flipped)
+{
+    const int test = (flipped) ? ePlaneBack : ePlaneFront;
+    for (Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) {
+        if (test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)) {
+            return false;
+        }
+    }
+    return true;
 }
 
 /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
-bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){
-       return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false );
+bool Winding_PlanesConcave(const Winding &w1, const Winding &w2, const Plane3 &plane1, const Plane3 &plane2)
+{
+    return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false);
 }
 
-brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){
-       brushsplit_t split;
-       for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i )
-       {
-               ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )];
-       }
-       return split;
+brushsplit_t Winding_ClassifyPlane(const Winding &winding, const Plane3 &plane)
+{
+    brushsplit_t split;
+    for (Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) {
+        ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)];
+    }
+    return split;
 }
 
 
@@ -193,123 +205,125 @@ const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON;
 /// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.
 /// If \p winding is completely in back of the plane, \p clipped will be empty.
 /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
-void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){
-       PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON );
-       PlaneClassification nextClassification;
-       // for each edge
-       for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification )
-       {
-               nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON );
-               const FixedWindingVertex& vertex = winding[i];
-
-               // if first vertex of edge is ON
-               if ( classification == ePlaneOn ) {
-                       // append first vertex to output winding
-                       if ( nextClassification == ePlaneBack ) {
-                               // this edge lies on the clip plane
-                               clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
-                       }
-                       else
-                       {
-                               clipped.push_back( vertex );
-                       }
-                       continue;
-               }
-
-               // if first vertex of edge is FRONT
-               if ( classification == ePlaneFront ) {
-                       // add first vertex to output winding
-                       clipped.push_back( vertex );
-               }
-               // if second vertex of edge is ON
-               if ( nextClassification == ePlaneOn ) {
-                       continue;
-               }
-               // else if second vertex of edge is same as first
-               else if ( nextClassification == classification ) {
-                       continue;
-               }
-               // else if first vertex of edge is FRONT and there are only two edges
-               else if ( classification == ePlaneFront && winding.size() == 2 ) {
-                       continue;
-               }
-               // else first vertex is FRONT and second is BACK or vice versa
-               else
-               {
-                       // append intersection point of line and plane to output winding
-                       DoubleVector3 mid( line_intersect_plane( vertex.edge, clipPlane ) );
-
-                       if ( classification == ePlaneFront ) {
-                               // this edge lies on the clip plane
-                               clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) );
-                       }
-                       else
-                       {
-                               clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) );
-                       }
-               }
-       }
+void Winding_Clip(const FixedWinding &winding, const Plane3 &plane, const Plane3 &clipPlane, std::size_t adjacent,
+                  FixedWinding &clipped)
+{
+    PlaneClassification classification = Winding_ClassifyDistance(
+            plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON);
+    PlaneClassification nextClassification;
+    // for each edge
+    for (std::size_t next = 0, i = winding.size() - 1;
+         next != winding.size(); i = next, ++next, classification = nextClassification) {
+        nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex),
+                                                      ON_EPSILON);
+        const FixedWindingVertex &vertex = winding[i];
+
+        // if first vertex of edge is ON
+        if (classification == ePlaneOn) {
+            // append first vertex to output winding
+            if (nextClassification == ePlaneBack) {
+                // this edge lies on the clip plane
+                clipped.push_back(
+                        FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent));
+            } else {
+                clipped.push_back(vertex);
+            }
+            continue;
+        }
+
+        // if first vertex of edge is FRONT
+        if (classification == ePlaneFront) {
+            // add first vertex to output winding
+            clipped.push_back(vertex);
+        }
+        // if second vertex of edge is ON
+        if (nextClassification == ePlaneOn) {
+            continue;
+        }
+            // else if second vertex of edge is same as first
+        else if (nextClassification == classification) {
+            continue;
+        }
+            // else if first vertex of edge is FRONT and there are only two edges
+        else if (classification == ePlaneFront && winding.size() == 2) {
+            continue;
+        }
+            // else first vertex is FRONT and second is BACK or vice versa
+        else {
+            // append intersection point of line and plane to output winding
+            DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane));
+
+            if (classification == ePlaneFront) {
+                // this edge lies on the clip plane
+                clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent));
+            } else {
+                clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent));
+            }
+        }
+    }
 }
 
-std::size_t Winding_FindAdjacent( const Winding& winding, std::size_t face ){
-       for ( std::size_t i = 0; i < winding.numpoints; ++i )
-       {
-               ASSERT_MESSAGE( winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid" );
-               if ( winding[i].adjacent == face ) {
-                       return i;
-               }
-       }
-       return c_brush_maxFaces;
+std::size_t Winding_FindAdjacent(const Winding &winding, std::size_t face)
+{
+    for (std::size_t i = 0; i < winding.numpoints; ++i) {
+        ASSERT_MESSAGE(winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid");
+        if (winding[i].adjacent == face) {
+            return i;
+        }
+    }
+    return c_brush_maxFaces;
 }
 
-std::size_t Winding_Opposite( const Winding& winding, const std::size_t index, const std::size_t other ){
-       ASSERT_MESSAGE( index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range" );
+std::size_t Winding_Opposite(const Winding &winding, const std::size_t index, const std::size_t other)
+{
+    ASSERT_MESSAGE(index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range");
 
-       double dist_best = 0;
-       std::size_t index_best = c_brush_maxFaces;
+    double dist_best = 0;
+    std::size_t index_best = c_brush_maxFaces;
 
-       Ray edge( ray_for_points( winding[index].vertex, winding[other].vertex ) );
+    Ray edge(ray_for_points(winding[index].vertex, winding[other].vertex));
 
-       for ( std::size_t i = 0; i < winding.numpoints; ++i )
-       {
-               if ( i == index || i == other ) {
-                       continue;
-               }
+    for (std::size_t i = 0; i < winding.numpoints; ++i) {
+        if (i == index || i == other) {
+            continue;
+        }
 
-               double dist_squared = ray_squared_distance_to_point( edge, winding[i].vertex );
+        double dist_squared = ray_squared_distance_to_point(edge, winding[i].vertex);
 
-               if ( dist_squared > dist_best ) {
-                       dist_best = dist_squared;
-                       index_best = i;
-               }
-       }
-       return index_best;
+        if (dist_squared > dist_best) {
+            dist_best = dist_squared;
+            index_best = i;
+        }
+    }
+    return index_best;
 }
 
-std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){
-       return Winding_Opposite( winding, index, Winding_next( winding, index ) );
+std::size_t Winding_Opposite(const Winding &winding, const std::size_t index)
+{
+    return Winding_Opposite(winding, index, Winding_next(winding, index));
 }
 
 /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
-void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){
-       double area2 = 0, x_sum = 0, y_sum = 0;
-       const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() );
-       const indexremap_t remap = indexremap_for_projectionaxis( axis );
-       for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j )
-       {
-               const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
-               area2 += ai;
-               x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai;
-               y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai;
-       }
-
-       centroid[remap.x] = static_cast<float>( x_sum / ( 3 * area2 ) );
-       centroid[remap.y] = static_cast<float>( y_sum / ( 3 * area2 ) );
-       {
-               Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) );
-               ray.origin[remap.x] = centroid[remap.x];
-               ray.origin[remap.y] = centroid[remap.y];
-               ray.direction[remap.z] = 1;
-               centroid[remap.z] = static_cast<float>( ray_distance_to_plane( ray, plane ) );
-       }
+void Winding_Centroid(const Winding &winding, const Plane3 &plane, Vector3 &centroid)
+{
+    double area2 = 0, x_sum = 0, y_sum = 0;
+    const ProjectionAxis axis = projectionaxis_for_normal(plane.normal());
+    const indexremap_t remap = indexremap_for_projectionaxis(axis);
+    for (std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j) {
+        const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] -
+                          winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
+        area2 += ai;
+        x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai;
+        y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai;
+    }
+
+    centroid[remap.x] = static_cast<float>( x_sum / (3 * area2));
+    centroid[remap.y] = static_cast<float>( y_sum / (3 * area2));
+    {
+        Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0));
+        ray.origin[remap.x] = centroid[remap.x];
+        ray.origin[remap.y] = centroid[remap.y];
+        ray.direction[remap.z] = 1;
+        centroid[remap.z] = static_cast<float>( ray_distance_to_plane(ray, plane));
+    }
 }