]> git.xonotic.org Git - xonotic/netradiant.git/blobdiff - radiant/winding.cpp
uncrustify! now the code is only ugly on the *inside*
[xonotic/netradiant.git] / radiant / winding.cpp
index bba895013c7da78c00069c69a7c9a29d4a77f305..608451102c1eab8827889f7f3ff2395ffe764fab 100644 (file)
 /*
-Copyright (C) 1999-2006 Id Software, Inc. and contributors.
-For a list of contributors, see the accompanying CONTRIBUTORS file.
+   Copyright (C) 1999-2007 id Software, Inc. and contributors.
+   For a list of contributors, see the accompanying CONTRIBUTORS file.
 
-This file is part of GtkRadiant.
+   This file is part of GtkRadiant.
 
-GtkRadiant is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+   GtkRadiant is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2 of the License, or
+   (at your option) any later version.
 
-GtkRadiant is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+   GtkRadiant is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
 
-You should have received a copy of the GNU General Public License
-along with GtkRadiant; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
-*/
+   You should have received a copy of the GNU General Public License
+   along with GtkRadiant; if not, write to the Free Software
+   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ */
 
-#include "winding.h"
 
-#include <algorithm>
 
-#include "math/line.h"
+#include "stdafx.h"
+#include <assert.h>
+#include "winding.h"
 
+#define BOGUS_RANGE ( g_MaxWorldCoord + 1 )
 
-inline double plane3_distance_to_point(const Plane3& plane, const DoubleVector3& point)
-{
-  return vector3_dot(point, plane.normal()) - plane.dist();
-}
-
-inline double plane3_distance_to_point(const Plane3& plane, const Vector3& point)
-{
-  return vector3_dot(point, plane.normal()) - plane.dist();
+/*
+   =============
+   Plane_Equal
+   =============
+ */
+#define NORMAL_EPSILON  0.0001
+#define DIST_EPSILON    0.02
+
+int Plane_Equal( plane_t *a, plane_t *b, int flip ){
+       vec3_t normal;
+       float dist;
+
+       if ( flip ) {
+               normal[0] = -b->normal[0];
+               normal[1] = -b->normal[1];
+               normal[2] = -b->normal[2];
+               dist = -b->dist;
+       }
+       else {
+               normal[0] = b->normal[0];
+               normal[1] = b->normal[1];
+               normal[2] = b->normal[2];
+               dist = b->dist;
+       }
+       if (
+               fabs( a->normal[0] - normal[0] ) < NORMAL_EPSILON
+               && fabs( a->normal[1] - normal[1] ) < NORMAL_EPSILON
+               && fabs( a->normal[2] - normal[2] ) < NORMAL_EPSILON
+               && fabs( a->dist - dist ) < DIST_EPSILON ) {
+               return true;
+       }
+       return false;
 }
 
-/// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection.
-inline DoubleVector3 line_intersect_plane(const DoubleLine& line, const Plane3& plane)
-{
-  return line.origin + vector3_scaled(
-    line.direction,
-    -plane3_distance_to_point(plane, line.origin)
-    / vector3_dot(line.direction, plane.normal())
-  );
+/*
+   ============
+   Plane_FromPoints
+   ============
+ */
+int Plane_FromPoints( vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane ){
+       vec3_t v1, v2;
+
+       VectorSubtract( p2, p1, v1 );
+       VectorSubtract( p3, p1, v2 );
+       //CrossProduct(v2, v1, plane->normal);
+       CrossProduct( v1, v2, plane->normal );
+       if ( VectorNormalize( plane->normal, plane->normal ) < 0.1 ) {
+               return false;
+       }
+       plane->dist = DotProduct( p1, plane->normal );
+       return true;
 }
 
-inline bool float_is_largest_absolute(double axis, double other)
-{
-  return fabs(axis) > fabs(other);
+/*
+   =================
+   Point_Equal
+   =================
+ */
+int Point_Equal( vec3_t p1, vec3_t p2, float epsilon ){
+       int i;
+
+       for ( i = 0; i < 3; i++ )
+       {
+               if ( fabs( p1[i] - p2[i] ) > epsilon ) {
+                       return false;
+               }
+       }
+       return true;
 }
 
-/// \brief Returns the index of the component of \p v that has the largest absolute value.
-inline int vector3_largest_absolute_component_index(const DoubleVector3& v)
-{
-  return (float_is_largest_absolute(v[1], v[0]))
-    ? (float_is_largest_absolute(v[1], v[2]))
-      ? 1
-      : 2
-    : (float_is_largest_absolute(v[0], v[2]))
-      ? 0
-      : 2;
-}
 
-/// \brief Returns the infinite line that is the intersection of \p plane and \p other.
-inline DoubleLine plane3_intersect_plane3(const Plane3& plane, const Plane3& other)
-{
-  DoubleLine line;
-  line.direction = vector3_cross(plane.normal(), other.normal());
-  switch(vector3_largest_absolute_component_index(line.direction))
-  {
-  case 0:
-    line.origin.x() = 0;
-    line.origin.y() = (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x();
-    line.origin.z() = (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x();
-    break;
-  case 1:
-    line.origin.x() = (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y();
-    line.origin.y() = 0;
-    line.origin.z() = (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y();
-    break;
-  case 2:
-    line.origin.x() = (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z();
-    line.origin.y() = (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z();
-    line.origin.z() = 0;
-    break;
-  default:
-    break;
-  }
-
-  return line;
+/*
+   =================
+   Winding_BaseForPlane
+   =================
+ */
+//#define DBG_WNDG
+winding_t *Winding_BaseForPlane( plane_t *p ){
+       int i, x;
+       vec_t max, v;
+       vec3_t org, vright, vup;
+       winding_t   *w;
+
+       // find the major axis
+#ifdef DBG_WNDG
+       Sys_Printf( "Winding_BaseForPlane %p\n",p );
+#endif
+
+       max = -BOGUS_RANGE;
+       x = -1;
+       for ( i = 0 ; i < 3; i++ )
+       {
+               v = fabs( p->normal[i] );
+               if ( v > max ) {
+                       x = i;
+                       max = v;
+               }
+       }
+       if ( x == -1 ) {
+               Error( "Winding_BaseForPlane: no axis found" );
+       }
+
+       VectorCopy( vec3_origin, vup );
+       switch ( x )
+       {
+       case 0:
+       case 1:
+               vup[2] = 1;
+               break;
+       case 2:
+               vup[0] = 1;
+               break;
+       }
+
+
+       v = DotProduct( vup, p->normal );
+       VectorMA( vup, -v, p->normal, vup );
+       VectorNormalize( vup, vup );
+
+       VectorScale( p->normal, p->dist, org );
+
+       CrossProduct( vup, p->normal, vright );
+
+       VectorScale( vup, BOGUS_RANGE, vup );
+       VectorScale( vright, BOGUS_RANGE, vright );
+
+       // project a really big axis aligned box onto the plane
+       w = Winding_Alloc( 4 );
+
+       VectorSubtract( org, vright, w->points[0] );
+       VectorAdd( w->points[0], vup, w->points[0] );
+
+       VectorAdd( org, vright, w->points[1] );
+       VectorAdd( w->points[1], vup, w->points[1] );
+
+       VectorAdd( org, vright, w->points[2] );
+       VectorSubtract( w->points[2], vup, w->points[2] );
+
+       VectorSubtract( org, vright, w->points[3] );
+       VectorSubtract( w->points[3], vup, w->points[3] );
+
+       w->numpoints = 4;
+
+       return w;
 }
 
+// macro to compute winding size
+#define WINDING_SIZE( pt ) ( sizeof( int )*2 + sizeof( float )*5*( pt ) )
 
-/// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip.
-void Winding_createInfinite(FixedWinding& winding, const Plane3& plane, double infinity)
-{
-  double max = -infinity;
-  int x = -1;
-  for (int i=0 ; i<3; i++)
-  {
-    double d = fabs(plane.normal()[i]);
-    if (d > max)
-    {
-      x = i;
-      max = d;
-    }
-  }
-  if(x == -1)
-  {
-    globalErrorStream() << "invalid plane\n";
-    return;
-  }
-    
-  DoubleVector3 vup = g_vector3_identity;  
-  switch (x)
-  {
-  case 0:
-  case 1:
-    vup[2] = 1;
-    break;    
-  case 2:
-    vup[0] = 1;
-    break;    
-  }
-
-
-  vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal())));
-  vector3_normalise(vup);
-    
-  DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist());
-  
-  DoubleVector3 vright = vector3_cross(vup, plane.normal());
-  
-  vector3_scale(vup, infinity);
-  vector3_scale(vright, infinity);
-
-  // project a really big  axis aligned box onto the plane
-  
-  DoubleLine r1, r2, r3, r4;
-  r1.origin = vector3_added(vector3_subtracted(org, vright), vup);
-  r1.direction = vector3_normalised(vright);
-  winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces));
-  r2.origin = vector3_added(vector3_added(org, vright), vup);
-  r2.direction = vector3_normalised(vector3_negated(vup));
-  winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces));
-  r3.origin = vector3_subtracted(vector3_added(org, vright), vup);
-  r3.direction = vector3_normalised(vector3_negated(vright));
-  winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces));
-  r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup);
-  r4.direction = vector3_normalised(vup);
-  winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces));
+/*
+   ==================
+   Winding_Alloc
+   ==================
+ */
+winding_t *Winding_Alloc( int points ){
+       winding_t   *w;
+       int size;
+
+       if ( points > MAX_POINTS_ON_WINDING ) {
+               Error( "Winding_Alloc: %i points", points );
+       }
+
+//     size = (int)((winding_t *)0)->points[points];
+       size = WINDING_SIZE( points );
+       w = (winding_t*) malloc( size );
+       memset( w, 0, size );
+       w->maxpoints = points;
+
+       return w;
 }
 
+void Winding_Free( winding_t *w ){
+       free( w );
+}
 
-inline PlaneClassification Winding_ClassifyDistance(const double distance, const double epsilon)
-{
-  if(distance > epsilon)
-  {
-    return ePlaneFront;
-  }
-  if(distance < -epsilon)
-  {
-    return ePlaneBack;
-  }
-  return ePlaneOn;
+/*
+   ==================
+   Winding_Clone
+   ==================
+ */
+winding_t *Winding_Clone( winding_t *w ){
+       int size;
+       winding_t   *c;
+
+//     size = (int)((winding_t *)0)->points[w->numpoints];
+       size = WINDING_SIZE( w->numpoints );
+       c = (winding_t*)qmalloc( size );
+       memcpy( c, w, size );
+       return c;
 }
 
-/// \brief Returns true if
-/// !flipped && winding is completely BACK or ON
-/// or flipped && winding is completely FRONT or ON
-bool Winding_TestPlane(const Winding& winding, const Plane3& plane, bool flipped) 
-{
-  const int test = (flipped) ? ePlaneBack : ePlaneFront;
-  for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i)
-  {
-    if(test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON))
-    {
-      return false;
-    }
-  }
-  return true;
+/*
+   ==================
+   ReverseWinding
+   ==================
+ */
+winding_t *Winding_Reverse( winding_t *w ){
+       int i;
+       winding_t   *c;
+
+       c = Winding_Alloc( w->numpoints );
+       for ( i = 0; i < w->numpoints; i++ )
+       {
+               VectorCopy( w->points[w->numpoints - 1 - i], c->points[i] );
+       }
+       c->numpoints = w->numpoints;
+       return c;
 }
 
-/// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1
-bool Winding_PlanesConcave(const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2)
-{
-  return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false);
+/*
+   ==============
+   Winding_RemovePoint
+   ==============
+ */
+void Winding_RemovePoint( winding_t *w, int point ){
+       if ( point < 0 || point >= w->numpoints ) {
+               Error( "Winding_RemovePoint: point out of range" );
+       }
+
+       if ( point < w->numpoints - 1 ) {
+               memmove( &w->points[point], &w->points[point + 1], (size_t)( (winding_t *)0 )->points[w->numpoints - point - 1] );
+       }
+       w->numpoints--;
 }
 
-brushsplit_t Winding_ClassifyPlane(const Winding& winding, const Plane3& plane) 
-{
-  brushsplit_t split;
-  for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i)
-  {
-    ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)];
-  }
-  return split;
+/*
+   =============
+   Winding_InsertPoint
+   =============
+ */
+winding_t *Winding_InsertPoint( winding_t *w, vec3_t point, int spot ){
+       int i, j;
+       winding_t *neww;
+
+       if ( spot > w->numpoints ) {
+               Error( "Winding_InsertPoint: spot > w->numpoints" );
+       } //end if
+       if ( spot < 0 ) {
+               Error( "Winding_InsertPoint: spot < 0" );
+       } //end if
+       neww = Winding_Alloc( w->numpoints + 1 );
+       neww->numpoints = w->numpoints + 1;
+       for ( i = 0, j = 0; i < neww->numpoints; i++ )
+       {
+               if ( i == spot ) {
+                       VectorCopy( point, neww->points[i] );
+               }
+               else
+               {
+                       VectorCopy( w->points[j], neww->points[i] );
+                       j++;
+               }
+       }
+       return neww;
 }
 
+/*
+   ==============
+   Winding_IsTiny
+   ==============
+ */
+#define EDGE_LENGTH 0.2
+
+int Winding_IsTiny( winding_t *w ){
+       int i, j;
+       vec_t len;
+       vec3_t delta;
+       int edges;
+
+       edges = 0;
+       for ( i = 0 ; i < w->numpoints ; i++ )
+       {
+               j = i == w->numpoints - 1 ? 0 : i + 1;
+               VectorSubtract( w->points[j], w->points[i], delta );
+               len = VectorLength( delta );
+               if ( len > EDGE_LENGTH ) {
+                       if ( ++edges == 3 ) {
+                               return false;
+                       }
+               }
+       }
+       return true;
+}
 
-#define DEBUG_EPSILON ON_EPSILON
-const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON;
-
-#define WINDING_DEBUG 0
-
-/// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped.
-/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding.  
-/// If \p winding is completely in back of the plane, \p clipped will be empty.  
-/// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent.
-void Winding_Clip(const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped)
-{
-  PlaneClassification classification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON);
-  PlaneClassification nextClassification;
-  // for each edge
-  for(std::size_t next = 0, i = winding.size()-1; next != winding.size(); i = next, ++next, classification = nextClassification)
-  {
-    nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex), ON_EPSILON);
-    const FixedWindingVertex& vertex = winding[i];
-
-    // if first vertex of edge is ON
-    if(classification == ePlaneOn)
-    {
-      // append first vertex to output winding
-      if(nextClassification == ePlaneBack)
-      {
-        // this edge lies on the clip plane
-        clipped.push_back(FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent));
-      }
-      else
-      {
-        clipped.push_back(vertex);
-      }
-      continue;
-    }
-  
-    // if first vertex of edge is FRONT
-    if(classification == ePlaneFront)
-    {
-      // add first vertex to output winding
-      clipped.push_back(vertex);
-    }
-    // if second vertex of edge is ON
-    if(nextClassification == ePlaneOn)
-    {
-      continue;
-    }
-    // else if second vertex of edge is same as first
-    else if(nextClassification == classification)
-    {
-      continue;
-    }
-    // else if first vertex of edge is FRONT and there are only two edges
-    else if(classification == ePlaneFront && winding.size() == 2)
-    {
-      continue;
-    }
-    // else first vertex is FRONT and second is BACK or vice versa
-    else
-    {
-      // append intersection point of line and plane to output winding
-      DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane));
-
-      if(classification == ePlaneFront)
-      {
-        // this edge lies on the clip plane
-        clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent));
-      }
-      else
-      {
-        clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent));
-      }
-    }
-  }
+/*
+   ==============
+   Winding_IsHuge
+   ==============
+ */
+int Winding_IsHuge( winding_t *w ){
+       int i, j;
+
+       for ( i = 0 ; i < w->numpoints ; i++ )
+       {
+               for ( j = 0 ; j < 3 ; j++ )
+                       if ( w->points[i][j] < -BOGUS_RANGE + 1 || w->points[i][j] > BOGUS_RANGE - 1 ) {
+                               return true;
+                       }
+       }
+       return false;
 }
 
-std::size_t Winding_FindAdjacent(const Winding& winding, std::size_t face)
-{
-  for(std::size_t i=0; i<winding.numpoints; ++i)
-  {
-    ASSERT_MESSAGE(winding[i].adjacent != c_brush_maxFaces, "edge connectivity data is invalid");
-    if(winding[i].adjacent == face)
-    {
-      return i;
-    }
-  }
-  return c_brush_maxFaces;
+/*
+   =============
+   Winding_PlanesConcave
+   =============
+ */
+#define WCONVEX_EPSILON     0.2
+
+int Winding_PlanesConcave( winding_t *w1, winding_t *w2,
+                                                  vec3_t normal1, vec3_t normal2,
+                                                  float dist1, float dist2 ){
+       int i;
+
+       if ( !w1 || !w2 ) {
+               return false;
+       }
+
+       // check if one of the points of winding 1 is at the back of the plane of winding 2
+       for ( i = 0; i < w1->numpoints; i++ )
+       {
+               if ( DotProduct( normal2, w1->points[i] ) - dist2 > WCONVEX_EPSILON ) {
+                       return true;
+               }
+       }
+       // check if one of the points of winding 2 is at the back of the plane of winding 1
+       for ( i = 0; i < w2->numpoints; i++ )
+       {
+               if ( DotProduct( normal1, w2->points[i] ) - dist1 > WCONVEX_EPSILON ) {
+                       return true;
+               }
+       }
+
+       return false;
 }
 
-std::size_t Winding_Opposite(const Winding& winding, const std::size_t index, const std::size_t other)
-{
-  ASSERT_MESSAGE(index < winding.numpoints && other < winding.numpoints, "Winding_Opposite: index out of range");
+/*
+   ==================
+   Winding_Clip
+
+   Clips the winding to the plane, returning the new winding on the positive side
+   Frees the input winding.
+   If keepon is true, an exactly on-plane winding will be saved, otherwise
+   it will be clipped away.
+   ==================
+ */
+winding_t *Winding_Clip( winding_t *in, plane_t *split, qboolean keepon ){
+       vec_t dists[MAX_POINTS_ON_WINDING];
+       int sides[MAX_POINTS_ON_WINDING];
+       int counts[3];
+       vec_t dot;
+       int i, j;
+       vec_t   *p1, *p2;
+       vec3_t mid;
+       winding_t   *neww;
+       int maxpts;
+
+       counts[0] = counts[1] = counts[2] = 0;
+
+       // determine sides for each point
+       for ( i = 0 ; i < in->numpoints ; i++ )
+       {
+               dot = DotProduct( in->points[i], split->normal );
+               dot -= split->dist;
+               dists[i] = dot;
+               if ( dot > ON_EPSILON ) {
+                       sides[i] = SIDE_FRONT;
+               }
+               else if ( dot < -ON_EPSILON ) {
+                       sides[i] = SIDE_BACK;
+               }
+               else
+               {
+                       sides[i] = SIDE_ON;
+               }
+               counts[sides[i]]++;
+       }
+       sides[i] = sides[0];
+       dists[i] = dists[0];
+
+       if ( keepon && !counts[0] && !counts[1] ) {
+               return in;
+       }
+
+       if ( !counts[0] ) {
+               Winding_Free( in );
+               return NULL;
+       }
+       if ( !counts[1] ) {
+               return in;
+       }
+
+       maxpts = in->numpoints + 4;   // can't use counts[0]+2 because
+                                     // of fp grouping errors
+       neww = Winding_Alloc( maxpts );
+
+       for ( i = 0 ; i < in->numpoints ; i++ )
+       {
+               p1 = in->points[i];
+
+               if ( sides[i] == SIDE_ON ) {
+                       VectorCopy( p1, neww->points[neww->numpoints] );
+                       neww->numpoints++;
+                       continue;
+               }
+
+               if ( sides[i] == SIDE_FRONT ) {
+                       VectorCopy( p1, neww->points[neww->numpoints] );
+                       neww->numpoints++;
+               }
+
+               if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
+                       continue;
+               }
+
+               // generate a split point
+               p2 = in->points[( i + 1 ) % in->numpoints];
+
+               dot = dists[i] / ( dists[i] - dists[i + 1] );
+               for ( j = 0 ; j < 3 ; j++ )
+               {   // avoid round off error when possible
+                       if ( split->normal[j] == 1 ) {
+                               mid[j] = split->dist;
+                       }
+                       else if ( split->normal[j] == -1 ) {
+                               mid[j] = -split->dist;
+                       }
+                       else{
+                               mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
+                       }
+               }
+
+               VectorCopy( mid, neww->points[neww->numpoints] );
+               neww->numpoints++;
+       }
+
+       if ( neww->numpoints > maxpts ) {
+               Error( "Winding_Clip: points exceeded estimate" );
+       }
+
+       // free the original winding
+       Winding_Free( in );
+
+       return neww;
+}
 
-  double dist_best = 0;
-  std::size_t index_best = c_brush_maxFaces;
+/*
+   =============
+   Winding_SplitEpsilon
+
+   split the input winding with the plane
+   the input winding stays untouched
+   =============
+ */
+void Winding_SplitEpsilon( winding_t *in, vec3_t normal, double dist,
+                                                  vec_t epsilon, winding_t **front, winding_t **back ){
+       vec_t dists[MAX_POINTS_ON_WINDING + 4];
+       int sides[MAX_POINTS_ON_WINDING + 4];
+       int counts[3];
+       vec_t dot;
+       int i, j;
+       vec_t   *p1, *p2;
+       vec3_t mid;
+       winding_t   *f, *b;
+       int maxpts;
+
+       counts[0] = counts[1] = counts[2] = 0;
+
+       // determine sides for each point
+       for ( i = 0; i < in->numpoints; i++ )
+       {
+               dot = DotProduct( in->points[i], normal );
+               dot -= dist;
+               dists[i] = dot;
+               if ( dot > epsilon ) {
+                       sides[i] = SIDE_FRONT;
+               }
+               else if ( dot < -epsilon ) {
+                       sides[i] = SIDE_BACK;
+               }
+               else
+               {
+                       sides[i] = SIDE_ON;
+               }
+               counts[sides[i]]++;
+       }
+       sides[i] = sides[0];
+       dists[i] = dists[0];
+
+       *front = *back = NULL;
+
+       if ( !counts[0] ) {
+               *back = Winding_Clone( in );
+               return;
+       }
+       if ( !counts[1] ) {
+               *front = Winding_Clone( in );
+               return;
+       }
+
+       maxpts = in->numpoints + 4;   // cant use counts[0]+2 because
+                                     // of fp grouping errors
+
+       *front = f = Winding_Alloc( maxpts );
+       *back = b = Winding_Alloc( maxpts );
+
+       for ( i = 0; i < in->numpoints; i++ )
+       {
+               p1 = in->points[i];
+
+               if ( sides[i] == SIDE_ON ) {
+                       VectorCopy( p1, f->points[f->numpoints] );
+                       f->numpoints++;
+                       VectorCopy( p1, b->points[b->numpoints] );
+                       b->numpoints++;
+                       continue;
+               }
+
+               if ( sides[i] == SIDE_FRONT ) {
+                       VectorCopy( p1, f->points[f->numpoints] );
+                       f->numpoints++;
+               }
+               if ( sides[i] == SIDE_BACK ) {
+                       VectorCopy( p1, b->points[b->numpoints] );
+                       b->numpoints++;
+               }
+
+               if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
+                       continue;
+               }
+
+               // generate a split point
+               p2 = in->points[( i + 1 ) % in->numpoints];
+
+               dot = dists[i] / ( dists[i] - dists[i + 1] );
+               for ( j = 0; j < 3; j++ )
+               {
+                       // avoid round off error when possible
+                       if ( normal[j] == 1 ) {
+                               mid[j] = dist;
+                       }
+                       else if ( normal[j] == -1 ) {
+                               mid[j] = -dist;
+                       }
+                       else{
+                               mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
+                       }
+               }
+
+               VectorCopy( mid, f->points[f->numpoints] );
+               f->numpoints++;
+               VectorCopy( mid, b->points[b->numpoints] );
+               b->numpoints++;
+       }
+
+       if ( f->numpoints > maxpts || b->numpoints > maxpts ) {
+               Error( "Winding_Clip: points exceeded estimate" );
+       }
+       if ( f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING ) {
+               Error( "Winding_Clip: MAX_POINTS_ON_WINDING" );
+       }
+}
 
-  Ray edge(ray_for_points(winding[index].vertex, winding[other].vertex));
+/*
+   =============
+   Winding_TryMerge
+
+   If two windings share a common edge and the edges that meet at the
+   common points are both inside the other polygons, merge them
+
+   Returns NULL if the windings couldn't be merged, or the new winding.
+   The originals will NOT be freed.
+
+   if keep is true no points are ever removed
+   =============
+ */
+#define CONTINUOUS_EPSILON  0.005
+
+winding_t *Winding_TryMerge( winding_t *f1, winding_t *f2, vec3_t planenormal, int keep ){
+       vec_t       *p1, *p2, *p3, *p4, *back;
+       winding_t   *newf;
+       int i, j, k, l;
+       vec3_t normal, delta;
+       vec_t dot;
+       qboolean keep1, keep2;
+
+
+       //
+       // find a common edge
+       //
+       p1 = p2 = NULL; // stop compiler warning
+       j = 0;          //
+
+       for ( i = 0; i < f1->numpoints; i++ )
+       {
+               p1 = f1->points[i];
+               p2 = f1->points[( i + 1 ) % f1->numpoints];
+               for ( j = 0; j < f2->numpoints; j++ )
+               {
+                       p3 = f2->points[j];
+                       p4 = f2->points[( j + 1 ) % f2->numpoints];
+                       for ( k = 0; k < 3; k++ )
+                       {
+                               if ( fabs( p1[k] - p4[k] ) > 0.1 ) { //EQUAL_EPSILON) //ME
+                                       break;
+                               }
+                               if ( fabs( p2[k] - p3[k] ) > 0.1 ) { //EQUAL_EPSILON) //ME
+                                       break;
+                               }
+                       } //end for
+                       if ( k == 3 ) {
+                               break;
+                       }
+               } //end for
+               if ( j < f2->numpoints ) {
+                       break;
+               }
+       } //end for
+
+       if ( i == f1->numpoints ) {
+               return NULL;            // no matching edges
+
+       }
+       //
+       // check slope of connected lines
+       // if the slopes are colinear, the point can be removed
+       //
+       back = f1->points[( i + f1->numpoints - 1 ) % f1->numpoints];
+       VectorSubtract( p1, back, delta );
+       CrossProduct( planenormal, delta, normal );
+       VectorNormalize( normal, normal );
+
+       back = f2->points[( j + 2 ) % f2->numpoints];
+       VectorSubtract( back, p1, delta );
+       dot = DotProduct( delta, normal );
+       if ( dot > CONTINUOUS_EPSILON ) {
+               return NULL;            // not a convex polygon
+       }
+       keep1 = (qboolean)( dot < -CONTINUOUS_EPSILON );
+
+       back = f1->points[( i + 2 ) % f1->numpoints];
+       VectorSubtract( back, p2, delta );
+       CrossProduct( planenormal, delta, normal );
+       VectorNormalize( normal, normal );
+
+       back = f2->points[( j + f2->numpoints - 1 ) % f2->numpoints];
+       VectorSubtract( back, p2, delta );
+       dot = DotProduct( delta, normal );
+       if ( dot > CONTINUOUS_EPSILON ) {
+               return NULL;            // not a convex polygon
+       }
+       keep2 = (qboolean)( dot < -CONTINUOUS_EPSILON );
+
+       //
+       // build the new polygon
+       //
+       newf = Winding_Alloc( f1->numpoints + f2->numpoints );
+
+       // copy first polygon
+       for ( k = ( i + 1 ) % f1->numpoints ; k != i ; k = ( k + 1 ) % f1->numpoints )
+       {
+               if ( !keep && k == ( i + 1 ) % f1->numpoints && !keep2 ) {
+                       continue;
+               }
+
+               VectorCopy( f1->points[k], newf->points[newf->numpoints] );
+               newf->numpoints++;
+       }
+
+       // copy second polygon
+       for ( l = ( j + 1 ) % f2->numpoints ; l != j ; l = ( l + 1 ) % f2->numpoints )
+       {
+               if ( !keep && l == ( j + 1 ) % f2->numpoints && !keep1 ) {
+                       continue;
+               }
+               VectorCopy( f2->points[l], newf->points[newf->numpoints] );
+               newf->numpoints++;
+       }
+
+       return newf;
+}
 
-  for(std::size_t i=0; i<winding.numpoints; ++i)
-  {
-    if(i == index || i == other)
-    {
-      continue;
-    }
+/*
+   ============
+   Winding_Plane
+   ============
+ */
+void Winding_Plane( winding_t *w, vec3_t normal, double *dist ){
+       vec3_t v1, v2;
+       int i;
+
+       //find two vectors each longer than 0.5 units
+       for ( i = 0; i < w->numpoints; i++ )
+       {
+               VectorSubtract( w->points[( i + 1 ) % w->numpoints], w->points[i], v1 );
+               VectorSubtract( w->points[( i + 2 ) % w->numpoints], w->points[i], v2 );
+               if ( VectorLength( v1 ) > 0.5 && VectorLength( v2 ) > 0.5 ) {
+                       break;
+               }
+       }
+       CrossProduct( v2, v1, normal );
+       VectorNormalize( normal, normal );
+       *dist = DotProduct( w->points[0], normal );
+}
 
-    double dist_squared = ray_squared_distance_to_point(edge, winding[i].vertex);
+/*
+   =============
+   Winding_Area
+   =============
+ */
+float Winding_Area( winding_t *w ){
+       int i;
+       vec3_t d1, d2, cross;
+       float total;
+
+       total = 0;
+       for ( i = 2 ; i < w->numpoints ; i++ )
+       {
+               VectorSubtract( w->points[i - 1], w->points[0], d1 );
+               VectorSubtract( w->points[i], w->points[0], d2 );
+               CrossProduct( d1, d2, cross );
+               total += 0.5 * VectorLength( cross );
+       }
+       return total;
+}
 
-    if(dist_squared > dist_best)
-    {
-      dist_best = dist_squared;
-      index_best = i;
-    }
-  }
-  return index_best;
+/*
+   =============
+   Winding_Bounds
+   =============
+ */
+void Winding_Bounds( winding_t *w, vec3_t mins, vec3_t maxs ){
+       vec_t v;
+       int i,j;
+
+       mins[0] = mins[1] = mins[2] = 99999;
+       maxs[0] = maxs[1] = maxs[2] = -99999;
+
+       for ( i = 0 ; i < w->numpoints ; i++ )
+       {
+               for ( j = 0 ; j < 3 ; j++ )
+               {
+                       v = w->points[i][j];
+                       if ( v < mins[j] ) {
+                               mins[j] = v;
+                       }
+                       if ( v > maxs[j] ) {
+                               maxs[j] = v;
+                       }
+               }
+       }
 }
 
-std::size_t Winding_Opposite(const Winding& winding, const std::size_t index)
-{
-  return Winding_Opposite(winding, index, Winding_next(winding, index));
+
+/*
+   =================
+   Winding_PointInside
+   =================
+ */
+int Winding_PointInside( winding_t *w, plane_t *plane, vec3_t point, float epsilon ){
+       int i;
+       vec3_t dir, normal, pointvec;
+
+       for ( i = 0; i < w->numpoints; i++ )
+       {
+               VectorSubtract( w->points[( i + 1 ) % w->numpoints], w->points[i], dir );
+               VectorSubtract( point, w->points[i], pointvec );
+               //
+               CrossProduct( dir, plane->normal, normal );
+               //
+               if ( DotProduct( pointvec, normal ) < -epsilon ) {
+                       return false;
+               }
+       }
+       return true;
 }
 
-/// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane.
-void Winding_Centroid(const Winding& winding, const Plane3& plane, Vector3& centroid)
-{
-  double area2 = 0, x_sum = 0, y_sum = 0;
-  const ProjectionAxis axis = projectionaxis_for_normal(plane.normal());
-  const indexremap_t remap = indexremap_for_projectionaxis(axis);
-  for(std::size_t i = winding.numpoints-1, j = 0; j < winding.numpoints; i = j, ++j)
-  {
-    const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y];
-    area2 += ai;
-    x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai;
-    y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai;
-  }
-
-  centroid[remap.x] = static_cast<float>(x_sum / (3 * area2));
-  centroid[remap.y] = static_cast<float>(y_sum / (3 * area2));
-  {
-    Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0));
-    ray.origin[remap.x] = centroid[remap.x];
-    ray.origin[remap.y] = centroid[remap.y];
-    ray.direction[remap.z] = 1;
-    centroid[remap.z] = static_cast<float>(ray_distance_to_plane(ray, plane));
-  }
+/*
+   =================
+   Winding_VectorIntersect
+   =================
+ */
+int Winding_VectorIntersect( winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon ){
+       float front, back, frac;
+       vec3_t mid;
+
+       front = DotProduct( p1, plane->normal ) - plane->dist;
+       back = DotProduct( p2, plane->normal ) - plane->dist;
+       //if both points at the same side of the plane
+       if ( front < -epsilon && back < -epsilon ) {
+               return false;
+       }
+       if ( front > epsilon && back > epsilon ) {
+               return false;
+       }
+       //get point of intersection with winding plane
+       if ( fabs( front - back ) < 0.001 ) {
+               VectorCopy( p2, mid );
+       }
+       else
+       {
+               frac = front / ( front - back );
+               mid[0] = p1[0] + ( p2[0] - p1[0] ) * frac;
+               mid[1] = p1[1] + ( p2[1] - p1[1] ) * frac;
+               mid[2] = p1[2] + ( p2[2] - p1[2] ) * frac;
+       }
+       return Winding_PointInside( w, plane, mid, epsilon );
 }