#include "quakedef.h" #include "polygon.h" #include "portals.h" #define MAXRECURSIVEPORTALPLANES 1024 #define MAXRECURSIVEPORTALS 256 static tinyplane_t portalplanes[MAXRECURSIVEPORTALPLANES]; static int ranoutofportalplanes; static int ranoutofportals; static float portaltemppoints[2][256][3]; static float portaltemppoints2[256][3]; static int portal_markid = 0; static float boxpoints[4*3]; static int Portal_PortalThroughPortalPlanes(tinyplane_t *clipplanes, int clipnumplanes, float *targpoints, int targnumpoints, float *out, int maxpoints) { int numpoints = targnumpoints, i, w; if (numpoints < 1) return numpoints; if (maxpoints > 256) maxpoints = 256; w = 0; memcpy(&portaltemppoints[w][0][0], targpoints, numpoints * 3 * sizeof(float)); for (i = 0;i < clipnumplanes && numpoints > 0;i++) { PolygonF_Divide(numpoints, &portaltemppoints[w][0][0], clipplanes[i].normal[0], clipplanes[i].normal[1], clipplanes[i].normal[2], clipplanes[i].dist, 1.0f/32.0f, 256, &portaltemppoints[1-w][0][0], &numpoints, 0, NULL, NULL, NULL); w = 1-w; numpoints = min(numpoints, 256); } numpoints = min(numpoints, maxpoints); if (numpoints > 0) memcpy(out, &portaltemppoints[w][0][0], numpoints * 3 * sizeof(float)); return numpoints; } static int Portal_RecursiveFlowSearch (mleaf_t *leaf, vec3_t eye, int firstclipplane, int numclipplanes) { mportal_t *p; int newpoints, i, prev; vec3_t center, v1, v2; tinyplane_t *newplanes; if (leaf->portalmarkid == portal_markid) return true; // follow portals into other leafs for (p = leaf->portals;p;p = p->next) { // only flow through portals facing away from the viewer if (PlaneDiff(eye, (&p->plane)) < 0) { newpoints = Portal_PortalThroughPortalPlanes(&portalplanes[firstclipplane], numclipplanes, (float *) p->points, p->numpoints, &portaltemppoints2[0][0], 256); if (newpoints < 3) continue; else if (firstclipplane + numclipplanes + newpoints > MAXRECURSIVEPORTALPLANES) ranoutofportalplanes = true; else { // find the center by averaging VectorClear(center); for (i = 0;i < newpoints;i++) VectorAdd(center, portaltemppoints2[i], center); // ixtable is a 1.0f / N table VectorScale(center, ixtable[newpoints], center); // calculate the planes, and make sure the polygon can see it's own center newplanes = &portalplanes[firstclipplane + numclipplanes]; for (prev = newpoints - 1, i = 0;i < newpoints;prev = i, i++) { VectorSubtract(eye, portaltemppoints2[i], v1); VectorSubtract(portaltemppoints2[prev], portaltemppoints2[i], v2); CrossProduct(v1, v2, newplanes[i].normal); VectorNormalize(newplanes[i].normal); newplanes[i].dist = DotProduct(eye, newplanes[i].normal); if (DotProduct(newplanes[i].normal, center) <= newplanes[i].dist) { // polygon can't see it's own center, discard and use parent portal break; } } if (i == newpoints) { if (Portal_RecursiveFlowSearch(p->past, eye, firstclipplane + numclipplanes, newpoints)) return true; } else { if (Portal_RecursiveFlowSearch(p->past, eye, firstclipplane, numclipplanes)) return true; } } } } return false; } static void Portal_PolygonRecursiveMarkLeafs(mnode_t *node, float *polypoints, int numpoints) { int i, front; float *p; loc0: if (!node->plane) { ((mleaf_t *)node)->portalmarkid = portal_markid; return; } front = 0; for (i = 0, p = polypoints;i < numpoints;i++, p += 3) { if (DotProduct(p, node->plane->normal) > node->plane->dist) front++; } if (front > 0) { if (front == numpoints) { node = node->children[0]; goto loc0; } else Portal_PolygonRecursiveMarkLeafs(node->children[0], polypoints, numpoints); } node = node->children[1]; goto loc0; } int Portal_CheckPolygon(model_t *model, vec3_t eye, float *polypoints, int numpoints) { int i, prev, returnvalue; mleaf_t *eyeleaf; vec3_t center, v1, v2; // if there is no model, it can not block visibility if (model == NULL || !model->brush.PointInLeaf) return true; portal_markid++; Portal_PolygonRecursiveMarkLeafs(model->brush.data_nodes, polypoints, numpoints); eyeleaf = model->brush.PointInLeaf(model, eye); // find the center by averaging VectorClear(center); for (i = 0;i < numpoints;i++) VectorAdd(center, (&polypoints[i * 3]), center); // ixtable is a 1.0f / N table VectorScale(center, ixtable[numpoints], center); // calculate the planes, and make sure the polygon can see it's own center for (prev = numpoints - 1, i = 0;i < numpoints;prev = i, i++) { VectorSubtract(eye, (&polypoints[i * 3]), v1); VectorSubtract((&polypoints[prev * 3]), (&polypoints[i * 3]), v2); CrossProduct(v1, v2, portalplanes[i].normal); VectorNormalize(portalplanes[i].normal); portalplanes[i].dist = DotProduct(eye, portalplanes[i].normal); if (DotProduct(portalplanes[i].normal, center) <= portalplanes[i].dist) { // polygon can't see it's own center, discard return false; } } ranoutofportalplanes = false; ranoutofportals = false; returnvalue = Portal_RecursiveFlowSearch(eyeleaf, eye, 0, numpoints); if (ranoutofportalplanes) Con_Printf("Portal_RecursiveFlowSearch: ran out of %d plane stack when recursing through portals\n", MAXRECURSIVEPORTALPLANES); if (ranoutofportals) Con_Printf("Portal_RecursiveFlowSearch: ran out of %d portal stack when recursing through portals\n", MAXRECURSIVEPORTALS); return returnvalue; } #define Portal_MinsBoxPolygon(axis, axisvalue, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4) \ {\ if (eye[(axis)] < ((axisvalue) - 0.5f))\ {\ boxpoints[ 0] = x1;boxpoints[ 1] = y1;boxpoints[ 2] = z1;\ boxpoints[ 3] = x2;boxpoints[ 4] = y2;boxpoints[ 5] = z2;\ boxpoints[ 6] = x3;boxpoints[ 7] = y3;boxpoints[ 8] = z3;\ boxpoints[ 9] = x4;boxpoints[10] = y4;boxpoints[11] = z4;\ if (Portal_CheckPolygon(model, eye, boxpoints, 4))\ return true;\ }\ } #define Portal_MaxsBoxPolygon(axis, axisvalue, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4) \ {\ if (eye[(axis)] > ((axisvalue) + 0.5f))\ {\ boxpoints[ 0] = x1;boxpoints[ 1] = y1;boxpoints[ 2] = z1;\ boxpoints[ 3] = x2;boxpoints[ 4] = y2;boxpoints[ 5] = z2;\ boxpoints[ 6] = x3;boxpoints[ 7] = y3;boxpoints[ 8] = z3;\ boxpoints[ 9] = x4;boxpoints[10] = y4;boxpoints[11] = z4;\ if (Portal_CheckPolygon(model, eye, boxpoints, 4))\ return true;\ }\ } int Portal_CheckBox(model_t *model, vec3_t eye, vec3_t a, vec3_t b) { if (eye[0] >= (a[0] - 1.0f) && eye[0] < (b[0] + 1.0f) && eye[1] >= (a[1] - 1.0f) && eye[1] < (b[1] + 1.0f) && eye[2] >= (a[2] - 1.0f) && eye[2] < (b[2] + 1.0f)) return true; Portal_MinsBoxPolygon ( 0, a[0], a[0], a[1], a[2], a[0], b[1], a[2], a[0], b[1], b[2], a[0], a[1], b[2] ); Portal_MaxsBoxPolygon ( 0, b[0], b[0], b[1], a[2], b[0], a[1], a[2], b[0], a[1], b[2], b[0], b[1], b[2] ); Portal_MinsBoxPolygon ( 1, a[1], b[0], a[1], a[2], a[0], a[1], a[2], a[0], a[1], b[2], b[0], a[1], b[2] ); Portal_MaxsBoxPolygon ( 1, b[1], a[0], b[1], a[2], b[0], b[1], a[2], b[0], b[1], b[2], a[0], b[1], b[2] ); Portal_MinsBoxPolygon ( 2, a[2], a[0], a[1], a[2], b[0], a[1], a[2], b[0], b[1], a[2], a[0], b[1], a[2] ); Portal_MaxsBoxPolygon ( 2, b[2], b[0], a[1], b[2], a[0], a[1], b[2], a[0], b[1], b[2], b[0], b[1], b[2] ); return false; } typedef struct portalrecursioninfo_s { int exact; int numfrustumplanes; vec3_t boxmins; vec3_t boxmaxs; int numsurfaces; int *surfacelist; unsigned char *surfacepvs; int numleafs; unsigned char *visitingleafpvs; // used to prevent infinite loops int *leaflist; unsigned char *leafpvs; unsigned char *shadowtrispvs; unsigned char *lighttrispvs; model_t *model; vec3_t eye; float *updateleafsmins; float *updateleafsmaxs; } portalrecursioninfo_t; static void Portal_RecursiveFlow (portalrecursioninfo_t *info, mleaf_t *leaf, int firstclipplane, int numclipplanes) { mportal_t *p; int newpoints, i, prev; float dist; vec3_t center; tinyplane_t *newplanes; int leafindex = leaf - info->model->brush.data_leafs; if (CHECKPVSBIT(info->visitingleafpvs, leafindex)) return; // recursive loop of leafs (cmc.bsp for megatf coop) SETPVSBIT(info->visitingleafpvs, leafindex); for (i = 0;i < 3;i++) { if (info->updateleafsmins && info->updateleafsmins[i] > leaf->mins[i]) info->updateleafsmins[i] = leaf->mins[i]; if (info->updateleafsmaxs && info->updateleafsmaxs[i] < leaf->maxs[i]) info->updateleafsmaxs[i] = leaf->maxs[i]; } if (info->leafpvs) { if (!CHECKPVSBIT(info->leafpvs, leafindex)) { SETPVSBIT(info->leafpvs, leafindex); info->leaflist[info->numleafs++] = leafindex; } } // mark surfaces in leaf that can be seen through portal if (leaf->numleafsurfaces && info->surfacepvs) { for (i = 0;i < leaf->numleafsurfaces;i++) { int surfaceindex = leaf->firstleafsurface[i]; msurface_t *surface = info->model->data_surfaces + surfaceindex; if (BoxesOverlap(surface->mins, surface->maxs, info->boxmins, info->boxmaxs)) { qbool insidebox = BoxInsideBox(surface->mins, surface->maxs, info->boxmins, info->boxmaxs); qbool addedtris = false; int t, tend; const int *elements; const float *vertex3f; float v[9]; vertex3f = info->model->surfmesh.data_vertex3f; elements = (info->model->surfmesh.data_element3i + 3 * surface->num_firsttriangle); for (t = surface->num_firsttriangle, tend = t + surface->num_triangles;t < tend;t++, elements += 3) { VectorCopy(vertex3f + elements[0] * 3, v + 0); VectorCopy(vertex3f + elements[1] * 3, v + 3); VectorCopy(vertex3f + elements[2] * 3, v + 6); if (PointInfrontOfTriangle(info->eye, v + 0, v + 3, v + 6) && (insidebox || TriangleBBoxOverlapsBox(v, v + 3, v + 6, info->boxmins, info->boxmaxs)) && (!info->exact || Portal_PortalThroughPortalPlanes(&portalplanes[firstclipplane], numclipplanes, v, 3, &portaltemppoints2[0][0], 256) > 0)) { addedtris = true; if (info->shadowtrispvs) SETPVSBIT(info->shadowtrispvs, t); if (info->lighttrispvs) SETPVSBIT(info->lighttrispvs, t); } } if (addedtris && !CHECKPVSBIT(info->surfacepvs, surfaceindex)) { SETPVSBIT(info->surfacepvs, surfaceindex); info->surfacelist[info->numsurfaces++] = surfaceindex; } } } } // follow portals into other leafs for (p = leaf->portals;p;p = p->next) { // only flow through portals facing the viewer dist = PlaneDiff(info->eye, (&p->plane)); if (dist < 0 && BoxesOverlap(p->past->mins, p->past->maxs, info->boxmins, info->boxmaxs)) { newpoints = Portal_PortalThroughPortalPlanes(&portalplanes[firstclipplane], numclipplanes, (float *) p->points, p->numpoints, &portaltemppoints2[0][0], 256); if (newpoints < 3) continue; else if (firstclipplane + numclipplanes + newpoints > MAXRECURSIVEPORTALPLANES) ranoutofportalplanes = true; else { // find the center by averaging VectorClear(center); for (i = 0;i < newpoints;i++) VectorAdd(center, portaltemppoints2[i], center); // ixtable is a 1.0f / N table VectorScale(center, ixtable[newpoints], center); // calculate the planes, and make sure the polygon can see its own center newplanes = &portalplanes[firstclipplane + numclipplanes]; for (prev = newpoints - 1, i = 0;i < newpoints;prev = i, i++) { TriangleNormal(portaltemppoints2[prev], portaltemppoints2[i], info->eye, newplanes[i].normal); VectorNormalize(newplanes[i].normal); newplanes[i].dist = DotProduct(info->eye, newplanes[i].normal); if (DotProduct(newplanes[i].normal, center) <= newplanes[i].dist) { // polygon can't see its own center, discard and use parent portal break; } } if (i == newpoints) Portal_RecursiveFlow(info, p->past, firstclipplane + numclipplanes, newpoints); else Portal_RecursiveFlow(info, p->past, firstclipplane, numclipplanes); } } } CLEARPVSBIT(info->visitingleafpvs, leafindex); } static void Portal_RecursiveFindLeafForFlow(portalrecursioninfo_t *info, mnode_t *node) { if (node->plane) { float f = DotProduct(info->eye, node->plane->normal) - node->plane->dist; if (f > -0.1) Portal_RecursiveFindLeafForFlow(info, node->children[0]); if (f < 0.1) Portal_RecursiveFindLeafForFlow(info, node->children[1]); } else { mleaf_t *leaf = (mleaf_t *)node; if (leaf->clusterindex >= 0) Portal_RecursiveFlow(info, leaf, 0, info->numfrustumplanes); } } void Portal_Visibility(model_t *model, const vec3_t eye, int *leaflist, unsigned char *leafpvs, int *numleafspointer, int *surfacelist, unsigned char *surfacepvs, int *numsurfacespointer, const mplane_t *frustumplanes, int numfrustumplanes, int exact, const float *boxmins, const float *boxmaxs, float *updateleafsmins, float *updateleafsmaxs, unsigned char *shadowtrispvs, unsigned char *lighttrispvs, unsigned char *visitingleafpvs) { int i; portalrecursioninfo_t info; // if there is no model, it can not block visibility if (model == NULL) { Con_Print("Portal_Visibility: NULL model\n"); return; } if (!model->brush.data_nodes) { Con_Print("Portal_Visibility: not a brush model\n"); return; } // put frustum planes (if any) into tinyplane format at start of buffer for (i = 0;i < numfrustumplanes;i++) { VectorCopy(frustumplanes[i].normal, portalplanes[i].normal); portalplanes[i].dist = frustumplanes[i].dist; } ranoutofportalplanes = false; ranoutofportals = false; VectorCopy(boxmins, info.boxmins); VectorCopy(boxmaxs, info.boxmaxs); info.exact = exact; info.numsurfaces = 0; info.surfacelist = surfacelist; info.surfacepvs = surfacepvs; info.numleafs = 0; info.visitingleafpvs = visitingleafpvs; info.leaflist = leaflist; info.leafpvs = leafpvs; info.model = model; VectorCopy(eye, info.eye); info.numfrustumplanes = numfrustumplanes; info.updateleafsmins = updateleafsmins; info.updateleafsmaxs = updateleafsmaxs; info.shadowtrispvs = shadowtrispvs; info.lighttrispvs = lighttrispvs; Portal_RecursiveFindLeafForFlow(&info, model->brush.data_nodes); if (ranoutofportalplanes) Con_Printf("Portal_RecursiveFlow: ran out of %d plane stack when recursing through portals\n", MAXRECURSIVEPORTALPLANES); if (ranoutofportals) Con_Printf("Portal_RecursiveFlow: ran out of %d portal stack when recursing through portals\n", MAXRECURSIVEPORTALS); if (numsurfacespointer) *numsurfacespointer = info.numsurfaces; if (numleafspointer) *numleafspointer = info.numleafs; }