/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" #include "r_shadow.h" #include "portals.h" #include "csprogs.h" #include "image.h" cvar_t r_ambient = {CF_CLIENT, "r_ambient", "0", "brightens map, value is 0-128"}; cvar_t r_lockpvs = {CF_CLIENT, "r_lockpvs", "0", "disables pvs switching, allows you to walk around and inspect what is visible from a given location in the map (anything not visible from your current location will not be drawn)"}; cvar_t r_lockvisibility = {CF_CLIENT, "r_lockvisibility", "0", "disables visibility updates, allows you to walk around and inspect what is visible from a given viewpoint in the map (anything offscreen at the moment this is enabled will not be drawn)"}; cvar_t r_useportalculling = {CF_CLIENT, "r_useportalculling", "1", "improve framerate with r_novis 1 by using portal culling - still not as good as compiled visibility data in the map, but it helps (a value of 2 forces use of this even with vis data, which improves framerates in maps without too much complexity, but hurts in extremely complex maps, which is why 2 is not the default mode)"}; cvar_t r_usesurfaceculling = {CF_CLIENT, "r_usesurfaceculling", "1", "skip off-screen surfaces (1 = cull surfaces if the map is likely to benefit, 2 = always cull surfaces)"}; cvar_t r_vis_trace = {CF_CLIENT, "r_vis_trace", "0", "test if each portal or leaf is visible using tracelines"}; cvar_t r_vis_trace_samples = {CF_CLIENT, "r_vis_trace_samples", "1", "use this many randomly positioned tracelines each frame to refresh the visible timer"}; cvar_t r_vis_trace_delay = {CF_CLIENT, "r_vis_trace_delay", "1", "keep a portal visible for this many seconds"}; cvar_t r_vis_trace_eyejitter = {CF_CLIENT, "r_vis_trace_eyejitter", "8", "use a random offset of this much on the start of each traceline"}; cvar_t r_vis_trace_enlarge = {CF_CLIENT, "r_vis_trace_enlarge", "0", "make portal bounds bigger for tests by (1+this)*size"}; cvar_t r_vis_trace_expand = {CF_CLIENT, "r_vis_trace_expand", "0", "make portal bounds bigger for tests by this many units"}; cvar_t r_vis_trace_pad = {CF_CLIENT, "r_vis_trace_pad", "8", "accept traces that hit within this many units of the portal"}; cvar_t r_vis_trace_surfaces = {CF_CLIENT, "r_vis_trace_surfaces", "0", "also use tracelines to cull surfaces"}; cvar_t r_q3bsp_renderskydepth = {CF_CLIENT, "r_q3bsp_renderskydepth", "0", "draws sky depth masking in q3 maps (as in q1 maps), this means for example that sky polygons can hide other things"}; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface, int combine) { int smax, tmax, i, size, size3, maps, l; int *bl, scale; unsigned char *lightmap, *out, *stain; model_t *model = ent->model; int *intblocklights; unsigned char *templight; smax = (surface->lightmapinfo->extents[0]>>4)+1; tmax = (surface->lightmapinfo->extents[1]>>4)+1; size = smax*tmax; size3 = size*3; r_refdef.stats[r_stat_lightmapupdatepixels] += size; r_refdef.stats[r_stat_lightmapupdates]++; if (cl.buildlightmapmemorysize < size*sizeof(int[3])) { cl.buildlightmapmemorysize = size*sizeof(int[3]); if (cl.buildlightmapmemory) Mem_Free(cl.buildlightmapmemory); cl.buildlightmapmemory = (unsigned char *) Mem_Alloc(cls.levelmempool, cl.buildlightmapmemorysize); } // these both point at the same buffer, templight is only used for final // processing and can replace the intblocklights data as it goes intblocklights = (int *)cl.buildlightmapmemory; templight = (unsigned char *)cl.buildlightmapmemory; // update cached lighting info model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = false; lightmap = surface->lightmapinfo->samples; // set to full bright if no light data bl = intblocklights; if (!model->brushq1.lightdata) { for (i = 0;i < size3;i++) bl[i] = 128*256; } else { // clear to no light memset(bl, 0, size3*sizeof(*bl)); // add all the lightmaps if (lightmap) for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3) for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++) bl[i] += lightmap[i] * scale; } stain = surface->lightmapinfo->stainsamples; bl = intblocklights; out = templight; // the >> 16 shift adjusts down 8 bits to account for the stainmap // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will // be doubled during rendering to achieve 2x overbright // (0 = 0.0, 128 = 1.0, 256 = 2.0) if (stain) { for (i = 0;i < size;i++, bl += 3, stain += 3, out += 4) { l = (bl[0] * stain[0]) >> 16;out[2] = min(l, 255); l = (bl[1] * stain[1]) >> 16;out[1] = min(l, 255); l = (bl[2] * stain[2]) >> 16;out[0] = min(l, 255); out[3] = 255; } } else { for (i = 0;i < size;i++, bl += 3, out += 4) { l = bl[0] >> 8;out[2] = min(l, 255); l = bl[1] >> 8;out[1] = min(l, 255); l = bl[2] >> 8;out[0] = min(l, 255); out[3] = 255; } } if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D) Image_MakesRGBColorsFromLinear_Lightmap(templight, templight, size); R_UpdateTexture(surface->lightmaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1, combine); // update the surface's deluxemap if it has one if (surface->deluxemaptexture != r_texture_blanknormalmap) { vec3_t n; unsigned char *normalmap = surface->lightmapinfo->nmapsamples; lightmap = surface->lightmapinfo->samples; // clear to no normalmap bl = intblocklights; memset(bl, 0, size3*sizeof(*bl)); // add all the normalmaps if (lightmap && normalmap) { for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3, normalmap += size3) { for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size;i++) { // add the normalmap with weighting proportional to the style's lightmap intensity l = (int)(VectorLength(lightmap + i*3) * scale); bl[i*3+0] += ((int)normalmap[i*3+0] - 128) * l; bl[i*3+1] += ((int)normalmap[i*3+1] - 128) * l; bl[i*3+2] += ((int)normalmap[i*3+2] - 128) * l; } } } bl = intblocklights; out = templight; // we simply renormalize the weighted normals to get a valid deluxemap for (i = 0;i < size;i++, bl += 3, out += 4) { VectorCopy(bl, n); VectorNormalize(n); l = (int)(n[0] * 128 + 128);out[2] = bound(0, l, 255); l = (int)(n[1] * 128 + 128);out[1] = bound(0, l, 255); l = (int)(n[2] * 128 + 128);out[0] = bound(0, l, 255); out[3] = 255; } R_UpdateTexture(surface->deluxemaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1, r_q1bsp_lightmap_updates_combine.integer); } } static void R_StainNode (mnode_t *node, model_t *model, const vec3_t origin, float radius, const float fcolor[8]) { float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2; msurface_t *surface, *endsurface; int i, s, t, smax, tmax, smax3, impacts, impactt, stained; unsigned char *bl; vec3_t impact; maxdist = radius * radius; invradius = 1.0f / radius; loc0: if (!node->plane) return; ndist = PlaneDiff(origin, node->plane); if (ndist > radius) { node = node->children[0]; goto loc0; } if (ndist < -radius) { node = node->children[1]; goto loc0; } dist2 = ndist * ndist; maxdist3 = maxdist - dist2; if (node->plane->type < 3) { VectorCopy(origin, impact); impact[node->plane->type] -= ndist; } else { impact[0] = origin[0] - node->plane->normal[0] * ndist; impact[1] = origin[1] - node->plane->normal[1] * ndist; impact[2] = origin[2] - node->plane->normal[2] * ndist; } for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++) { if (surface->lightmapinfo->stainsamples) { smax = (surface->lightmapinfo->extents[0] >> 4) + 1; tmax = (surface->lightmapinfo->extents[1] >> 4) + 1; impacts = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]); impactt = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]); s = bound(0, impacts, smax * 16) - impacts; t = bound(0, impactt, tmax * 16) - impactt; i = (int)(s * s + t * t + dist2); if ((i > maxdist) || (smax > (int)(sizeof(sdtable)/sizeof(sdtable[0])))) // smax overflow fix from Andreas Dehmel continue; // reduce calculations for (s = 0, i = impacts; s < smax; s++, i -= 16) sdtable[s] = i * i + dist2; bl = surface->lightmapinfo->stainsamples; smax3 = smax * 3; stained = false; i = impactt; for (t = 0;t < tmax;t++, i -= 16) { td = i * i; // make sure some part of it is visible on this line if (td < maxdist3) { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { ratio = lhrandom(0.0f, 1.0f); a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius); if (a >= (1.0f / 64.0f)) { if (a > 1) a = 1; bl[0] = (unsigned char) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0])); bl[1] = (unsigned char) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1])); bl[2] = (unsigned char) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2])); stained = true; } } bl += 3; } } else // skip line bl += smax3; } // force lightmap upload if (stained) model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = true; } } if (node->children[0]->plane) { if (node->children[1]->plane) { R_StainNode(node->children[0], model, origin, radius, fcolor); node = node->children[1]; goto loc0; } else { node = node->children[0]; goto loc0; } } else if (node->children[1]->plane) { node = node->children[1]; goto loc0; } } void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { int n; float fcolor[8]; entity_render_t *ent; model_t *model; vec3_t org; if (r_refdef.scene.worldmodel == NULL || !r_refdef.scene.worldmodel->brush.data_nodes || !r_refdef.scene.worldmodel->brushq1.lightdata) return; fcolor[0] = cr1; fcolor[1] = cg1; fcolor[2] = cb1; fcolor[3] = ca1 * (1.0f / 64.0f); fcolor[4] = cr2 - cr1; fcolor[5] = cg2 - cg1; fcolor[6] = cb2 - cb1; fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f); R_StainNode(r_refdef.scene.worldmodel->brush.data_nodes + r_refdef.scene.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.scene.worldmodel, origin, radius, fcolor); // look for embedded bmodels for (n = 0;n < cl.num_brushmodel_entities;n++) { ent = &cl.entities[cl.brushmodel_entities[n]].render; model = ent->model; if (model && model->name[0] == '*') { if (model->brush.data_nodes) { Matrix4x4_Transform(&ent->inversematrix, origin, org); R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor); } } } } /* ============================================================= BRUSH MODELS ============================================================= */ static void R_DrawPortal_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { // due to the hacky nature of this function's parameters, this is never // called with a batch, so numsurfaces is always 1, and the surfacelist // contains only a leaf number for coloring purposes const mportal_t *portal = (mportal_t *)ent; qbool isvis; int i, numpoints; float *v; float vertex3f[POLYGONELEMENTS_MAXPOINTS*3]; CHECKGLERROR GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthRange(0, 1); GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset); GL_DepthTest(true); GL_CullFace(GL_NONE); R_EntityMatrix(&identitymatrix); numpoints = min(portal->numpoints, POLYGONELEMENTS_MAXPOINTS); // R_Mesh_ResetTextureState(); isvis = (portal->here->clusterindex >= 0 && portal->past->clusterindex >= 0 && portal->here->clusterindex != portal->past->clusterindex); i = surfacelist[0] >> 1; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale, ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale, ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale, isvis ? 0.125f : 0.03125f); for (i = 0, v = vertex3f;i < numpoints;i++, v += 3) VectorCopy(portal->points[i].position, v); R_Mesh_PrepareVertices_Generic_Arrays(numpoints, vertex3f, NULL, NULL); R_SetupShader_Generic_NoTexture(false, false); R_Mesh_Draw(0, numpoints, 0, numpoints - 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); } // LadyHavoc: this is just a nice debugging tool, very slow void R_DrawPortals(void) { int i, leafnum; mportal_t *portal; float center[3], f; model_t *model = r_refdef.scene.worldmodel; if (model == NULL) return; for (leafnum = 0;leafnum < model->brush.num_leafs;leafnum++) { if (r_refdef.viewcache.world_leafvisible[leafnum]) { //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++) for (portal = model->brush.data_leafs[leafnum].portals;portal;portal = portal->next) { if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS) if (!R_CullFrustum(portal->mins, portal->maxs)) { VectorClear(center); for (i = 0;i < portal->numpoints;i++) VectorAdd(center, portal->points[i].position, center); f = ixtable[portal->numpoints]; VectorScale(center, f, center); R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawPortal_Callback, (entity_render_t *)portal, leafnum, rsurface.rtlight); } } } } } static void R_View_WorldVisibility_CullSurfaces(void) { int surfaceindex; unsigned char *surfacevisible; msurface_t *surfaces; model_t *model = r_refdef.scene.worldmodel; if (!model) return; if (r_trippy.integer) return; if (r_usesurfaceculling.integer < 1) return; surfaces = model->data_surfaces; surfacevisible = r_refdef.viewcache.world_surfacevisible; for (surfaceindex = model->submodelsurfaces_start; surfaceindex < model->submodelsurfaces_end; surfaceindex++) { if (surfacevisible[surfaceindex]) { if (R_CullFrustum(surfaces[surfaceindex].mins, surfaces[surfaceindex].maxs) || (r_vis_trace_surfaces.integer && !R_CanSeeBox(r_vis_trace_samples.integer, r_vis_trace_eyejitter.value, r_vis_trace_enlarge.value, r_vis_trace_expand.value, r_vis_trace_pad.value, r_refdef.view.origin, surfaces[surfaceindex].mins, surfaces[surfaceindex].maxs))) surfacevisible[surfaceindex] = 0; } } } void R_View_WorldVisibility(qbool forcenovis) { int i, j, *mark; mleaf_t *leaf; mleaf_t *viewleaf; model_t *model = r_refdef.scene.worldmodel; if (!model) return; if (r_lockvisibility.integer) return; // clear the visible surface and leaf flags arrays memset(r_refdef.viewcache.world_surfacevisible, 0, model->num_surfaces); if(!r_lockpvs.integer) memset(r_refdef.viewcache.world_leafvisible, 0, model->brush.num_leafs); r_refdef.viewcache.world_novis = false; if (r_refdef.view.usecustompvs) { // simply cull each marked leaf to the frustum (view pyramid) for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullFrustum(leaf->mins, leaf->maxs)) { r_refdef.stats[r_stat_world_leafs]++; r_refdef.viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_refdef.viewcache.world_surfacevisible[*mark] = true; } } } else { // if possible find the leaf the view origin is in viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_refdef.view.origin) : NULL; // if possible fetch the visible cluster bits if (!r_lockpvs.integer && model->brush.FatPVS) model->brush.FatPVS(model, r_refdef.view.origin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false); // if floating around in the void (no pvs data available, and no // portals available), simply use all on-screen leafs. if (!viewleaf || viewleaf->clusterindex < 0 || forcenovis || !r_refdef.view.usevieworiginculling) { // no visibility method: (used when floating around in the void) // simply cull each leaf to the frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses r_refdef.viewcache.world_novis = true; for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { if (leaf->clusterindex < 0) continue; // if leaf is in current pvs and on the screen, mark its surfaces if (!R_CullFrustum(leaf->mins, leaf->maxs)) { r_refdef.stats[r_stat_world_leafs]++; r_refdef.viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_refdef.viewcache.world_surfacevisible[*mark] = true; } } } // just check if each leaf in the PVS is on screen // (unless portal culling is enabled) else if (!model->brush.data_portals || r_useportalculling.integer < 1 || (r_useportalculling.integer < 2 && !r_novis.integer)) { // pvs method: // simply check if each leaf is in the Potentially Visible Set, // and cull to frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { if (leaf->clusterindex < 0) continue; // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullFrustum(leaf->mins, leaf->maxs)) { r_refdef.stats[r_stat_world_leafs]++; r_refdef.viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_refdef.viewcache.world_surfacevisible[*mark] = true; } } } // if desired use a recursive portal flow, culling each portal to // frustum and checking if the leaf the portal leads to is in the pvs else { int leafstackpos; mportal_t *p; mleaf_t *leafstack[8192]; vec3_t cullmins, cullmaxs; float cullbias = r_nearclip.value * 2.0f; // the nearclip plane can easily end up culling portals in certain perfectly-aligned views, causing view blackouts // simple-frustum portal method: // follows portals leading outward from viewleaf, does not venture // offscreen or into leafs that are not visible, faster than // Quake's RecursiveWorldNode and vastly better in unvised maps, // often culls some surfaces that pvs alone would miss // (such as a room in pvs that is hidden behind a wall, but the // passage leading to the room is off-screen) leafstack[0] = viewleaf; leafstackpos = 1; while (leafstackpos) { leaf = leafstack[--leafstackpos]; if (r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs]) continue; if (leaf->clusterindex < 0) continue; r_refdef.stats[r_stat_world_leafs]++; r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs] = true; // mark any surfaces bounding this leaf if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_refdef.viewcache.world_surfacevisible[*mark] = true; // follow portals into other leafs // the checks are: // the leaf has not been visited yet // and the leaf is visible in the pvs // the portal polygon's bounding box is on the screen for (p = leaf->portals;p;p = p->next) { r_refdef.stats[r_stat_world_portals]++; if (r_refdef.viewcache.world_leafvisible[p->past - model->brush.data_leafs]) continue; if (!CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, p->past->clusterindex)) continue; cullmins[0] = p->mins[0] - cullbias; cullmins[1] = p->mins[1] - cullbias; cullmins[2] = p->mins[2] - cullbias; cullmaxs[0] = p->maxs[0] + cullbias; cullmaxs[1] = p->maxs[1] + cullbias; cullmaxs[2] = p->maxs[2] + cullbias; if (R_CullFrustum(cullmins, cullmaxs)) continue; if (r_vis_trace.integer) { if (p->tracetime != host.realtime && R_CanSeeBox(r_vis_trace_samples.value, r_vis_trace_eyejitter.value, r_vis_trace_enlarge.value, r_vis_trace_expand.value, r_vis_trace_pad.value, r_refdef.view.origin, cullmins, cullmaxs)) p->tracetime = host.realtime; if (host.realtime - p->tracetime > r_vis_trace_delay.value) continue; } if (leafstackpos >= (int)(sizeof(leafstack) / sizeof(leafstack[0]))) break; leafstack[leafstackpos++] = p->past; } } } } // Cull the rest R_View_WorldVisibility_CullSurfaces(); } void R_Mod_DrawSky(entity_render_t *ent) { if (ent->model == NULL) return; R_DrawModelSurfaces(ent, true, true, false, false, false, false); } void R_Mod_DrawAddWaterPlanes(entity_render_t *ent) { int i, n, flagsmask; model_t *model = ent->model; msurface_t *surfaces; if (model == NULL) return; RSurf_ActiveModelEntity(ent, true, false, false); surfaces = model->data_surfaces; flagsmask = MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA; // add visible surfaces to draw list if (ent == r_refdef.scene.worldentity) { for (i = model->submodelsurfaces_start;i < model->submodelsurfaces_end;i++) if (r_refdef.viewcache.world_surfacevisible[i]) if (surfaces[i].texture->basematerialflags & flagsmask) R_Water_AddWaterPlane(surfaces + i, 0); } else { if(ent->entitynumber >= MAX_EDICTS) // && CL_VM_TransformView(ent->entitynumber - MAX_EDICTS, NULL, NULL, NULL)) n = ent->entitynumber; else n = 0; for (i = model->submodelsurfaces_start;i < model->submodelsurfaces_end;i++) if (surfaces[i].texture->basematerialflags & flagsmask) R_Water_AddWaterPlane(surfaces + i, n); } rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity } void R_Mod_Draw(entity_render_t *ent) { model_t *model = ent->model; if (model == NULL) return; R_DrawModelSurfaces(ent, false, true, false, false, false, false); } void R_Mod_DrawDepth(entity_render_t *ent) { model_t *model = ent->model; if (model == NULL || model->surfmesh.isanimated) return; GL_ColorMask(0,0,0,0); GL_Color(1,1,1,1); GL_DepthTest(true); GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); // R_Mesh_ResetTextureState(); R_DrawModelSurfaces(ent, false, false, true, false, false, false); GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1); } void R_Mod_DrawDebug(entity_render_t *ent) { if (ent->model == NULL) return; R_DrawModelSurfaces(ent, false, false, false, true, false, false); } void R_Mod_DrawPrepass(entity_render_t *ent) { model_t *model = ent->model; if (model == NULL) return; R_DrawModelSurfaces(ent, false, true, false, false, true, false); } typedef struct r_q1bsp_getlightinfo_s { model_t *model; vec3_t relativelightorigin; float lightradius; int *outleaflist; unsigned char *outleafpvs; int outnumleafs; unsigned char *visitingleafpvs; int *outsurfacelist; unsigned char *outsurfacepvs; unsigned char *tempsurfacepvs; unsigned char *outshadowtrispvs; unsigned char *outlighttrispvs; int outnumsurfaces; vec3_t outmins; vec3_t outmaxs; vec3_t lightmins; vec3_t lightmaxs; const unsigned char *pvs; qbool svbsp_active; qbool svbsp_insertoccluder; qbool noocclusion; // avoids PVS culling qbool frontsidecasting; // casts shadows from surfaces facing the light (otherwise ones facing away) int numfrustumplanes; const mplane_t *frustumplanes; } r_q1bsp_getlightinfo_t; #define GETLIGHTINFO_MAXNODESTACK 4096 static void R_Q1BSP_RecursiveGetLightInfo_BSP(r_q1bsp_getlightinfo_t *info, qbool skipsurfaces) { // nodestack mnode_t *nodestack[GETLIGHTINFO_MAXNODESTACK]; int nodestackpos = 0; // node processing mplane_t *plane; mnode_t *node; int sides; // leaf processing mleaf_t *leaf; const msurface_t *surface; const msurface_t *surfaces = info->model->data_surfaces; int numleafsurfaces; int leafsurfaceindex; int surfaceindex; int triangleindex, t; int currentmaterialflags; qbool castshadow; const int *e; const vec_t *v[3]; float v2[3][3]; qbool insidebox; qbool noocclusion = info->noocclusion; qbool frontsidecasting = info->frontsidecasting; qbool svbspactive = info->svbsp_active; qbool svbspinsertoccluder = info->svbsp_insertoccluder; const int *leafsurfaceindices; qbool addedtris; int i; mportal_t *portal; static float points[128][3]; // push the root node onto our nodestack nodestack[nodestackpos++] = info->model->brush.data_nodes; // we'll be done when the nodestack is empty while (nodestackpos) { // get a node from the stack to process node = nodestack[--nodestackpos]; // is it a node or a leaf? plane = node->plane; if (plane) { // node #if 0 if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs)) continue; #endif #if 0 if (!r_shadow_compilingrtlight && R_CullBox(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes)) continue; #endif // axial planes can be processed much more quickly if (plane->type < 3) { // axial plane if (info->lightmins[plane->type] > plane->dist) nodestack[nodestackpos++] = node->children[0]; else if (info->lightmaxs[plane->type] < plane->dist) nodestack[nodestackpos++] = node->children[1]; else { // recurse front side first because the svbsp building prefers it if (info->relativelightorigin[plane->type] >= plane->dist) { if (nodestackpos < GETLIGHTINFO_MAXNODESTACK-1) nodestack[nodestackpos++] = node->children[0]; nodestack[nodestackpos++] = node->children[1]; } else { if (nodestackpos < GETLIGHTINFO_MAXNODESTACK-1) nodestack[nodestackpos++] = node->children[1]; nodestack[nodestackpos++] = node->children[0]; } } } else { // sloped plane sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, plane); switch (sides) { default: continue; // ERROR: NAN bounding box! case 1: nodestack[nodestackpos++] = node->children[0]; break; case 2: nodestack[nodestackpos++] = node->children[1]; break; case 3: // recurse front side first because the svbsp building prefers it if (PlaneDist(info->relativelightorigin, plane) >= 0) { if (nodestackpos < GETLIGHTINFO_MAXNODESTACK-1) nodestack[nodestackpos++] = node->children[0]; nodestack[nodestackpos++] = node->children[1]; } else { if (nodestackpos < GETLIGHTINFO_MAXNODESTACK-1) nodestack[nodestackpos++] = node->children[1]; nodestack[nodestackpos++] = node->children[0]; } break; } } } else { // leaf leaf = (mleaf_t *)node; #if 1 if (!info->noocclusion && info->pvs != NULL && !CHECKPVSBIT(info->pvs, leaf->clusterindex)) continue; #endif #if 1 if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs)) continue; #endif #if 1 if (!r_shadow_compilingrtlight && R_CullBox(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes)) continue; #endif if (svbspactive) { // we can occlusion test the leaf by checking if all of its portals // are occluded (unless the light is in this leaf - but that was // already handled by the caller) for (portal = leaf->portals;portal;portal = portal->next) { for (i = 0;i < portal->numpoints;i++) VectorCopy(portal->points[i].position, points[i]); if (SVBSP_AddPolygon(&r_svbsp, portal->numpoints, points[0], false, NULL, NULL, 0) & 2) break; } if (leaf->portals && portal == NULL) continue; // no portals of this leaf visible } // add this leaf to the reduced light bounds info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); // mark this leaf as being visible to the light if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } // when using BIH, we skip the surfaces here if (skipsurfaces) continue; // iterate the surfaces linked by this leaf and check their triangles leafsurfaceindices = leaf->firstleafsurface; numleafsurfaces = leaf->numleafsurfaces; if (svbspinsertoccluder) { for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++) { surfaceindex = leafsurfaceindices[leafsurfaceindex]; if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) continue; SETPVSBIT(info->outsurfacepvs, surfaceindex); surface = surfaces + surfaceindex; if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs)) continue; currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags; castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW); if (!castshadow) continue; insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs); for (triangleindex = 0, t = surface->num_firsttriangle, e = info->model->surfmesh.data_element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = info->model->surfmesh.data_vertex3f + e[0] * 3; v[1] = info->model->surfmesh.data_vertex3f + e[1] * 3; v[2] = info->model->surfmesh.data_vertex3f + e[2] * 3; VectorCopy(v[0], v2[0]); VectorCopy(v[1], v2[1]); VectorCopy(v[2], v2[2]); if (insidebox || TriangleBBoxOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs)) SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0); } } } else { for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++) { surfaceindex = leafsurfaceindices[leafsurfaceindex]; surface = surfaces + surfaceindex; if(!surface->texture) continue; if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) continue; SETPVSBIT(info->outsurfacepvs, surfaceindex); if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs)) continue; addedtris = false; currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags; castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW); insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs); for (triangleindex = 0, t = surface->num_firsttriangle, e = info->model->surfmesh.data_element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = info->model->surfmesh.data_vertex3f + e[0] * 3; v[1] = info->model->surfmesh.data_vertex3f + e[1] * 3; v[2] = info->model->surfmesh.data_vertex3f + e[2] * 3; VectorCopy(v[0], v2[0]); VectorCopy(v[1], v2[1]); VectorCopy(v[2], v2[2]); if (!insidebox && !TriangleBBoxOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs)) continue; if (svbspactive && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2)) continue; // we don't omit triangles from lighting even if they are // backfacing, because when using shadowmapping they are often // not fully occluded on the horizon of an edge SETPVSBIT(info->outlighttrispvs, t); addedtris = true; if (castshadow) { if (noocclusion || (currentmaterialflags & MATERIALFLAG_NOCULLFACE)) { // if the material is double sided we // can't cull by direction SETPVSBIT(info->outshadowtrispvs, t); } else if (frontsidecasting) { // front side casting occludes backfaces, // so they are completely useless as both // casters and lit polygons if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2])) SETPVSBIT(info->outshadowtrispvs, t); } else { // back side casting does not occlude // anything so we can't cull lit polygons if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2])) SETPVSBIT(info->outshadowtrispvs, t); } } } if (addedtris) info->outsurfacelist[info->outnumsurfaces++] = surfaceindex; } } } } } static void R_Q1BSP_RecursiveGetLightInfo_BIH(r_q1bsp_getlightinfo_t *info, const bih_t *bih) { bih_leaf_t *leaf; bih_node_t *node; int nodenum; int axis; int surfaceindex; int t; int nodeleafindex; int currentmaterialflags; qbool castshadow; qbool noocclusion = info->noocclusion; qbool frontsidecasting = info->frontsidecasting; msurface_t *surface; const int *e; const vec_t *v[3]; float v2[3][3]; int nodestack[GETLIGHTINFO_MAXNODESTACK]; int nodestackpos = 0; // note: because the BSP leafs are not in the BIH tree, the _BSP function // must be called to mark leafs visible for entity culling... // we start at the root node nodestack[nodestackpos++] = bih->rootnode; // we'll be done when the stack is empty while (nodestackpos) { // pop one off the stack to process nodenum = nodestack[--nodestackpos]; // node node = bih->nodes + nodenum; if (node->type == BIH_UNORDERED) { for (nodeleafindex = 0;nodeleafindex < BIH_MAXUNORDEREDCHILDREN && node->children[nodeleafindex] >= 0;nodeleafindex++) { leaf = bih->leafs + node->children[nodeleafindex]; if (leaf->type != BIH_RENDERTRIANGLE) continue; #if 1 if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs)) continue; #endif #if 1 if (!r_shadow_compilingrtlight && R_CullBox(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes)) continue; #endif surfaceindex = leaf->surfaceindex; surface = info->model->data_surfaces + surfaceindex; currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags; castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW); t = leaf->itemindex; e = info->model->surfmesh.data_element3i + t * 3; v[0] = info->model->surfmesh.data_vertex3f + e[0] * 3; v[1] = info->model->surfmesh.data_vertex3f + e[1] * 3; v[2] = info->model->surfmesh.data_vertex3f + e[2] * 3; VectorCopy(v[0], v2[0]); VectorCopy(v[1], v2[1]); VectorCopy(v[2], v2[2]); if (info->svbsp_insertoccluder) { if (castshadow) SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0); continue; } if (info->svbsp_active && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2)) continue; // we don't occlude triangles from lighting even // if they are backfacing, because when using // shadowmapping they are often not fully occluded // on the horizon of an edge SETPVSBIT(info->outlighttrispvs, t); if (castshadow) { if (noocclusion || (currentmaterialflags & MATERIALFLAG_NOCULLFACE)) { // if the material is double sided we // can't cull by direction SETPVSBIT(info->outshadowtrispvs, t); } else if (frontsidecasting) { // front side casting occludes backfaces, // so they are completely useless as both // casters and lit polygons if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2])) SETPVSBIT(info->outshadowtrispvs, t); } else { // back side casting does not occlude // anything so we can't cull lit polygons if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2])) SETPVSBIT(info->outshadowtrispvs, t); } } if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) { SETPVSBIT(info->outsurfacepvs, surfaceindex); info->outsurfacelist[info->outnumsurfaces++] = surfaceindex; } } } else { axis = node->type - BIH_SPLITX; #if 0 if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs)) continue; #endif #if 0 if (!r_shadow_compilingrtlight && R_CullBox(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes)) continue; #endif if (info->lightmins[axis] <= node->backmax) { if (info->lightmaxs[axis] >= node->frontmin && nodestackpos < GETLIGHTINFO_MAXNODESTACK-1) nodestack[nodestackpos++] = node->front; nodestack[nodestackpos++] = node->back; continue; } else if (info->lightmaxs[axis] >= node->frontmin) { nodestack[nodestackpos++] = node->front; continue; } else continue; // light falls between children, nothing here } } } static void R_Q1BSP_CallRecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, qbool use_svbsp) { extern cvar_t r_shadow_usebihculling; if (use_svbsp) { float origin[3]; VectorCopy(info->relativelightorigin, origin); r_svbsp.maxnodes = max(r_svbsp.maxnodes, 1<<12); r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t)); info->svbsp_active = true; info->svbsp_insertoccluder = true; for (;;) { SVBSP_Init(&r_svbsp, origin, r_svbsp.maxnodes, r_svbsp.nodes); R_Q1BSP_RecursiveGetLightInfo_BSP(info, false); // if that failed, retry with more nodes if (r_svbsp.ranoutofnodes) { // an upper limit is imposed if (r_svbsp.maxnodes >= 2<<22) break; r_svbsp.maxnodes *= 2; r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t)); //Mem_Free(r_svbsp.nodes); //r_svbsp.nodes = (svbsp_node_t*) Mem_Alloc(tempmempool, r_svbsp.maxnodes * sizeof(svbsp_node_t)); } else break; } // now clear the visibility arrays because we need to redo it info->outnumleafs = 0; info->outnumsurfaces = 0; memset(info->outleafpvs, 0, (info->model->brush.num_leafs + 7) >> 3); memset(info->outsurfacepvs, 0, (info->model->num_surfaces + 7) >> 3); memset(info->outshadowtrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3); memset(info->outlighttrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3); } else info->svbsp_active = false; // we HAVE to mark the leaf the light is in as lit, because portals are // irrelevant to a leaf that the light source is inside of // (and they are all facing away, too) { mnode_t *node = info->model->brush.data_nodes; mleaf_t *leaf; while (node->plane) node = node->children[(node->plane->type < 3 ? info->relativelightorigin[node->plane->type] : DotProduct(info->relativelightorigin,node->plane->normal)) < node->plane->dist]; leaf = (mleaf_t *)node; info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } } info->svbsp_insertoccluder = false; // use BIH culling on single leaf maps (generally this only happens if running a model as a map), otherwise use BSP culling to make use of vis data if (r_shadow_usebihculling.integer > 0 && (r_shadow_usebihculling.integer == 2 || info->model->brush.num_leafs == 1) && info->model->render_bih.leafs != NULL) { R_Q1BSP_RecursiveGetLightInfo_BSP(info, true); R_Q1BSP_RecursiveGetLightInfo_BIH(info, &info->model->render_bih); } else R_Q1BSP_RecursiveGetLightInfo_BSP(info, false); // we're using temporary framedata memory, so this pointer will be invalid soon, clear it r_svbsp.nodes = NULL; if (developer_extra.integer && use_svbsp) { Con_DPrintf("GetLightInfo: svbsp built with %i nodes, polygon stats:\n", r_svbsp.numnodes); Con_DPrintf("occluders: %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_occluders_accepted, r_svbsp.stat_occluders_rejected, r_svbsp.stat_occluders_fragments_accepted, r_svbsp.stat_occluders_fragments_rejected); Con_DPrintf("queries : %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_queries_accepted, r_svbsp.stat_queries_rejected, r_svbsp.stat_queries_fragments_accepted, r_svbsp.stat_queries_fragments_rejected); } } static msurface_t *r_q1bsp_getlightinfo_surfaces; static int R_Q1BSP_GetLightInfo_comparefunc(const void *ap, const void *bp) { int a = *(int*)ap; int b = *(int*)bp; const msurface_t *as = r_q1bsp_getlightinfo_surfaces + a; const msurface_t *bs = r_q1bsp_getlightinfo_surfaces + b; if (as->texture < bs->texture) return -1; if (as->texture > bs->texture) return 1; return a - b; } extern cvar_t r_shadow_sortsurfaces; void R_Mod_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, unsigned char *outleafpvs, int *outnumleafspointer, int *outsurfacelist, unsigned char *outsurfacepvs, int *outnumsurfacespointer, unsigned char *outshadowtrispvs, unsigned char *outlighttrispvs, unsigned char *visitingleafpvs, int numfrustumplanes, const mplane_t *frustumplanes, qbool noocclusion) { r_q1bsp_getlightinfo_t info; info.frontsidecasting = r_shadow_frontsidecasting.integer != 0; info.noocclusion = noocclusion || !info.frontsidecasting; VectorCopy(relativelightorigin, info.relativelightorigin); info.lightradius = lightradius; info.lightmins[0] = info.relativelightorigin[0] - info.lightradius; info.lightmins[1] = info.relativelightorigin[1] - info.lightradius; info.lightmins[2] = info.relativelightorigin[2] - info.lightradius; info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius; info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius; info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius; if (ent->model == NULL) { VectorCopy(info.lightmins, outmins); VectorCopy(info.lightmaxs, outmaxs); *outnumleafspointer = 0; *outnumsurfacespointer = 0; return; } info.model = ent->model; info.outleaflist = outleaflist; info.outleafpvs = outleafpvs; info.outnumleafs = 0; info.visitingleafpvs = visitingleafpvs; info.outsurfacelist = outsurfacelist; info.outsurfacepvs = outsurfacepvs; info.outshadowtrispvs = outshadowtrispvs; info.outlighttrispvs = outlighttrispvs; info.outnumsurfaces = 0; info.numfrustumplanes = numfrustumplanes; info.frustumplanes = frustumplanes; VectorCopy(info.relativelightorigin, info.outmins); VectorCopy(info.relativelightorigin, info.outmaxs); memset(visitingleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3); memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3); memset(outsurfacepvs, 0, (info.model->num_surfaces + 7) >> 3); memset(outshadowtrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3); memset(outlighttrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3); if (info.model->brush.GetPVS && !info.noocclusion) info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin); else info.pvs = NULL; RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false); if (!info.noocclusion && r_shadow_compilingrtlight && r_shadow_realtime_world_compileportalculling.integer && info.model->brush.data_portals) { // use portal recursion for exact light volume culling, and exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs); } else if (!info.noocclusion && r_shadow_realtime_dlight_portalculling.integer && info.model->brush.data_portals) { // use portal recursion for exact light volume culling, but not the expensive exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs); } else { // recurse the bsp tree, checking leafs and surfaces for visibility // optionally using svbsp for exact culling of compiled lights // (or if the user enables dlight svbsp culling, which is mostly for // debugging not actual use) R_Q1BSP_CallRecursiveGetLightInfo(&info, !info.noocclusion && (r_shadow_compilingrtlight ? r_shadow_realtime_world_compilesvbsp.integer : r_shadow_realtime_dlight_svbspculling.integer) != 0); } rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity // limit combined leaf box to light boundaries outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]); outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]); outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]); outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]); outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]); outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]); *outnumleafspointer = info.outnumleafs; *outnumsurfacespointer = info.outnumsurfaces; // now sort surfaces by texture for faster rendering r_q1bsp_getlightinfo_surfaces = info.model->data_surfaces; if (r_shadow_sortsurfaces.integer) qsort(info.outsurfacelist, info.outnumsurfaces, sizeof(*info.outsurfacelist), R_Q1BSP_GetLightInfo_comparefunc); } void R_Mod_CompileShadowMap(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex; int sidetotals[6] = { 0, 0, 0, 0, 0, 0 }, sidemasks = 0; int i; // FIXME: the sidetotals code incorrectly assumes that static_meshchain is // a single mesh - to prevent that from crashing (sideoffsets, sidetotals // exceeding the number of triangles in a single mesh) we have to make sure // that we make only a single mesh - so over-estimate the size of the mesh // to match the model. r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Begin(r_main_mempool, model->surfmesh.num_vertices, model->surfmesh.num_triangles); R_Shadow_PrepareShadowSides(model->surfmesh.num_triangles); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; sidemasks |= R_Shadow_ChooseSidesFromBox(surface->num_firsttriangle, surface->num_triangles, model->surfmesh.data_vertex3f, model->surfmesh.data_element3i, &r_shadow_compilingrtlight->matrix_worldtolight, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs, surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW ? NULL : sidetotals); } R_Shadow_ShadowMapFromList(model->surfmesh.num_vertices, model->surfmesh.num_triangles, model->surfmesh.data_vertex3f, model->surfmesh.data_element3i, numshadowsides, sidetotals, shadowsides, shadowsideslist); r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Finish(r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, true); r_shadow_compilingrtlight->static_shadowmap_receivers &= sidemasks; for(i = 0;i<6;i++) if(!sidetotals[i]) r_shadow_compilingrtlight->static_shadowmap_casters &= ~(1 << i); } #define RSURF_MAX_BATCHSURFACES 8192 static const msurface_t *batchsurfacelist[RSURF_MAX_BATCHSURFACES]; void R_Mod_DrawShadowMap(int side, entity_render_t *ent, const vec3_t relativelightorigin, const vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const unsigned char *surfacesides, const vec3_t lightmins, const vec3_t lightmaxs) { model_t *model = ent->model; const msurface_t *surface; int modelsurfacelistindex, batchnumsurfaces; // check the box in modelspace, it was already checked in worldspace if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs)) return; R_FrameData_SetMark(); // identify lit faces within the bounding box for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; if (surfacesides && !(surfacesides[modelsurfacelistindex] & (1 << side))) continue; rsurface.texture = R_GetCurrentTexture(surface->texture); if (rsurface.texture->currentmaterialflags & MATERIALFLAG_NOSHADOW) continue; if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs)) continue; r_refdef.stats[r_stat_lights_dynamicshadowtriangles] += surface->num_triangles; r_refdef.stats[r_stat_lights_shadowtriangles] += surface->num_triangles; batchsurfacelist[0] = surface; batchnumsurfaces = 1; while(++modelsurfacelistindex < modelnumsurfaces && batchnumsurfaces < RSURF_MAX_BATCHSURFACES) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; if (surfacesides && !(surfacesides[modelsurfacelistindex] & (1 << side))) continue; if (surface->texture != batchsurfacelist[0]->texture) break; if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs)) continue; r_refdef.stats[r_stat_lights_dynamicshadowtriangles] += surface->num_triangles; r_refdef.stats[r_stat_lights_shadowtriangles] += surface->num_triangles; batchsurfacelist[batchnumsurfaces++] = surface; } --modelsurfacelistindex; GL_CullFace(rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE ? GL_NONE : r_refdef.view.cullface_back); RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, batchnumsurfaces, batchsurfacelist); R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset); RSurf_DrawBatch(); } R_FrameData_ReturnToMark(); } #define BATCHSIZE 1024 static void R_Q1BSP_DrawLight_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i, j, endsurface; texture_t *t; const msurface_t *surface; R_FrameData_SetMark(); // note: in practice this never actually receives batches R_Shadow_RenderMode_Begin(); R_Shadow_RenderMode_ActiveLight(rtlight); R_Shadow_RenderMode_Lighting(true, rtlight->shadowmapatlassidesize != 0, (ent->flags & RENDER_NOSELFSHADOW) != 0); R_Shadow_SetupEntityLight(ent); for (i = 0;i < numsurfaces;i = j) { j = i + 1; surface = rsurface.modelsurfaces + surfacelist[i]; t = surface->texture; rsurface.texture = R_GetCurrentTexture(t); endsurface = min(j + BATCHSIZE, numsurfaces); for (j = i;j < endsurface;j++) { surface = rsurface.modelsurfaces + surfacelist[j]; if (t != surface->texture) break; R_Shadow_RenderLighting(1, &surface); } } R_Shadow_RenderMode_End(); R_FrameData_ReturnToMark(); } extern qbool r_shadow_usingdeferredprepass; void R_Mod_DrawLight(entity_render_t *ent, int numsurfaces, const int *surfacelist, const unsigned char *lighttrispvs) { model_t *model = ent->model; const msurface_t *surface; int i, k, kend, l, endsurface, batchnumsurfaces, texturenumsurfaces; const msurface_t **texturesurfacelist; texture_t *tex; CHECKGLERROR R_FrameData_SetMark(); // this is a double loop because non-visible surface skipping has to be // fast, and even if this is not the world model (and hence no visibility // checking) the input surface list and batch buffer are different formats // so some processing is necessary. (luckily models have few surfaces) for (i = 0;i < numsurfaces;) { batchnumsurfaces = 0; endsurface = min(i + RSURF_MAX_BATCHSURFACES, numsurfaces); if (ent == r_refdef.scene.worldentity) { for (;i < endsurface;i++) if (r_refdef.viewcache.world_surfacevisible[surfacelist[i]]) batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i]; } else { for (;i < endsurface;i++) batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i]; } if (!batchnumsurfaces) continue; for (k = 0;k < batchnumsurfaces;k = kend) { surface = batchsurfacelist[k]; tex = surface->texture; rsurface.texture = R_GetCurrentTexture(tex); // gather surfaces into a batch range for (kend = k;kend < batchnumsurfaces && tex == batchsurfacelist[kend]->texture;kend++) ; // now figure out what to do with this particular range of surfaces // VorteX: added MATERIALFLAG_NORTLIGHT if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_NORTLIGHT)) != MATERIALFLAG_WALL) continue; if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))) continue; if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) { vec3_t tempcenter, center; for (l = k;l < kend;l++) { surface = batchsurfacelist[l]; if (r_transparent_sortsurfacesbynearest.integer) { tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]); tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]); tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]); } else { tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f; tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f; tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f; } Matrix4x4_Transform(&rsurface.matrix, tempcenter, center); if (ent->transparent_offset) // transparent offset { center[0] += r_refdef.view.forward[0]*ent->transparent_offset; center[1] += r_refdef.view.forward[1]*ent->transparent_offset; center[2] += r_refdef.view.forward[2]*ent->transparent_offset; } R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : ((rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort), center, R_Q1BSP_DrawLight_TransparentCallback, ent, surface - rsurface.modelsurfaces, rsurface.rtlight); } continue; } if (r_shadow_usingdeferredprepass) continue; texturenumsurfaces = kend - k; texturesurfacelist = batchsurfacelist + k; R_Shadow_RenderLighting(texturenumsurfaces, texturesurfacelist); } } R_FrameData_ReturnToMark(); } //Made by [515] static void R_ReplaceWorldTexture_f(cmd_state_t *cmd) { model_t *m; texture_t *t; int i; const char *r, *newt; skinframe_t *skinframe; if (!r_refdef.scene.worldmodel) { Con_Printf("There is no worldmodel\n"); return; } m = r_refdef.scene.worldmodel; if(Cmd_Argc(cmd) < 2) { Con_Print("r_replacemaptexture - replaces texture\n"); Con_Print("r_replacemaptexture - switch back to default texture\n"); return; } if(!cl.islocalgame || !cl.worldmodel) { Con_Print("This command works only in singleplayer\n"); return; } r = Cmd_Argv(cmd, 1); newt = Cmd_Argv(cmd, 2); if(!newt[0]) newt = r; for(i=0,t=m->data_textures;inum_textures;i++,t++) { if(/*t->width && !strcasecmp(t->name, r)*/ matchpattern( t->name, r, true ) ) { if ((skinframe = R_SkinFrame_LoadExternal(newt, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PICMIP, true, false))) { // t->skinframes[0] = skinframe; t->currentskinframe = skinframe; Con_Printf("%s replaced with %s\n", r, newt); } else { Con_Printf("%s was not found\n", newt); return; } } } } //Made by [515] static void R_ListWorldTextures_f(cmd_state_t *cmd) { model_t *m; texture_t *t; int i; if (!r_refdef.scene.worldmodel) { Con_Printf("There is no worldmodel\n"); return; } m = r_refdef.scene.worldmodel; Con_Print("Worldmodel textures :\n"); for(i=0,t=m->data_textures;inum_textures;i++,t++) if (t->name[0] && strcasecmp(t->name, "NO TEXTURE FOUND")) Con_Printf("%s\n", t->name); } #if 0 static void gl_surf_start(void) { } static void gl_surf_shutdown(void) { } static void gl_surf_newmap(void) { } #endif void GL_Surf_Init(void) { Cvar_RegisterVariable(&r_ambient); Cvar_RegisterVariable(&r_lockpvs); Cvar_RegisterVariable(&r_lockvisibility); Cvar_RegisterVariable(&r_useportalculling); Cvar_RegisterVariable(&r_usesurfaceculling); Cvar_RegisterVariable(&r_vis_trace); Cvar_RegisterVariable(&r_vis_trace_samples); Cvar_RegisterVariable(&r_vis_trace_delay); Cvar_RegisterVariable(&r_vis_trace_eyejitter); Cvar_RegisterVariable(&r_vis_trace_enlarge); Cvar_RegisterVariable(&r_vis_trace_expand); Cvar_RegisterVariable(&r_vis_trace_pad); Cvar_RegisterVariable(&r_vis_trace_surfaces); Cvar_RegisterVariable(&r_q3bsp_renderskydepth); Cmd_AddCommand(CF_CLIENT, "r_replacemaptexture", R_ReplaceWorldTexture_f, "override a map texture for testing purposes"); Cmd_AddCommand(CF_CLIENT, "r_listmaptextures", R_ListWorldTextures_f, "list all textures used by the current map"); //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap); }